文档视界 最新最全的文档下载
当前位置:文档视界 › 双馈风力发电机

双馈风力发电机

双馈风力发电机
双馈风力发电机

使用后端到后端脉宽调制转换器的双馈异步发电机和其在变速风力发电中的应用

357618766

摘要:本文描述了双馈异步发电机的工程和

设计(DFIG), 使用后端到后端PWM电压源转

换器在转子电路。对于供应端PWM转换器有

一个矢量控制方案能够独立的控制从电源端

吸收有功和无功功率,同时保证正弦电源电

流。转子连接转换器的矢量控制提供了宽转

速范围的操作;矢量方案嵌入在控制回路

中,使最佳转速可以伴随从风中获得最大的

能量产出。一个试验装置,这是一个7.5千

瓦的变速风力发电系统,详细阐述给出了实

验结果,说明了系统的优良性能特点。本文

考虑到一个网连系统;进一步的文章将描述

一个独立的系统。

一、简介

双馈异步机器的使用交流到交流的转子电路

(谢尔比斯驱动器)转换器在高功率并且涉

及有一定速度限制范围的应用中一直作为标

准驱动器选件。电源转换器只需要处理转子

额定功率。对于独立控制转矩和转子励磁电

流,矢量控制技术是众所周知的方法。例

如,一个矢量控制方案能够用于分别控制来

源于供应端的有功和无功功率。风力发电被

认为是一种自然的谢尔比斯双馈系统的应

用,因为可以考虑限制速度范围(从切入到

额定风速)。

大多数谢尔比斯系统报告中不是采用一个电流反馈(自然整流)直流链转换器[3-5]就是采用交交变频器[6-91]在转子回路中。史密斯等人将额定转速的设定,变速箱比率。机器和转换器的评级描述为使用双反馈异步电机的变速风力发电。Cardici ,Ermis和Uctug等人已经提出了旨在最大限度的增加DFIG的总电力输出的方案。一个电流反馈DC链路转换器的使用也有诸多劣势:直流链路器十分昂贵,同时为了能工作在同步速度(位于可操作速度范围内)下需要额外的换向电路,这导致在低速情况下性能较差。此外,这种转换器从供给端引入了矩形电流波。在同步速度问题上也许可以通过使用交交变频器解决,同时拥有6脉冲交交变频器的矢量控制谢尔比斯方案已经被Leonhard 和Walczyna描述出来。Yamamoto和Motoyoshi已经提出了源于供给端电流谐波的详细分析,这在此类驱动器上任然是一个问题。Machmoum等人提出了一个更简单的3脉冲交交变频器方案,而Holmes和Elsonbaty描述了一个类似的转换器,制造一个分离绕组双反馈电机,在提高了50%的转速范围同时增加了电机的复杂程度和费用。这两种方案都有一个缺点就是需要一台变压器以形成中性。此外,自然地换向DC链路和交交变频器方案在很多情况下需要一台变压器实现电压匹配。

自然转换DC链路和交交变频器方案的缺点可以通过使用两个PWM电压反馈电流调节逆变器,它们连接在后端到后端的转子电路中。这种谢尔比斯方案,矢量控制两种转换器的特点如下:

1、工作在低于,高于和处于同步转速受到的

转速范围限制只取决于DFIG转子电压等级。

2、工作在同步转速,直流电流注入转子的同

时逆变器工作在斩波模式。

3、低失真的定子,转子和电源电流。

4、独立控制发电机转矩和转子励磁。

5、在供应转换器中控制电压和电流之间的位

移因素,并因此控制系统的功率因素。

令人惊奇的是,如此明显的优势,使用此类安排的谢尔比斯方案在文献中却很少被注意。这种方案被Bogalecka,Tang和Xu报道出,他们正在对此进行模拟研究,但是作者没有对系统的性能做出实验性的证实。在本文中,对实验性的后端到后端PWM矢量谢尔比斯方案的全面性的工程研究被展示出来,用实验结果证实系统的灵活性能。由于此研究始于新风力发电机方案的一部分,因此文章针对风力发电描述了其应用,并且是在并网条件下。独立的执行情况超出了本文的范围,将会在以后的出版物中阐述。

二、实验系统

整体系统的原理图如Fig.1所示,DFIG使用一个7.5kW,415V,50Hz的6极电机,其参数见附录。两个电压反馈PWM转化器被嵌在转子回路中,供应端的PWM转换器连接到定子或供给通过三个单相电抗器。系统电压传输特性

包括三相后端到后端PWM转换器,近似如下

其中n是DFIG定转子的匝数比(此处为1.7)。s 是位移,m1,m2分别为定子端和转子端转换器的PWM调节深度。Eqn. 1决定了发电机的速度范围。定子端转化器的调制深度标幺为0.75(如下文讨论),转子端转换器最大的调制深度大约为0.76。6相电机的理论速度范围为0-2000rpm。实际上由于全速范围从0到2000需要PWM转化器和电机同级,因此应用中速度范围较小,这破换了谢尔比斯方案的优势。对于风力发电,最小风速有一个可以接受的速度限制范围,低于此范围几乎没有能量可以利用。发电机转速对应于额定风速能够通过变速箱的选择设定在任意一点。当然,为了最好的实现谢尔比斯方案,这一点应远高于同步速度才能使能量引出自电机的转子和定子。但是最终,随着偏移量的增长,由于电能通过DC链路和转子铁磁和摩擦损耗的增加,系统的效率开始下降。对于此项研究中的电机和转化器,最高效率的速度通过实验确定出为1500rpm左右,因此被选作为额定风速。涡轮变速箱的安置通过晶闸管变流器直流电机在实验室模拟出,模拟一个7.5kW涡轮,它分别具有4m/s 和10m/s的切入和额定风速,对应于电机500rpm和1500rpm。

这些转化器使用标准的7.5kW商用双极晶体管PWM逆变器,它拥有580V额定DC链路电压和最大1kHz开关频率。在这种能量级别,使用IGBT转换器允许更高的开关频率同时可以减少一些控制回路的设计。但是,在原型中的低开关频率证实了已使用的技术可以通过使用GTO设备达到更高的能量级别。为了保护逆变器能量器件,Vs(因此包括Vr)被限制在250V线路中通过一个在供应端的三相调压器,如Fig.1.所示。DC链路电压规定在550V,此时供应端的转换器工作在0.75的标幺调制深度,使得在瞬间有足够的空间避免过调制。使用1200V的器件允许DC链路电压超过700V,因此不需要使用调压器同时电机也能工作在满级状态。另一个实际问题是在转子感应电压中存在电机绕组/槽谐波,在转速超过1300rpm 时会引起电机转子电流振荡。这个问题通过加入一个额外的电感与转子串联,如Fig.1所示。在低速下,可以得到可接受的转子电流波形,因为不需要的谐波幅值小同时它们在电流控制电路中。电感的存在意味着转子端转换器调制深度会稍高于所给的标准值1。与供应端转换器相连的电感为12mH/phase,这些因素因转换谐波为3A p-p(约15%的额定峰值电流)而限制了高频波形。由于高频纹波比较小,电感器可制作中,采用标准50赫兹层压材料避免不必要的功率损耗。

发电机由一台转矩控制的15kW直流电机驱动,此电机模拟风力涡轮机。微处理器接收来自PC的风速度数据,并计算从瞬时涡轮扭矩从已给的涡轮叶片特征(见附件)。这种扭矩形成的扭力需要直流驱动器做补偿。涡轮发电机的速度有一个最佳的跟踪算法决定,算法影响到从风中的最大能量获取,这将在第五节讨论。

其它从PC输入的系统设置点包括DC链路的电压,源自供应端PWM转换器的无功电流(间接控制系统功率因数),标幺为0的转子励磁电流(见第四节)。实验中用到的微型处理器是T800浮点微处理器,它的并行处理能力允许计算任务被分成并列单元。一个微处理器计算矢量控制和供应端PWM转换器的PWM 生成,另一个负责DFIG的矢量控制和最佳的速度跟踪算法,第三个实现转子端转换器的PWM(因为第二个已经有太多工作),第四个既负责涡轮电机的转矩计算(模拟涡轮叶片的特性)又作为与PC连接的监控缓冲区。后者提供用户界面,运行期间所有的系统变量都会显示出来,设定点和控制参数同样可以实现在线改变。系统同步,内部运算器通信,模数转换和PWM的详情可以在[12]中找到。对于一个实际的系统,一个高性能的DSP就可以满足控制任务的要求,比起运算器更加经济;但是,后者在系统升级中有着明显的优势。转换器所使用的PWM的开关频率被设定在1kHz。所有电压电流的采样阶段和控制循环都是500us,除非有特殊规定。

