文档视界 最新最全的文档下载
当前位置:文档视界 › 热处理原理与工艺(自总结)

热处理原理与工艺(自总结)

热处理原理与工艺(自总结)
热处理原理与工艺(自总结)

1影响对流换热系数的因素

(1)流体运动的情况:自然对流和强迫对流

(2)流体的性质:热导率、热容、密度、粘度

(3)工件的形状及在炉内的位置

2影响热导率的因素

(1)碳元素、合金元素含量越多,热导率越小

(2)物相:奥氏体<淬火马氏体<回火马氏体<珠光体

(3)温度:对于纯铁、碳钢,温度越高,热导率越小

3随炉加热、到温入炉、高温入炉、高温入炉到温出炉、预热加热

(1)随炉加热:工件装入炉中后,随着炉子升温而加热,直至所需加热温度。

(2)到温入炉:先把炉子温度升高到工件要求的加热温度,再把工件放入炉内加热。(3)高温入炉:先把炉子温度升高到高于工件要求的加热温度,再把工件放入炉内直至达到所需温度

(4)预热加热:工件先在已升温至较低温度的炉子中加热,到温后再转移至预定工件加热温度的炉中加热至工件所要求的温度。

4铁加热时的氧化反应

小于570℃加热时,氧化产物为四氧化三铁;

大于570℃加热时,氧化产物为氧化亚铁。

5内氧化:氧沿晶界或其他通道向内扩散,与晶界附近的Si、Mo等元素结合成氧化物的现象。(原因:SiO2、MoO的分解压小于FeO的分解压,故Si、Mo先被氧化。)

6脱碳:钢在加热时,钢中的碳与气氛作用,使钢表面失去一部分碳,含碳量降低的现象。碳势:表征炉气对钢表层增碳或脱碳的能力。纯铁在一定温度下于加热炉气中加热时达到既不增碳也不脱碳并与炉气保持平衡时表面的含碳量。

7炉气碳势测量方法(炉气中CO、H2、H2O、CO2、CH4、O2有定量关系,CO、H2含量是恒定的,知道其余4中气体任一种含量即可知所有气体含量,从而可以得到碳势。)

(1)实际碳势曲线:直接测定不同温度时炉气成分及与之平衡的钢的含碳量。

(2)红外线CO2分析仪:测定炉气中CO2含量(CO2含量越高,碳势越低)

(3)露点仪:测定炉气中H20的含量(H2O含量越高,碳势越低)

(4)氧探头:测定炉气中氧含量(氧分压)(电势越高,碳势越高)

8脱碳过程:①脱碳反应②碳由内部向表面扩散

钢在不同炉气碳势中脱碳后的组织分析

半脱碳层:脱碳层组织自表面至中心,由铁素体加珠光体组织过渡到珠光体,再至原始含碳量的缓冷组织,这种脱碳层为半脱碳层。

全脱碳层:脱碳层组织自表面至中心,由单一铁素体区到铁素体加珠光体逐渐过渡到相当于钢原始含碳量缓冷组织,这种脱碳层为全脱碳层。

9

退火:将组织偏离平衡态的金属材料加热到适当温度,保持一段时间,随后缓慢冷却达到接近平衡组织的热处理工艺。

正火:将钢加热到临界点AC3或ACcm以上适当温度,保温适当时间后,在空气中冷却得到珠光体类组织的热处理工艺。

淬火:将钢加热到临界点AC1或AC3以上某一温度随之以大于临界冷却速度冷却得到亚稳态的马氏体或下贝氏体组织的热处理工艺。

回火:将钢加热到临界点AC1以下某一温度保温一段时间使淬火组织转变为稳定的回火组织,随后以适当方式冷却至室温的热处理工艺。

10退火工艺

扩散退火:将金属铸锭、铸件或锻坯,在略低于固相线的温度下长期加热,消除或减少化学成分偏析及显微组织的不均匀性,以达到均匀化目的的热处理工艺。

完全退火:将钢件或钢材加热到Ac3点以上,使之完全奥氏体化,然后缓慢冷却,获得接近于平衡组织的热处理工艺。

不完全退火:将钢件加热到Ac1和Ac3或Ac1和Accm之间,经保温并缓慢冷却,获得接近于平衡组织的热处理工艺。

球化退火:将钢加热到Ac3或Accm以下,Ac1附近,保温一段时间,使钢中碳化物球化或获得球状珠光体的退火工艺。

①低于Ac1的球化退火②一次球化退火(先正火消除网状渗碳体)③往复球化退火

软化退火:

再结晶退火:经过冷变形后的金属加热到再结晶温度以上,保持适当时间,使形变晶粒重新转变为均匀的等轴晶粒,以消除形变强化和残余应力的热处理工艺。

去应力退火:消除残余应力而不引起组织变化的退火工艺。

11影响碳化物球化的因素

(1)化学成分(C扩散越快,球化速度越快)

C含量越高,球化效果越好

合金元素:无碳化物形成元素球化速度快,有碳化物形成元素球化速度慢。

(2)原始组织

组织越细小,球化是速度越快(扩散距离短)

(3)退火温度与保温时间

T,t越大,越易形成片状珠光体,不易球化

(4)冷却速度

冷速快,不利于球化

(5)形变量

形变量越大,球化效果好

12双重正火:第一次正火在高于临界点Ac3以上150~200℃加热,以扩散方法消除粗大组织,使成分均匀;第二次正火在普通条件下进行。

13扩散退火与高温正火差别

14退火、正火后的组织和性能差别

15退火、正火选择原则

(1)<0.20% 高温正火得到良好的切削性能

(2)0.20%~0.25% 正火消除锻造缺陷提高切削加工性能

(3)0.25%~0.5% 正火:0.25%~0.35%正火切削性能最佳;0.35%~0.5%正火效率高,成本低

(4)0.5%~0.75% 完全退火:合适硬度,适于切削加工

(5)0.75%~0.1% 弹簧钢:完全退火;刃具钢:球化退火

(6)>0.1% 工具钢:球化退火预处理

(7)合金钢:高温回火降低硬度,改善切削性能

16退火、正火缺陷

(1)过烧:温度过高引起的晶界氧化、熔化。

(2)黑脆:退火温度过高、保温时间过长、冷却缓慢引起的渗碳体石墨化。重新奥氏体化消除。

(3)粗大魏氏组织(针状先共析相与片状珠光体混合物,脆):温度过高导致奥氏体粗大,

而后形成的魏氏组织。完全退火、双重正火消除。

(4)反常组织(先共析铁素体周围有粗大渗碳体或先共析渗碳体周围有粗大铁素体):在Ar1附近冷速过慢或长期保温。重新退火消除。

(5)网状组织:加热温度过高,冷速过慢。重新正火消除。

(6)球化不均匀:球化退火前没有消除网状渗碳体,导致其聚集。正火+一次球化退火消除。

(7)硬度过高:加热温度过高,冷速过快。重新退火消除。

17钢在淬火介质冷却3个阶段

(1)蒸气膜阶段:冷却速度缓慢

(2)沸腾阶段:冷却速度快

(3)对流阶段:冷却速度逐渐降低

18淬火烈度:表征淬火介质的冷却能力。

淬火介质特性温度:蒸气膜开始破裂的温度。

19淬透性:淬火时获得马氏体的难易程度。

可硬性:淬成马氏体可能得到的硬度。

影响淬透性的因素

(1)化学成分:对于过共析钢,在Accm以下加热,含碳量小于1%,含碳量越高,淬透性越低;含碳量大于1%时,含碳量越高,淬透性越好。在Accm或Ac3以上加热,含碳量越高,淬透性越好。除Ti、Zr、Co外,所有合金元素提高淬透性。

