文档视界 最新最全的文档下载
当前位置:文档视界 › 半导体物理学教学大纲

半导体物理学教学大纲

半导体物理学教学大纲
半导体物理学教学大纲

半导体物理

第 I 条Semiconductor Physics

课程编号:042435

课程性质:学科基础课

适用专业:微电子学专业

先修课程:固体物理,量子力学,统计物理

后续课程:集成电路

总学分:4其中实验学分:0

教学目的与要求:本课程是微电子学专业的主干课之一。通过对本课程的学习,掌握能带理论和统计物理的基本概念,以此为基础介绍半导体物理的基础知识以及相关器件的工作原理。从微观角度了解半导体中载流子的能量状态、统计分布规律和散射及电导规律。了解半导体中非平衡载流子的产生、复合、漂移和扩散等运动规律。了解掺杂和缺陷在半导体物理中的重要作用。半导体的特性、半导体内部载流子的基本运动规律,;了解半导体的光、电、磁、热等物理效应。掌握半导体物理特性的计算方法,掌握半导体器件的四大基本结构及其工作原理。

教学内容与学时安排

第1章:半导体中的电子状态(6学时)

第一节半导体的晶体结构和结合性质

一、金刚石型结构和共价键

二、闪锌矿型结构和混合键

三、纤锌矿型结构

第二节半导体中的电子状态和能带

一、原子的能级和晶体的能带

二、半导体中的电子状态和能带

三、导体、半导体、绝缘体的能带

第三节半导体中电子的运动和有效质量

一、半导体中E(k)与k的关系

二、半导体中电子的平均速度

三、半导体中电子的加速度

四、有效质量的意义

第四节 本征半导体的导电机构 空穴 第五节

回旋共振

一、 k 空间等能面 二、 回旋共振

第六节 硅和锗的导带结构 第七节 回旋共振

第2章:半导体中杂质和缺陷能级(4学时)

第一节 硅、锗晶体中的杂质和缺陷能级

一、替位式杂质 间隙式杂质 二、施主杂质、施主能级 三、受主杂质、受主能级

四、浅能级杂质电离能的简单计算 五、杂质的补偿的作用 六、深能级杂质

第二节 Ⅲ-Ⅴ族化合物中的杂质能级 第三节 缺陷、位错能级

一、点缺陷 二、位错

第3章 半导体中载流子的统计分布(6学时) 第一节 状态密度

一、

k 空间中量子态的分布

二、状态密度

第二节 费米能级和载流子的统计分布

一、费米分布函数 二、玻耳兹曼分布函数

三、导带中得电子浓度和价带中的空穴浓度 四、载流子的浓度乘积

p

n 0

第三节 本征半导体的载流子浓度 第四节 杂质半导体的载流子浓度

一、杂质能级上的电子和空穴 二、n 型半导体的载流子浓度

第五节 一般情况下的载流子统计分布 第六节 简并半导体

一、简并半导体的载流子浓度 二、简并化条件

三、低温载流子冻析效应

四、禁带变窄效应

第七节电子占据杂质能级的概率

一、求解统计分布

第4章半导体的导电性(6学时)

第一节载流子的漂移运动和迁移率

一、欧姆定律

二、漂移速度和迁移率

三、半导体的电导率和迁移率

第二节载流子的散射

一、载流子散射的概念

二、半导体的主要散射机构

第三节迁移率与杂质浓度和温度的关系

一、平均自由时间和散射概率的关系

二、电导率、迁移率与平均自由时间的关系

三、迁移率与杂质和温度的关系

第四节电阻率及其与杂质浓度和温度的关系

一、电阻率和杂质浓度的关系

二、电阻率随温度的变化

第五节玻耳兹曼方程、电导率的统计理论

一、玻耳兹曼方程

二、弛豫时间近似

三、弱电场近似下玻耳兹曼方程的解

四、球形等能面半导体的电导率

第六节强电场下的效应、热载流子

一、欧姆定律的偏移

二、平均漂移速度与电场强度的关系

第七节多能谷散射耿氏散射

一、多能谷散射、体内负微分电导

二、高场畴区及耿氏振荡

第5章非平衡载流子(6学时)

第一节非平衡载流子的注入与复合

第二节非平衡载流子的寿命

第三节准费米能级

第四节复合理论

一、直接复合

二、间接复合

三、表面复合

四、俄歇复合

第五节缺陷效应

第六节载流子的扩散运动

第七节载流子的漂移运动、爱因斯坦关系式

第八节连续性方程式

第6章 pn 结(6学时)

第一节 pn结及其能带图

一、pn结的形成和杂质分布

二、空间电荷区

三、pn结能带图

四、pn结接触电势差

五、pn结的载流子分布

第二节 pn结电流电压特性

一、非平衡状态下的pn结

二、理想pn结模型及其电流电压方程

三、影响pn结电流电压特性偏离理想方程的各种因素

第三节 pn结电容

一、pn结电容的来源

二、突变结的势垒电容

三、线性缓变结的势垒电容

四、扩散电容

第四节 pn结击穿

一、雪崩击穿

二、隧道击穿(齐纳击穿)

三、热电击穿

第五节 pn结隧道效应

第7章非平衡载流子(4学时)

第一节金属半导体接触及其能级图

一、金属和半导体的功函数

二、接触电势差

三、表面态对接触势垒的影响

第二节金属半导体接触整流理论

一、扩散理论

二、热电子发射理论

三、镜像力和隧道效应的影响

四、肖特基势垒二极管

第三节少数载流子的注入和欧姆接触

一、少数载流子的注入

二、欧姆接触

第8章半导体表面与MIS结构(6学时)