三、供应端的PWM转换器的控制

供应端PWM转换器的目的是保持DC链路电压恒定,无论转子动力的规模和方向。矢量控制的方法通过一个沿定子(或供应端)电压矢量方向的参考系,实现在供应端和供应端转换器之间的有功与无功功率的独立控制。PWM转换器使用电流调节,用直轴电流调节DC链路电压,交轴电流分量调节无功功率。

使用一个标准的非对称采样PWM方法。Fig.2供应端转换器的原理。传过电感器的电压剩余

L和R分别是线电感和电阻,使用附录进行转换。Eqn.2转换成一个角速度为We的dq参考系。

通过附录中转换使用的比例因素,有功与无功功率为:

有源电源角位置的计算

其中va和vb是a,b电子电压分量沿定子电压位置校准参考系中d轴由eqn.5给出。Vq为0,因为电源电压的振幅值常熟,一次,Vd也是常量。有功与无功功率按一定比例化为id与iq。忽略由开关形成的谐波和电感电阻损失,得到:

由6中可以看出DC链路电压能过通过id控制。因此采用电流控制回路控制id和iq,id需要由DC链路的电压错误通过一个标准的PI控制器得出。Iq决定了供应端电感器的位移因素。如Fig.3所示。电流控制回路的F如下:

在式8中,得出的是供应端转换器的参考值,括号中考虑到了电压补偿。

3.1 控制回路设计

电路控制器直接由式7得出,也可以写成:

T是采样时间(0.5ms)。转换器会在两个采样阶段加入一个纯滞后延迟,原理图如Fig.4所示:

对于电感器,R=0.162,L=12mH,设计标准闭路自然频率125Hz,e=0.8能过通过PI控制器获得:

DC链路电压控制器的设计在连续域中进行,假设内部id是理想的。

Ior表示干扰,采用经典设计。插入值E=550V ml=0.75,C=2.4mF,T=5ms,e=0.7。这比循环采样频率慢50倍,证实了循环设计。

3.2 实验结果

一些实验研究供应端转换器在瞬时与稳定情况下的性能已经有了结果,包括有滞后,超前和统一位移的双向潮流。DC链路电压规定在

550V,转化器有一个250V电源。

Fig.6显示了稳定状态,iq为0,给出了转换器工作在整流模式的统一位移,相当于次同步运行的发电机。反转运行模式的稳定性能相当于电机运行在超同步模式,在Fig.7中,iq 也被置为0,在这种情况下,相电压和相电流之间的相位移为180度。Fig.8显示了转换器的响应随着无功电流的改变,此时潮流由供应端到DC链路。这里的id 置为4.5A,iq在30ms内从-4A到+4A。Fig.9相电压和相电流,说明了在单相在一个循环里发生的40度到滞后40度的变化。这些波形显示了转换器向电网提供或者从接受无功的能力。

同样的表现在也在无功电流改变中显示出来,当有功功率流向电网时;转换器同样也能够工作在同一,滞后和超前功率因素条件下。电压控制回路的性能在4.2中给出。

4、感应电机控制

感应电机由同步旋转的dq轴系控制,d轴方向取定子磁通矢量方向。这样,可以获得在电磁转矩和转子励磁电流中的分离控制。转子端的PWM转换器提过驱动,同时控制需要定子和转子电流的测量,定子和转子电压的方向。

不需要知道转子感应电动势,因为通过自然整流转换器实现。

由于定子连接到电网,定子电阻影响很小,定子励磁电流ims可以看作常量。在定子磁通方向下,转矩和dq轴坐标系之间,电流与磁通之间的关系,可以写成:

其中θ是定子磁通矢量方向。式12中的积分通过数字带通滤波器解决,截止频率为0.5Hz 和1Hz用于消除直流偏移。从式11可知,转矩与iqr成正比,并能过由Vqr调节。转子励磁电流id通过Vdr调节。假设所有的无功功率都有定子提供,idr置为0。 Fig.10显示了电机控制的原理框图。参考q 轴转子电流能从外部速度控制回路或者施加在电机上的参考扭矩中获得。这两个选择被称为速度控制模式和扭矩控制模式。

对供应端转换器dq电流的控制的相似分析也能过被用来控制dq转子电流。由式11中的转子电压幅值可得:

Idr和iqr的错误由PI控制器处理,分别给出Vdr和Vqr。为了确保很好的跟踪这些电流,Vdr和Vqr中加入了补偿部分以获得参考电压4.1 控制回路的设计

电流控制设计的方案与供应端转换器电流控制器类似,有以下各种替换:

Ts=0.5ms

当电机工作在速度控制模式时需要速度控制器。速度控制器的设计在连续域中,类似供应端转换器的电压控制器,假设电流控制器比速度回路要快很多,为理想状态。Fig.5中的二阶系统有以下替换得到:

由转子方向的测量得出转子的速度,保证没转720脉冲。在0.1s的采样脉冲下可以获得0.833rpm转速,励磁电流可以由ims=Vs/ωL。Ts=0.1s,适当的参数由附录给出,标称0.05Hz 闭环自然频率,其中ε=0.9。尽管可以为速度控制器设计更快的速度,但是在实际中噪音考虑限制闭环回路的自然频率。速度的需求由机械转矩的观测中获得,从而有效的在有限的告诉编码器中估计轴加速度。

4.2 实验结果

实验结果反应在次同步和超同步工作下DFIG 的电流响应。在这些试验中,DIFG由速度受控DC电机驱动。Fig.11-13显示了在超同步工作下,在t=25ms是加入,t=250ms是移除的12A阶跃电流的响应,转子励磁电流保持0。Fig.12显示单相转子电流。Fig.13显示DC链路电动势E。这些暂态反映出定子转换器电压控制回路最坏状态,DC链路的功率从0到额定再到更强,如图所示,DC链路电压最大误差为25V,恢复发生在200ms内,符合控制回路的设计。

尽管DFIG的励磁电流由定子电压自然决定,但是id自由存在去控制励磁电流。Fig.14-16显示由间断性改变的7A的idr引起的响应(对应转子额定励磁电流)在t=50ms,次同步工作状态下,iqr保持在2A。

5、追踪变速风力发电机的最佳工作点

在一给定涡轮机的能量速度特性中,最优追踪提供从风力设备中最大的能量获取,通常表示为:

涡轮机叶片特性由特定的Cp-λ,β曲线决定。由此Tm-ω特性也许由风速的利用价值派生出。Fig 。18显示了特性,修正了β,为7.5kW 风力涡轮机在实验中的仿真。该曲线P 定义了最大的能量获取,追踪控制的目的是为了保持当风速变化时涡轮机在曲线上,曲线定义为:

其中ωr 是发电机端变速箱的轴速度。因为风速高于额定,涡轮机的能量获取必然会受到调

图15给出了转子三相电流,图16显示了定子电压和电流在同一个坐标轴内。因为相位移很明显,励磁电流开始由定子提供直到t=50ms ,此时相位为180度,显示电机所有产生的励磁电流来自转子。实际中,通常理想励磁电流全部由定子提供使得转子级联损失减到最少。PWM 方案的一个优点是在同步速度是工作状态稳定,这由图17可以看出。 距控制器和驱动电机到失速点的限制。由于风速低于额定,电机遵循式16。有两种方法获得所谓的电流模式控制和速度模式控制。

5.1 电流控制模式

这种模式也被称为标准追踪模式。由一个轴速度的测量,电气转矩可被施加在DFIG 根据式16在传输摩擦补偿滞后:

考虑到图18如果DFIG 工作在‘a ’风速从7m/s 增至8m/s (点‘b ’),过度的能量和转矩导致DFIG 加速,加速转矩区别于涡轮的机械转矩和已知的最优曲线转矩。最后电机将达到‘c ’,此时加速转矩为0。相似的情况在风速减小时也会发生。

5.2 速度控制模式

这是一个比较新颖的方法并且迄今没有得到很多的重视考虑到它需要机械转矩观测。作者的研究团队表示虽然存在工程问题在观测设计时,但这种方法在实际中是可行的。并且可以获得追踪效果的显著提高比起之前提到电流控制方法。给出一个Tm 符号,随后DFIG 能过达到最优能量曲线通过:

Ωr 是速度控制器要求的速度。在这项研究中,机械转矩的观测通过使用已知的系统机械模式:

Ωr 是预测速度,Taux 是预测辅助变化转矩,估计速度ωl 机械转矩Tm 由下面得出

Ko1和ko2是定义动态观测的常量,这些增益由Kalman Filter 或者典型的观测设计派生出来。由附录1的参数可知ko1=0.98,ko2=5.9增益值给出了动态观测器的4rad/s 的自然频率

5.3 档调节

转矩观测的一个优势是它允许直接执行档调节作为超速保护的方法。系统瞬时功率的P=T ω

因此决定了速度需求根据:

其中,如果Pm>Pmax,能量获得减少因为DFIG降到了失速点(特殊风速的样本失速点标为‘d’)档调节常常来替代调距控制的超速保护方案。然而,档调节需要的不仅是有效的转矩估计,也有足够的电机过载能力来承受瞬间涡轮转矩。这反过来又影响到机器级数的选择。

5.4 实验结果

该系统工作在控制模式的瞬态特性用来计算瞬间风速在5m/s和9m/s之间,对应于最优的轴速度,750rpm到1350rpm。转子励磁电流idr=0。图19和20显示了电流控制模式的性能,同时图21和22显示了相对速度控制模式的性能。速度控制模式的动态速度性能在DFIG 转矩行为中有着明显的优越性,类似传统速度控制伺候驱动器;关于加速度,转矩减少到最小值0,因为DFIG没有允许电机。Iqr在减速下有最大限制。在电流控制模式下,电机的扭矩能力不会被削减,扭矩和转速都会稳定的跟随最优曲线。

研究系统的稳态特性,当电机工作在最优能量曲线下,在两种不同控制模式下。图23显示了追踪变化风速的最优速度;追踪的精确度依赖于在传动过程中能量损失的量化精确程度。由于传动摩擦和电机铁磁损耗,查表进行转矩补偿的误差在4%可以接受。图24显示了转子定子和供给端转换器的能量输出。超过同步速度,能量同时由定子和转子产生。当风速低于5m/s时没有能量产生(尽管电机驱动为最优能量曲线)因为机械和电气损耗高于从风中获得

的能量。图25显示了转子电流做轴速度时的作用。转子电流遵循二次型法则如同最优追踪预期一样。

实验结果显示了系统进入和离开已给的失速点的性能。最大能量达到自然功率Pmax=4kW,使得DFIG能够产生足够的减速扭矩。图26显示风速从7m/s(PmPmax)逐步增加的响应。7m/s的风速对应一个理想的轴速度1050rpm。转矩电流瞬间减小使得加速电机到达新的最优速度根据式18,但是当达到Pmax,电流增加时DFIG减速到失速点。根据这点,将电流至于适当点调节能量到标称最大值。图27显示DFIG从失速点离开的相反情况,此时瞬时风速由9m/s到7m/s。

6 、结论

对于工作在谢尔比斯方案下的DFIG,有工程和设计两方面,包括两个后端到后端的PWM转换器。已经阐述的结果运算控制系统,基本运行优势已经验证。包括在同步速度下的稳定运行,对电源的低失真电流反馈和控制系统功率因素的能力。矢量控制技术应用在了两类转换器上。电机的矢量控制嵌入了最优追踪控制器中,以在风能中获得最大的能量。已经阐述了两种追踪方案,实验实施,给出了速度控制模式和动态速度性能的优势。这个方案需要扭矩监测,也允许简单的失速调节应用来保护电机过载。

本文论述了当系统连接到电网后后端到后端PWM DFIG方案。此方案也可用作提供独立的交流负载,增强可控卸荷。以后的文章会以此为主题。

7 、致谢

作者要感谢Bush Industrial Control 公司的Mr R.Moulding,他对这项研究的启动有突出的贡献同时提供了一些设备。Mr R.Pena要感谢Magallanes大学,Chile大学和Chilean政府在研究期间的资金支持。

简述双馈异步发电机的基本工作原理及其功率流向

题目:简述双馈异步发电机的基本工作原理及其功率流向 一、双馈异步发电机及其工作原理 1、双馈异步发电机 双馈异步风力发电机是一种绕线式感应发电机,是变频风力发电机组的核心部分,也是风力发电机组国产化的关键部件之一。该发电机主要有电机本体和冷却系统两大部分组成。电机本体有定子、转子和轴承系统组成,冷却系统分为水冷、空空冷和空水冷三种结构。 双馈异步发电机的定子绕组直接与电网相连,转子绕组通过变频器与电网连接,转子绕组电源的频率、电压、幅值和相位按运行要求由变频器自动调节,机组可以在不同的转速下实现恒频发电,满足用电负载和并网的要求。由于采用了交流励磁,发电机和电力系统构成“柔性连接”,即可以根据电网电压、电流和发电机的转速来调节励磁电流,精确的调节发电机输出电压,使其能满足要求。 2、双馈异步发电机的工作原理 根据电机学理论,在转子三相对称绕组中通入三相对称的交流电,将在电机气隙间产生磁场,此旋转此磁场的转速与所通入的交流电的频率及电机的极对数p 有关。 p f n 2260= (1-1) 式(1-1)中,2n 为转子中通入频率为 2f 的三相对称交流励磁电流后所产生的旋转磁场相对于转子本身的旋转速度(r/min )。 从式(1-1)中可知,改变频率2f ,即可改变2n 。因此若设1n 为对应于电网频率50Hz (Hz f 502=)时发电机的同步转速,而n 为发电机转子本身的旋转速 度,只要转子旋转磁场的转速与转子本身的机械速度n 相加等于定子磁场的同步旋转速度1n ,即 12n n n =+ (1-2) 则定子绕组感应出的电动势的频率将始终维持为电网频率1f 不变。式(1-2)中,当2n 与n 旋转方向相同时,2n 取正值,当2n 与n 旋转方向相反时,2n 取负值。

变速恒频双馈风力发电机的主要优点和基本原理

变速恒频双馈风力发电机的原理和优点研究 变速恒频发电技术 变速恒频发电技术是一种新型风力发电技术,其主要优点在于风轮以变速运行。这一调速系统和变桨距调节技术环节结合起来,就构成了变速恒频风力发电系统。其调节方法是:起动时通过调节桨距控制发电机转速;并网后在额定风速以下,调节发电机的转矩使转速跟随风速变化,保持最佳叶尖速比以获得最大风能;在额定风速以上,采用失速与桨距双重调节、减少桨距调节的频繁动作,限制风力机获取的能量,保证发电机功率输出的稳定性和良好的动态特性,提高传动系统的柔性。上述方式目前被公认为最优化的调节方式,也是未来风电技术发展的主要方向。其主要优点是可大范围调节转速,使风能利用系数保持在最佳值;能吸收和存储阵风能量,减少阵风冲击对风力发电机产生的疲劳损坏、机械应力和转矩脉动,延长机组寿命,减小噪声;还可控制有功功率和无功功率,改善电能质量。尽管变速系统与恒速系统相比,风电转换装置中的电力电子部分比较复杂和昂贵,但成本在大型风力发电机组中所占比例并不大,因而大力发展变速恒频技术将是今后风力发电的必然趋势。 目前,采用变速恒频技术的风力发电机组,由于采用不同类型的发电机,并辅之相关的电力电子变流装置,配合发电机进行功率控制,就构成了形式多样的变速恒频风力发电系统。主要有以下几类:鼠笼型异步发电机变速恒频风力发电系统、绕线式异步发电机变速恒频风力发电系统、同步发电机变速恒频风力发电系统、双馈发电机变速恒频风力发电系统。其中,由双馈发电机构成的变速恒频控制方案是在转子电路实现的,采用双馈发电方式,突破了机电系统必须严格同步运行的传统观念,使原动机转速不受发电机输出频率限制,而发电机输出电压和电流的频率、幅值和相位也不受转子速度和瞬时位置的影响,变机电系统之间的刚性连接为柔性连接。基于诸多优点,由双馈发电机构成的变速恒频风力发电系统已经成为目前国际上风力发电方面的研究热点和必然的发展趋势。

双馈式风力发电机剖析

双馈式风力发电机 【摘要】随着地球能源的日益紧缺,环境污染的日益加重,风能作为可再生绿色能源越来越被人们重视,风力发电技术成为世界各国研究的重点。变速恒频发电技术是一种新型风力发电技术,其主要优点在于风轮以变速运行。通过调节发电机转子电流的大小、频率和相位,从而实现转速的调节。而其中双馈发电机构成的风力发电系统已经成为目前国际上风力发电的必然趋势。 关键词:风能风力发电变速恒频双馈式发电机 一、风力发电 风能作为一种清洁的可再生能源,越来越受到世界各国的重视。 风力发电:把风的动能转变成机械动能,再把机械能转化为电力动能,这就是风力发电。 风力发电在芬兰、丹麦等国家很流行;中国也在西部地区大力提倡。我国的风力资源极为丰富,绝大多数地区的平均风速都在每秒3米以上,特别是东北、西北、西南高原和沿海岛屿,平均风速更大;有的地方,一年三分之一以上的时间都是大风天。在这些地区,发展风力发电是很有前途的。风力发电正在世界上形成一股热潮,因为风力发电不需要使用燃料,也不会产生辐射或空气污染。 风力发电的原理:是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三米的微风速度(微风的程度),便可以开始发电。风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。 风力发电所需要的装置,称作风力发电机组。这种风力发电机组,大体上可分风轮(包括尾舵)、发电机和铁塔三部分。 风轮是把风的动能转变为机械能的重要部件,它由两只(或更多只)螺旋桨形的叶轮组成。当风吹向浆叶时,桨叶上产生气动力驱动风轮转动。桨叶的材料要求强度高、重量轻,目前多用玻璃钢或其它复合材料(如碳纤维)来制造。(现在还有一些垂直风轮,s型旋转叶片等,其作用也与常规螺旋桨型叶片相同)