(2)奥氏体晶粒度:奥氏体晶粒尺寸越大,过冷奥氏体稳定性提高,淬透性越好。(3)奥氏体化温度:奥氏体化温度越高,晶粒长大,碳化物溶解,过冷奥氏体稳定性越高,淬透性越好。

(4)第二相的存在和分布:弥散均匀分布的第二相提高过冷奥氏体稳定性,淬透性好。影响淬火应力的因素

(1)含碳量:含碳量增加,热应力减弱,组织应力增强,表面压应力减小,拉应力位置越靠近表面。

(2)合金元素:热应力、组织应力均增加。

(3)工件尺寸的影响:完全淬透时,随工件直径增大,淬火应力由组织应力型转变为热应力型。未完全淬透时,淬火应力为热应力型,工件直径越大,淬硬层越薄,热应力特征越明显。

(4)淬火介质和冷却方式的影响。过冷奥氏体不稳定区冷却速度快,马氏体转变区冷却速度慢,为热应力型,反之为组织应力型。

20二次硬化:由于钢中含有较多碳化物形成元素,在500~650℃回火时形成合金碳化物导致硬度不降低反而升高的现象称为二次硬化。

21亚温淬火:亚共析钢在Ac1~Ac3之间的温度加热淬火称为亚温淬火。

等温淬火:

(1)预冷等温淬火:工件加热奥氏体化后,先在温度较低的盐浴中冷却,然后转入等温淬火浴槽中进行下贝氏体转变,再取出空冷。

(2)预淬等温淬火:工件加热奥氏体化后,先淬入温度低于Ms点热浴获得大于10%马氏体,然后转入等温淬火槽中进行下贝氏体转变,再取出空冷。

(3)分级等温淬火:工件加热奥氏体化后,现在中温区进行一次(或两次)分级冷却,然后转入等温淬火槽中进行下贝氏体转变,再取出空冷。

22回火脆性:在某些温度区间回火时随回火温度升高,钢韧性反而下降的现象。

第一类回火脆性:淬火钢在250~350℃回火时出现的脆性。

第二类回火脆性:淬火钢在500~650℃回火后缓冷时出现的脆性。

23淬火缺陷

(1)淬火变形、开裂:淬火不均匀引起的扭曲变形,淬火前后组织变化引起的体积变化,热应力、组织应力引起的形状变化,内应力大于断裂强度引起的纵向裂缝和横向裂缝。

(2)氧化、脱碳、表面腐蚀及过烧

(3)硬度不足:淬火温度过低、保温时间不足,工具钢淬火温度过高引起的淬后残余奥氏体过多,表面脱碳等。

(4)硬度不均匀:淬火前原始组织不均匀、渗碳件表面碳浓度不均匀等。

(5)组织缺陷:粗大马氏体、游离铁素体等。

回火缺陷

(1)硬度过低、过高、不均匀:回火温度过低、过高、炉温不均匀。

(2)回火变形:回火应力松弛导致变形。多次校直多次加热,压具回火消除

(3)回火脆性:第一类回火脆性,重新加热淬火,另选温度回火消除。第二类回火脆性,重新加热回火,然后加速回火后冷却速度消除。

24表面淬火:被处理工件在表面有限深度范围内加热至相变点以上,然后迅速冷却,在工件表面一定深度范围内达到淬火目的的热处理工艺。

25钢在非平衡加热时的相变特点

(1)在一定的加热速度范围内,临界点随着加热速度的增加而提高。

(2)奥氏体成分不均匀性随着加热速度的增加而增大。

(3)提高加热速度可显著细化奥氏体晶粒。

(4)快速加热对过冷奥氏体转变及马氏体的回火有明显影响。

26感应加热表面淬火:利用感应电流通过工件产生的热效应,使工件表面局部加热,随后快速冷却,获得马氏体组织的工艺。

火焰加热表面淬火:用一种火焰在一个工件表面若干尺寸范围内加热,使其奥氏体化并淬火的工艺。

27电流透入深度:表面涡流强度降至表面初始涡流强度的1/e处的深度。

冷态电流透入深度:20℃时的电流透入深度。

热态电流透入深度:800℃时的电流透入深度。

28透入式加热:当零件加热时,电流透入深度大于淬硬层深度。

传导式加热:当零件加热时,电流透入深度小于淬硬层深度。

29自回火:当淬火后未完全冷却,利用在工件内残留的热量进行回火。

30化学热处理:金属制件放在一定的化学介质中,使其表面与化学介质相互作用,吸收其中某些化学元素的原子并通过加热,使该原子自表面向内部扩散的过程。

反应扩散:由溶解度较低的固溶体转变为浓度更好的化合物,这种扩散称为反应扩散。

31 钢的渗碳:钢件在渗碳介质中加热和保温,使碳原子渗入表面,获得一定的表面碳含量和一定碳浓度梯度的工艺。

32滴注式渗剂选择原则

较大的产气量、碳氧比大于1、碳当量小、气氛中CO和H2成分稳定、价格低廉资源丰富。33真空渗碳优点

(1)真空加热的表面净化作用使表面活化,缩短渗碳时间。

(2)渗碳表面质量好,渗碳层均匀,无过渗危险。

(3)直接用天然气作渗碳剂,无需气体发生炉。

(4)作业条件好。

(真空淬火后需180~200℃低温回火)

34渗碳后直接淬火优缺点

优点:减少加热、冷却次数,简化操作,减少变形和氧化脱碳。

缺点:由于渗碳时在较高渗碳温度停留较长时间,导致奥氏体晶粒粗大。

35不同钢渗碳后热处理选择

本质细晶粒钢:直接淬火

本质粗晶粒钢:一次加热淬火

高合金钢:3次高温回火后一次加热淬火。

35两次淬火:第一次淬火温度在Ac3以上,第二次淬火温度在渗碳层成分的Ac1以上。 目的:细化渗碳层中的马氏体晶粒,获得隐晶马氏体、残余奥氏体及均匀分布的细粒状碳化物的渗层组织。

36二次淬火:高合金钢在回火冷却时残余奥氏体转变为马氏体的现象。

37渗碳缺陷

(1) 黑色组织:氧向钢晶界扩散,形成氧化物——“内氧化”,或氧化区合金元素的贫化

淬透性降低,出现费马氏体。降低氧含量,喷丸处理。

(2) 反常组织:奥氏体均匀化后采用较快淬火冷却速度。

(3) 粗大网状碳化物:渗碳温度过高,时间过长,扩散温度过低。高于Accm 的高温淬

火或正火。

(4) 渗碳层深度不均匀

(5) 表层贫碳或脱碳:炉气碳势过低,或氧化脱碳。喷丸处理

(6) 表面腐蚀及氧化。

38渗氮:向金属表面渗入氮元素的工艺。

39氮势:表征气氛渗氮能力的度量,定义为2323

][r H NH p p

40渗碳工艺方法

强化渗氮

(1)等温渗碳:渗氮温度不变,氨分解率先小后大,退氮更大。

优点:渗碳温度低,变形小,硬度高。

缺点:渗氮时间长,生产率低。

(2)两段渗氮:渗氮温度先低后高,氨分解率先小后大,退氮更大。

(3)三段渗氮:渗氮温度先低后高再低,氨分解率先小后大再小。

抗腐蚀渗氮:工件表面获得致密的化学稳定性高的ε相层。

41渗氮缺陷

(1) 变形:渗氮前残存内应力渗后松弛导致变形,装炉不当等。渗氮前去应力,装炉恰

当。

(2) 脆性和渗氮层剥落:表层氮浓度过大,渗氮前表面脱碳、过热导致渗后形成粗大针

状碳化物。预防氧化、脱碳、过热,降低渗层氮含量。

(3) 深层硬度不足及软点:表面氮浓度过低,渗氮温度过高氮化物粗大,渗氮时间不足

渗层过浅导致硬度不足,渗氮表面有异物导致软点。

(4) 抗腐蚀渗氮后的质量检验

42碳氮共渗:在钢表面同时渗入碳和氮的化学热处理工艺。

43碳氮共渗特点

(1) 共渗温度不同,共渗层中碳氮含量不同。氮含量随共渗温度提高而降低,碳含量则

先增加后降低。

(2)碳氮共渗时碳氮元素相互对钢中溶解度及扩散深度有影响。氮扩大γ相区,可在更低温度渗碳;氮渗入浓度过高表面形成碳氮化合物相阻碍碳的扩散。碳降低氮在α、ε相中扩散系数,故碳阻碍氮扩散。