第一节表面态

第二节表面电场效应

一、空间电荷层及表面势

二、表面空间电荷层的电场、电势和电容

第三节 MIS结构的电容-电压特性

一、理想MIS结构的电容-电压特性

二、金属与半导体功函数差对MIS结构C-V特性的影响

三、绝缘层中电荷对MIS结构C-V特性的影响

第四节硅-二氧化硅的性质

一、二氧化硅中的可动离子

二、二氧化硅层中的固定表面电荷

三、在硅-二氧化硅界面处的快界面态

四、二氧化硅中的陷阱电荷

第五节表面电导及迁移率

一、表面电荷

二、表面载流子的有效迁移率

第六节表面电场对pn结特性的影响

一、表面电场作用下pn结的能带图

二、表面电场作用下pn结的反向电流

三、表面电场对pn结击穿特性的影响

四、表面钝化

第9章半导体异质结构(4学时)

第一节半导体异质结的能带图

一、半导体异质结的能带图

二、半导体异质结的接触电势差及势垒区宽度

三、突变反型异质结的势垒电容

四、突变同型异质结的若干公式

第二节半导体异质pn结的电流电压特性及注入特性

一、半导体异质pn结的电流-电压特性

二、异质pn结的注入特性

第三节半导体异质结量子阱结构及其电子能态与特性

一、半导体调制掺杂异质结构界面量子阱

二、双异质结间的单量子阱结构

三、双势垒单量子阱结构及共振隧穿效应

第四节半导体应变异质结构

一、应变异质结

二、应变异质结构中应变层材料能带的人工改性

第五节半导体超晶格

第六节半导体异质结在光电子器件中的应用

一、单异质结激光器

二、双异质结激光器

三、大光学腔激光器

第10章非平衡载流子(4学时)

第一节半导体的光学性质和光电的发光现象

一、折射率和吸收系数

二、反射系数和透射系数

第二节半导体的光吸收

一、本征吸收

二、直接跃迁和间接跃迁

三、其他吸收过程

第三节半导体的光电导

一、附加电导率

二、定态光电导及其弛豫过程

三、光电导灵敏度及光电导增益

四、复合和陷阱效应对光电导的影响

五、本征光电导的光谱分布

六、杂质光电导

第四节半导体的光生伏特效应

一、pn结的光生伏特效应

二、光电池的电流电压特性

第五节半导体发光

一、辐射跃迁

二、发光效率

三、电致发光激发机构

第六节半导体激光

一、自发辐射和受激辐射

二、分布反转

三、pn结激光器原理

四、激光材料

第11章半导体的热电性质(4学时)

第一节热电效应的一般描述

一、塞贝克效应

二、铂耳帖效应

三、汤姆逊效应

四、塞贝克系数、铂耳帖系数和汤姆逊系数间的关系

第二节半导体的温差电动势率

一、一种载流子的绝对温差电动势率

二、两种载流子的绝对温差电动势率

三、两种材料的温差电动势

第三节半导体的铂耳帖效应

第四节半导体的汤姆逊效应

第五节半导体的热导率

一、载流子对热导率的贡献

二、声子对热导率的贡献

第六节半导体热电效应的应用

第12 半导体磁和压阻效应(4学时)

第一节霍尔效应

一、一种载流子的霍尔效应

二、载流子在电磁场中的运动

三、两种载流子的霍尔效应

四、霍尔效应的应用

第二节磁阻效应

一、物理磁阻效应

二、几何磁阻效应

三、磁阻效应的应用

第三节磁光效应

一、朗道(landau)能级

二、带间磁光吸收

第四节量子化霍尔效应

第五节热磁效应

一、爱廷豪森效应

二、能斯脱效应

三、里纪-勒杜克效应

第六节光磁电效应

一、光扩散电势差

二、光磁电效应

第七节压阻效应

一、压阻系数

二、液体静压强作用下的效应

三、单轴拉伸或压缩下的效应

四、压阻效应的应用

第13章非晶态半导体(4学时)