双馈异步发电机原理

双馈异步发电机 双馈异步发电机是一种绕线式感应发电机,按转子类型分为有刷和无刷两种,无刷发电机即为鼠笼型发电机,由于鼠笼型风力发电机励磁控制困难,无法最大限度的利用风能,所以目前很少应用;有刷发电机即为双馈异步发电机,具备易于控制转矩和速度、能工作在恒频变速状态、电机可以超同步和超容量运行、驱动变流器的总额定功率可以降低到电机容量的1/4等方面的优点,是本文介绍的重点。 双馈异步发电机变速恒频风力发电机的核心部件。此类发电机主要由电机本体和冷却系统两大部分组成。电机本体由定子、转子和轴承系统组成,冷却系统分为水冷、空空冷和空水冷三种结构。 双馈异步发电机的定子绕组直接与电网相连,转子绕组通过变频器与电网连接,转子绕组电源的频率、电压、幅值和相位按运行要求由变频器自动调节,机组可以在不同的转速下实现恒频发电,满足用电负载和并网的要求。由于采用了交流励磁,发电机和电力系统构成了"柔性连接",即可以根据电网电压、电流和发电机的转速来调节励磁电流,精确的调节发电机输出电压,使其能满足要求。 异步电动机运行时,电磁转矩和转向相同,即转差率>0;异步发电机运行时,电磁转矩和转速方向相反,转差率<0,发电机的功率随该负转差率绝对值的增大而提高。当双馈发电

机的转子绕组通过三相低频电流时,在转子中会形成一个低速旋转磁场,这个磁场的旋转速度与转子的机械转速相叠加,使其等于定子的同步转速,从而在发电机定子绕组中感应出相应于同步转速的工频电压。当风速变化时,转速随之而变化,相应地改变转子电流的频率和旋转磁场的速度,就会使定子输出频率保持恒定。 双馈发电机通过控制转子励磁,使定子的输出频率保持在工频。当发电机的转速低于气隙旋转磁场的转速时,发电机处于亚同步速运行,为了保证发电机发出的频率与电网频率一致,需要变频器向发电机转子提供正相序励磁,给转子绕组输入一个其旋转磁场方向与转子机械方向相同的励磁电流,此时转子的制动转矩与转子的机械转向相反,转子的电流必须与转子的感应电动势反方向,转差率减小,定子向电网馈送电功率,而变频器向转子绕组输入功率。当发电机的转速高于气 五一长假除了旅游还能做什么?辅导补习美容养颜家庭家务加班须知

双馈发电机工作原理

第七章双馈风力发电机工作原理 我们通常所讲的双馈异步发电机实质上是一种绕线式转子电机,由于其定、转子都能向电网馈电,故简称双馈电机。双馈电机虽然属于异步机的范畴,但是由于其具有独立的励磁绕组,可以象同步电机一样施加励磁,调节功率因数,所以又称为交流励磁电机,也有称为异步化同步电机。 同步电机由于是直流励磁,其可调量只有一个电流的幅值,所以同步电机一般只能对无功功率进行调节。交流励磁电机的可调量有三个:一是可调节的励磁电流幅值;二是可改变励磁频率;三是可改变相位。这说明交流励磁电机比同步电机多了两个可调量。 通过改变励磁频率,可改变发电机的转速,达到调速的目的。这样,在负荷突变时,可通过快速控制励磁频率来改变电机转速,充分利用转子的动能,释放或吸收负荷,对电网扰动远比常规电机小。 改变转子励磁的相位时,由转子电流产生的转子磁场在气隙空间的位臵上有一个位移,这就改变了发电机电势与电网电压相量的相对位移,也就改变了电机的功率角。这说明电机的功率角也可以进行调节。所以交流励磁不仅可调节无功功率,还可以调节有功功率。 交流励磁电机之所以有这么多优点,是因为它采用的是可变的交流励磁电流。但是,实现可变交流励磁电流的控制是比较困难的,本章的主要内容讲述一种基于定子磁链定向的矢量控制策略,该控制策略可以实现机组的变速恒频发电而且可以实现有功无功的独立解耦控制,当前的主流双馈风力发电机组均是采用此种控制策略。 一、双馈电机的基本工作原理 设双馈电机的定转子绕组均为对称绕组,电机的极对数为p,根据旋转磁场理论,当定子对称三相绕组施以对称三相电压,有对称三相电流流过时,会在电机的 n称为同步转速,它与电网频率气隙中形成一个旋转的磁场,这个旋转磁场的转速 1

双馈风力发电机工作原理.docx

我们通常所讲的双馈异步发电机实质上是一种绕线式转子电机, 由于其定、转子都能向电网馈电,故简称双馈电机。双馈电机虽然属 于异步机的范畴,但是由于其有独立的励磁绕组,可以像同步电机一 样施加励磁,调节功率因数,所以又称为交流励磁电机,也有称为异步 化同步电机。 同步电机由于是直流励磁,其可调量只有一个电流的幅值,所以 同步电机一般只能对无功功率进行调节。交流励磁电机的可调量有三个:一是可调节励磁电流幅值;二是可改变励磁频率;三是可改变相位。这 说明交流励磁电机比同步电机多了两个可调量,通过改变励 磁频率,可改变电机的转速,达到调速的目的。这样,在负荷突变时,可通过快速控制励磁频率来改变电机转速,充分利用转子的动能,释 放或者吸收负荷,对电网扰动远比常规电机小。改变转子励磁的相位时,由转子电流产生的转子磁场在气隙空间的位置上有一个位移,这 就改变了发电机电势与电网电压相量的相对位置,也就改变了电机的 功率角。这说明电机的功率角也可以进行调节。所以交流励磁不仅 可以调节无功功率,也可以调节有功功率。 双馈电机的定转子绕组均为对称绕组,电机的极对数为p, 根据 旋转磁场理论,当定子对称三相绕组施以对称三相电压,有对称三相 电流流过时,会在电机的气隙中形成一个旋转的磁场,这个旋转磁场的 转速 n 1称为同步转速,它与电网频率 f 1及电机的极对数 p 的关系如下:

n160 f 1 P 同样在转子三相对称绕组上通入频率为 f 2的三相对称电流,所产生的旋转磁场相对于转子本身的旋转速度为: n260 f 2 P 由上式可知,改变频率 f 2,即可改变 n 2, 而且若改变通入转子三相电流的相序,还可以改变此转子旋转磁场的转向。因此,若设 n1为对应于电网频率为 50Hz 时双馈发电机的同步转速,而 n 为电机转子本身的旋转速度,则只要维持 n±n2=n1=常数,则双馈电机定子绕组 的感应电势,如同在同步发电机时一样,其频率将始终维持为 f 1不变。 n±n2=n1=常数 n1n S 双馈电机的转差率n1,则双馈电机转子三相绕组内通入的电流频率应为: Pn 2P( n1n) Pn1n1n f 2 6060n1sf 1 60 根据上式表明:在异步电机转子以变化的转速转动时,只要在转子的三相对称绕组中通入转差频率(即 f 1S)的电流,则在双馈电机的定子绕组中就能产生50Hz 的恒频电势。所以根据上述原理,只要控制好转子电流的频率就可以实现变速恒频发电了。 根据双馈电机转子转速的变化,双馈发电机可有以下三种运行状态:(1)亚同步运行状态。在此种状态下 n