(3)碳氮共渗过程中碳对氮的吸附有影响。共渗第二阶段,碳的继续渗入使表面脱氮。44固溶处理:第二相在基体中固溶度随温度的降低而下降的合金,将其加热到第二相全部或最大限度的固溶到基体中,保温一段时间,然后以大于第二相在固溶体中析出或分解的速度冷却,以获得过饱和固溶体的工艺。

45时效:使过饱和固溶体中第二相发生分解和析出过剩溶质原子,实现强化目的工艺。

欠时效:由于加热温度过低或保温时间不足,造成时效强度不足的现象。

过时效:由于时效温度过高或时间过长,造成时效后强度不足的现象。

46固溶处理与淬火的差别

(1)固溶处理在加热时第二相要充分溶解到固溶体中,而淬火加热时可不用。

(2)固溶处理冷却时不发生相变,仅是把高温相稳定下来,而钢淬火在冷却过程中发生相变

47时效处理与回火的差别

(1)时效处理基体不发生相变,仅有固溶度的变化,回火则有。

(2)时效处理沉淀相多为金属间化合物,回火处理则产生碳化物。

金属热处理原理及工艺总结 整理版(精编文档).doc

【最新整理,下载后即可编辑】 5.实际晶体中的点缺陷,线缺陷和面缺陷对金属性能有何影响? 答:如果金属中无晶体缺陷时,通过理论计算具有极高的强度,随着晶体中缺陷的增加,金属的强度迅速下降,当缺陷增加到一定值后,金属的强度又随晶体缺陷的增加而增加。因此,无论点缺陷,线缺陷和面缺陷都会造成晶格崎变,从而使晶体强度增加。同时晶体缺陷的存在还会增加金属的电阻,降低金属的抗腐蚀性能。 6.为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性? 答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。 7.过冷度与冷却速度有何关系?它对金属结晶过程有何影响?对铸件晶粒大小有何影响? 答:①冷却速度越大,则过冷度也越大。②随着冷却速度的增大,则晶体内形核率和长大速度都加快,加速结晶过程的进行,但当冷速达到一定值以后则结晶过程将减慢,因为这时原子的扩散能力减弱。③过冷度增大,ΔF大,结晶驱动力大,形核率和长大速度都大,且N的增加比G增加得快,提高了N与G的比值,晶粒变细,但过冷度过大,对晶粒细化不利,结晶发生困难。 8.金属结晶的基本规律是什么?晶核的形成率和成长率受到哪些因素的影响?答:①金属结晶的基本规律是形核和核长大。②受到过冷度的影响,随着过冷度的增大,晶核的形成率和成长率都增大,但形成率的增长比成长率的增长快;同时外来难熔杂质以及振动和搅拌的方法也会增大形核率。 9.在铸造生产中,采用哪些措施控制晶粒大小?在生产中如何应用变质处理?答:①采用的方法:变质处理,钢模铸造以及在砂模中加冷铁以加快冷却速度的方法来控制晶粒大小。②变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒。③机械振动、搅拌。 第二章金属的塑性变形与再结晶 2.产生加工硬化的原因是什么?加工硬化在金属加工中有什么利弊? 答:①随着变形的增加,晶粒逐渐被拉长,直至破碎,这样使各晶粒都破碎成细碎的亚晶粒,变形愈大,晶粒破碎的程度愈大,这样使位错密度显著增加;同时细碎的亚晶粒也随着晶粒的拉长而被拉长。因此,随着变形量的增加,由于晶粒破碎和位错密度的增加,金属的塑性变形抗力将迅速增大,即强度和

第四章 有色金属热处理原理与工艺

第四章有色金属热处理原理与工艺 一、概述 热处理是有色加工的重要组成部分 有色金属材料:黑色金属以外的所有金属及其合金。 分类:轻有色、重有色、稀有色、贵金属 作用:改善工艺性能,保证后续工序顺利进行;提高使用性能,充分发挥材料潜力。 类型:退火、淬火、时效、形变热处理 退火:加热到适当温度,保温一定时间,缓慢速度冷却。 有色中的退火:去应力退火、再结晶退火、均匀化退火 二、均匀化退火 对象:铸锭、铸件—→浇铸冷速大,造成成分偏析以及内应力 目的:提高铸件的性能,消除内应力,稳定尺寸与组织,消除偏析枝晶,改善性能。 非平衡铸态组织特征:晶内偏析or枝晶偏析;伪共晶or离异共晶;非平衡第二相;最大固溶度偏移。非平衡组织对性能的影响:枝晶偏析&非平衡脆性相—→塑性↓; 晶内偏析、浓度差微电池—→耐腐蚀性↓; 粗大的枝晶和严重的偏析—→各向异性&晶间断裂倾向↑; 非平衡针状组织—→性能不稳定。 固相线以下100~200℃长时间保温—→也称为扩散退火 组织变化:获得均匀的单相、晶粒长大、过饱和固溶体的分解、第二相聚集与球化 性能变化:塑性↑、改善冷变形的工艺性能、耐蚀性↑、尺寸形状稳定、消除残余应力 缺点:加热温度高,时间长,耗时耗能;高温长时间出现变形、氧化以及吸气缺陷;产品强度下降。制定均匀化推过规程的原则: (1)加热温度:温度越高,原子扩散越快,均匀化过程越快,但不宜过高,易发生过烧。一般为 0.90~0.95T m ①高温均匀化退火:在非平衡相线温度以上但在平衡固相线温度以下进行均匀化退火。 适用:大截面工件or铝合金 ②分级加热均匀化退火:现在低于非平衡固相线温度加热,待非平衡相部分溶解及固溶体 内成分不均匀部分降低,从而非平衡固相线温度升高后,再加热 至更高温度保温,在此温度下完成均匀化退火过程。 目的:均匀化更迅速、更彻底,且避免过烧 适用:镁合金 (2)保温时间:包括非平衡相溶解及消除晶内偏析所需的时间 取决于退火温度:T↑,D↑,时间↓; 铸锭原始组织特征:合金化程度、第二相分散度、尺寸 铸锭的致密程度 (3)加热速度与冷却速度 原则:铸锭不产生裂纹和大的变形,不能过快or过慢 主要采用均匀化退火的合金:Al合金、Mg合金、Cu合金中的锡磷青铜、白铜

热处理工艺规范(最新)

华尔泰经贸有限公司铸钢件产品热处理艺规范 随着铸造件产品种类增多,对外业务增大,方便更好的管理铸造件产品,特制定本规定,要求各部门严格按照规定执行。 1目的: 为确保铸钢产品的热处理质量,使其达到国家标准规定的力学性能指标,以满足顾客的使用要求,特制定本热处理工艺规范。2范围 本规范适用于本公司生产的各种精铸、砂铸产品的热处理,材质为各种低碳钢、中碳钢、低合金钢、中合金钢、高合金钢、铸铁及有色合金。 3术语 3.1退火:指将铸钢产品加热到规定的温度范围,经保温一段时间后, 降温出炉的操作工艺。 3.2正火:指将铸钢产品加热到规定的温度范围,经保温一段时间后, 从炉中取出,在空气中冷却下来的操作工艺。 3.3淬火:指将铸钢产品加热到规定的温度范围,经保温一段时间后, 快速冷却的操作工艺。 3.4回火:指将淬火后的铸钢产品加热到规定的温度范围,经保温一 段时间后出炉,冷却到室温的操作工艺。 3.5调质:淬火+回火 4 职责

