文档视界 最新最全的文档下载
当前位置:文档视界 › 数据挖掘概念复习资料

数据挖掘概念复习资料

数据挖掘概念复习资料
数据挖掘概念复习资料

数据挖掘:是从大量数据中发现有趣(非平凡的、隐含的、先前未知、潜在有用)模式,这些数据可以存放在数据库,数据仓库或其他信息存储中。

挖掘流程:

(1)学习应用域(2)目标数据创建集(3)数据清洗和预处理(4)数据规约和转换(5)选择数据挖掘函数(总结、分类、回归、关联、分类)(6)选择挖掘算法(7)找寻兴趣度模式(8)模式评估和知识展示(9)使用挖掘的知识

概念/类描述:一种数据泛化形式,用汇总的、简洁的和精确的方法描述各个类和概念,通过(1)数据特征化:目标类数据的一般特性或特征的汇总;(2)数据区分:将目标类数据的一般特性与一个或多个可比较类进行比较;(3)数据特征化和比较来得到。

关联分析:发现关联规则,这些规则展示属性-值频繁地在给定数据集中一起出现的条件,通常要满足最小支持度阈值和最小置信度阈值。

分类:找出能够描述和区分数据类或概念的模型,以便能够使用模型预测类标号未知的对象类,导出的模型是基于训练集的分析。导出模型的算法:决策树、神经网络、贝叶斯、(遗传、粗糙集、模糊集)。

预测:建立连续值函数模型,预测空缺的或不知道的数值数据集。

孤立点:与数据的一般行为或模型不一致的数据对象。

聚类:分析数据对象,而不考虑已知的类标记。训练数据中不提供类标记,对象根据最大化类内的相似性和最小化类间的原则进行聚类或分组,从而产生类标号。

第二章数据仓库

数据仓库是一个面向主题的、集成的、时变的、非易失的数据集合,支持管理部门的决策过程。从一个或多个数据源收集信息,存放在一个一致的模式下,并且通常驻留在单个站点。数据仓库

通过数据清理、变换、继承、装入和定期刷新过程来构造。面向主题:排除无用数据,提供特定主题的简明视图。集成的:多个异构数据源。时变的:从历史角度提供信息,隐含时间信息。非易失的:和操作数据的分离,只提供初始装入和访问。

联机事务处理OLTP:主要任务是执行联机事务和查询处理。

联系分析处理OLAP:数据仓库系统在数据分析和决策方面为用户或‘知识工人’提供服务。这种系统可以用不同的格式和组织提供数据。OLAP是一种分析技术,具有汇总、合并和聚集功能,以及从不同的角度观察信息的能力。

多维数据模型:

多维数据模型将数据看作数据立方体,允许从多个维度对数据建模和观察。包含维表和事实表。最流行的数据仓库数据模型是多维数据模型,这种模型可以是星形模式(事实表在中间,连接到多个维表)、雪花模式(星型的变种,某些维表规范化,分解到附加维表,以减少冗余)、事实星座模式(多个事实表共享维表)。

数据立方体:允许从多维对数据建模和观察。它由维和事实定义。维:关于一个组织想要保存记

录的透视图和实体,每个维都有一个表与之相关联,成为维表。事实表:包括事实的名称和度量,以及每个相关维表的码。

方体Cuboid:每个数据立方体。基本方体Base Cuboid:存放最底层汇总。顶点方体Apex Cuboid:最高层汇总,all。数据立方体D a ta Cube:给定维的集合,可以对维的每个可能子集产生一个方体。结果成为方体的格。

多维数据立方体:提供数据的多维视图,并允许预计算和快速访问汇总数据。

度量:数值函数,通过对给定点的各维-值对聚集数据,计算该点的度量值。

概念分层:映射序列,将底层概念映射到更一般的较高层概念。

OLAP操作:

上卷:上卷操作通过一个维的概念分层向上攀升或者通过维规约,在数据立方体上进行聚集。下钻:下钻是上卷的逆操作,它由不太详细的数据到更详细的数据。

切片和切块:切片对一个维进行选择。切块对两个以上维进行选择,定义子立方体。

转轴:可视化操作,转动视角。钻过:跨越多个事实表。钻透:钻到后端关系表。

数据仓库模型的不同类型:

1、企业仓库:收集了关于跨部门的整个组织主题的所有信息,跨越整个组织,因此是企业范围的。

2、数据集市:是企业仓库的一个部门子集,它针对选定的主题,对于特定的用户是有用的,因此是部门范围的,其数据通常是汇总的。

3、虚拟仓库:虚拟仓库是操作数据库上视图的集合,易于建立,但需要操作数据库服务器具有剩余能力。

数据仓库的三层结构:

1、仓库数据服务器:使用后端工具(抽取、清晰、转换、装载、刷新)和实用程序由操作数据库和其他外部数据源提取数据,进行数据清理和变换并放入仓库底层

2、OLAP服务器:直接实现对多维数据的操作,直接为商务用户提供来自数据仓库或数据集市的多维数据。ROLAP:多维数据操作映射到标准关系操作。MOLAP:多维数据视图映射到数组中.HOLAP:结合,历史数据ROLAP,频繁访问数据放到MOLAP.

3、前端客户层:包括查询和报表工具、分析工具或数据挖掘工具。

数据仓库的设计:

1、分析建立企业模型并映射到数据仓库概念模型;

2、逻辑模型的设计

3、物理模型的设计

OLAP建模:维表设计(维的变化,维表的共享,层次信息和分类信息的位置)、事实表设计(事实表的特性,通用数据和专用数据事实表)

逻辑模型设计:

1、系统数据量估算;

2、数据粒度的选择;

3、数据的分割(到各自的物理单元单独处理)

4、表的合理划分(字段的更新频率和访问频率不一样——稳定性)

5、删除纯操作数据(“收款人”),增加导出字段(“销售总量”)

元数据:描述数据的数据,定义数据仓库对象的数据。包括数据仓库的结构、操作元数据(数据血统、流通,监控信息)、用于汇总的算法、从操作环境到数据仓库的映射;关于系统性能的数据、商务元数据。

部分物化:选择性预计算各种方体子集或子立方体。

冰山立方体:是一个数据立方体,只存放聚集值大于某个最小支持度阈值的立方体单元。 数据立方体计算中多路数组聚集,多路计算 BUC :bottom-up computation

自底向上构造,一种计算稀疏冰山立方体的算法。

数据立方体允许以多维数据建模和观察,它由维和事实定义。 维是关于一个组织想要记录的透视或实体,事实是数值度量的。 物理模型的设计:

1.确定数据的存储结构(并行RAID )

2.索引策略(位图索引、连接索引)

3.数据存储策略与性能优化(多路聚集优化、表的归并、分割表的存放、按列存储、存储分配优化)

4.数据装载接口

5.并行优化设计

位图索引:在给定属性的位图索引中,属性的每一个值v 都有一个位向量,长度为记录的总数,如果数据表中给定行上该属性的值为v, 则在位图索引的对应行上标注该值的位为1,其余为0.,不适用于基数很大的属性。

连接索引:传统的索引将给定列上的值映射到具有该值的行的列表上,连接索引登记来自关系数

据库的两个关系的可连接行,对于维护来自可连接的关系的外码和与之匹配的主码的联系特别有用(事实表——维表)。

N 维,且每个维有Li 概念封层,可得到的立方体有

多路数组聚集:是数据立方体的高效计算方式。使用多维数组作为基本数据结构,自底向上的、共享地计算完全数据立方体。使用数组直接寻址的典型MOLAP 。

方法:最大维在形成单块的平面上。最小为在形成单面的平面上,每个平面必须被排序,并按大

)

11

(+∏==n i i L T

小递增的顺序被计算。

数据预处理

数据预处理:不完整的、含噪音的、不一致的

1、数据清洗(缺失值(缺少属性值或某些感兴趣的属性,或仅包含聚集数据)、噪声(错误或存在偏离期望的离群值)、非一致)、

2、数据集成(模式集成(识别实体)、发现冗余(相关分析检测)、数据值冲突检测和处理

(不同数据源属性值不同))、

3、数据变换(光滑(去掉噪声)、聚集(数据汇总)、泛化(概念分层,高层替换低层)、

规范化(按比例缩放)、属性构造)