第一节非晶态半导体的结构

第二节非晶态半导体中的电子态

一、无序体系中的电子态的定域化

二、迁移率边

三、非晶态半导体的能带模型

四、非晶态半导体的化学键结构

第三节非晶态半导体中的缺陷、隙态与掺杂效应

一、四面体结构非晶态半导体中的缺陷和隙态

二、硫系非晶态半导体的缺陷与缺陷定域态

三、Ⅳ族元素非晶态半导体的掺杂效应

第四节非晶态半导体中的电学性质

一、非晶态半导体的导电机理

二、非晶态半导体的漂移迁移率

三、非晶态半导体的弥散输运过程

第五节非晶态半导体中的光学性质

一、非晶态半导体的光吸收

二、非晶态半导体的光电导

第六节a-SI:H的pn结与金-半接触特性

一.填空题 1.能带中载流子的有效质量反比于能量函数对于波矢的_________.引入有效质量的意义在于其反映了晶体材料的_________的作用。(二阶导数.内部势场) 2.半导体导带中的电子浓度取决于导带的_________(即量子态按能量如何分布)和_________(即电子在不同能量的量子态上如何分布)。(状态密度.费米分布函数) 3.两种不同半导体接触后, 费米能级较高的半导体界面一侧带________电.达到热平衡后两者的费米能级________。(正.相等) 4.半导体硅的价带极大值位于空间第一布里渊区的中央.其导带极小值位于________方向上距布里渊区边界约0.85倍处.因此属于_________半导体。([100]. 间接带隙) 5.间隙原子和空位成对出现的点缺陷称为_________;形成原子空位而无间隙原子的点缺陷称为________。(弗仑克耳缺陷.肖特基缺陷) 6.在一定温度下.与费米能级持平的量子态上的电子占据概率为_________.高于费米能级2kT能级处的占据概率为_________。(1/2.1/1+exp(2)) 7.从能带角度来看.锗、硅属于_________半导体.而砷化稼属于_________半导体.后者有利于光子的吸收和发射。(间接带隙.直接带隙) 8.通常把服从_________的电子系统称为非简并性系统.服从_________的电子系统称为简并性系统。(玻尔兹曼分布.费米分布) 9. 对于同一种半导体材料其电子浓度和空穴浓度的乘积与_________有关.而对于不同的半导体材料其浓度积在一定的温度下将取决于_________的大小。(温度.禁带宽度) 10. 半导体的晶格结构式多种多样的.常见的Ge和Si材料.其原子均通过共价键四面体相互结合.属于________结构;与Ge和Si晶格结构类似.两种不同元素形成的化合物半导体通过共价键四面体还可以形成_________和纤锌矿等两种晶格结构。(金刚石.闪锌矿) 11.如果电子从价带顶跃迁到导带底时波矢k不发生变化.则具有这种能带结构的半导体称为_________禁带半导体.否则称为_________禁带半导体。(直接.间接) 12. 半导体载流子在输运过程中.会受到各种散射机构的散射.主要散射机构有_________、 _________ 、中性杂质散射、位错散射、载流子间的散射和等价能谷间散射。(电离杂质的散射.晶格振动的散射) 13. 半导体中的载流子复合可以有很多途径.主要有两大类:_________的直接复合和通过禁带内的_________进行复合。(电子和空穴.复合中心)

一、选择题。 1. 电离后向半导体提供空穴的杂质是( A ),电离后向半导体 提供电子的杂质是( B )。 A. 受主杂质 B. 施主杂质 C. 中性杂质 2. 在室温下,半导体Si 中掺入浓度为31410-cm 的磷杂质后,半导体中 多数载流子是( C ),多子浓度为( D ),费米能级的位置( G );一段时间后,再一次向半导体中掺入浓度为 315101.1-?cm 的硼杂质,半导体中多数载流子是( B ),多子浓度为( E ),费米能级的位置( H );如果,此时温度从室温升高至K 550,则杂质半导体费米能级的位置( I )。(已知:室温下,31010-=cm n i ;K 550时,31710-=cm n i ) A. 电子和空穴 B. 空穴 C. 电子 D. 31410-cm E. 31510-cm F. 315101.1-?cm G. 高于i E H. 低于i E I. 等于i E 3. 在室温下,对于n 型硅材料,如果掺杂浓度增加,将导致禁带宽 度( B ),电子浓度和空穴浓度的乘积00p n ( D )2i n ,功函数( C )。如果有光注入的情况下,电子浓度和空穴浓度的乘积np ( E )2i n 。 A. 增加 B. 不变 C. 减小 D. 等于 E. 不等于 F. 不确定 4. 导带底的电子是( C )。

A. 带正电的有效质量为正的粒子 B. 带正电的有效质量为负的准粒子 C. 带负电的有效质量为正的粒子 D. 带负电的有效质量为负的准粒子 5. P 型半导体MIS 结构中发生少子反型时,表面的导电类型与体材 料的类型( B )。在如图所示MIS 结构的C-V 特性图中,代表去强反型的( G )。 A. 相同 B. 不同 C. 无关 D. AB 段 E. CD 段 F. DE 段 G. EF 和GH 段 6. P 型半导体发生强反型的条件( B )。 A. ???? ??= i A S n N q T k V ln 0 B. ???? ??≥i A S n N q T k V ln 20 C. ???? ??=i D S n N q T k V ln 0 D. ??? ? ??≥i D S n N q T k V ln 20 7. 由于载流子存在浓度梯度而产生的电流是( B )电流,由 于载流子在一定电场力的作用下而产生电流是( A )电流。 A. 漂移 B. 扩散 C. 热运动 8. 对于掺杂的硅材料,其电阻率与掺杂浓度和温度的关系如图所示, 其中,AB 段电阻率随温度升高而下降的原因是( A )。 A. 杂质电离和电离杂质散射 B. 本征激发和晶格散射

第一章半导体中的电子状态 例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。 解:K状态电子的速度为: (1)同理,-K状态电子的速度则为: (2)从一维情况容易看出: (3)同理 有: (4) (5) 将式(3)(4)(5)代入式(2)后得: (6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。 例2.已知一维晶体的电子能带可写成: 式中,a为晶格常数。试求: (1)能带的宽度; (2)能带底部和顶部电子的有效质量。 解:(1)由E(k)关 系 (1)

(2) 令得: 当时,代入(2)得: 对应E(k)的极小值。 当时,代入(2)得: 对应E(k)的极大值。 根据上述结果,求得和即可求得能带宽度。 故:能带宽度 (3)能带底部和顶部电子的有效质量: 习题与思考题: 1 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。 2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。 3 试指出空穴的主要特征。 4 简述Ge、Si和GaAs的能带结构的主要特征。