4.1热处理操作工艺由公司技术部门负责制订。 4.2热处理操作工艺由生产部门负责实施。 4.3热处理操作者负责教填写热处理记录,并将自动记录曲线转换到 热处理记录上。 4.4检验员负责热处理试样的力学性能检测工作,负责力学性能检测 结论的记录以及其它待检试样的管理。 5 工作程序 5.1每次装炉前应对设备进行检查,把炉底板上的氧化渣清除干净, 错位炉底板应将其复位后再装,四周应留有足够的间隙,轻拿轻放,装炉应结实,摆放合理。 5.2装炉时大铸件产品放在下面,对易产生热处理变形的铸件,必须 作好防变形或反变形处理,力学性能试样应装在高温区,对特别小的铸件采用铁桶或其它框类工装集中盛放。 5.3炉车上的铸钢件入炉时,应缓慢推进,仔细观察铸钢件是否与炉 壁碰撞,关闭炉门,通电后应经常观察炉内工作状况。 5.4作好铸件产品后续热处理的准备工作,严格控制出炉温度,对水 淬铸件应控制入水时间,水池应有足够水量,以保证淬火质量。 5.5作业计划应填写同炉热处理铸件产品的材质、名称、规格、数量、 时间等要素,热处理园盘记录纸可多次使用,但每处理一次都必须与热处理工艺卡上的记录曲线保持一致。 6 不合格品的处置 6.1热处理试样检验不合格,应及时通知相关部门。

热处理生产工作总结

热处理生产工作总结 篇一:2013年热处理车间工作总结 2013年热处理车间工作总结 在即将过去的2013年里,在公司领导的正确领导下,热处理车间顺利的完成了公司下达的各项生产任务。虽然做了许多工作,也取得了一些成绩,但也还有在许多问题,现将一年工作总结如下: 一、2013年工作总结:今年开始,热处理车间各项生产任务步入正轨,年初就从文水订了八十多件齿轮毛坯组织生产。齿轮加工这一块是我们的主要产品,技术要求非常高,从毛坯正火,回火,渗碳,淬火,到最后的热处理总共八道工序,都要在我们的车间组织完成,这就要求我们在任何一个环节都不能出现问题。到目前为止,共生产各种齿轮210件,经过检查全部达到图纸要求,并

且做到了件件检查。在完成齿轮加工的同时,还生产了以前没有干过的三个型号的导性轴,全年共计生产110件,以及55、160、220、三种掘进机履带销。共生产6000件,各种二运配件1200件,质量全部合格。没有出现一件废品,同时我们还承揽了华越公司31部40T减速器的齿轮生产任务,加工各种齿轮216件,各种支架销轴淬火,调质810件,质量完成符合图纸要求,为外单位处理齿磨440件,毛坯销轴调质3吨,无一质量问题,领到用户好评,在完成各项生产任务的同时,还进行渗碳炉的滴油系统改造工作,为三台渗碳炉的正常工作打下了基础。目前设备运转良好,闭式冷却塔经过一段时期的调试,已投入正常运行,为淬火油,淬火液的温度控制提供了有力保障。5月中旬,和许总、窦总去邢台考察,上导了发黑工艺,为二运的生产制造,起了很大作用,近期我们为上海加工的70种配件加工任务也接近尾声,除部分需外委加工的,也已

常用材料热处理工艺

常用材料热处理工艺 Prepared on 22 November 2020

常用材料热处理工艺二、ASTM A182 F22 1.退火(A)≥90±10℃炉冷; 2.回火(T)≥675℃ 3.HB≤170(一级)156~207(三级) 三、ASTM A694 F60,F52 1.N+T或Q+T N(Q):920±10℃保温,空冷(水淬) T:≥540±10℃保温,空冷 2.HB实测 四、16MnJB4726-2000 或N+T N:930±10℃保温,空冷 T:≥600±10℃保温空冷 2.HB:121~178 五、16MnDJB4727-2000 1.Q+T Q:930±10℃保温,水冷 T:≥600±10℃保温空冷 2.HB实测 六、A105ASTM A105-2002 1.正火(N):900±10℃保温,空冷

2:HB:137~187 七、20# JB4726-2000 1.正火(N):910±10℃保温,空冷 2.HB:106~159 八、LF2ASTM A350 LF2 1.淬火+回火(Q+T) Q:870~940℃保温,水冷 T:540~665℃保温,空冷 2.HB≤197 九、LF3ASTM A350-2002b 1.淬火+回火(Q+T) Q:870~940℃保温,水冷 T:540~665℃保温,空冷 2.HB≤197 十、15CrMo JB4726-2000 1.淬火+回火(Q+T) Q:900±10℃保温,水冷 T:≥620℃保温,空冷 2.HB:118~180 十一、1Cr5Mo JB4726-2000 1.淬火+回火: Q:880~900℃,保温,水冷

热处理实习小结范文

热处理实习小结范文 热处理实习小结怎么写?以下是的相关范文,欢迎阅读。 昨天参观了工具加工的车削、磨、铣的精加工车间,今天我们开始了,热处理的学习。到底在精加工和刃磨角度之前或者在冷拔、冲压之前,工具经过了怎样的热处理呢?今天工具厂的老厂长,为我们做了详细的介绍。 热处理是指将钢在固态下加热、保温和冷却,以改变钢的组织结构,从而获得所需要性能的一种工艺。世界工业发展表明,制造技术的先进性是产品竞争能力的保证,而热处理技术的先进程度,则是保证机械产品质量的关键性因素。老师提到了美国历经数年形成并制订的“美国热处理2020年技术发展路线图”,这是目前国际上最先进的热处理技术发展路线,资料显示,美国对于热处理技术设想目标是能源消耗减少80%,工艺周期缩短50%,生产成本降低75%,热处理实现零畸变和最低的质量分散度,加热炉使用提高到原先的10倍(增加9倍),加热炉价格降低50%,实现生产零污染。而我国的热处理相对于制造业发达的美国仍然存在20年的差距。 在上工具厂,主要的产品有:齿轮刀具、螺纹刀具、拉销刀具、孔加工刀具、硬质合金刀具、铣刀、铰刀类刀具、量具类刀具、非标准特殊刀具。而每一种产品在加工过程中都要依据其材料及工艺要求的不同接受不同方式的热处理。根据加热、冷却的方式及钢组织性能的变化特点不同,热处理可以分为以下几种:1、普通热处理:退火、

正火、淬火和回火;2、表面热处理:表面淬火、化学热处理;3、其他热处理:真空热处理、变形热处理、控制气氛热处理、激光热处理等。 随后,师傅为我们介绍了上海工具厂的热处理设备。在上海工具厂,有四台真空炉。热处理真空炉是具有高压(压力0.6-1.0MPa)气冷功能的真空热处理设备,适用于高速钢、高合金工模具钢、不锈钢等精密零件的真空气淬、退火、钎焊以及磁性材料的烧结及快速冷却等。在机床厂这四台真空炉中,有三台是91年从波兰引进的、美国技术制造的高压气淬真空炉,它由5bar的氮气进行冷却;有效零件炉塞尺寸为600×600×900mm、可承受最大重量为500kg;加热方式为高频辐射加热;真空度达到50~100pa(大气压为1×1000000pa。而另外一台真空炉是IPSEN的12bar高温气淬真空炉,这台设备属于国际领先技术,由着名的德国IPSEN公司生产。其特点有:1、低温对流循环加热,温度范围是150~850℃;循环加热对于型号大的模具便能达到均匀处理的效果。2、分级等温冷却,可以减少工件的变形和开裂;3、冷却风机可以在真空状态下启动,以达到快书冷却的目的。(普通的风机要在冲气0.4bar以后才能启动);4、功率因数高,普通炉在升温时功率因数0.85、保温时0.5而IPSEN在升温时功率因数也是0.85而保温的功率因数可以达到0.83;5、IPSEN的水冷风机可以超载250%,正常装机容量为115kw在最大超载状态下可以达到287.5kw。IPSEN公司是国际上知名的工业炉制造公司,总部设在德国Kleve,在欧洲、美洲、亚洲多个国家设有制造厂,在我国上海也设有制造厂,在北京设有办事处。IPSEN的主要产品有密封箱式多用炉、推杆式连