4、数据规约(数据立方体聚集、维度规约(属性子集选择)、数值规约、离散化和概念分层

产生)、

5、数据离散化(数值数据:分箱、直方图、聚类、基于熵的离散化、基于直观划分离散化

3-4-5规则(区间的最高有效位的取值个数);

分类数据:用户或专家在模式级显示说明属性偏序、通过显示数据分组说明分层结构的一部分、说明属性集但不说明偏序(层次高,属性值个数越少)、只说明部分属性集(嵌入数据语义,是语义相关的属性集捆绑在一起))。

噪声:被测量的变量的随机误差或方差。

噪音数据处理:分箱(按箱平均值平滑、按箱中值平滑、按箱边界平滑)、回归、聚类。

规范化:最小-最大规范化;Z-score规范化;小数定标规范化

数据规约技术:得到数据集的规约显示,小得多,但保持原数据的完整性。挖掘更有效。

属性子集选择:检测并删除不相关、弱相关或冗余的属性和维

维规约:使用编码机制减小数据集的规模,如压缩。

数值规约:用替代的、较小的数据表示替换或估计数据,如参数模型or非参方法(聚类、抽样、直方图(Equi-depth、equi-width、v-optimal(最小方差)、maxdiff(考虑每对相邻的之间的差,桶的边界具有<桶数-1 >的最大对))。

概念分层:对一个属性递归地进行离散化,产生属性值的分层或多分辨率划分。属性的原始数据用更高层或离散化的值替换。

离散化:用少数区间标记替换连续属性的数值,从而减少和简化原来的数据。

特征化和区分:

描述性数据挖掘:以简洁概要的方式描述概念或数据集,并提供数据的有趣的一般性质。

预测性数据挖掘:分析数据,建立一个或一组连续值函数模型,预测不知道的数值数据值。

概念描述包括特征化和区分。

特征化:提供给定数据汇集的简洁汇总。

区分:提供两个或多个数据集的比较描述。

OLAP VS 概念描述:处理类型、自动化方面比较各自优缺点。

Concept description:

◆can handle complex data types of the attributes and their aggregations

◆ a more automated process

OLAP:

◆restricted to a small number of dimension and measure types

◆user-controlled process

决策树:一种类似于流程图的树结构,其中每个结点代表在一个属性值上的测试,每个分支代表

测试的一个输出,而树叶代表类或类分布。

数据泛化:将数据库中的大量任务相关数据从低概念层提升到更高概念层的过程。

数据泛化途径:1、数据立方体(OLAP途径)2、面向属性的归纳

面向属性的归纳:

1、使用数据库查询收集任务相关的数据;

2、考察相关任务集中的各个属性并进行泛化:通过属性删除(两种情况)或者属性泛化

3、通过合并相等的广义元组(每个广义元组代表一个规则析取)并累计对应的计数值进行聚集

面向属性归纳方法产生的泛化描述表现形式:广义关系(表)、交叉表、图、量化特征规则。属性泛化控制:属性泛化阈值控制(对所有的属性设置一个泛化阈值,或者对每个属性设置一个阈值。如果属性的不同值个数大于属性泛化阈值,则应当进行进一步的属性删除或属性泛化)广义关系阈值控制:为广义关系设置一个阈值。如果广义关系中不同元组的个数超过该阈值,则当进一步泛化;否则,不再进一步泛化。

特征化VS OLAP: 相同点:在不同抽象层次数据汇总展示;迭代的上卷、下钻、旋转、切片/块。不同点:特征化:自动产生层次的分配;多个相关维时进行维的相关分析和排序;维和度量的类型可以很复杂

量化规则:带有量化信息的逻辑规则

解析特征化:

1、收集任务相关数据

2、根据属性分析阈值分析泛化(对目标类和对比类的候选关系):属性删除、属性泛化、候选关系

3、属性的相关性分析(信息增益)

4、(去除不/弱相关,对比类的候选关系)形成目标类的初始工作关系

5、在初始工作关系上根据属性泛化阈值使用面向属性的归纳

类对比:

1、通过查询处理收集数据库中的相关数据集,并分别划分成目标类和一个或多个对比类。

2、维相关分析(仅选择高度相关的维进一步分析,属性移除和泛化)

3、同步泛化(目标类泛化到维阈值控制的层,对比类概念泛化到相同层)

4、通过对目标类和对比类使用下钻、上卷和其他OLAP 操作调整比较描述的抽象层次。

5、导出比较的表示 量化特征规则(必要):

T 权:P-135,代表典型性 量化判别规则(充分):

D 权:p-138,代表和对比类比有多大差别(高D 权:概念主要从目标类导出)

量化描述规则(充分必要):

关联规则挖掘:

关联规则挖掘:从操作型数据库、关联数据库或者其他信息库中的项集、对象中,发现频繁模式、关联、相关或者因果结构。

应用:Basket data analysis, cross-marketing, catalog design, loss-leader analysis, clustering, classification, etc. 例子:Rule form: “Body Head [support, confidence]”.

buys(x, “diapers ”)

buys(x, “beers ”) [0.5%, 60%]

t_weight]

:[t X)condition(ss(X)target_cla X,??d_weight]

:[d X)condition(ss(X)target_cla X,??]

w :d ,w :[t (X)condition ...]w :d ,w :[t (X)condition ss(X)target_cla X,n n n 111'∨∨'??

major(x, “CS”) ^ takes(x, “DB”) grade(x, “A”) [1%, 75%]

频繁项集:频繁地在事务数据集中一起出现的项的集合,满足最小支持度。

支持度:规则X & Y Z的支持度,事务中包括{X、Y、Z}的概率。

置信度:在X,Y存在的情况下,Z也在事务中的概率。

两步过程:1、找出所有的频繁项集2、由频繁项集产生强关联规则

Apriori 算法:

该算法利用了频繁项集所具有的任意频繁项集的子集都是频繁项集的这一性质对数据库进行多次扫描:第一次扫描得到频繁项集的集合L0 ,第k趟扫描前先利用上次扫描的结果项目集Lk-1,产生候选k项集的集合Ck,然后再通过扫描数据库确定C中每一候选k项集的支持数,最后在该次扫描结束时求出频繁k项集的集合Lk,算法的终止条件是Ck或Lk为空。

如何通过L k-1找到L k。

使用候选产生发现频繁项集(1)连接步:C k根据L k-1与自身连接生成(2)剪枝步(子集测试)C k是L k的超集,扫描数据库,确定C k中的每个候选的计数,剪去小于最小支持度的项集。Apriori 性质:频繁项集的所有非空子集也必须是频繁

Apriori 核心:用k 项集生成k+1 项集;使用数据库扫描和模式匹配收集候选项集计数Apriori 瓶颈:候选项集计算量大尤其是1频繁项集自交叉生成2候选项集时;数据库多次扫描,每次抽取都要扫描

由Apriori 产生频繁项集产生关联规则:由频繁项集直接产生强关联规则s->(l-s),s为l的非空子集

提高Apriori 算法的效率:

1、基于散列的技术:一种基于散列的技术可以用于压缩候选k 项集Ck(eg:在C1中产生L1的过程中,可对每个事务产生所有的2项集,并将它们散列到散列表结构的不同桶中,并增

加对应的桶计数,计数低于最小支持桶中的2项集应从2候选项集中删除)

2、事务压缩:不包含任何K频繁项集的事务不可能产生>K的FI应在后继的扫描中删除

3、划分:任何频繁项集必须作为局部频繁项集至少出现在一个划分中。

4、抽样:在样本上降低阈值

5、动态项集计数:只有子项集都频繁才将其加入候选项集

FP树:发现频繁项集而不产生候选;

分治策略:首先将提供频繁项的数据库压缩到一棵FP树上,仍然保留项集相关信息。然后将压缩后的数据库划分为一组条件数据库,每个关联一个频繁项或模式段,并分别挖掘每个条件数据库。

FP核心:利用FP树递归地增长频繁模式路径(分治)

FP优点:去除了不相关的信息;出去节点连接和计数规模比原数据库小;快速;将发现长频繁模式的问题转换成递归地搜索一些较短的模式。

Completeness:

◆never breaks a long pattern of any transaction

◆preserves complete information for frequent pattern mining

Other advantages:

◆reduce irrelevant information—infrequent items are gone

◆never be larger than the original database (if not count node-links and

counts)

◆much faster than Apriori

FP性能优于Apriori的原因:

1、 没有候选的产生

2、 采用紧凑的数据结构

3、 消除了对数据库的重复扫描

4、 基本的操作既是对FP 的构建和计数

提升度(lift ): ,=1表示A 、B 独立,<1 A 、B 负相关,>1A 、B 正相关

单维关联规则:包含单个谓词的关联规则。buys(X, “milk ”) ? buys(X, “bread ”) 多维关联规则:一个以上属性或谓词之间的关联规则。 维间关联规则:具有名不重复谓词。 混合关联规则:某些谓词重复出现。

age(X,”19-25”) ∧ occupation(X,“student ”) ? buys(X,“coke ”) 多层关联规则:在多个抽象层上挖掘数据产生的关联规则。

高层:milk –> bread [20%, 60%].底层:Sweet milk-> wheat bread [6%, 50%]. 一致支持度(对于所有层使用一致的最小支持度)、递减支持度(在较低层使用递减的最小支持度)、基于分组的支持度(基于项或基于分组的最小支持度) 分层独立策略:检查所有的节点而不考虑其父节点是否频繁

分类和预测:

分类:找出描述并区分数据类或概念的模型,以便能够使用模型预测未知对象类的类标记,模型

的构建依赖于训练集和分类属性的类标号的使用。

预测:建立连续值函数模型,预测某些空缺的或不知道的数据值而不是类标记。

)

()()(B P A P B A P ∧

从数据分析的角度来看

监督学习(分类):提供了每个训练元组的类标号,未知元组通过由训练元组构造的模型来定性类标号的预测

非监督学习(聚类):每个训练元组的类标号是未知的,并且要学习的类的个数或集合也可能事先不知道,力求寻找类或聚类的存在。

Typical Applications

◆credit approval

◆target marketing

◆medical diagnosis

◆treatment effectiveness analysis

测试集来评估模型的正确性

决策树:一种类似于流程图的树结构,其中每个结点代表在一个属性值上的测试,每个分支代表测试的一个输出,而树叶代表类或类分布。

决策树算法:Basic algorithm (a greedy algorithm)自顶向下、递归、分治的贪心策略:

1、Tree is constructed in a top-down recursive divide-and-conquer manner

2、At start, all the training examples are at the root

3、Attributes are categorical (if continuous-valued, they are discretized in advance)

4、Examples are partitioned recursively based on selected attributes

5、Test attributes are selected on the basis of a heuristic or statistical measure (e.g.,

information gain)

结束条件:

1、所有的样本都属于同一个类

2、没有剩余的样本可用

3、没有剩余的属性用来划分(投票)

避免过度拟合:

The generated tree may overfit the training data

◆Too many branches, some may reflect anomalies due to noise or

outliers

◆Result is in poor accuracy for unseen samples

前剪枝(在构造过程中,预定义阈值,如果分裂低于阈值,提前停止树的构造。一旦停止,该节点成为树叶。)VS 后剪枝(构造完成,由完全生长的树剪去子树,用其子树中最频繁的类标记替换。):

贝叶斯:概率学习、增量、概率预测、标准,可以解决不可见样本问题

sample X ,class label C 寻找使P(C|X)最大的X

朴素假设:类条件独立P(x1,…,xk|C) = P(x1|C)·…·P(xk|C),当出现新的独立类时可在原基础上直接计算,即增量

神经网络:一组连接的输入输出单元,每个连接都有一个权重与之相关联,在学习阶段通过调整这些权重能够预测输入元组的正确类标号。

后向传播(图):初始化权重——向前传播输入——向后传播误差——调整权值——终止条件终止:超过预先指定的周期数;前一周期的权值调整小于预定值/误分的百分比小于预定值。后向传播算法:

1.将从输入层进过隐藏层到达输出层,得到网络预测值。

2.计算出网络预测与实际已知目标的差值(error)

3.将error从输出层后向传播到隐藏层

4.修改权重和偏值,使得预测网络值和实际目标值的军方误差最小

5.如果满足标准则停止,否则从循环到step1。

后向传播:通过迭代地处理一组训练样本,将每个样本的网络预测与实际知道的类标号比较,进行学习。对于每个训练样本,修改权,使得网络预测和实际类之间的均方误差最小,这种修改“后向”进行。

向前传播输入:计算隐藏层和输出层每个单元的净输入和输出。

向后传播误差:通过更新权和偏置以反映网络预测的误差,向后传播误差。

急切学习法:在接收待分类的新元组之前构造分类模型。

懒惰学习法:给定训练元组时,只是简单存储,并一直等到待检验元组出现才进行泛化,比便根据存储的训练元组的相似性对元组进行分类。

1、K-近邻找到最接近未知元组的K个训练元组

2、基于案例推理

粗糙集:基于等价类的建立,给定类的粗糙集定义用两个集合近似:上近似,不能认为不属于C 的集合;下近似:必定属于C的集合。分类精度高,处理离散属性。

模糊集:对每个类定义“模糊”的阈值和边界,模糊逻辑0-0.1之间的真值表示一个特定的值是一个给定类成员的隶属程度,而不是用精确的截断,每个类表示一个模糊集。

分类正确性的验证:划分(独立的训练集和测试集,大规模);交叉验证(K个子样本集,中等规模,k-1个训练集,1个验证集)

分类和预测的组装方法:

装袋:对训练集有放回随机抽样产生N个训练子集,导出N个模型,对未知数据,给出对应的N个结果。每个分类器投出一票,统计得票,将得票最高的类赋予X。分类-多数表决;预测-均值

提升:对训练集有放回随即抽样产生N个训练子集,导出N个模型。每个训练元组都赋予一个权重。对每个训练元组从1-N模型迭代地进行,重整每个元组的权重;使得在下一轮更关注上一轮误分的元组,并计算每个模型的投票权重。分类返回具有最大权重的类

聚类挖掘:

聚类:要划分的类是未知的,将数据对象分组成为多个类或簇,在同一个簇中的对象之间具有较高的相似度,而不同簇中的对象差别较大。

General Applications:

Pattern Recognition

Spatial Data Analysis

Image Processing

Economic Science (especially market research)

WWW

◆Document classification

◆Cluster Weblog data to discover groups of similar access patterns

划分方法:

K-均值:以K为输入参数,将对象分为K个簇,是簇内~,簇外~

1、随机选择K个对象作为K个簇的中心

2、选择离K最近的点形成簇

3、根据簇中的点计算新的均值,这个均值可以看做簇的中心OR质心

4、以新的中心更新簇,从步骤2开始重复直到簇不再变化

优点:相对可伸缩,有效率;往往终止局部最优解;

缺点:需要用户给出K;对分类属性的数据均值无定义;对噪声和离群点敏感;不适合凹形;Applicable only when mean is defined, then what about

categorical data?

K-中心点算法:簇的中心必须落在某个实在的点上,对噪声不敏感。确定N个对象的K各划分,随机选择k个初始代替代表对象代表,其余的每个对象聚类到与其最相似的代表对象所在的簇。然后反复地试图选择簇的更好的代表对象(用代价函数计算聚类的质量,代表对象被误差更小的对象)。

层次方法:凝聚的(开始每个对象形成单独的组,然后逐次合并相近的对象或组,直到所有组合并成一个或满足终止条件);分裂的(开始所有对象置于一个簇,每次迭代分裂成更小的簇,知道每个对象在一个簇中或满足终止条件);优点:在运行中可随时停止,不要K参数;缺点:不可回溯

基于密度的方法:只要邻域中的密度(数据点的数目)大于每个阈值,就继续聚类。

优点:

1、发现任意形状的簇;

2、处理噪声;

3、一次扫描;

4、需要密度参数作为终止条件;

DBSCAN:(具有噪声的基于密度的聚类应用)密度可达和密度相连(这个可能要考)

1、邻域

2、核心对象(对象的eps邻域至少包含minpts的对象,成为核心对象)