5 某一维晶体的电子能带为 其中E0=3eV,晶格常数a=5×10-11m。求: (1)能带宽度; (2)能带底和能带顶的有效质量。 6原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同?原子中内层电子和外层电子参与共有化运动有何不同? 7晶体体积的大小对能级和能带有什么影响? 8描述半导体中电子运动为什么要引入“有效质量”的概念?用电子的惯性质量 描述能带中电子运动有何局限性? 9 一般来说,对应于高能级的能带较宽,而禁带较窄,是否如此?为什么? 10有效质量对能带的宽度有什么影响?有人说:“有效质量愈大,能量密度也愈大,因而能带愈窄。”是否如此?为什么? 11简述有效质量与能带结构的关系? 12对于自由电子,加速反向与外力作用反向一致,这个结论是否适用于布洛赫电子? 13从能带底到能带顶,晶体中电子的有效质量将如何变化?外场对电子的作用效果有什么不同? 14试述在周期性势场中运动的电子具有哪些一般属性?以硅的本征激发为例,说明半导体能带图的物理意义及其与硅晶格结构的联系? 15为什么电子从其价键上挣脱出来所需的最小能量就是半导体的禁带宽度?16为什么半导体满带中的少量空状态可以用具有正电荷和一定质量的空穴来描述? 17有两块硅单晶,其中一块的重量是另一块重量的二倍。这两块晶体价带中的能级数是否相等?彼此有何联系? 18说明布里渊区和k空间等能面这两个物理概念的不同。 19为什么极值附近的等能面是球面的半导体,当改变存储反向时只能观察到一个共振吸收峰? 第二章半导体中的杂质与缺陷能级 例1.半导体硅单晶的介电常数=11.8,电子和空穴的有效质量各为= 0.97, =0.19和=0.16,=0.53,利用类氢模型估计: (1)施主和受主电离能; (2)基态电子轨道半径 解:(1)利用下式求得和。

一、选择题 1.与绝缘体相比,半导体的价带电子激发到导带所需要的能量 ( B )。 A. 比绝缘体的大 B.比绝缘体的小 C. 和绝缘体的相同 2.受主杂质电离后向半导体提供( B ),施主杂质电离后向半 导体提供( C ),本征激发向半导体提供( A )。 A. 电子和空穴 B.空穴 C. 电子 3.对于一定的N型半导体材料,在温度一定时,减小掺杂浓度,费 米能级会( B )。 A.上移 B.下移 C.不变 4.在热平衡状态时,P型半导体中的电子浓度和空穴浓度的乘积为 常数,它和( B )有关 A.杂质浓度和温度 B.温度和禁带宽度 C.杂质浓度和禁带宽度 D.杂质类型和温度 5.· 6.MIS结构发生多子积累时,表面的导电类型与体材料的类型 ( B )。 A.相同 B.不同 C.无关 7.空穴是( B )。 A.带正电的质量为正的粒子 B.带正电的质量为正的准粒子 C.带正电的质量为负的准粒子 D.带负电的质量为负的准粒子 8.砷化稼的能带结构是( A )能隙结构。

A. 直接 B. 间接 9. 将Si 掺杂入GaAs 中,若Si 取代Ga 则起( A )杂质作 用,若Si 取代As 则起( B )杂质作用。 A. 施主 B. 受主 C. 陷阱 D. 复合中心 10. 在热力学温度零度时,能量比F E 小的量子态被电子占据的概率为 ( D ),当温度大于热力学温度零度时,能量比F E 小的量子态被电子占据的概率为( A )。 · A. 大于1/2 B. 小于1/2 C. 等于1/2 D. 等于1 E. 等于0 11. 如图所示的P 型半导体MIS 结构 的C-V 特性图中,AB 段代表 ( A ),CD 段代表(B )。 A. 多子积累 B. 多子耗尽 C. 少子反型 D. 平带状态 12. P 型半导体发生强反型的条件( B )。 A. ???? ??=i A S n N q T k V ln 0 B. ??? ? ??≥i A S n N q T k V ln 20 C. ???? ??= i D S n N q T k V ln 0 D. ???? ??≥i D S n N q T k V ln 20 13. - 14. 金属和半导体接触分为:( B )。 A. 整流的肖特基接触和整流的欧姆接触 B. 整流的肖特基接触和非整流的欧姆接触

第三章习题和答案 1. 计算能量在E=E c 到2 *n 2 C L 2m 100E E 之间单位体积中的量子态数。 解: 2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。 3 22 23 3*28100E 21 23 3 *22100E 002 1 233*231000L 8100)(3 222)(22)(1Z V Z Z )(Z )(22)(23 22 C 22 C L E m h E E E m V dE E E m V dE E g V d dE E g d E E m V E g c n c C n l m h E C n l m E C n n c n c )() (单位体积内的量子态数) () (21)(,)"(2)()(,)(,)()(2~.2'2 1 3'' ''''2'21'21'21' 2 2222 22C a a l t t z y x a c c z l a z y t a y x t a x z t y x C C e E E m h k V m m m m k g k k k k k m h E k E k m m k k m m k k m m k ml k m k k h E k E K IC E G si ? 系中的态密度在等能面仍为球形等能面 系中在则:令) (关系为 )(半导体的、证明: 3 1 23 2212 32' 2123 2 31'2 '''')()2(4)()(111100)()(24)(4)()(~l t n c n c l t t z m m s m V E E h m E sg E g si V E E h m m m dE dz E g dk k k g Vk k g d k dE E E ?? ? ? )方向有四个, 锗在(旋转椭球,个方向,有六个对称的导带底在对于即状态数。 空间所包含的空间的状态数等于在