“钢的热处理原理及工艺”作业题

“钢的热处理原理及工艺”作业题 第一章固态相变概论 1、扩散型相变和无扩散型相变各有哪些特点? 2、说明晶界和晶体缺陷对固态相变成核的影响。 3、说明相界面和应变能在固态相变中的作用,并讨论它们对新相形状的影响。 4、固-固相变的等温转变动力学曲线是“C”形的原因是什么? 第二章奥氏体形成 1、为何共析钢当奥氏体刚刚完成时还会有部分渗碳体残存?亚共析钢加热转变时是否也存在碳化物溶解阶段? 2、连续加热和等温加热时,奥氏体形成过程有何异同?加热速度对奥氏体形成过程有何影响? 3、试说明碳钢和合金钢奥氏体形成的异同。 4、试设计用金相-硬度法测定40钢和T12钢临界点的方案。 5、将40、60、60Mn钢加热到860℃并保温相同时间,试问哪一种钢的奥氏体晶粒大一些? 6、有一结构钢,经正常加热奥氏体化后发现有混晶现象,试分析可能原因。 第三章珠光体转变 1、珠光体形成的热力学特点有哪些?相变主要阻力是什么?试分析片间距S与过冷度△T的关系。 2、珠光体片层厚薄对机械性能有什么影响?珠光体团直径大小对机械性能影响如何? 3、某一GCr15钢制零件经等温球化退火后,发现其组织中除有球状珠光体外,还有部分细片状珠光体,试分析其原因。 4、将40、40Cr、40CrNiMo钢同时加热到860℃奥氏体化后,以同样冷却速度使之发生珠光体转变,它们的片层间距和硬度有无差异? 5、试述先共析网状铁素体和网状渗碳体的形成条件及形成过程。 6、为达到下列目的,应分别采取何热处理方法? (1)为改善低、中、高碳钢的切削加工性; (2)经冷轧的低碳钢板要求提高塑性便于继续变形; (3)锻造过热的60钢毛坯为细化其晶粒; (4)要消除T12钢中的网状渗碳体; 第四章、马氏体转变

金属热处理原理与工艺复习提纲精选版

金属热处理原理与工艺 复习提纲 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

一、名词解释 1.正火:把零件加热到临界温度以上30-50℃,保温一段时间,然后在空气中冷却的热处理工艺。 2.退火:将钢加热、保温后,随炉冷却后,获得接近平衡状态组织的热处理工艺。 3.回火:将淬火钢重新加热到A1线以下某一温度,保温一定时间后再冷却到室温的热处理工艺。 4.淬火:将钢加热到AC1或AC3以上某一温度,保温一定时间,以大于临界冷却速度进行快速冷却,获得马氏体或下贝氏体组织的热处理工艺。 5.淬硬性:钢淬火后的硬化能力。 6.淬透性:钢淬火时获得马氏体的能力。 7.贝氏体:过冷奥氏体中温转变的产物。 8.马氏体:C原子溶入 -Fe形成的饱和间隙固溶体。 9.贝氏体转变:奥氏体中温转变得到贝氏体的过程。 10.马氏体转变:将奥氏体快速冷却到Ms点以下得到马氏体组织的过程。 11.脱溶:从过饱和固溶体中析出第二相(沉淀相)、形成溶质原子聚集区以及亚稳定过渡相的过程称为脱溶或沉淀,是一种扩散型相变。 12.固溶:将双相组织加热到固溶度线以上某一温度保温足够时间,获得均匀的单相固溶体的处理工艺。 13.固溶强化:当溶质原子溶入溶剂原子而形成固溶体时,使强度、硬度提高,塑性、韧性下降的现象。 14.渗碳:向钢的表面渗入碳原子的过程。

15.渗氮:向钢的表面渗入氮原子的过程。 16.化学热处理:将零件放在特定的介质中加热、保温,以改变其表层化学成分和组织,从而获得所需力学或化学性能的工艺总称。 17.表面淬火:在不改变钢的化学成分及心部组织情况下,利用快速加热将表层奥氏体化后进行淬火以强化零件表面的热处理方法。 二、简答题 1.材料的强韧化机制及其应用 答:固溶强化; 位错强化; 第二相强化; ④细晶强化。 2.相变应力/组织应力是什么对组织性能有什么影响 3. 答:组织应力又称相变应力:金属制品在加热和冷却时发生相变,由于新旧相之间存在着结构和比容差异,制品各部分又难以同时发生相变,或者各部分的相变产物有所不同,也会引起应力,这种因组织结构转变不均均而产生的应力称为组织应力。 热应力:金属制品在加热和冷却过程中,由于各部分加热速度或冷却速度不同造成制品各部分温度差异,从而热胀冷缩不均匀所引起的内应力。4.奥氏体化的形成及控制(形成过程、机理、及控制措施)其中包含的化学反应有哪些? 答:奥氏体:C溶于γ–Fe的八面体间隙形成间隙式固溶体

热处理工艺总结

1.退火 将钢件加热到Ac3+30~50度或Ac1+30~50度或Ac1以下的温度后,一般随炉温缓慢冷却。 目的:1.降低硬度,提高塑性,改善切削加工与压力加工性能 2.细化晶粒,改善力学性能,为下一步工序做准备 3.消除冷、热加工所产生的内应力。 应用要点:1.适用于合金结构钢、碳素工具钢、合金工具钢、高速钢的锻件、焊接件以及供应状态不合格的原材料 2.一般在毛坯状态进行退火。 2.正火 将钢件加热到Ac3以上30~50度,保温后以稍大于退火的冷却速度冷却。 目的:1.降低硬度,提高塑性,改善切削加工与压力加工性能 2.细化晶粒,改善力学性能,为下一步工序做准备 3.消除冷、热加工所产生的内应力。 应用要点:正火通常作为锻件、焊接件以及渗碳零件的预先热处理工序。对于性能要求不高的低碳的和中碳的碳素结构钢及低合金钢件,也可作为最后热处理。对于一般中、高合金钢,空冷可导致完全或局部淬火,因此不能作为最后热处理工序。 3.淬火 将钢件加热到相变温度Ac3或Ac1以上,保温一段时间,然后在水、硝盐、油、或空气中快速冷却。 目的:淬火一般是为了得到高硬度的马氏体组织,有时对某些高合金钢(如不锈钢、耐磨钢)淬火时,则是为了得到单一均匀的奥氏体组织,以提高耐磨性和耐蚀性。 应用要点:1.一般用于含碳量大于百分之零点三的碳钢和合金钢;2.淬火能充分发挥钢的强度和耐磨性潜力,但同时会造成很大的内应力,降低钢的塑性和冲击韧度,故要进行回