双馈发电机工作原理

双馈发电机工作原理 双馈风力发电机是时下应用比较广泛的风机,它的特殊之处在于其定子绕组和转子绕组都直接或间接地与电网相连,定子侧绕组产生的工频交流电直接馈入电网,转子侧的功率通过整流逆变装置上网。与一般的异步发电机相比,双馈风机允许发电机转速在一定范围内波动,因为转子侧(相当于励磁绕组)中电流的大小和频率可以通过整流逆变装置进行调节,从而在转速发生变化的情况下,维持定子侧输出功率频率的恒定。 暂态建模资料 摘要 随着风力发电并网容量的快速增加,风电接入对电网运行性能的影响越加 明显。联网运行双馈感应风电机组的运行特性对电网的安全稳定运行有着重要 的影响。 本文对联网运行双馈感应风电机组的仿真建模、运行控制及模型的有效性 进行了研究分析,主要包括以下内容: 分析了两相同步旋转坐标系下双馈感应风电机组数学模型的特点,建立了 双馈感应风电机组联网运行电磁暂态模型,对不同运行条件下双馈感应风电机 组的运行特性进行了仿真模拟,深入了解了双馈感应风电机组的联网运行特性。 建立了联网运行双馈感应风电机组运行控制策略,在此基础上,构建了控 制系统传递函数模型,分析了PI控制器参数选择对控制系统性能的影响,提出 了PI控制器参数设置的方法。 提出了电网发生对称性故障时双馈感应风电机组的短路电流计算简化模 型,为评估双馈感应风电机组短路对电网继电保护装置的影响提供了有效的计 算模型。 设计了风电机组联网短路试验方案,分析了短路试验数据识别出风电机组 厂家未提供的风电机组撬杠保护动作值,并仿真重现了风电机组联网短路试验, 仿真数据与试验数据相吻合,验证了所构建系统模型和仿真系统的有效性。 研究现状 由于风能是一种随即性很强的一种能源,不能像火力发电、水力发电那样 可以预先调度,因此大规模的风力发电的接入对电网的经济、安全、稳定运行 带来了诸多不利的影响,对系统调频、调压、调峰带来了困难。同时由于风电 机组大多包含有对运行条件要求很高的电力电子变流器,在一些运行方式下电 网的扰动对风电机组的正常运行也会带来一定的影响,严重时可能会引起风电 机组跳闸,造成电网功率大幅波动,威胁着电网的运行安全,而从系统持续运 行的角度考虑,通常希望风电机组具有一定的故障穿越能力,能够在一定的故 障情况下持续联网运行,因此对联网运行风电机组的运行特性,需要进行深入 的研究。 目前联网运行的风电机组可分为恒速恒频风电机组(CSCF)及变速恒频风 电机组(VSCF)两种,恒速恒频风电机组是指在发电过程中保持转速不变的风 电机组,所采用的发电机主要是同步发电机及鼠笼式感应发电机,前者运行于同步转速,

双馈发电机原理讲解

双馈发电机原理讲解

一.双馈发电机原理讲解 二.风力发电机的主要类型 1.异步发电机 ●笼鼠式异步发电机 特点:应用于早期的风力发电机,离网型的小型发电机,结构简单,性能稳定,成本低。 缺点:并网运行时,转速必须超过同步转速,在风速较小的时候效率很差。一般做成大小两个发电机,或者改变定子绕组以改变同步转速,按照风速段转换。 ●绕线转子异步发电机 特点:转子绕组外接电阻,在风速变化的时候,改变外接电阻的大小以控制输出的功率。风速大的时候多余的能量可以消耗在转子电阻上。 ●双馈异步发电机 特点:使用双馈变频器对转子进行交流励磁,随着转子物理转速的变化,改变交流励磁的交流电的频率,幅值,相序以及相位,以使定子输出的电压幅值和电流频率保持恒定,同时可以向电网输出感性或容性的无功。 2.同步发电机 ●永磁同步发电机 特点:转子由永磁材料制成,结构简单,不易损坏和维护方便,容量可以做到很大。转子可以做成很多级,这样可以使其同步转速降低,配合全功率变流器,在低风速的时候也可以发电。一般用于海上风机。 ●直流励磁同步发电机 特点:现在的水力和火力发电机组使用的形式,转子由直流励磁,改变励磁电流的大小,可以调节输出的功率大小和因数。

三. 双馈异步发电机原理 1. 旋转磁场 旋转磁场就是一种极性和大小不变,且以一定转速旋转的磁场。从理论分析和实践证明,在对称三相绕组中流过对称三相交流电时会产生这种旋转磁场。 三相对称绕组就是三个外形、尺寸、匝数都完全相同、首端彼此互隔120o、对称地放置到定子槽内的三个独立的绕组 由电网提供的三相电压是对称三相电压,由于对称三相绕组组成的三相负 载是对称三相负载,每相负载的复阻抗都相等,所以,流过三相绕组的电流也必定是对称三相电流。 2. 旋转磁场的转速和转向 以异步电动机为例,说明旋转磁场的转速和方向同励磁电流的关系。 ① ωt=0 o时,合成磁场方向:向下 () () ?-=?-==240sin 120sin sin t I i t I i t I i m C m B m A ωω ω

双馈式风力发电机结构原理及功率分析

双馈式风力发电机结构原理及功率分析 摘要:文章详细介绍了双馈式风力发电机组的机构组成、工作原理,分析了风力发电系统中双馈式风力发电机的工作特性,详尽分析了含双馈式风力发电机的系统中功率的流向以及流动过程。 关键字:双馈式风力发电机、原理、功率 the structure and principle and power analysis of doubly —fed induction generator bai wenjun (china three gorges university , college of electrical engineering & renewable energy , yichang 443002 , china)absrtact: this paper describe the structure and principle of the doubly—fed induction generator in detail , and then analysis the operating characteristics of the doubly—fed induction generator in the wind power generation system, at the last , analysis the flow and liquidity of the power system which contain the doubly—fed induction generator. keywords: doubly—fed induction generator, structure,power 0 引言 随着人们对可再生能源的重视和科学技术的进步,风电正受到越来越多的关注,其在整个电力系统中所占的比重也日益增加。众所周知,风电的产生正是通过风力推动桨叶转动,同时带动发电机的

双馈发电机原理讲解完整版

双馈发电机原理讲解 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

一.双馈发电机原理讲解 二.风力发电机的主要类型 1.异步发电机 笼鼠式异步发电机 特点:应用于早期的风力发电机,离网型的小型发电机,结构简单,性能稳定,成本低。 缺点:并网运行时,转速必须超过同步转速,在风速较小的时候效率很差。一般做成大小两个发电机,或者改变定子绕组以改变同步转速,按照风速段转换。 绕线转子异步发电机 特点:转子绕组外接电阻,在风速变化的时候,改变外接电阻的大小以控制输出的功率。风速大的时候多余的能量可以消耗在转子电阻上。 双馈异步发电机 特点:使用双馈变频器对转子进行交流励磁,随着转子物理转速的变化,改变交流励磁的交流电的频率,幅值,相序以及相位,以使定子输出的电压幅值和电流频率保持恒定,同时可以向电网输出感性或容性的无功。 2.同步发电机 永磁同步发电机 特点:转子由永磁材料制成,结构简单,不易损坏和维护方便,容量可以做到很大。转子可以做成很多级,这样可以使其同步转速降低,配合全功率变流器,在低风速的时候也可以发电。一般用于海上风机。 直流励磁同步发电机 特点:现在的水力和火力发电机组使用的形式,转子由直流励磁,改变励磁电流的大小,可以调节输出的功率大小和因数。

三. 双馈异步发电机原理 1.旋转磁场 旋转磁场就是一种极性和大小不变,且以一定转速旋转的磁场。从理论分析和实践证明,在对称三相绕组中流过对称三相交流电时会产生这种旋转磁场。 三相对称绕组就是三个外形、尺寸、匝数都完全相同、首端彼此互隔120o 、对称地放置到定子槽内的三个独立的绕组 由电网提供的三相电压是对称三相电压,由于对称三相绕组组成的三相负载是 对称三相负载,每相负载的复阻抗都相等,所以,流过三相绕组的电流也必定是对称三相电流。 2.旋转磁场的转速和转向 以异步电动机为例,说明旋转磁场的转速和方向同励磁电流的关系。 ① ωt=0 o 时,合成磁场方向:向下 ② ωt=60o 时,合成磁场方向顺时针转过60o 。 ③ωt=120o 时,合成磁场方向顺时针又转过60o ,共120 o 。 ④ωt= 180o 时,合成磁场方向顺时针又转过60o ,共180 o 。 当三相对称电流通入三相对称绕组,必然会产生一个大小不变,且在空间以一定的转速不断旋转的旋转磁场。一个电流周期,旋转磁场在空间转过360°。则一个电流周期,旋转磁场在空间转过360°。 则160f n s =/P (转/分) 旋转磁场的旋转方向由通入三相绕组中的电流的相序决定的。即当通入三相对称绕组的对称三相电流的相序发生改变时,即将三相电源中任意两相绕组接线互换,旋转磁场就会改变方向。 3.变速恒频发电原理 () () ?-=?-==240sin 120sin sin t I i t I i t I i m C m B m A ωω ω