3、直接密度可达:p从q直接密度可达:如果q为核心对象且p在q的eps邻域

4、密度可达:如果对象链Pi+1是从Pi关于E和MINPTS直接密度可达的,

p1=q,pn=p,则对象p从q关于E和MINPTS密度可达的。

5、密度相连:p,q都是从o关于E和MINPTS密度可达的,则p到q是关于~密度

相连的。

基于密度的簇是基于密度可达性的最大密度相连对象的集合,不包含在簇中的认为是

噪声(MINPTS的限制不可能成为核心对象)。

离群点:与数据的一般行为或模型不一致。

Problem

◆Find top n outlier points

Applications:

◆Credit card fraud detection

◆Telecom fraud detection

◆Customer segmentation

◆Medical analysis

1、基于统计分布:例如正态分布的3σ以外的区域

2、基于距离:阈值1:D;

阈值2:水平eg:95%

到其他点的距离有大于95%的大于D,则认为是离群点

3、基于偏差:它通过检查一组对象的主要特征来识别离群点,背离这种对象的被认为是离群点。

《数据挖掘》试题与标准答案

一、解答题(满分30分,每小题5分) 1. 怎样理解数据挖掘和知识发现的关系?请详细阐述之 首先从数据源中抽取感兴趣的数据,并把它组织成适合挖掘的数据组织形式;然后,调用相应的算法生成所需的知识;最后对生成的知识模式进行评估,并把有价值的知识集成到企业的智能系统中。 知识发现是一个指出数据中有效、崭新、潜在的、有价值的、一个不可忽视的流程,其最终目标是掌握数据的模式。流程步骤:先理解要应用的领域、熟悉相关知识,接着建立目标数据集,并专注所选择的数据子集;再作数据预处理,剔除错误或不一致的数据;然后进行数据简化与转换工作;再通过数据挖掘的技术程序成为模式、做回归分析或找出分类模型;最后经过解释和评价成为有用的信息。 2.时间序列数据挖掘的方法有哪些,请详细阐述之 时间序列数据挖掘的方法有: 1)、确定性时间序列预测方法:对于平稳变化特征的时间序列来说,假设未来行为与现在的行为有关,利用属性现在的值预测将来的值是可行的。例如,要预测下周某种商品的销售额,可以用最近一段时间的实际销售量来建立预测模型。 2)、随机时间序列预测方法:通过建立随机模型,对随机时间序列进行分析,可以预测未来值。若时间序列是平稳的,可以用自回归(Auto Regressive,简称AR)模型、移动回归模型(Moving Average,简称MA)或自回归移动平均(Auto Regressive Moving Average,简称ARMA)模型进行分析预测。 3)、其他方法:可用于时间序列预测的方法很多,其中比较成功的是神经网络。由于大量的时间序列是非平稳的,因此特征参数和数据分布随着时间的推移而变化。假如通过对某段历史数据的训练,通过数学统计模型估计神经网络的各层权重参数初值,就可能建立神经网络预测模型,用于时间序列的预测。

数据挖掘考试题库完整

一、名词解释 1.数据仓库:是一种新的数据处理体系结构.是面向主题的、集成的、不可更新的(稳定性)、 随时间不断变化(不同时间)的数据集合.为企业决策支持系统提供所需的集成信息。 2.孤立点:指数据库中包含的一些与数据的一般行为或模型不一致的异常数据。 3.OLAP:OLAP是在OLTP的基础上发展起来的.以数据仓库为基础的数据分析处理.是共享多 维信息的快速分析.是被专门设计用于支持复杂的分析操作.侧重对分析人员和高层管理人员的决策支持。 4.粒度:指数据仓库的数据单位中保存数据细化或综合程度的级别。粒度影响存放在数据 仓库中的数据量的大小.同时影响数据仓库所能回答查询问题的细节程度。 5.数据规范化:指将数据按比例缩放(如更换大单位).使之落入一个特定的区域(如0-1) 以提高数据挖掘效率的方法。规范化的常用方法有:最大-最小规范化、零-均值规范化、小数定标规范化。 6.关联知识:是反映一个事件和其他事件之间依赖或相互关联的知识。如果两项或多项属 性之间存在关联.那么其中一项的属性值就可以依据其他属性值进行预测。 7.数据挖掘:从大量的、不完全的、有噪声的、模糊的、随机的数据中.提取隐含在其中的、 人们事先不知道的、但又是潜在有用的信息和知识的过程。 8.OLTP:OLTP为联机事务处理的缩写.OLAP是联机分析处理的缩写。前者是以数据库为基 础的.面对的是操作人员和低层管理人员.对基本数据进行查询和增、删、改等处理。 9.ROLAP:是基于关系数据库存储方式的.在这种结构中.多维数据被映像成二维关系表.通 常采用星型或雪花型架构.由一个事实表和多个维度表构成。 10.MOLAP:是基于类似于“超立方”块的OLAP存储结构.由许多经压缩的、类似于多维数组 的对象构成.并带有高度压缩的索引及指针结构.通过直接偏移计算进行存取。 11.数据归约:缩小数据的取值范围.使其更适合于数据挖掘算法的需要.并且能够得到和原 始数据相同的分析结果。 12.广义知识:通过对大量数据的归纳、概括和抽象.提炼出带有普遍性的、概括性的描述统 计的知识。 13.预测型知识:是根据时间序列型数据.由历史的和当前的数据去推测未来的数据.也可以 认为是以时间为关键属性的关联知识。 14.偏差型知识:是对差异和极端特例的描述.用于揭示事物偏离常规的异常现象.如标准类 外的特例.数据聚类外的离群值等。 15.遗传算法:是一种优化搜索算法.它首先产生一个初始可行解群体.然后对这个群体通过 模拟生物进化的选择、交叉、变异等遗传操作遗传到下一代群体.并最终达到全局最优。 16.聚类:是将物理或抽象对象的集合分组成为多个类或簇(cluster)的过程.使得在同一个 簇中的对象之间具有较高的相似度.而不同簇中的对象差别较大。 17.决策树:是用样本的属性作为结点.用属性的取值作为分支的树结构。它是分类规则挖掘 的典型方法.可用于对新样本进行分类。 18.相异度矩阵:是聚类分析中用于表示各对象之间相异度的一种矩阵.n个对象的相异度矩 阵是一个nn维的单模矩阵.其对角线元素均为0.对角线两侧元素的值相同。 19.频繁项集:指满足最小支持度的项集.是挖掘关联规则的基本条件之一。 20.支持度:规则A→B的支持度指的是所有事件中A与B同地发生的的概率.即P(A∪B).是 AB同时发生的次数与事件总次数之比。支持度是对关联规则重要性的衡量。 21.可信度:规则A→B的可信度指的是包含A项集的同时也包含B项集的条件概率P(B|A).

数据挖掘概念与技术-课后题答案汇总

数据挖掘概念与技术-课后题答案汇总

数据挖掘——概念概念与技术 Data Mining Concepts and Techniques 习题解答 Jiawei Han Micheline Kamber 著 范明孟晓峰译

目录

第 1 章 引言 1.1 什么是数据挖掘?在你的回答中,针对以下问题: 1.2 1.6 定义下列数据挖掘功能:特征化、区分、关联和相关分析、预测 聚 类和演变分析。使用你熟悉的现实生活的数据库,给出每种数据挖掘功 能的例子。 解答: ? 特征化是一个目标类数据的一般特性或特性的汇总。例如,学生的特征 可 被提出,形成所有大学的计算机科学专业一年级学生的轮廓,这些特 征包括作为一种高的年级平均成绩(GPA :Grade point aversge) 的信息, 还有所修的课程的最大数量。 ? 区分是将目标类数据对象的一般特性与一个或多个对比类对象的一 般 特性进行比较。例如,具有高 GPA 的学生的一般特性可被用来与具有 低 GPA 的一般特性比较。最终的描述可能是学生的一个一般可比较的 轮廓,就像具有高 GPA 的学生的 75%是四年级计算机科学专业的学生, 而具有低 G PA 的学生的 65%不是。 ? 关联是指发现关联规则,这些规则表示一起频繁发生在给定数据集的特 征 值的 条 件。 例 如, 一 个数 据 挖掘 系 统可 能 发现 的 关联 规 则为 : major(X, “ c omputing science ”) owns(X, “personal computer ” ) [support=12%, confid ence=98%] 其中,X 是一个表示学生的变量。这个规则指出正在学习的学生,12% (支持度)主修计算机科学并且拥有一台个人计算机。这个组一个学生 拥有 一 台个人电脑的概率是 98%(置信度? 分类与预测不同,因为前者的作用是构