火以得到较好的综合力学性能。 4.回火 将淬火后的钢件重新加热到Ac1以下某一温度,经保温后,于空气或油、热水、水中冷却。 目的:1.降低或消除淬火后的内应力,减少工件的变形和开裂;2.调整硬度,提高塑性和 韧性,获得工作所要求的力学性能;3.稳定工件尺寸。 应用要点:1.保持钢在淬火后的高硬度和耐磨性时用低温回火;在保持一定韧度的条件下 提高钢的弹性和屈服强度时用中温回火;以保持高的冲击韧度和塑性为主,又有足够的强 度时用高温回火;2.一般钢尽量避免在230~280度、不锈钢在400~450度之间回火,因为这时会产生一次回火脆性。 5.调质 淬火后高温回火称调质,即将钢件加热到比淬火时高10~20度的温度,保温后进行淬火,然后在400~720度的温度下进行回火。 目的:1.改善切削加工性能,提高加工表面光洁程度;2.减小淬火时的变形和开裂;3.获得良好的综合力学性能。 应用要点:1.适用于淬透性较高的合金结构钢、合金工具钢和高速钢;2. 不仅可以作为各种较为重要结构的最后热处理,而且还可以作为某些紧密零件,如丝杠等的预先热处理, 以减小变形。 6.时效 将钢件加热到80~200度,保温5~20小时或更长时间,然后随炉取出在空气中冷却。 目的:1. 稳定钢件淬火后的组织,减小存放或使用期间的变形;2.减轻淬火以及磨削加工 后的内应力,稳定形状和尺寸。 应用要点:1. 适用于经淬火后的各钢种;2.常用于要求形状不再发生变化的紧密工件,如 紧密丝杠、测量工具、床身机箱等。 7.冷处理

常用材料热处理工艺完整版

常用材料热处理工艺 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

常用材料热处理工艺二、ASTM A182 F22 1.退火(A)≥90±10℃炉冷; 2.回火(T)≥675℃ 3.HB≤170(一级)156~207(三级)三、ASTM A694 F60,F52 1.N+T或Q+T N(Q):920±10℃保温,空冷(水淬) T:≥540±10℃?保温,空冷 2.HB实测 四、16MnJB4726-2000 或N+T N:930±10℃保温,空冷 T:≥600±10℃保温空冷 2.HB:121~178 五、16MnDJB4727-2000 1.Q+T Q:930±10℃?保温,水冷 T:≥600±10℃保温空冷 2.HB实测 六、A105ASTM A105-2002

1.正火(N):900±10℃保温,空冷 2:HB:137~187 七、20# JB4726-2000 1.正火(N):910±10℃保温,空冷 2.HB:106~159 八、LF2ASTM A350 LF2 1.淬火+回火(Q+T) Q:870~940℃?保温,水冷 T:540~665℃?保温,空冷 2.HB≤197 九、LF3ASTM A350-2002b 1.淬火+回火(Q+T) Q:870~940℃?保温,水冷 T:540~665℃?保温,空冷 2.HB≤197 十、15CrMo JB4726-2000 1.淬火+回火(Q+T) Q:900±10℃?保温,水冷 T:≥620℃?保温,空冷 2.HB:118~180 十一、1Cr5Mo JB4726-2000 1.淬火+回火:

热处理实习报告总结

热处理实习报告总结 ——热处理 上星期在铸造车间最后一道大工序热处理上实习完了,作为铸造的最后一道工序,热处理对轮毂的性能及后面的加工都起着很关键的作用。经过热处理可以提高轮毂毛坯的力学强度及性能,使后面的机加和涂装能游刃有余的完成。 热处理工作区在整个铸造车间占了一大半的地,主要是因为这个工序比较复杂,由固溶、淬火和时效组成,有的轮子还需要特殊的抛丸。固溶区就有八个区,占了近二十米,而时效有五个区也有十多米,所以整个工序占用的场地非常大,而在我实习的时候看到还准备新加一条热处理线。占用场地大这是其一,这道工序消耗的时间也特别多,按照规定,固溶需要6±小时,而人工时效也需要±小时,一个轮毂从投料开始到包装出来最多也只需要2天时间,由此可见其特殊性啊。 呆了几天下来把自己所看到的和所学到的说一下: 热处理过程中有三个步骤:固溶、淬火和时效。 固溶为第一个工序,把刚预钻孔完的轮毂放上料框,送进回溶入炉第一区开始固溶。固溶分为八个区,第一区为升温区,温度规定控制在420~540度,实际中,由于经常开门进料,所以温度有时会低到420度,但一般都控制在440~480度,很少上500度;第二区到第七区为保温区,温度控制在

535±5度,实际温度也是在535左右;第八区为出料区,温度控制为520~545度,实际温度为535度左右。每框轮毂固溶的规定时间为6±小时,频率为~,实际固溶时间为6小时。固溶的对铝合金轮毂的作用是:把铝合金中的强化相溶入α铝中,使其内部发生反应。通常固溶区为半小时进一框,所以出框也是半小时出一次。 固溶区出框后,马上便要进行淬火处理,就是把刚固溶处于高温的轮毂浸入水中,改变其力学性能。淬火的目的是使过冷奥氏体进行马氏体或贝氏体转变,得到马氏体或贝氏体组织,然后配合以不同温度的回火,以大幅提高钢的强度、硬度、耐磨性、疲劳强度以及韧性等,从而满足各种机械零件和工具的不同使用要求。也可以通过淬火满足某些特种钢材的的铁磁性、耐蚀性等特殊的物理、化学性能。淬火有严格有时间限制,从炉门上升启动至料杠完全浸入水中不大于30S,如果大于30S则要将此框轮毂重新固溶。淬火浸在水中时间要大于等于4分钟。规定的淬火水温为55~85度,实际水温为65~75度。 淬火时间在保证达到4分钟后可以把轮毂吊起,不是马上进入时效工序,而是要进行效圆,因为轮子从低压出来到淬火结束这些过程中,轮子可能变形,特别是在固溶中,由于高温让其内部反应,外形有可能变形,如果不经过效圆就直接进入时效,时效完成后铝合金硬度加强,不容易再效圆,

《金属热处理原理与工艺》课程设计

2.1、什么是热处理 所谓钢的热处理,就是对于固态范围内的钢,给以不同的加热、保温和冷却,以改变它的性能的一种工艺。钢本身是一种铁炭合金,在固态范围内,随着加温和冷却速度的变化,不同含炭量的钢,其金相组织发生不同的变化。不同金相组织的钢具有不同的性能。因此利用不同的加热温度和冷却速度来控制和改变钢的组织结构,便可得到不同性能的钢。例如,含炭量百分之0.8的钢称为共析钢,在723摄氏度以上十时为奥氏体,如果将它以缓慢的速度冷却下来,它便转变成为珠光体。但如果用很快的速度把它冷却下来,则奥氏体转变成为马氏体。马氏体和珠光体在组织上决然不同,它们的性能差别悬殊,如马氏体具有比珠光体高的多的硬度和耐磨性。因此,钢的热处理在钢的使用和加工中,占有十分重要的地位。 2.2、热处理的作用 机床、汽车、摩托车、火车、矿山、石油、化工、航空、航天等用的大量零部件需要通过热处理工艺改善其性能。拒初步统计,在机床制造中,约60%~70%的零件要经过热处理,在汽车、拖拉机制造中,需要热处理的零件多达70%~80%,而工模具及滚动轴承,则要100%进行热处理。总之,凡重要的零件都必须进行适当的热处理才能使用。 材料的热处理通常指的是将材料加热到相变温度以上发生相变,再施以冷却再发生相变的工艺过程。通过这个相变与再相变,材料的内部组织发生了变化,因而性能变化。例如碳素工具钢T8在市面上购回的经球化退火的材料其硬度仅为20HRC,作为工具需经淬火并低温回火使硬度提高到60~63HRC,这是因为内部组织由淬火之前的粒状珠光体转变为淬火加低温回火后的回火马氏体。同一种材料热处理工艺不一样其性能差别很大。热处理工艺(或制度)选择要根据材料的成份,材料内部组织的变化依赖于材料热处理及其它热加工工艺,材料性能的变化又取决于材料的内部组织变化,材料成份-加工工艺-组织结构-材料性能这四者相互依成的关系贯穿在材料加工的全过程之中。