双馈式-直驱式风力发电机的对比

双馈式\直驱式风力发电机的对比 【摘要】双馈式风力发电机与直驱式风力发电机是两种各有优势的机型,二者属于相互竞争的关系,同时它们也是相互促进的,这就是常说的有竞争就有进步,最终形成优势互补。本文对这两种机型分别进行了描述、比较,为这两种大型风力发电机的应用奠定一定的理论基础。 【关键词】齿轮箱;永磁电机;变速箱 前言 本文通过对直驱式和双馈式两种不同的风力发电机进行描述,并从二者的主要结构特性对其各自不同的优缺点进行分析阐述,以增进人们的了解,使其得到更好的应用充分发挥其自身机能和作用。 1、双馈式异步发电机 双馈式异步发电机实际是异步感应电机的一种变异,这种发电机始于上世纪80年代,日本日立公司、东芝公司和前苏联在这种发电机的研制和开发中都作出了显著的贡献。目前美国GE能源、EMD;德国VEM Sachsenwerk GmbH,LDW;瑞士ABB等公司的很多风力发电机产品,采用变速双馈风力发电的技术方案。目前,市场占有率最高的双馈变速恒频风力发电机组,其风轮桨距角可以调节,同时发电机可以变速,并输出恒频恒压电能,效率较高。在低于额定风速时,它通过改变转速和桨距角使机组在最佳尖速比下运行,输出最大的功率,而在高风速时通过改变桨距角使机组功率输出稳定在额定功率。这种形式的性价比和效率均较高,逆变器功率较小。调速范围达到30%额定转速,变流的容量只有系统容量的30%左右,变速恒频驱动和MPPT控制,有功、无功功率可独立进行控制。双馈异步发电机在结构上与绕线式异步电机相似,定子、转子均为三相对称绕组,转子绕组电流由滑环导入,定子接入电网,电网通过四象限AC-DC-AC 变频器向发电机的转子供电,提供交流励磁。但存在滑环和变速箱的问题,对电网的冲击较大。 由于风能的不稳定性和捕获最大风能的要求,发电机转速是在不断的变化,而且经常在同步转速上、下波动,为了实现风力机组的最大能量的追踪和捕获,满足电网对输入电力的要求,风力发电机必须变速恒频运行。在变速恒频风力发电机中,跨越同步速是变速恒频双馈风力发电机励磁控制关键技术之一。这要求转子交流励磁电源不仅要有良好的变频输入、输出特性,而且要有能量双向流动的能力。现有的技术是采用IGBT器件(绝缘栅双极晶体管)构成的PWM(脉宽调制)整流—PWM逆变型式的AC-DC-AC变频器作为其励磁电源,向发电机的转子绕组提供励磁电流,对定子实现定向矢量控制。控制电流由滑环导入,实现亚同步、同步和超同步运行方式之间的转换,采用这种技术的双馈式异步发电机其

双馈发电机原理讲解

一.双馈发电机原理讲解 二.风力发电机的主要类型 1.异步发电机 笼鼠式异步发电机 特点:应用于早期的风力发电机,离网型的小型发电机,结构简单,性能稳定,成本低。 缺点:并网运行时,转速必须超过同步转速,在风速较小的时候效率很差。一般做成大小两个发电机,或者改变定子绕组以改变同步转速,按照风速段转换。 绕线转子异步发电机 特点:转子绕组外接电阻,在风速变化的时候,改变外接电阻的大小以控制输出的功率。风速大的时候多余的能量可以消耗在转子电阻上。 双馈异步发电机 特点:使用双馈变频器对转子进行交流励磁,随着转子物理转速的变化,改变交流励磁的交流电的频率,幅值,相序以及相位,以使定子输出的电压幅值和电流频率保持恒定,同时可以向电网输出感性或容性的无功。 2.同步发电机 永磁同步发电机

特点:转子由永磁材料制成,结构简单,不易损坏和维护方便,容量可以做到很大。转子可以做成很多级,这样可以使其同步转速降低,配合全功率变流器,在低风速的时候也可以发电。一般用于海上风机。 直流励磁同步发电机 特点:现在的水力和火力发电机组使用的形式,转子由直流励磁,改变励磁电流的大小,可以调节输出的功率大小和因数。 三. 双馈异步发电机原理 1. 旋转磁场 旋转磁场就是一种极性和大小不变,且以一定转速旋转的磁场。从理论分析和实践证明,在对称三相绕组中流过对称三相交流电时会产生这种旋转磁场。 三相对称绕组就是三个外形、尺寸、匝数都完全相同、首端彼此互隔120o 、对称地放置到定子槽内的三个独立的绕组 由电网提供的三相电压是对称三相电压,由于对称三相绕组组成的三相负载是对 称三相负载,每相负载的复阻抗都相等,所以,流过三相绕组的电流也必定是对称三相电流。 2. 旋转磁场的转速和转向 () () ?-=?-==240sin 120sin sin t I i t I i t I i m C m B m A ωωω

双馈式_直驱式风力发电机的对比

能源环境 双馈式、直驱式风力发电机的对比 哈电发电设备国家工程研究中心有限公司(黑龙江哈尔滨) 范磊 【摘 要】双馈式风力发电机与直驱式风力发电机是两种各有优势的机型,二者属于相互竞争的关系,同时它们也是相互促进的,这就是常说的有竞争就有进步,最终形成优势互补。本文对这两种机型分别进行了描述、比较,为这两种大型风力发电机的应用奠定一定的理论基础。 【关键词】齿轮箱;永磁电机;变速箱 前言 本文通过对直驱式和双馈式两种不同的风力发电机进行描述,并从二者的主要结构特性对其各自不同的优缺点进行分析阐述,以增进人们的了解,使其得到更好的应用充分发挥其自身机能和作用。 1、双馈式异步发电机 双馈式异步发电机实际是异步感应电机的一种变异,这种发电机始于上世纪80年代,日本日立公司、东芝公司和前苏联在这种发电机的研制和开发中都作出了显著的贡献。目前美国GE能源、EMD;德国VEM Sachsenwerk GmbH,LDW;瑞士ABB等公司的很多风力发电机产品,采用变速双馈风力发电的技术方案。目前,市场占有率最高的双馈变速恒频风力发电机组,其风轮桨距角可以调节,同时发电机可以变速,并输出恒频恒压电能,效率较高。在低于额定风速时,它通过改变转速和桨距角使机组在最佳尖速比下运行,输出最大的功率,而在高风速时通过改变桨距角使机组功率输出稳定在额定功率。这种形式的性价比和效率均较高,逆变器功率较小。调速范围达到30%额定转速,变流的容量只有系统容量的30%左右,变速恒频驱动和MPPT控制,有功、无功功率可独立进行控制。双馈异步发电机在结构上与绕线式异步电机相似,定子、转子均为三相对称绕组,转子绕组电流由滑环导入,定子接入电网,电网通过四象限AC-DC-AC变频器向发电机的转子供电,提供交流励磁。但存在滑环和变速箱的问题,对电网的冲击较大。 由于风能的不稳定性和捕获最大风能的要求,发电机转速是在不断的变化,而且经常在同步转速上、下波动,为了实现风力机组的最大能量的追踪和捕获,满足电网对输入电力的要求,风力发电机必须变速恒频运行。在变速恒频风力发电机中,跨越同步速是变速恒频双馈风力发电机励磁控制关键技术之一。这要求转子交流励磁电源不仅要有良好的变频输入、输出特性,而且要有能量双向流动的能力。现有的技术是采用IGBT器件(绝缘栅双极晶体管)构成的PWM(脉宽调制)整流—PWM逆变型式的AC-DC-AC变频器作为其励磁电源,向发电机的转子绕组提供励磁电流,对定子实现定向矢量控制。控制电流由滑环导入,实现亚同步、同步和超同步运行方式之间的转换,采用这种技术的双馈式异步发电机其转速控制范围可达到同步转速的60%。为了获得较好的输出电压电流波形,输出频率一般不超过输入频率的1/3。其容量一般不超过发电机额定功率的30%,通常只需配置一台1/4功率的变频器。 有刷双馈发电机存在滑环和变速箱的问题,运行可靠性差,需要经常维护,其维护保养费用远高于无齿轮箱变速永磁同步风力发电机,并且这种结构不适合运行在环境比较恶劣的风力发电系统中。近年来国内外风力发电机组故障率最高的部件当数齿轮箱,而齿轮箱的故障绝大多数是由于轴承的故障造成。 齿轮箱的效率可通过功率损失计算或在试验中实测得到。功率损失主要包括齿轮啮合、轴承摩擦、润滑油飞溅和搅拌损失、风阻损失、其它机件阻尼等。齿轮的效率在不同工况下是不一致的。风力发电齿轮箱的专业标准要求齿轮箱的机械效率应大于97%,是指在标准条件下应达到的指标。 2、直驱式永磁同步发电机 所谓“同步”发电机,就是指发电机转子磁场的转速(原动机产生)与定子磁场的转速(电力系统频率决定)相等。这种无齿轮箱变浆距变速的风力发电机组,其风轮轴直接与发电机联接。永磁同步发电机不需要励磁绕组和直流励磁电源,取消了容易出故障的转子上的集电环和电刷装置,成为无刷电机,不存在励磁绕组的铜损耗,比同容量的电励磁式的发电机效率高,结构简单,运行可靠。 这种风力发电机要求全功率变流器,在与电网合闸前,为避免电流冲击和转轴受到突然的扭矩,需要满足一定的并联条件,端电压、频率与电网必须相同。要求发电机具有高质量地将风能转化为频率、电压恒定的交流电,高效率地实现机电能量转换。 永磁直驱式风力发电机其特点是电机转速低,极数多,结构简单,无变速箱,可靠、长寿命,低噪声,大功率,无滑环,安装和维护费用低。但不足之处是体积大,有失磁之忧,且转子的制造难度比较大。同时这种风力发电机制造成本较高,是双馈变速恒频机的1.3倍。 德国埃纳康(Enercon GmbH)公司在1993年研制成功了直驱式风力发电机,1997年将产品推向了市场,这些高产能、运行维护成本低的先进机型有E-33、E-48、E-70等型号,已开发了容量为330kw、800kw、900kw、2000kw和2300kw的多种机型。2000年,瑞典ABB 公司成功研制了3兆瓦的巨型可变速风力发电机组,其中包括永磁式转子结构的高压风力发电机Windformer,该机高约70米、风扇直径约90米。2003年,日本三菱重工完成MWT-S2000型风力发电机的研制工作,这种直驱式风力发电机组采用的是永磁同步电机。2004年德国西门子公司通过收购世界著名的丹麦Bonus Energy(柏纳斯)公司也开发了直驱式风力发电机。 目前,还有荷兰Wi ndbrokers公司,荷兰Emerg ya Wi nd Technologies NV(EWT)、德国Innovative 公司,德国Vensys公司、德国Avavtis公司、瑞典的ABB等公司,韩国Unison公司和国内的新疆金风科技股份有限公司、湖南湘电风能有限公司、东风汽轮机厂、上海万德风力发电股份有限公司、广西银河艾万迪斯风力发电有限公司、常州新誉风力发电设备有限公司、哈尔滨电站设备集团公司、中国运载火箭技术研究院、江西麦德风能股份有限公司等都在研制直驱式风力发电机。 新疆金凤科技股份公司已在2006年与德国Vensys公司合作研制出1.5兆瓦直驱式风力发电机。2007年湘潭电机集团与日本原弘产株式会社合资组建的湖南湘电风能有限公司,并在2007年11月成功完成了2兆瓦直驱式永磁风力发电整机机组试车;广西银河艾万迪斯风力发电有限公司与德国AVAVTIS公司联合研制的2.5兆瓦直驱变桨风力发电也将于2008年下半年完成样机。永磁材料钕铁硼的最高工作温度较低。一般为80℃左右,在经过特殊处理的磁铁,其最高工作温度也只能是240℃。如果永磁同步发电机通风系统出现问题,过高的温度会造成永磁材料磁性能降低,甚至不可逆去磁。 尽管永磁电机已经过了几十年的研究,但其设计至今还没有一套系统的公式和经验曲线作为依据。变速恒频风力发电系统中的直驱永磁风力发电机的外形尺寸大、工作转速低,通常是一种扁平状的结构。 3、结论与展望 风电发展以来,直驱与双馈两种机型就一直是竞争关系。随着风电行业的继续发展,直驱与双馈两种机型的性能的优缺点会不断的显露出来,性能和成本会成为最主要的考核指标。