1.固体材料可以分为 晶体 和 非晶体 两大类,它们之间的主要区别是 。 2.纯净半导体Si 中掺V 族元素的杂质,当杂质电离时释放 电子 。这种杂质称 施主 杂质;相应的半 导体称 N 型半导体。 3.半导体中的载流子主要受到两种散射,它们分别是 电离杂质散射 和 晶格振动散射 。前者在 电离施 主或电离受主形成的库伦势场 下起主要作用,后者在 温度高 下起主要作用。 4.当半导体中载流子浓度的分布不均匀时,载流子将做 扩散 运动;在半导体存在外加电压情况下,载 流子将做 漂移 运动。 5.对n 型半导体,如果以E F 和E C 的相对位置作为衡量简并化与非简并化的标准,那末, 为非 简并条件; 为弱简并条件; 简并条件。 6.空穴是半导体物理学中一个特有的概念,它是指: ; 7.施主杂质电离后向 带释放 ,在材料中形成局域的 电中心;受主杂质电离后 带释放 , 在材料中形成 电中心; 8.半导体中浅能级杂质的主要作用是 ;深能级杂质所起的主要作用 。 9. 半导体的禁带宽度随温度的升高而__________;本征载流子浓度随禁带宽度的增大而__________。 10.施主杂质电离后向半导体提供 ,受主杂质电离后向半导体提供 ,本征激发后向半导体提 供 。 11.对于一定的n 型半导体材料,温度一定时,较少掺杂浓度,将导致 靠近Ei 。 12.热平衡时,半导体中电子浓度与空穴浓度之积为常数,它只与 和 有关,而与 、 无关。 A. 杂质浓度 B. 杂质类型 C. 禁带宽度 D. 温度 12. 指出下图各表示的是什么类型半导体? 13.n o p o =n i 2标志着半导体处于 平衡 状态,当半导体掺入的杂质含量改变时,乘积n o p o 改变否? 不 变 ;当温度变化时,n o p o 改变否? 改变 。 14.非平衡载流子通过 复合作用 而消失, 非平衡载流子的平均生存时间 叫做寿命τ,寿命 τ与 复合中心 在 禁带 中的位置密切相关,对于强p 型和 强n 型材料,小注入时寿命τn 为 ,寿命τp 为 . 15. 迁移率 是反映载流子在电场作用下运动难易程度的物理量, 扩散系数 是反映有浓度梯度时载流子 运动难易程度的物理量,联系两者的关系式是 q n n 0=μ ,称为 爱因斯坦 关系式。 16.半导体中的载流子主要受到两种散射,它们分别是电离杂质散射 和 晶格振动散射 。前者在 电离施主或电离受主形成的库伦势场 下起主要作用,后者在 温度高 下起主要作用。 17.半导体中浅能级杂质的主要作用是 影响半导体中载流子浓度和导电类型 ;深能级杂质所起的主 要作用 对载流子进行复合作用 。

半导体物理刘恩科考研 复习总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1.半导体中的电子状态 金刚石与共价键(硅锗IV族):两套面心立方点阵沿对角线平移1/4套构而成 闪锌矿与混合键(砷化镓III-V族):具有离子性,面心立方+两个不同原子 纤锌矿结构:六方对称结构(AB堆积) 晶体结构:原子周期性排列(点阵+基元) 共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原于转移到相邻的原子上去,电子可以 在整个晶体中运动。 能带的形成:组成晶体的大量原子的相同轨道的电子被共有化后,受势场力作用,把同一个能级分裂为相互之间具有微小差异的极其细致的能 级,这些能级数目巨大,而且堆积在一个一定宽度的能量范围 内,可以认为是连续的。 能隙(禁带)的起因:晶体中电子波的布喇格反射-周期性势场的作用。 (边界处布拉格反射形成驻波,电子集聚不同区域,造成能量差) 自由电子与 半导体的 E-K图: 自由电子模型: 半导体模型: 导带底:E(k)>E(0),电子有效质量为正值; 价带顶:E(k)

波矢为k的电子波的布喇格衍射条件: 一维情况(布里渊区边界满足布拉格): 第一布里渊区内允许的波矢总数=晶体中的初基晶胞数N -每个初基晶胞恰好给每个能带贡献一个独立的k值; -直接推广到三维情况考虑到同一能量下电子可以有两个相反的自旋取 向,于是每个能带中存在2N个独立轨道。 -若每个初基晶胞中含有一个一价原子,那么能带可被电子填满一半; -若每个原子能贡献两个价电子,那么能带刚好填满;初基晶胞中若含有两个一价原子,能带也刚好填满。 杂质电离:电子脱离杂质原子的的束缚成为导电电子的过程。脱离束缚所需要的能力成为杂质电离能。 杂质能级:1)替位式杂质(3、5族元素,5族元素释放电子,正电中心,称施 主杂质;3族元素接收电子,负电中心,受主杂 质。) 2)间隙式杂质(杂质原子小) 杂质能带是虚线,分离的。 浅能级杂质电离能: 施主杂质电离能

第一章习题 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近 能量E V (k)分别为: E c =0 2 20122021202236)(,)(3m k h m k h k E m k k h m k h V - =-+ 0m 。试求: 为电子惯性质量,nm a a k 314.0,1== π (1)禁带宽度; (2)导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1) eV m k E k E E E k m dk E d k m k dk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43 (0,060064 3 382324 3 0)(2320 212102220 202 02022210 1202==-==<-===-==>=+===-+ 因此:取极大值 处,所以又因为得价带: 取极小值处,所以:在又因为:得:由导带: 04 32 2 2*8 3)2(1 m dk E d m k k C nC ===

s N k k k p k p m dk E d m k k k k V nV /1095.704 3 )() ()4(6 )3(25104 3002 2 2*1 1 -===?=-=-=?=- == 所以:准动量的定义: 2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计 算电子自能带底运动到能带顶所需的时间。 解:根据:t k h qE f ??== 得qE k t -?=? s a t s a t 137 19 282 1911027.810 10 6.1)0(102 7.810106.1) 0(----?=??-- =??=??-- = ?π π 补充题1 分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提 示:先画出各晶面内原子的位置和分布图) Si 在(100),(110)和(111)面上的原子分布如图1所示: (a )(100)晶面 (b )(110)晶面