热处理实习心得与体会

热处理实习心得与体会 篇一:热处理实习总结 转眼已然大四,在这即将毕业的时刻,我们迎来了大四下学期也是整个大学最后一次的实习。在李安铭老师的带领下,我们参观了校金属热处理实验室并进行了相关的实验研究,着时令我们长了不少见识,也让我们更好地把书本上所学的知识与实际生产好好的融合了,也让我更加的下定决心学好理论知识。马上即将踏上工作的岗位,我也希望借这次的金属热处理实习和将后来的毕业设计进行大练兵,这样才使我在将后来的工作当中不至于像无头苍蝇一样手忙脚乱。以下是本次实习的具体安排: 一、实习的目的与任务 目的:为了加深对课堂所学理论的理解和掌握,达到根据零件的工作条件正确选择材料及正确制定实施热处理工艺的目的,特安排了本次综合实践。《金属材料与热处理》是在若干基础科学的生产实践基础上发展起来的一门科学,但它的一些主要理论是通过实践并总结了实践的规律而建立起来的。实践不仅通过自己的实践来验证课堂的理论知识,加深理解、理论联系实际,而且也可以培养观察问题、发现问题、分析问题和解决问题的能力。钢的热处理是将固态钢材采用适当的方式进行加热、保温和冷却以获得所需组织结构与性能的工艺。热处理不仅可用于强化钢材,提高机械零件的使用性能,而且还可以用

于改善钢材的工艺性能。其共同点是:只改变内部组织结构,不改变表面形状与尺寸。热处理的目的是改变钢的内部组织结构,以改善钢的性能,通过适当的热处理可以显著提高钢的机械性能,延长机器零件的使用寿命。热处理工艺不但可以强化金属材料、充分挖掘材料性能潜力、降低结构重量、节省和能源,而且能够提高机械产品质量、大幅度延长机器零件的使用寿命。热处理工艺分类:(根据热处理的目的、要求和工艺方法的不同分类如下) 1、整体热处理:包括退火、正火、淬火、回火和调质; 2、表面热处理:包括表面淬火、物理气相沉积(PVd)和化学气相沉积(cVd)等; 3、化学热处理:渗碳、渗氮、碳氮共渗等。 热处理的三阶段:加热、保温、冷却 任务1.根据零件的工作条件选择零件材料及制定正确的热处理工艺; 2.选择毛坯的种类、选择成型的方法、绘制出毛坯图 3.制定工艺方案及拟定工艺路线; 4.制定正确的热处理工艺,掌握主要热处理工种(如:正火、淬火、回火)的基本操作技能,正确地使用热处理工种的主要设备,独立地完成简单零件的热处理工作; 5.通过热处理的质量分析,能初步地运用在《工程材料与热处理》中已学到的基本知识去分析和解决生产中的实际问题; 6.能正确使用洛氏硬度计和小型金相显微镜,了解和掌握金属材料金相组织分析的

常用材料热处理工艺

常用材料热处理工艺二、ASTM A182 F22 1.退火(A)≥90±10℃炉冷; 2.回火(T)≥675℃ 3.HB≤170(一级)156~207(三级) 三、ASTM A694 F60,F52 1.N+T或Q+T N(Q):920±10℃保温,空冷(水淬) T:≥540±10℃保温,空冷 2.HB实测 四、16MnJB4726-2000 或N+T N:930±10℃保温,空冷 T:≥600±10℃保温空冷 2.HB:121~178 五、16MnDJB4727-2000 1.Q+T Q:930±10℃保温,水冷 T:≥600±10℃保温空冷 2.HB实测 六、A105ASTM A105-2002 1.正火(N):900±10℃保温,空冷

2:HB:137~187 七、20# JB4726-2000 1.正火(N):910±10℃保温,空冷 2.HB:106~159 八、LF2ASTM A350 LF2 1.淬火+回火(Q+T) Q:870~940℃保温,水冷 T:540~665℃保温,空冷 2.HB≤197 九、LF3ASTM A350-2002b 1.淬火+回火(Q+T) Q:870~940℃保温,水冷 T:540~665℃保温,空冷 2.HB≤197 十、15CrMo JB4726-2000 1.淬火+回火(Q+T) Q:900±10℃保温,水冷 T:≥620℃保温,空冷 2.HB:118~180 十一、1Cr5Mo JB4726-2000 1.淬火+回火: Q:880~900℃,保温,水冷

T:≥680℃保温,空冷 2.HB:174~229 十二、不锈钢:304、304L、321 ASTM A182 1.固溶处理(S):1040±10℃保温,水冷 2.HB:实测 十三、0Cr18Ni9JB4728-2000 1.固溶处理(S):1010~1150℃保温,水冷 2.HB:131~187

热处理总结

第九章 热处理三要素:加热温度+ 保温时间+ 冷却方式 合金元素的总结 对奥氏体晶粒影响方面,1、能形成碳化物,减少钢中和奥氏体中碳浓度的合金元素,Cr、Mo、W、V、Ti、Zr、Nb。2、Mn、N、P、C会粗化晶粒(另外,P使钢冷脆,S使钢热脆,因此,钢中常常以N、P、S的多少衡量是否为优质钢)。3、其他元素则基本上对晶粒无影响。4、Al、Si、Cu、Co、Ni通常溶于铁素体或奥氏体中,起固溶强化作用,有的可能形成非金属夹杂物和金属间化合物,如Al2O3、AlN、SiO2、Ni3Al。5、除了加1中合金元素细化奥氏体晶粒外,工艺上方法(也是热处理获得细晶粒组织的原理):允许的范围内奥氏体化温度尽量低+快速加热(增加过热度,使形核率>长大速度来获得细晶粒)+短时保温+快速冷却(多次快速加热快速冷却效果更好)的方法来获得非常细小的奥氏体晶粒。6、增加回火脆性的元素:Cr、Mn、Ni、B。7、降低回火脆性的元素:W、Mo。 冷却方式总结 冷却方式总的分为等温和连续两种方式。 等温冷却(TTT曲线)产物:粗珠光体(700~650℃保温),索氏体(650~600℃保温),托氏体(600~550℃保温); 上贝氏体(550~350℃保温),下贝氏体(350~M s共析钢(0.77%)大概230℃左右保温,M s点和含碳量成反比:0.1%-500℃,0.6%-280℃,0.8%-230℃,1.0%-200℃); 板条马氏体(M s~200℃保温),片状马氏体(200~M f℃保温),一般我们想尽可能多的获得板条状M s,方法是减少奥氏体中的含碳量。因此,中低碳钢易形成板条状M s,高碳钢易形成片状M s。 对中碳钢,由于含有板条和片状M s的混合物,可采取均匀奥氏体成分,消除富碳区的方法(高温加热使奥氏体成分均匀后—快速淬火冷却),来得到几乎全部的板条M s。 对高碳钢,由于奥氏体中碳含量很高,因此只能采取尽可能使碳少溶解在奥