什么叫数据挖掘_数据挖掘技术解析

什么叫数据挖掘_数据挖掘技术解析 数据挖掘(data mining)是指从大量的资料中自动搜索隐藏于其中的有着特殊关联性的信息的过程。在全世界的计算机存储中,存在未使用的海量数据并且它们还在快速增长,这些数据就像待挖掘的金矿,而进行数据分析的科学家、工程师、分析员的数量变化一直相对较小,这种差距称为数据挖掘产生的主要原因。数据挖掘是一个多学科交叉领域,涉及神经网络、遗传算法、回归、统计分析、机器学习、聚类分析、特异群分析等,开发挖掘大型海量和多维数据集的算法和系统,开发合适的隐私和安全模式,提高数据系统的使用简便性。 数据挖掘与传统意义上的统计学不同。统计学推断是假设驱动的,即形成假设并在数据基础上验证他;数据挖掘是数据驱动的,即自动地从数据中提取模式和假设。数据挖掘的目标是提取可以容易转换成逻辑规则或可视化表示的定性模型,与传统的统计学相比,更加以人为本。 数据挖掘技术简述数据挖掘的技术有很多种,按照不同的分类有不同的分类法。下面着重讨论一下数据挖掘中常用的一些技术:统计技术,关联规则,基于历史的分析,遗传算法,聚集检测,连接分析,决策树,神经网络,粗糙集,模糊集,回归分析,差别分析,概念描述等十三种常用的数据挖掘的技术。 1、统计技术数据挖掘涉及的科学领域和技术很多,如统计技术。统计技术对数据集进行挖掘的主要思想是:统计的方法对给定的数据集合假设了一个分布或者概率模型(例如一个正态分布)然后根据模型采用相应的方法来进行挖掘。 2、关联规则数据关联是数据库中存在的一类重要的可被发现的知识。若两个或多个变量的取值之I司存在某种规律性,就称为关联。关联可分为简单关联、时序关联、因果关联。关联分析的目的是找出数据库中隐藏的关联网。有时并不知道数据库中数据的关联函数,即使知道也是不确定的,因此关联分析生成的规则带有可信度。 3、基于历史的MBR(Memory-based Reasoning)分析先根据经验知识寻找相似的情况,

学习18大经典数据挖掘算法

学习18大经典数据挖掘算法 本文所有涉及到的数据挖掘代码的都放在了github上了。 地址链接: https://https://www.docsj.com/doc/e715980793.html,/linyiqun/DataMiningAlgorithm 大概花了将近2个月的时间,自己把18大数据挖掘的经典算法进行了学习并且进行了代码实现,涉及到了决策分类,聚类,链接挖掘,关联挖掘,模式挖掘等等方面。也算是对数据挖掘领域的小小入门了吧。下面就做个小小的总结,后面都是我自己相应算法的博文链接,希望能够帮助大家学习。 1.C4.5算法。C4.5算法与ID3算法一样,都是数学分类算法,C4.5算法是ID3算法的一个改进。ID3算法采用信息增益进行决策判断,而C4.5采用的是增益率。 详细介绍链接:https://www.docsj.com/doc/e715980793.html,/androidlushangderen/article/details/42395865 2.CART算法。CART算法的全称是分类回归树算法,他是一个二元分类,采用的是类似于熵的基尼指数作为分类决策,形成决策树后之后还要进行剪枝,我自己在实现整个算法的时候采用的是代价复杂度算法, 详细介绍链接:https://www.docsj.com/doc/e715980793.html,/androidlushangderen/article/details/42558235 3.KNN(K最近邻)算法。给定一些已经训练好的数据,输入一个新的测试数据点,计算包含于此测试数据点的最近的点的分类情况,哪个分类的类型占多数,则此测试点的分类与此相同,所以在这里,有的时候可以复制不同的分类点不同的权重。近的点的权重大点,远的点自然就小点。 详细介绍链接:https://www.docsj.com/doc/e715980793.html,/androidlushangderen/article/details/42613011 4.Naive Bayes(朴素贝叶斯)算法。朴素贝叶斯算法是贝叶斯算法里面一种比较简单的分类算法,用到了一个比较重要的贝叶斯定理,用一句简单的话概括就是条件概率的相互转换推导。 详细介绍链接:https://www.docsj.com/doc/e715980793.html,/androidlushangderen/article/details/42680161 5.SVM(支持向量机)算法。支持向量机算法是一种对线性和非线性数据进行分类的方法,非线性数据进行分类的时候可以通过核函数转为线性的情况再处理。其中的一个关键的步骤是搜索最大边缘超平面。 详细介绍链接:https://www.docsj.com/doc/e715980793.html,/androidlushangderen/article/details/42780439 6.EM(期望最大化)算法。期望最大化算法,可以拆分为2个算法,1个E-Step期望化步骤,和1个M-Step最大化步骤。他是一种算法框架,在每次计算结果之后,逼近统计模型参数的最大似然或最大后验估计。

数据挖掘考试题库【最新】

一、填空题 1.Web挖掘可分为、和3大类。 2.数据仓库需要统一数据源,包括统一、统一、统一和统一数据特征 4个方面。 3.数据分割通常按时间、、、以及组合方法进行。 4.噪声数据处理的方法主要有、和。 5.数值归约的常用方法有、、、和对数模型等。 6.评价关联规则的2个主要指标是和。 7.多维数据集通常采用或雪花型架构,以表为中心,连接多个表。 8.决策树是用作为结点,用作为分支的树结构。 9.关联可分为简单关联、和。 10.B P神经网络的作用函数通常为区间的。 11.数据挖掘的过程主要包括确定业务对象、、、及知识同化等几个步 骤。 12.数据挖掘技术主要涉及、和3个技术领域。 13.数据挖掘的主要功能包括、、、、趋势分析、孤立点分析和偏 差分析7个方面。 14.人工神经网络具有和等特点,其结构模型包括、和自组织网络 3种。 15.数据仓库数据的4个基本特征是、、非易失、随时间变化。 16.数据仓库的数据通常划分为、、和等几个级别。 17.数据预处理的主要内容(方法)包括、、和数据归约等。 18.平滑分箱数据的方法主要有、和。 19.数据挖掘发现知识的类型主要有广义知识、、、和偏差型知识五种。 20.O LAP的数据组织方式主要有和两种。 21.常见的OLAP多维数据分析包括、、和旋转等操作。 22.传统的决策支持系统是以和驱动,而新决策支持系统则是以、建 立在和技术之上。 23.O LAP的数据组织方式主要有和2种。 24.S QL Server2000的OLAP组件叫,OLAP操作窗口叫。 25.B P神经网络由、以及一或多个结点组成。 26.遗传算法包括、、3个基本算子。 27.聚类分析的数据通常可分为区间标度变量、、、、序数型以及混合 类型等。 28.聚类分析中最常用的距离计算公式有、、等。 29.基于划分的聚类算法有和。