第一章习题 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)与价带极大值附近 能量E V (k)分别为: E c =0 2 20122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。试求: 为电子惯性质量,nm a a k 314.0,1==π (1)禁带宽度; (2) 导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1) eV m k E k E E E k m dk E d k m k dk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064 30382324 30)(2320212102 2 20 202 02022210 1202==-==<-===-== >=+== =-+ηηηηηηηη因此:取极大值处,所以又因为得价带: 取极小值处,所以:在又因为:得:由导带: 04 3222* 83)2(1m dk E d m k k C nC ===η

s N k k k p k p m dk E d m k k k k V nV /1095.704 3)()()4(6 )3(25104300222* 11-===?=-=-=?=-==ηηηηη所以:准动量的定义: 2、 晶格常数为0、25nm 的一维晶格,当外加102V/m,107 V/m 的电场时,试分别计 算电子自能带底运动到能带顶所需的时间。 解:根据:t k h qE f ??== 得qE k t -?=?η s a t s a t 13719282 1911027.810106.1) 0(1027.810106.1) 0(----?=??--= ??=??-- =?π πηη 补充题1 分别计算Si(100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先 画出各晶面内原子的位置与分布图) Si 在(100),(110)与(111)面上的原子分布如图1所示: (a)(100)晶面 (b)(110)晶面

半导体物理习题解答 1-1.(P 32)设晶格常数为a 的一维晶格,导带极小值附近能量E c (k )和价带极大值附近能量E v (k )分别为: E c (k)=0223m k h +022)1(m k k h -和E v (k)= 0226m k h -0 2 23m k h ; m 0为电子惯性质量,k 1=1/2a ;a =0.314nm 。试求: ①禁带宽度; ②导带底电子有效质量; ③价带顶电子有效质量; ④价带顶电子跃迁到导带底时准动量的变化。 [解] ①禁带宽度Eg 根据dk k dEc )(=0232m k h +0 12)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值: k min = 14 3 k , 由题中E C 式可得:E min =E C (K)|k=k min = 2 10 4k m h ; 由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0; 并且E min =E V (k)|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =2 02 48a m h =11 28282 2710 6.1)1014.3(101.948)1062.6(----???????=0.64eV ②导带底电子有效质量m n 0202022382322 m h m h m h dk E d C =+=;∴ m n =022 283/m dk E d h C = ③价带顶电子有效质量m ’ 022 26m h dk E d V -=,∴022 2'61/m dk E d h m V n -== ④准动量的改变量 h △k =h (k min -k max )= a h k h 83431= [毕] 1-2.(P 33)晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带 底运动到能带顶所需的时间。 [解] 设电场强度为E ,∵F =h dt dk =q E (取绝对值) ∴dt =qE h dk

第一章、 半导体中的电子状态习题 1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说 明之。 1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。 1-3、试指出空穴的主要特征。 1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。 1-5、某一维晶体的电子能带为 [])sin(3.0)cos(1.01)(0ka ka E k E --= 其中E 0=3eV ,晶格常数a=5х10-11m 。求: (1) 能带宽度; (2) 能带底和能带顶的有效质量。 题解: 1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成 为导电电子的过程就是本征激发。其结果是在半导体中出现成对的电子-空穴对。如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。 1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。温 度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。反之,温度降低,将导致禁带变宽。因此,Ge 、Si 的禁带宽度具有负温度系数。 1-3、 解:空穴是价带中未被电子占据的空量子态,被用来描述半满带中的大量 电子的集体运动状态,是准粒子。主要特征如下: A 、荷正电:+q ; B 、空穴浓度表示为p (电子浓度表示为n ); C 、E P =-E n D 、m P *=-m n *。 1-4、 解: (1) Ge 、Si: a )Eg (Si :0K) = 1.21eV ;Eg (Ge :0K) = 1.170eV ; b )间接能隙结构 c )禁带宽度E g 随温度增加而减小; (2) GaAs : a )E g (300K )= 1.428eV ,Eg (0K) = 1.522eV ; b )直接能隙结构; c )Eg 负温度系数特性: dE g /dT = -3.95×10-4eV/K ; 1-5、 解: (1) 由题意得: [][] )sin(3)cos(1.0)cos(3)sin(1.002 22 0ka ka E a k d dE ka ka aE dk dE +=-=

复习思考题与自测题 第一章 1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层 电子参与共有化运动有何不同。 答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。 2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。 答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量 3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么? 答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。 4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么? 答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k)随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。 5.简述有效质量与能带结构的关系; 答:能带越窄,有效质量越大,能带越宽,有效质量越小。 6.从能带底到能带顶,晶体中电子的有效质量将如何变化?外场对电子的作用效果有什么不同;答:在能带底附近,电子的有效质量是正值,在能带顶附近,电子的有效质量是负值。在外电F

半导体物理学 刘恩科第七版习题答案 ---------课后习题解答一些有错误的地方经过了改正和修订! 第一章 半导体中的电子状态 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别 为: 2 20122021202236)(,)(3Ec m k m k k E m k k m k V - =-+= 0m 。试求:为电子惯性质量,nm a a k 314.0,1==π (1)禁带宽度; (2)导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:10 9 11010 314.0=-?= =π π a k (1) J m k m k m k E k E E m k k E E k m dk E d k m k dk dE J m k Ec k k m m m dk E d k k m k k m k dk dE V C g V V V V c C 17 31 210340212012202 1210 12202220 21731 2 103402 12102 02022210120210*02.110 108.912)1010054.1(1264)0()43(6)(0,0600610*05.310108.94)1010054.1(4Ec 430 382324 3 0) (232------=????==-=-== =<-===-==????===>=+== =-+= 因此:取极大值处,所以又因为得价带: 取极小值处,所以:在又因为:得:由导带:

04 32 2 2*8 3)2(1 m dk E d m k k C nC === s N k k k p k p m dk E d m k k k k V nV /1095.71010054.143 10314.0210625.643043)() ()4(6 )3(2510349 3410 4 3 002 2 2*1 1 ----===?=???=?? ??=-=-=?=- ==ππ 所以:准动量的定义: 2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能 带底运动到能带顶所需的时间。 解:根据:t k qE f ??== 得qE k t -?=? s a t s a t 137 19282 199 3421911028.810106.1) 0(1028.810106.11025.0210625.610106.1)0(-------?=??--=??=??-?-??=??--=?π π ππ 第二章 半导体中杂质和缺陷能级 7. 锑化铟的禁带宽度Eg=0.18eV ,相对介电常数εr =17,电子的有效质量 *n m =0.015m 0, m 0为电子的惯性质量,求①施主杂质的电离能,②施主的弱束缚电子基态轨道半径。

半导体物理学第七版完 整答案修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

第一章习题 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k) 分别为: E C (K )=0 2 20122021202236)(,)(3m k h m k h k E m k k h m k h V - =-+ (1)禁带宽度; (2)导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1) 2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子 自能带底运动到能带顶所需的时间。 解:根据:t k h qE f ??== 得qE k t -?=? 补充题1 分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提 示:先画出各晶面内原子的位置和分布图) Si 在(100),(110)和(111)面上的原子分布如图1所示:

(a )(100)晶面 (b )(110)晶面 (c )(111)晶面 补充题2 一维晶体的电子能带可写为)2cos 81 cos 8 7()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求 (1)布里渊区边界; (2)能带宽度; (3)电子在波矢k 状态时的速度; (4)能带底部电子的有效质量* n m ; (5)能带顶部空穴的有效质量*p m 解:(1)由 0)(=dk k dE 得 a n k π = (n=0,?1,?2…) 进一步分析a n k π ) 12(+= ,E (k )有极大值, a n k π 2=时,E (k )有极小值

半导体物理学试题及答案 半导体物理学试题及答案(一) 一、选择题 1、如果半导体中电子浓度等于空穴浓度,则该半导体以( A )导电为主;如果半导体中电子浓度大于空穴浓度,则该半导体以( E )导电为主;如果半导体中电子浓度小于空穴浓度,则该半导体以( C )导电为主。 A、本征 B、受主 C、空穴 D、施主 E、电子 2、受主杂质电离后向半导体提供( B ),施主杂质电离后向半导体提供( C ),本征激发向半导体提供( A )。 A、电子和空穴 B、空穴 C、电子 3、电子是带( B )电的( E );空穴是带( A )电的( D )粒子。 A、正 B、负 C、零 D、准粒子 E、粒子 4、当Au掺入Si中时,它是( B )能级,在半导体中起的是( D )的作用;当B掺入Si中时,它是( C )能级,在半导体中起的是( A )的作用。 A、受主 B、深 C、浅 D、复合中心 E、陷阱 5、 MIS结构发生多子积累时,表面的导电类型与体材料的类型( A )。 A、相同 B、不同 C、无关

6、杂质半导体中的载流子输运过程的散射机构中,当温度升高时,电离杂质散射的概率和晶格振动声子的散射概率的变化分别是( B )。 A、变大,变小 ; B、变小,变大; C、变小,变小; D、变大,变大。 7、砷有效的陷阱中心位置(B ) A、靠近禁带中央 B、靠近费米能级 8、在热力学温度零度时,能量比EF小的量子态被电子占据的概率为( D ),当温度大于热力学温度零度时,能量比EF小的量子态被电子占据的概率为( A )。 A、大于1/2 B、小于1/2 C、等于1/2 D、等于1 E、等于0 9、如图所示的P型半导体MIS结构的C-V特性图中,AB段代表( A),CD段代表( B )。 A、多子积累 B、多子耗尽 C、少子反型 D、平带状态 10、金属和半导体接触分为:( B )。 A、整流的肖特基接触和整流的欧姆接触 B、整流的肖特基接触和非整流的欧姆接触 C、非整流的肖特基接触和整流的欧姆接触 D、非整流的肖特基接触和非整流的欧姆接触 11、一块半导体材料,光照在材料中会产生非平衡载

第五章习题 1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空穴的寿命为100us 。计算空穴的复合率。 2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩载流子,产生率为, 空穴寿命为τ。 (1)写出光照下过剩载流子所满足的方程; (2)求出光照下达到稳定状态时的过载流子浓度。 3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10Ω?cm 。今用光照射该样品,光被半导体均匀的吸收,电子-空穴对的产生率是1022cm -3?s-1,试计算光照下样品的电阻率,并求电导中少数在流子的贡献占多大比例? s cm p U s cm p U p 31710 10010 313/10U 100,/10613 ==?= ====?-??-τ τμτ得:解:根据?求:已知:τ τ τ ττ g p g p dt p d g Ae t p g p dt p d L L t L =?∴=+?-∴=?+=?+?-=?∴-. 00 )2()(达到稳定状态时,方程的通解:梯度,无飘移。 解:均匀吸收,无浓度cm s pq nq q p q n pq np cm q p q n cm g n p g p p n p n p n p n L /06.396.21.0500106.1101350106.11010.0:101 :1010100 .19 16191600'000316622=+=???+???+=?+?++=+=Ω=+==?==?=?=+?-----μμμμμμσμμρττ光照后光照前光照达到稳定态后

4. 一块半导体材料的寿命τ=10us ,光照在材料中会产生非平衡载流子,试求光照突然停止20us 后,其中非平衡载流子将衰减到原来的百分之几? 5. n 型硅中,掺杂浓度N D =1016cm -3, 光注入的非平衡载流子浓度?n=?p=1014cm -3。计算无光照和有光照的电导率。 % 2606.38.006.3500106.1109. ,.. 32.0119 161 0' '==???=?∴?>?Ω==-σσ ρp u p p p p cm 的贡献主要是所以少子对电导的贡献献 少数载流子对电导的贡 。 后,减为原来的光照停止%5.1320%5.13) 0() 20()0()(1020 s e p p e p t p t μτ ==???=?--cm s q n qu p q n p p p n n n cm p cm n cm p n cm n K T n p n i /16.21350106.110:,/1025.2,10/10.105.1,30019160000003403160314310=???=≈+=?+=?+=?===?=??==---μμσ无光照则设半导体的迁移率) 本征空穴的迁移率近似等于的半导体中电子、注:掺杂有光照131619140010(/19.20296.016.2)5001350(106.11016.2) (: --=+=+???+≈+?++=+=cm cm s nq q p q n pq nq p n p n p n μμμμμμσ