铝合金热处理原理及工艺

铝合金热处理原理及工艺 3.1铝合金热处理原理 铝合金铸件得热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 3.1.1铝合金热处理特点 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。 3.1.2铝合金时效强化原理 铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。 硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度-温度关系,可用铝铜系的Al-4Cu合金说明合金时效的组成和结构的变化。图3-1铝铜系富铝部分的二元相图,在548℃进行共晶转变L→α+θ(Al2Cu)。铜在α相中的极限溶解度5.65%(548℃),随着温度的下降,固溶度急剧减小,室温下约为0.05%。 在时效热处理过程中,该合金组织有以下几个变化过程: 3.1.2.1 形成溶质原子偏聚区-G·P(Ⅰ)区 在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G·P(Ⅰ)区。G·P(Ⅰ)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。 3.1.2.2 G·P区有序化-形成G·P(Ⅱ)区 随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G·P(Ⅱ)区。它与基体α仍保持共格关系,但尺寸较G·P(Ⅰ)区大。它可视为中间过渡相,常用θ”表示。它比G·P(Ⅰ)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。 3.1.2.3形成过渡相θ′ 随着时效过程的进一步发展,铜原子在G·P (Ⅱ)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基体的共格畸变减弱,对位错运动的阻碍作用亦减小,表现在合金性能上硬度开始下降。由此可见,共格畸变的存在是造成合金时效强化的重要因素。 3.1.2.4 形成稳定的θ相 过渡相从铝基固溶体中完全脱溶,形成与基体有明显界面的独立的稳定相Al2Cu,称为θ相此时θ相与基体的共格关系完全破坏,并有自己独立的晶格,其畸变也随之消失,并随时效温度的提高或时间的延长,θ相的质点聚集长大,合金的强度、硬度进一步下降,合金就软化并称为“过时效”。θ相聚集长大而变得粗大。 铝-铜二元合金的时效原理及其一般规律对于其他工业铝合金也适用。但合金的种类不同,形成的G·P区、过渡相以及最后析出的稳定性各不相同,时效强化效果也不一样。几种常见铝合金系的时效过程及其析出的稳定相列于表3-1。从表中可以看到,不同合金系时效过程亦不完全都经历了上述四个阶段,有的合金不经过G·P(Ⅱ)区,直接形成过渡相。就是同一合金因时效的温度和时

金属热处理工艺学课后习题答案及资料

1.热处理工艺:通过加热,保温和冷却的方法使金属和合金内部组织结构发生变化,以获得工件使用性能所要求的组织结构,这种技术称为热处理工艺。 2.热处理工艺的分类:(1)普通热处理(退火、正火、回火、淬火)(2)化学热处理(3)表面热处理(3)复合热处理 3.由炉内热源把热量传给工件表面的过程,可以借辐射,对流,传导等方式实现,工件表面获得热量以后向内部的传递过程,则靠热传导方式。 4.影响热处理工件加热的因素:(1)加热方式的影响,加热速度按随炉加热、预热加热、到温入炉加热、高温入炉加热的方向依次增大;(2)加热介质及工件放置方式的影响:①加热介质的影响;②工件在炉内排布方式的影响直接影响热量传递的通道;③工件本身的影响:工件的几何形状、表面积与体积之比以及工件材料的物理性质等直接影响工件内部的热量传递及温度场。 5.金属和合金在不同介质中加热时常见的化学反应有氧化,脱碳;物理作用有脱气,合金元素的蒸发等。 6.脱碳:钢在加热时不仅表面发生氧化,形成氧化铁,而且钢中的碳也会和气氛作用,使钢的表面失去一部分碳,含碳量降低,这种现象称为脱碳钢脱碳的过程和脱碳层的组织特点: ①钢件表面的碳与炉气发生化学反应(脱碳反应),形成含碳气体逸出表面, 使表面碳浓度降低②由于表面碳浓度的降低,工件表面与内部发生浓度差,从而发生内部的碳向表面扩散的过程。 半脱碳层组织特点;自表面到中心组织依次为珠光体加铁素体逐渐过渡到珠光体,再至相当于该钢件未脱碳时的退火组织。(F+P—P+C—退火组织) 全脱碳层组织特点:表面为单一的铁素体区,向里为铁素体加珠光体逐渐过渡到相当于钢原始含碳量缓冷组织 在强氧化性气体中加热时,表面脱碳与表面氧化往往同时发生。在一般情况下,表面脱碳现象比氧化现象更易发生,特别是含碳量高的钢。 7.碳势:即纯铁在一定温度下于加热炉气中加热时达到既不增碳也不脱碳并与炉气保持平衡时表面的含碳量。 8.退火:将组织偏离平衡状态的金属或合金加热到适当的温度,保持一定时间,然后缓慢冷却以达到接近平衡状态组织的热处理工艺称为退火。退火的目的在于均匀化学成分,改善机械性能及工艺性能,消除或减少内应力,并为零件最终热处理准备合适的内部组织。 9.钢件退火工艺按加热温度分类:(1)在临界温度以上的退火,又称相变重结晶退火,包括完全退火,不完全退火。扩散退火和球化退火。(2)在临界温度以下的退火,包括软化退火,再结晶退火及去应力退火。按冷却方式可分为连续冷却退火及等温退火。 10.正火:是将钢材或钢件加热到Ac3(或Accm)以上适当温度,保温适当时间后在空气中冷却,得到珠光体类组织的热处理工艺。目的是获得一定的硬度,细化晶粒,并获得比较均匀的组织和性能。 11.扩散退火: 将金属铸锭,铸件或锻坯,在略低于固相线的温度下长期加热,消除或减少化学成分偏析及显微组织(枝晶)的不均匀性,以达到均匀化目的的热处理工艺称为扩散退火,又称均匀化退火。 12.完全退火:将钢件或钢材加热到Ac3点以上,使之完全奥氏体化,然后缓慢冷却,获得接近于平衡组织的热处理工艺称为完全退火。

钢的热处理总结

1、热处理 定义:把固态金属材料通过一定的加热,保温和冷却以改变其组织和性能的一种工艺。 目的及意义:金属材料改变性能的方法,改变使用性能和工艺性能,充分利用材料的潜能,控制产品质量,节省资源和材料,缩短生产周期、降低成本 2、固态相变 定义:成分、温度、压力等因素改变时,固态物质内部发生的组织结构变化。 研究意义:控制过程→获得预期的组织→得到预期性能。 三种基本变化:成分;结构;有序度 主要特点:相变阻力大,相界面结构关系,存在一定的位向关系和惯习面,非均匀、缺陷处形核,新相有特定形状`,原子迁移率低 驱动力:新/旧两相自由能差,晶体缺陷能 阻力:1,界面能 界面能产生原因:界面有一定厚度和体积;原子错排;结合键受破坏→能量高 三种界面类型:完全共格:界面原子完全匹配,除孪晶外,少见。半共格:界面能与位错密度、错配度有关,借助弹性畸变保持界面的匹配。非共格:界面能最大 2,应变能 产生原因:新/旧相比容不同(比容差应变能)。界面错配→新/旧相硬匹配(共格应变能) 共格界面应变能最大,非共格最小 比容差应变能与新相几何形状有关,球形应变能最大,针状居中,片状最小 3、奥氏体 性能 ←力学性能:塑性好、强度低。 ←物理性能:顺磁性。比容小。热膨胀系数大。导热性能差。 ←化学性能:抗腐蚀;耐热。 形成条件:(1)Ac1、Ac3、Accm以上,有一定的过热度。(2),过热度大,容易形成(3),实际相变温度与加热速度有关,不是固定值,加热速度越快,Ac1、Ac3、Accm越高。 奥氏体形成 (1)形核 ←球化体:优先在晶界的F/碳化物界面上形成,其次在晶内的F/碳化物界面上形成 ←片状P:优先在P团的界面上形成,其次在F/碳化物界面上形成 ←相界形核原因 碳浓度起伏,如F中高浓度区有利于向A转变 结构起伏→晶体结构改组容易 能量起伏→杂质、晶体缺陷多→形核→降低界面能、应变能 (2)长大 ←球化体:A包围碳化物,使碳化物与F分开,A形成F/A和C/A两个界面,双向推进长大。 ←片状P:垂直片方向(在A、F中存在碳浓度差,引起碳在以上两相中的扩散。为维持相界碳浓度的平衡,原始组织F和碳化物相就会不断溶解)。示意图 平行片方向(体扩散+界面扩散) 界面迁移路程短,是主要长大方式→平行方向长大速度快 (3)残余碳化物的溶解(4)奥氏体成分均匀化 影响A形成速度的因素 (1),加热温度:T↑→A化速度↑。(2),加热速度:V↑→转变温度↑,转变时间↓。 (3),含碳量

相关文档
相关文档 最新文档