数据挖掘概念与技术(第三版)部分习题答案

1.4 数据仓库和数据库有何不同?有哪些相似之处? 答:区别:数据仓库是面向主题的,集成的,不易更改且随时间变化的数据集合,用来支持管理人员的决策,数据库由一组内部相关的数据和一组管理和存取数据的软件程序组成,是面向操作型的数据库,是组成数据仓库的源数据。它用表组织数据,采用ER 数据模型。 相似:它们都为数据挖掘提供了源数据,都是数据的组合。 1.3 定义下列数据挖掘功能:特征化、区分、关联和相关分析、预测聚类和演变分析。使用你熟悉的现实生活的数据库,给出每种数据挖掘功能的例子。 答:特征化是一个目标类数据的一般特性或特性的汇总。例如,学生的特征可被提出,形成所有大学的计算机科学专业一年级学生的轮廓,这些特征包括作为一种高的年级平均成绩(GPA :Grade point aversge) 的信息, 还有所修的课程的最大数量。 区分是将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比较。例如, 具有高GPA 的学生的一般特性可被用来与具有低GPA 的一般特性比较。最终的描述可能是学生的一个一般可比较的轮廓,就像具有高GPA 的学生的75% 是四年级计算机科学专业的学生,而具有低GPA 的学生的65% 不是。 关联是指发现关联规则,这些规则表示一起频繁发生在给定数据集的特征值的条件。例如,一个数据挖掘系统可能发现的关联规则为:major(X, “ computing science ” ) ? owns(X, “ personal computer ” ) [support=12%, confidence=98%] 其中,X 是一个表示学生的变量。这个规则指出正在学习的 学生,12% (支持度)主修计算机科学并且拥有一台个人计算机。这个组一个学生拥有一台个人电脑的概率是98% (置信度,或确定度)。 分类与预测不同,因为前者的作用是构造一系列能描述和区分数据类型或概念的模型(或功能),而后者是建立一个模型去预测缺失的或无效的、并且通常是数字的数据值。它们的相似性是他们都是预测的工具: 分类被用作预测目标数据的类的标签,而预测典型的应用是预测缺失的数字型数据的值。 聚类分析的数据对象不考虑已知的类标号。对象根据最大花蕾内部的相似性、最小化类之间的相似性的原则进行聚类或分组。形成的每一簇可以被看作一个对象类。聚类也便于分类法组织形式,将观测组织成类分 层结构,把类似的事件组织在一起。 数据演变分析描述和模型化随时间变化的对象的规律或趋势,尽管这可能包括时间相关数据的特征化、区分、关联和相关分析、分类、或预测,这种分析的明确特征包括时间序列数据分析、序列或周期模式匹配、和基于相似性的数据分析 2.3 假设给定的数据集的值已经分组为区间。区间和对应的频率如下。 年龄频率 1~5200 5~15450 15~20300 20~501500 50~80700 80~11044 计算数据的近似中位数值。 解答:先判定中位数区间:N=200+450+300+1500+700+44=3194 ;N/2=1597

数据挖掘分类算法比较

数据挖掘分类算法比较 分类是数据挖掘、机器学习和模式识别中一个重要的研究领域。通过对当前数据挖掘中具有代表性的优秀分类算法进行分析和比较,总结出了各种算法的特性,为使用者选择算法或研究者改进算法提供了依据。 一、决策树(Decision Trees) 决策树的优点: 1、决策树易于理解和解释.人们在通过解释后都有能力去理解决策树所表达的意义。 2、对于决策树,数据的准备往往是简单或者是不必要的.其他的技术往往要求先把数据一般化,比如去掉多余的或者空白的属性。 3、能够同时处理数据型和常规型属性。其他的技术往往要求数据属性的单一。 4、决策树是一个白盒模型。如果给定一个观察的模型,那么根据所产生的决策树很容易推出相应的逻辑表达式。 5、易于通过静态测试来对模型进行评测。表示有可能测量该模型的可信度。 6、在相对短的时间内能够对大型数据源做出可行且效果良好的结果。 7、可以对有许多属性的数据集构造决策树。 8、决策树可很好地扩展到大型数据库中,同时它的大小独立于数据库的大小。 决策树的缺点: 1、对于那些各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征。 2、决策树处理缺失数据时的困难。 3、过度拟合问题的出现。 4、忽略数据集中属性之间的相关性。 二、人工神经网络 人工神经网络的优点:分类的准确度高,并行分布处理能力强,分布存储及学习能力强,对噪声神经有较强的鲁棒性和容错能力,能充分逼近复杂的非线性关系,具备联想记忆的功能等。 人工神经网络的缺点:神经网络需要大量的参数,如网络拓扑结构、权值和阈值的初始值;不能观察之间的学习过程,输出结果难以解释,会影响到结果的可信度和可接受程度;学习时间过长,甚至可能达不到学习的目的。

数据挖掘考试题

数据挖掘考试题 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

数据挖掘考试题 一.选择题 1. 当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离( ) A.分类 B.聚类 C.关联分析 D.主成分分析 2. ( )将两个簇的邻近度定义为不同簇的所有点对邻近度的平均值,它是一种凝聚层次聚类技术。 (单链) (全链) C.组平均方法 3.数据挖掘的经典案例“啤酒与尿布试验”最主要是应用了( )数据挖掘方法。 A 分类 B 预测 C关联规则分析 D聚类 4.关于K均值和DBSCAN的比较,以下说法不正确的是( ) 均值丢弃被它识别为噪声的对象,而DBSCAN一般聚类所有对象。 均值使用簇的基于原型的概念,DBSCAN使用基于密度的概念。 均值很难处理非球形的簇和不同大小的簇,DBSCAN可以处理不同大小和不同形状的簇 均值可以发现不是明显分离的簇,即便簇有重叠也可以发现,但是DBSCAN会合并有重叠的簇 5.下列关于Ward’s Method说法错误的是:( ) A.对噪声点和离群点敏感度比较小 B.擅长处理球状的簇 C.对于Ward方法,两个簇的邻近度定义为两个簇合并时导致的平方误差 D.当两个点之间的邻近度取它们之间距离的平方时,Ward方法与组平均非常相似 6.下列关于层次聚类存在的问题说法正确的是:( ) A.具有全局优化目标函数 B.Group Average擅长处理球状的簇

C.可以处理不同大小簇的能力 D.Max对噪声点和离群点很敏感 7.下列关于凝聚层次聚类的说法中,说法错误的事:( ) A.一旦两个簇合并,该操作就不能撤销 B.算法的终止条件是仅剩下一个簇 C.空间复杂度为()2m O D.具有全局优化目标函数 8.规则{牛奶,尿布}→{啤酒}的支持度和置信度分别为:( ) 9.下列( )是属于分裂层次聚类的方法。 Average 10.对下图数据进行凝聚聚类操作,簇间相似度使用MAX计算,第二步是哪两个簇合并:( ) A.在{3}和{l,2}合并 B.{3}和{4,5}合并 C.{2,3}和{4,5}合并 D. {2,3}和{4,5}形成簇和{3}合并 二.填空题: 1.属性包括的四种类型:、、、。 2.是两个簇的邻近度定义为不同簇的所有点对邻近度的平均值。 3. 基本凝聚层次聚类算法空间复杂度,时间复杂度,如果某个簇到其他所有簇的距离存放在一个有序表或堆中,层次聚类所需要的时间复杂度将为。 4. 聚类中,定义簇间的相似度的方法有(写出四 个):、、、。 5. 层次聚类技术是第二类重要的聚类方法。两种层次聚类的基本方 法:、。 6. 组平均是一种界于和之间的折中方法。

数据挖掘及决策树

理工大学信息工程与自动化学院学生实验报告 ( 2016 — 2017 学年第学期) 信自楼444 一、上机目的及容 目的: 1.理解数据挖掘的基本概念及其过程; 2.理解数据挖掘与数据仓库、OLAP之间的关系 3.理解基本的数据挖掘技术与方法的工作原理与过程,掌握数据挖掘相关工具的使用。 容: 给定AdventureWorksDW数据仓库,构建“Microsoft 决策树”模型,分析客户群中购买自行车的模式。 要求: 利用实验室和指导教师提供的实验软件,认真完成规定的实验容,真实地记录实验中遇到的 二、实验原理及基本技术路线图(方框原理图或程序流程图) 请描述数据挖掘及决策树的相关基本概念、模型等。 1.数据挖掘:从大量的、不完全的、有噪音的、模糊的、随机的数据中,提取隐含在其中的、 人们事先不知道的、但又潜在有用的信息和知识的过程。

项集的频繁模式 分类与预测分类:提出一个分类函数或者分类模型,该模型能把数据库中的数据项 映射到给定类别中的一个; 预测:利用历史数据建立模型,再运用最新数据作为输入值,获得未来 变化趋势或者评估给定样本可能具有的属性值或值的围 聚类分析根据数据的不同特征,将其划分为不同数据类 偏差分析对差异和极端特例的描述,揭示事物偏离常规的异常现象,其基本思想 是寻找观测结果与参照值之间有意义的差别 3.决策树:是一种预测模型,它代表的是对象属性与对象值之间的一种映射关系。树中每个 节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从 根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输 出,可以建立独立的决策树以处理不同输出。 算法概念 ID3 在实体世界中,每个实体用多个特征来描述。每个特征限于在一 个离散集中取互斥的值 C4.5 对ID3算法进行了改进: 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选 择取值多的属性的不足;在树构造过程中进行剪枝;能够完成对 连续属性的离散化处理;能够对不完整数据进行处理。 三、所用仪器、材料(设备名称、型号、规格等或使用软件) 1台PC及Microsoft SQL Server套件 四、实验方法、步骤(或:程序代码或操作过程) (一)准备 Analysis Services 数据库 1.Analysis Services 项目创建成功