双馈发电机原理

技术研发部 编写 双馈发电机原理 一.风力发电机的主要类型 1.异步发电机 ●笼鼠式异步发电机 特点:应用于早期的风力发电机,离网型的小型发电机,结构简单,性能稳定,成本低。 缺点:并网运行时,转速必须超过同步转速,在风速较小的时候效率很差。一般做成大小两个发电机,或者改变定子绕组以改变同步转速,按照风速段转换。 ●绕线转子异步发电机 特点:转子绕组外接电阻,在风速变化的时候,改变外接电阻的大小以控制输出的功率。风速大的时候多余的能量可以消耗在转子电阻上。 ●双馈异步发电机 特点:使用双馈变频器对转子进行交流励磁,随着转子物理转速的变化,改变交流励磁的交流电的频率,幅值,相序以及相位,以使定子输出的电压幅值和电流频率保持恒定,同时可以向电网输出感性或容性的无功。 2.同步发电机 ●永磁同步发电机 特点:转子由永磁材料制成,结构简单,不易损坏和维护方便,容量可以做到很大。转子可以做成很多级,这样可以使其同步转速降低,配合全功率变流器,在低风速的时候也可以发电。一般用于海上风机。 ●直流励磁同步发电机

技术研发部编 写 特点:现在的水力和火力发电机组使用的形式,转子由直流励磁,改变励磁电流的大小,可以调节输出的功率大小和因数。 二. 双馈异步发电机原理 1.旋转磁场 旋转磁场就是一种极性和大小不变,且以一定转速旋转的磁场。从理论分析和实践证明,在对称三相绕组中流过对称三相交流电时会产生这种旋转磁场。 三相对称绕组就是三个外形、尺寸、匝数都完全相同、首端彼此互隔120o、对称地放置到定子槽内的三个独立的绕组 由电网提供的三相电压是对称三相电压,由于对称三相绕组组成的三相负载是 对称三相负载,每相负载的复阻抗都相等,所以,流过三相绕组的电流也必定是对称三相电流。 2.旋转磁场的转速和转向 以异步电动机为例,说明旋转磁场的转速和方向同励磁电流的关系。 ① ωt=0 o时,合成磁场方向:向下 ()() ?-=?-==240sin 120sin sin t I i t I i t I i m C m B m A ωωω

双馈异步风力发电机(西莫讲堂)

主讲人:aser 关键词:双馈异步风力发电机 协助讨论: Edwin_Sun lidb856 pat baizengchen g zslzsl xfq7111 wayne 会议摘要: 1. 引言: 风力发电机组主要包括变频器,控制器,齿轮箱(视机型而定),发电机,主轴承,叶片等等部件,在这些部件中发电机目前国产化程度最高,它的价格约占机组的10%左右。发电机主要包括2种机型:永磁同步发电机和异步发电机。永磁同步发电机低速运行时,不需要庞大的齿轮箱,但是机组体积和重量都很大,1.5MW的永磁直驱发电机机舱

会达到5米,整个重量达80吨。同时,永磁直驱发电机的单价较贵,技术复杂,制造困难,但是这种机型的优点是少了个齿轮箱,也就少了个故障点。异步发电机是由风机拖动齿轮箱,再带动异步发电机运行,因为叶片速度很低,齿轮箱可以变速100倍,以让风机在1500RPM下运行,目前流行的是双馈异步发电机,主要有1.25MW,1.5MW,2MW三种机型,异步发电机的机组单价低,1KW大概需6000元左右,而且技 术成熟,国产化高。 2.双馈异步发电机的原理: 所谓双馈,可以理解为定子、转子同时可以发出电能,发电机原理理论上说只要有动力带动电动机,在电动机的定子侧就能直接发出电能。现代变速双馈风力发电机的工作原理就是通过叶轮将风能转变为机械转矩(即风轮转动惯量),通过主轴传动链,经过齿轮箱增速

到异步发电机的转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。双馈发电机正是由叶片通过齿轮箱变速,带动电机高速旋转,同时转子接变频器,通过变频器PWM控制以达到定子侧输出相对完美正弦波,同时在额定转速下,转子侧也能同时发出电流,以达到最大利用风能效果。通俗的讲,就是要变频器控制转子电流,反馈到定子上面,保证定子发出相对完美的正弦无谐波电能,同时在额定转速下,转子也 能发出功率出来。有个大致感觉是 1.5MW发电机的定子发电量大概1200KW,转子大约300KW,转子侧发出的功率要在30%以下,总之越少越好这样可以让变频器功率小点。 3. 双馈异步发电机的设计难点: 结构设计难点:因机舱封闭体积,

双馈发电机原理讲解

双馈发电机原理讲解 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

一.双馈发电机原理讲解 二.风力发电机的主要类型 1.异步发电机 笼鼠式异步发电机 特点:应用于早期的风力发电机,离网型的小型发电机,结构简单,性能稳定,成本低。 缺点:并网运行时,转速必须超过同步转速,在风速较小的时候效率很差。一般做成大小两个发电机,或者改变定子绕组以改变同步转速,按照风速段转换。 绕线转子异步发电机 特点:转子绕组外接电阻,在风速变化的时候,改变外接电阻的大小以控制输出的功率。风速大的时候多余的能量可以消耗在转子电阻上。 双馈异步发电机 特点:使用双馈变频器对转子进行交流励磁,随着转子物理转速的变化,改变交流励磁的交流电的频率,幅值,相序以及相位,以使定子输出的电压幅值和电流频率保持恒定,同时可以向电网输出感性或容性的无功。 2.同步发电机 永磁同步发电机