一、半导体物理学期末复习试题及答案一 1.与绝缘体相比,半导体的价带电子激发到导带所需要的能量 ( B )。 A. 比绝缘体的大 B.比绝缘体的小 C. 和绝缘体的相同 2.受主杂质电离后向半导体提供( B ),施主杂质电离后向半 导体提供( C ),本征激发向半导体提供( A )。 A. 电子和空穴 B.空穴 C. 电子 3.对于一定的N型半导体材料,在温度一定时,减小掺杂浓度,费米能 级会( B )。 A.上移 B.下移 C.不变 4.在热平衡状态时,P型半导体中的电子浓度和空穴浓度的乘积为 常数,它和( B )有关 A.杂质浓度和温度 B.温度和禁带宽度 C.杂质浓度和禁带宽度 D.杂质类型和温度 5.MIS结构发生多子积累时,表面的导电类型与体材料的类型 ( B )。 A.相同 B.不同 C.无关 6.空穴是( B )。 A.带正电的质量为正的粒子 B.带正电的质量为正的准粒子 C.带正电的质量为负的准粒子 D.带负电的质量为负的准粒子 7.砷化稼的能带结构是( A )能隙结构。 A. 直接 B.间接

8. 将Si 掺杂入GaAs 中,若Si 取代Ga 则起( A )杂质作用, 若Si 取代As 则起( B )杂质作用。 A. 施主 B. 受主 C. 陷阱 D. 复合中心 9. 在热力学温度零度时,能量比F E 小的量子态被电子占据的概率为 ( D ),当温度大于热力学温度零度时,能量比F E 小的量子 态被电子占据的概率为( A )。 A. 大于1/2 B. 小于1/2 C. 等于1/2 D. 等于1 E. 等于0 10. 如图所示的P 型半导体MIS 结构 的C-V 特性图中,AB 段代表 ( A ),CD 段代表(B )。 A. 多子积累 B. 多子耗尽 C. 少子反型 D. 平带状态 11. P 型半导体发生强反型的条件( B )。 A. ???? ??=i A S n N q T k V ln 0 B. ??? ? ??≥i A S n N q T k V ln 20 C. ???? ??= i D S n N q T k V ln 0 D. ???? ??≥i D S n N q T k V ln 20 12. 金属和半导体接触分为:( B )。 A. 整流的肖特基接触和整流的欧姆接触 B. 整流的肖特基接触和非整流的欧姆接触 C. 非整流的肖特基接触和整流的欧姆接触 D. 非整流的肖特基接触和非整流的欧姆接触

1.与绝缘体相比,半导体的价带电子激发到导带所需要的能量 ( B )。 A. 比绝缘体的大 B.比绝缘体的小 C. 和绝缘体的相同 2.受主杂质电离后向半导体提供( B ),施主杂质电离后向半 导体提供( C ),本征激发向半导体提供( A )。 A. 电子和空穴 B.空穴 C. 电子 3.对于一定的N型半导体材料,在温度一定时,减小掺杂浓度,费 米能级会( B )。 A.上移 B.下移 C.不变 4.在热平衡状态时,P型半导体中的电子浓度和空穴浓度的乘积为 常数,它和( B )有关 A.杂质浓度和温度 B.温度和禁带宽度 C.杂质浓度和禁带宽度 D.杂质类型和温度 5.MIS结构发生多子积累时,表面的导电类型与体材料的类型 ( B )。 A.相同 B.不同 C.无关 6.空穴是( B )。 A.带正电的质量为正的粒子 B.带正电的质量为正的准粒子 C.带正电的质量为负的准粒子 D.带负电的质量为负的准粒子 7.砷化稼的能带结构是( A )能隙结构。 A. 直接 B.间接 8.将Si掺杂入GaAs中,若Si取代Ga则起( A )杂质作

用,若Si 取代As 则起( B )杂质作用。 A. 施主 B. 受主 C. 陷阱 D. 复合中心 9. 在热力学温度零度时,能量比F E 小的量子态被电子占据的概率为 ( D ),当温度大于热力学温度零度时,能量比F E 小的 量子态被电子占据的概率为( A )。 A. 大于1/2 B. 小于1/2 C. 等于1/2 D. 等于1 E. 等于0 10. 如图所示的P 型半导体MIS 结构 的C-V 特性图中,AB 段代表 ( A ),CD 段代表(B )。 A. 多子积累 B. 多子耗尽 C. 少子反型 D. 平带状态 11. P 型半导体发生强反型的条件( B )。 A. ???? ??=i A S n N q T k V ln 0 B. ??? ? ??≥i A S n N q T k V ln 20 C. ???? ??=i D S n N q T k V ln 0 D. ??? ? ??≥i D S n N q T k V ln 20 12. 金属和半导体接触分为:( B )。 A. 整流的肖特基接触和整流的欧姆接触 B. 整流的肖特基接触和非整流的欧姆接触 C. 非整流的肖特基接触和整流的欧姆接触 D. 非整流的肖特基接触和非整流的欧姆接触 13. 一块半导体材料,光照在材料中会产生非平衡载流子,若光照

相关文档
相关文档 最新文档