数据挖掘概念与技术-课后题答案汇总汇总

数据挖掘——概念概念与技术 Data Mining Concepts and T echniques 习题答案 第1章引言 1.1 什么是数据挖掘?在你的回答中,针对以下问题: 1.2 1.6 定义下列数据挖掘功能:特征化、区分、关联和相关分析、预测 聚类和演变分析。使用你熟悉的现实生活的数据库,给出每种数据 挖掘功能的例子。 解答: ?特征化是一个目标类数据的一般特性或特性的汇总。例如,学生的特征可被提出,形成所有大学的计算机科学专业一年级学生的轮廓, 这些特征包括作为一种高的年级平均成绩(GPA:Grade point aversge) 的信息,还有所修的课程的最大数量。 ?区分是将目标类数据对象的一般特性与一个或多个对比类对象的一般特性进行比较。例如,具有高GPA 的学生的一般特性可被用来 与具有低GPA 的一般特性比较。最终的描述可能是学生的一个一 般可比较的轮廓,就像具有高GPA 的学生的75%是四年级计算机科 学专业的学生,而具有低GPA 的学生的65%不是。 ?关联是指发现关联规则,这些规则表示一起频繁发生在给定数据集的特征值的条件。例如,一个数据挖掘系统可能发现的关联规则 为: major(X, “c omputing science”) owns(X, “personal computer”) [support=12%, c onfid e nce=98%] 其中,X 是一个表示学生的变量。这个规则指出正在学习的学生,12% (支持度)主修计算机科学并且拥有一台个人计算机。这个组一个学 生拥有一台个人电脑的概率是98%(置信度,或确定度)。 ?分类与预测不同,因为前者的作用是构造一系列能描述和区分数据类型或概念的模型(或功能),而后者是建立一个模型去预测缺失的 或无效的、并且通常是数字的数据值。它们的相似性是他们都是预 测的工具:分类被用作预测目标数据的类的标签,而预测典型的应用 是预测缺失的数字型数据的值。 ?聚类分析的数据对象不考虑已知的类标号。对象根据最大花蕾内部的相似性、最小化类之间的相似性的原则进行聚类或分组。形成的每一簇可以被看作一个对象类。聚类也便于分类法组织形式,将观测组织成类分层结构,把类似的事件组织在一起。 ?数据延边分析描述和模型化随时间变化的对象的规律或趋势,尽管这可能包括时间相关数据的特征化、区分、关联和相关分析、分类、或预测, 这种分析的明确特征包括时间序列数据分析、序列或周期模式匹配、和 基于相似性的数据分析 1.3 1.9 列举并描述说明数据挖掘任务的五种原语。 解答: 用于指定数据挖掘任务的五种原语是:

数据挖掘十大算法

数据挖掘十大算法 数据挖掘十大算法—K 近邻算法 k -近邻算法是基于实例的学习方法中最基本的,先介绍基于实例学习的相关概念。 一、基于实例的学习。 1、已知一系列的训练样例,很多学习方法为目标函数建立起明确的一般化描述;但与此不同,基于实例的学习方法只是简单地把训练样例存储起来。 从这些实例中泛化的工作被推迟到必须分类新的实例时。每当学习器遇到一个新的查询实例,它分析这个新实例与以前存储的实例的关系,并据此把一个目标函数值赋给新实例。 2、基于实例的方法可以为不同的待分类查询实例建立不同的目标函数逼近。事实上,很多技术只建立目标函数的局部逼近,将其应用于与新查询实例邻近的实例,而从不建立在整个实例空间上都表现良好的逼近。当目标函数很复杂,但它可用不太复杂的局部逼近描述时,这样做有显著的优势。 3、基于实例方法的不足: (1)分类新实例的开销可能很大。这是因为几乎所有的计算都发生在分类时,而不是在第一次遇到训练样例时。所以,如何有效地索引训练样例,以减少查询时所需计算是一个重要的实践问题。(2)当从存储器中检索相似的训练样例时,它们一般考虑实例的所有属性。如果目标概念仅依赖于很多属性中的几个时,那么真正最“相似”的实例之间很可能相距甚远。 二、k-近邻法基于实例的学习方法中最基本的是k -近邻算法。这个算法假定所有的实例对应于n 维欧氏空间?n 中的点。一个实例的最近邻是根据标准欧氏距离定义的。更精确地讲,把任意的实例x 表示为下面的特征向量:其中a r (x ) 表示实例x 的第r 个属性值。那么两个实例x i 和x j 间的距离定义为d (x i , x j ) ,其中: 说明: 1、在最近邻学习中,目标函数值可以为离散值也可以为实值。 2、我们先考虑学习以下形式的离散目标函数。其中V 是有限集合 {v 1,... v s }。下表给出了逼近离散目标函数的k-近邻算法。 3、正如下表中所指出的,这个算法的返回值f' (x q ) 为对f (x q ) 的估计,它就是距离x q 最近的k 个训练样例中最普遍的f 值。 4、如果我们选择k =1,那么“1-近邻算法”

最新数据挖掘考试题目——关联分析资料

数据挖掘考试题目——关联分析 一、10个选择 1.以下属于关联分析的是() A.CPU性能预测B.购物篮分析 C.自动判断鸢尾花类别D.股票趋势建模 2.维克托?迈尔-舍恩伯格在《大数据时代:生活、工作与思维的大变革》一书中,持续强调了一个观点:大数据时代的到来,使我们无法人为地去发现数据中的奥妙,与此同时,我们更应该注重数据中的相关关系,而不是因果关系。其中,数据之间的相关关系可以通过以下哪个算法直接挖掘() A.K-means B.Bayes Network C.C4.5 D.Apriori 3.置信度(confidence)是衡量兴趣度度量()的指标。 A.简洁性B.确定性 C.实用性D.新颖性 4.Apriori算法的加速过程依赖于以下哪个策略() A.抽样B.剪枝 C.缓冲D.并行 5.以下哪个会降低Apriori算法的挖掘效率() A.支持度阈值增大B.项数减少 C.事务数减少D.减小硬盘读写速率 6.Apriori算法使用到以下哪些东东() A.格结构、有向无环图B.二叉树、哈希树 C.格结构、哈希树D.多叉树、有向无环图 7.非频繁模式() A.其置信度小于阈值B.令人不感兴趣 C.包含负模式和负相关模式D.对异常数据项敏感 8.对频繁项集、频繁闭项集、极大频繁项集的关系描述正确的是()[注:分别以1、2、3代表之] A.3可以还原出无损的1 B.2可以还原出无损的1 C.3与2是完全等价的D.2与1是完全等价的 9.Hash tree在Apriori算法中所起的作用是() A.存储数据B.查找 C.加速查找D.剪枝 10.以下不属于数据挖掘软件的是() A.SPSS Modeler B.Weka C.Apache Spark D.Knime 二、10个填空 1.关联分析中表示关联关系的方法主要有:和。 2.关联规则的评价度量主要有:和。 3.关联规则挖掘的算法主要有:和。 4.购物篮分析中,数据是以的形式呈现。 5.一个项集满足最小支持度,我们称之为。 6.一个关联规则同时满足最小支持度和最小置信度,我们称之为。