特点:转子由永磁材料制成,结构简单,不易损坏和维护方便,容量可以做到很大。转子可以做成很多级,这样可以使其同步转速降低,配合全功率变流器,在低风速的时候也可以发电。一般用于海上风机。 直流励磁同步发电机 特点:现在的水力和火力发电机组使用的形式,转子由直流励磁,改变励磁电流的大小,可以调节输出的功率大小和因数。 三. 双馈异步发电机原理 1. 旋转磁场 旋转磁场就是一种极性和大小不变,且以一定转速旋转的磁场。从理论分析和实践证明,在对称三相绕组中流过对称三相交流电时会产生这种旋转磁场。 三相对称绕组就是三个外形、尺寸、匝数都完全相同、首端彼此互隔120o 、对称地放置到定子槽内的三个独立的绕组 由电网提供的三相电压是对称三相电压,由于对称三相绕组组成的三相负载是 对称三相负载,每相负载的复阻抗都相等,所以,流过三相绕组的电流也必定是对称三相电流。 2. 旋转磁场的转速和转向 () () ?-=?-==240sin 120sin sin t I i t I i t I i m C m B m A ωωω

双馈异步发电机

有刷双馈式异步发电机 有刷双馈式异步发电机 双馈式异步发电机实际是异步感应电机的一种变异,双馈异步发电机通常为4极或6极,转速为1500r/min、1000r/min,如此高的转速是通过多级增速齿轮箱来实现的。这种发电机始于上世纪80年代,日本日立公司、东芝公司和前苏联在这种发电机的研制和开发中都作出了显著的贡献。目前美国GE能源、德国Fuhrl?nder等公司的很多风力发电机产品,采用变速双馈风力发电的技术方案。我国甘肃兰州电机有限责任公司、北车集团永济电机厂、四川东风电机厂有限公司也都先后研制成功了兆瓦级双馈式异步发电机。 双馈式电机分鼠笼式和绕线式两种。但是,鼠笼式感应发电机因其无法最大限度地利用风能,在风力发电机组中没有得到广泛应用。在风力发电机组中多选用绕线转子感应异步发电机,这种发电机在结构上与绕线式异步电机相似,由绕线转子异步发电机和在转子电路上带交流励磁器组成,定子、转子均为三相对称绕组,转子绕组电流由滑环导入,这种带滑环的双馈式电机被称之为有刷双馈发电机。 双馈式电机的定子接入电网,通过PWM(脉宽调制)AC-DC-AC变频器向发电机的转子绕组提供励磁电流,为了获得较好的输出电压电流波形,输出频率一般不超过输入频率的1/3。其容量一般不超过发电机额定功率的30%,通常只需配置一台1/4功率的变频器。其原理图如图1所示。 双馈式异步发电机向电网输出的功率由两部分组成,即直接从定子输出的功率和通过变频器从转子输出的功率。风力机的机械速度是允许随着风速而变化的。通过对发电机的控制使风力机运行在最佳叶尖速比,从而使整个运行速度的范围内均有最佳功率系数。 双馈式异步发电机的变速运行是建立在异步电机基础上的,众所周知异步电机既可作为电动机运行,也可作为发电机运行。我们将转子转速n与同步转速ns的差值定义为转差,转差与同步转速之比的百分值定义为转差率。在作电动机运行时,异步电动机转子的转速只能是略低于同步转速,此时产生的电磁转矩与转向相同,转差率>0。而作发电机运行时,转速总是略高于同步转速,其电磁转矩的方向与旋转方向相反,转差率<0,发电机的功率随该负转差率绝对值的增大而提高。 当双馈发电机的转子绕组通过三相低频电流时,在转子中会形成一个低速旋转磁场,这个磁场的旋转速度与转子的机械转速相叠加,使其等于定子的同步转速,从而在发电机定子绕组中感应出相应于同步转速的工频电压。当风速变化时,转速随之而变化,相应地改变转子电流的频率和旋转磁场的速度,就会使定子输出频率保持恒定。 当发电机的转速低于气隙旋转磁场的转速时,发电机处于亚同步速运行,为了保证发电机发出的频率与电网频率一致,需要变频器向发电机转子提供正相序励磁,给转子绕组输入一个其旋转磁场方向与转子机械方向相同的励磁电流,此时,转子的制动转矩与转子的机械转向相反,转子的电流必须与转子的感应反电动势反方向,转差率减小,定子向电网馈送电功率,而变频器向转子绕组输入功率;当发电机的转速高于气隙旋转磁场的转速时,发电

双馈发电机的运行方式说明风机控制

双馈发电机的运行方式说明风机控制 1.双馈风力发电机的分类 双馈风力发电机按转子类型分为有刷和无刷两种,无刷发电机即为鼠笼型发电机。由于鼠笼型风力发电机励磁控制困难,无法最大限度的利用风能,所以目前很少应用。 2.双馈发电机的优点 1 .容易对转矩和速度进行控制; 2.能工作在恒频变速状态; 3 .驱动变流器的总额定功率可以降低,性价比大大提高; 4 .电机可以超同步和超容量运行 3.双馈发电机的变流器一般选用电机总容量的四分之一即可,这样可以很大程度的减少整机变流成本。和直驱风力发电机相比,双馈风力发电机增加了齿轮箱,在成本方面要考虑直驱发电机和它的全功率变流器的总成本和双馈风力发电机加齿轮箱的综合成本,除此之外,还要考虑他们的功率曲线以及维护成本。 4.控制机理 双馈发电机通过控制转子励磁,使定子的输出频率保持在工频。 大家知道,异步电动机运行时,电磁转矩和转向相同,即转差率>0.当作为电动机运行时,电磁转矩和转速方向相反,转差率<0. 发电机的功率随该负转差率绝对值的增大而提高。当双馈发电机的转子绕组通过三相低频电流时,在转子中会形成一个低速旋转磁场,这个磁场的旋转速度与转子的机械转速相叠加,使其等于定子的同步转速,从而在发电机定子绕组中感应出相应于同步转速的工频电压。当风速变化时,转速随之而变化,相应地改变转子电流的频率和旋转磁场的速度,就会使定子输出频率保持恒定。 当双馈发电机的转子绕组通过三相低频电流时,在转子中会形成一个低速旋转磁场,这个磁场的旋转速度与转子的机械转速相叠加,使其等于定子的同步转速,从而在发电机定子绕组中感应出相应于同步转速的工频电压。当风速变化时,转速随之而变化,相应地改变转子电流的频率和旋转磁场的速度,就会使定子输出频率保持恒定。 当发电机的转速低于气隙旋转磁场的转速时,发电机处于亚同步速运行,为了保证发电机发出的频率与电网频率一致,需要变频器向发电机转子提供正相序励磁,给转子绕组输入一个其旋转磁场方向与转子机械方向相同的励磁电流,此时,转子的制动转矩与转子的机械转向相反,转子的电流必须与转子的感应反电动势反方向,转差率减小,定子向电网馈送电功率,而变频器向转子绕组输入功率;当发电机的转速高于气隙旋转磁场的转速时,发电机处于超同步速运行,为了保证发电机发出的频率与电网频率一致,需要给转子绕组输入一个其旋转磁场方向与转子机械方向相反的励磁电流,此时变频器向发电机转子提供负相序励磁,以加大转差率,变频器从转子绕组吸收功率;当发电机的转速等于气隙旋转磁场的转速时,发电机处于同步速运行,变频器应向转子提供直流励磁,此时,转子的制动转矩与转子的机械转向相反,与转子感生电流产生的转矩同方向,定子和转子都向电网馈送电功率。 为了实现风力机组的最大能量的追踪和捕获,满足电网对输入电力的要求,风力发电机必须变速恒频运行;为了控制发电机转速和输出的功率因数,必须对发电机有功功率、无功功率进行解耦控制。这一过程是采用磁场定向的矢量变换控制技术,通过对用于励磁的PWM 变频器各分量电压、电流的调节来实现。 调节励磁电流的幅值、频率、相序,确保电发电机输出功率恒压。同时采用矢量换控制技术,实现发电机有功功率、无功功率的独立调节。调节有功功率可调节风力机转速,进而实现最大风能捕获追踪控制;调节无功功率可调节电网功率因数,提高风电机组及所并电网系统的动、静态动行稳定性。

相关文档
相关文档 最新文档