数据挖掘技术

第6卷(A版) 第8期2001年8月 中国图象图形学报 Jou rnal of I m age and Grap h ics V o l.6(A),N o.8 A ug.2001 基金项目:国家自然科学基金项目(79970092)收稿日期:2000206222;改回日期:2000212214数据挖掘技术吉根林1),2)孙志挥2) 1)(南京师范大学计算机系,南京 210097) 2)(东南大学计算机系,南京 210096) 摘 要 数据挖掘技术是当前数据库和人工智能领域研究的热点课题,为了使人们对该领域现状有个概略了解,在消化大量文献资料的基础上,首先对数据挖掘技术的国内外总体研究情况进行了概略介绍,包括数据挖掘技术的产生背景、应用领域、分类及主要挖掘技术;结合作者的研究工作,对关联规则的挖掘、分类规则的挖掘、离群数据的挖掘及聚类分析作了较详细的论述;介绍了关联规则挖掘的主要研究成果,同时指出了关联规则衡量标准的不足及其改进方法,提出了分类模式的准确度评估方法;最后,描述了数据挖掘技术在科学研究、金融投资、市场营销、保险业、制造业及通信网络管理等行业的应用情况,并对数据挖掘技术的应用前景作了展望. 关键词 数据挖掘 决策支持 关联规则 分类规则 KDD 中图法分类号:T P391 T P182 文献标识码:A 文章编号:100628961(2001)0820715207 Survey of the Da ta M i n i ng Techn iques J I Gen2lin1,2),SU N Zh i2hu i2) 1)(D ep art m ent of co mp u ter,N anj ing N or m al U niversity,N anj ing210097) 2)(D ep art m ent of co mp u ter,S ou theast U niversity,N anj ing210096) Abstract D ata m in ing is an em erging research field in database and artificial in telligence.In th is paper,the data m in ing techn iques are in troduced b roadly including its p roducing background,its app licati on and its classificati on. T he p rinci pal techn iques u sed in the data m in ing are su rveyed also,w h ich include ru le inducti on,decisi on tree, artificial neu ral netw o rk,genetic algo rithm,fuzzy techn ique,rough set and visualizati on techn ique.A ssociati on ru le m in ing,classificati on ru le m in ing,ou tlier m in ing and clu stering m ethod are discu ssed in detail.T he research ach ievem en ts in associati on ru le,the sho rtcom ings of associati on ru le m easu re standards and its i m p rovem en t,the evaluati on m ethods of classificati on ru les are p resen ted.Ex isting ou tlier m in ing app roaches are in troduced w h ich include ou tlier m in ing app roach based on statistics,distance2based ou tler m in ing app roach,data detecti on m ethod fo r deviati on,ru le2based ou tlier m in ing app roach and m u lti2strategy m ethod.F inally,the app licati on s of data m in ing to science research,financial investm en t,m arket,in su rance,m anufactu ring indu stry and comm un icati on netw o rk m anagem en t are in troduced.T he app licati on p ro spects of data m in ing are described. Keywords D ata m in ing,D ecisi on suppo rt,A ssociati on ru le,C lassificati on ru le,KDD 0 引 言 数据挖掘(D ata M in ing),也称数据库中的知识发现(KDD:Know ledge D iscovery in D atabase),是指从大型数据库或数据仓库中提取人们感兴趣的知识,这些知识是隐含的、事先未知的潜在有用信息,提取的知识一般可表示为概念(Concep ts)、规则(R u les)、规律(R egu larities)、模式(Pattern s)等形式[1].大家知道,如今已可以用数据库管理系统来存储数据,还可用机器学习的方法来分析数据和挖掘大量数据背后的知识,而这两者的结合就促成了数

数据挖掘算法

数据挖掘的10大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在 构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了比较。 4. The Apriori algorithm

数据仓库与数据挖掘考试试题

一、填空题(15分) 1.数据仓库的特点分别是面向主题、集成、相对稳定、反映历史变化。 2.元数据是描述数据仓库内数据的结构和建立方法的数据。根据元数据用途的不同可将元数据分为技术元数据和业务元数据两类。 3.OLAP技术多维分析过程中,多维分析操作包括切片、切块、钻取、旋转等。 4.基于依赖型数据集市和操作型数据存储的数据仓库体系结构常常被称为“中心和辐射”架构,其中企业级数据仓库是中心,源数据系统和数据集市在输入和输出范围的两端。 5.ODS实际上是一个集成的、面向主题的、可更新的、当前值的、企业级的、详细的数据库,也叫运营数据存储。 二、多项选择题(10分) 6.在数据挖掘的分析方法中,直接数据挖掘包括(ACD) A 分类 B 关联 C 估值 D 预言 7.数据仓库的数据ETL过程中,ETL软件的主要功能包括(ABC) A 数据抽取 B 数据转换 C 数据加载 D 数据稽核 8.数据分类的评价准则包括( ABCD ) A 精确度 B 查全率和查准率 C F-Measure D 几何均值 9.层次聚类方法包括( BC ) A 划分聚类方法 B 凝聚型层次聚类方法 C 分解型层次聚类方法 D 基于密度聚类方法 10.贝叶斯网络由两部分组成,分别是( A D ) A 网络结构 B 先验概率 C 后验概率 D 条件概率表 三、计算题(30分) 11.一个食品连锁店每周的事务记录如下表所示,其中每一条事务表示在一项收款机业务中卖出的项目,假定sup min=40%,conf min=40%,使用Apriori算法计算生成的关联规则,标明每趟数据库扫描时的候选集和大项目集。(15分) 解:(1)由I={面包、果冻、花生酱、牛奶、啤酒}的所有项目直接产生1-候选C1,计算其支持度,取出支持度小于sup min的项集,形成1-频繁集L1,如下表所示:

数据挖掘概念与技术word版

摘要 随着计算机和网络的发展,对于大数据需要数据分析,在分析数据的时候,数据挖掘的过程也叫知识发现的过程,它是一门涉及面很广的交叉性新兴学科,涉及到数据库、人工智能、数理统计、可视化、并行计算等领域。本文主要综述了数据挖掘中常用的一些关联规则,分类和聚类的算法。 关键字:数据挖掘;分类;聚类;关联规则

1 引言 1.1 数据挖掘介绍 近年来,数据挖掘引起了信息产业界的极大关注,其主要原因是存在大量数据,可以广泛使用,并且迫切需要将这些数据转换成有用的信息和知识。获取的信息和知识可以广泛用于各种应用,包括商务管理,生产控制,市场分析,工程设计和科学探索等[1]。 数据挖掘出现于20世纪80年代后期,是数据库研究中一个很有应用价值的新领域,是一门交叉性学科,融合了人工智能、数据库技术、模式识别、机器学习、统计学和数据可视化等多个领域的理论和技术.数据挖掘作为一种技术,它的生命周期正处于沟坎阶段,需要时间和精力去研究、开发和逐步成熟,并最终为人们所接受。20世纪80年代中期,数据仓库之父W.H.In-mon在《建立数据仓库》(Building the Data Warehouse)一书中定义了数据仓库的概念,随后又给出了更为精确的定义:数据仓库是在企业管理和决策中面向主题的、集成的、时变的以及非易失的数据集合。与其他数据库应用不同的是,数据仓库更像一种过程—对分布在企业内部各处的业务数据的整合、加工和分析的过程。传统的数据库管理系统(database management system,DBMS)的主要任务是联机事务处理(on-line transaction processing,OLTP);而数据仓库则是在数据分析和决策方面提供服务,这种系统被称为联机分析处理(on-line analyticalprocessing,OLAP).OLAP的概念最早是由关系数据库之父E.F.Codd于1993年提出的。当时,Codd认为OLTP已不能满足终端用户对数据库查询分析的需要,结构化查询语言(structured query language,SQL)对数据库进行的简单查询也不能满足用户分析的需求.用户的决策分析需要对关系数据库进行大量计算才能得到结果,因此Codd提出了多维数据库和多维分析的概念[2]。 数据挖掘(Data Mining),就是从存放在数据库,数据仓库或其他信息库中的大量的数据中获取有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程。数据挖掘,在人工智能领域,习惯上又称为数据库中知识发现(Knowledge Discovery in Database, KDD),也有人把数据挖掘视为数据库中知识发现过程的一个基本步骤。知识发现过程以下三个阶段组成:(1) 数据准备,(2)数据挖掘,(3) 结果表达和解释。数据挖掘可以与用户或知识库交互。 数据挖掘利用了来自如下一些领域的思想:(1) 来自统计学的抽样、估计和假设检验,(2) 人工智能、模式识别和机器学习的搜索算法、建模技术和学习理论。数据挖掘也迅速地接纳了来自其他领域的思想,这些领域包括最优化、进化

相关文档
相关文档 最新文档