文档视界 最新最全的文档下载
当前位置:文档视界 › 7-4 高温超导特性测量

7-4 高温超导特性测量

7-4 高温超导特性测量
7-4 高温超导特性测量

7-4 高温超导材料特性测试和低温温度计

引言

1908年,荷兰莱顿大学的卡末林-昂纳斯(H. Kamerlingh Onnes )等人成功的使氦气液化,达到了4.2K 的低温,三年后,他们发现汞电阻在温度达到4.15K 时,陡降为零,这就是所谓的零电阻现象或超导电现象。通常把具有这种超导电性的物体,称为超导体,这一发现标志人类对超导研究的开始,1913年昂纳斯也因此发现获得了诺贝尔物理学奖。1933年,荷兰的迈斯纳(Meissner )和奥克森费尔德(Ochsenfeld )共同发现了超导体的另一个极为重要的性质,当金属处在超导状态时,具有完全抗磁性,超导体内的磁感应强度为零,人们将这种现象称之为 “迈斯纳效应”。

自从超导现象被发现以来,科学家们在超导物理及材料方面进行了大量的研究工作,为提高超导的临界温度而努力。然而在数十年中进展缓慢,常规超导体临界温度只能提高到23.22K 。1986年高温超导研究取得了突破性的进展,瑞士物理学家缪勒(Mueller )和德国物理学家贝德罗兹(Bednorz )发现了高温钡镧铜(La-Ba-Cu-O )系氧化物超导体,超导临界温度达到40K 。这个发现意义重大,他们因此获得了1987年的诺贝尔物理学奖。目前,已发现具有超导性的材料数以千计,超导临界温度也在持续提高,1993年高温超导临界温度已达到136K ,实现了在液氮温区超导的重大突破,人们将临界温度在液氮温度(77K)以上的超导体称为高温超导体。

随着高温超导研究的进展,超导电性的应用十分广泛: 例如发电、输电和储能;超导重力仪、超导计算机、超导微波器件、超导磁悬浮列车和超导热核聚变反应堆等。测量超导体的基本性能是超导研究工作的重要环节,因此高温超导材料特性测量是超导研究工作者的必备手段。

实验预习

1. 学习超导体的基本性质及超导材料的临界参数;

2.

实验目的

1. 了解高临界温度超导材料的基本特性及其测试方法。

2. 掌握几种低温温度计的比对和使用方法,以及液氮低温温度控制的简便方法。 实验原理

一、超导电性及临界参数

1.零电阻现象

金属的电阻是由晶格上原子的热振动(声子)以及杂质原子对电子的散射造成的。在低温时,一般的金属总具有一定的电阻,如图7-4-1所示,其电阻率ρ与温度T 的关系可表示为:

50AT +=ρρ (7-4-1)

其中,0ρ是0=T K 时的电阻率,称

剩余电阻,它与金属的纯度和晶格的

完整性有关,由于一般的金属,其内

部总是存在杂质和缺陷,因此,即使

温度趋于绝对零度时,也总存在0ρ。

1911年,昂纳斯发现汞电阻在

4.2K 附近急剧下降几千倍,即在这个

转变温度下电阻突然跌落到零,这就

是所谓的零电阻现象或超导电现象。

通常把具有这种超导电性的物体,称

为超导体;而把超导体电阻突然变为

零的温度,称为超导临界温度,用C T 表示。在一般的实际测量中,地磁场并没有被屏蔽,样品中通过的电流也并不 太小,而且超导转变往往发生在并不很窄的温度

co R T 图7-4-1 超导体的电阻转变曲线

范围内,因此通常引进起始转变温度c,conset T 、零电阻温度C0T 和超导转变(1/2处)温度cm T 等

来描写高温超导体的特性,如图7-4-1 所示。 通常所说的超导转变温度c T 是指cm T 。

2.迈斯纳效应

1933 年,迈斯纳和奥克森菲尔德把锡和铅样品放在外磁场中冷却到其转变温度以下,测量了样品外部的磁场分布。他们发现,不论是在没有外加磁场或有外加磁场的情况下使样品从正常态转变为超导态,只要T < T c ,在超导体内部的磁感应强度i B 总是等于零,这个效应称为迈斯纳效应,表明超导体具有完全抗磁性。这是超导体所具有的独立于零电阻现象的另一个最基本的性质。迈斯纳效应可用磁悬浮实验来演示。当我们将永久磁铁慢慢落向超导体时,磁铁会被悬浮在一定的高度上而不触及超导体。其原因是,磁感应线无法穿过具有完全抗磁性的超导体,因而磁场受到畸变而产生向上的浮力。

迈斯纳效应的独立性虽然并不意味着它可以单独存在,但是它表明,超导体同时具有完全导电性(零电阻)和完全抗磁性,这是超导体的两个最基本的性质。它们既相互独立又有紧密联系,完全抗磁性不能由零电阻特性派生出来,但是零电阻特性却是完全抗磁性的必要条件。超导体的完全抗磁性是由导体表面屏蔽电流产生的磁通密度在导体内部完全抵消了由外场引起的磁通密度,使其净磁通密度为零(如图7-4-2所示),它的状态是唯一确定的,从超导态到正常态的转变过程是可逆的。

图7-4-2 迈斯纳效应

二、低温温度计

1.金属铂电阻温度计

我们知道,金属中总是含有杂质的,杂

质原子对电子的散射会造成附加的电阻。在

温度很低时,例如在4. 2 K 以下,晶格散射

对电阻的贡献趋于零,这时的电阻几乎完全

由杂质散射所造成,称为剩余电阻0R ,它

近似与温度无关。当金属纯度很高时,由(1

-1)式,总电阻可以近似表达成

()T R R R i +=0 (7-4-2)

在液氮温度以上()0R T R i >>,因此有

()i R R T ≈。例如,铂的德拜温度D Θ为225

K ,在63 K 到室温的温度范围内,它的电阻()i R R T ≈近似地正比于温度T . 然而,稍许精确的测量就会发现它们偏离线性关系,在较宽的温度范围内铂的电阻温度关系如图7-4-3 所示。

在液氮正常沸点到室温温度范围内,铂电阻温度计具有良好的线性电阻温度关系,可表示为

()R T AT B =+ (7-4-3)

或 ()T R aR b =+

图7-4-3 铂的电阻温度关系

图7-4-4 二极管的正向电压温度关系 其中A 、B 和a 、b 是不随温度变化的常量。因此,

根据我们给出的铂电阻温度计在液氮正常沸点和冰

点的电阻值,可以确定所用的铂电阻温度计的A 、B

或a 、b 的值,并由此可得到用铂电阻温度计测温时

任一电阻所相应的温度值。

2.半导体电阻温度计

半导体具有与金属很不相同的电阻温度关

系。一般而言,在较大的温度范围内,半导体具有

负的电阻-温度关系。例如,在恒定电流下,硅和砷

化镓二极管pn 结的正向电压随着温度的降低而升

高,如图7-4-4 所示。由图可见,用一支二极管温度

计就能测量很宽范围的温度,且灵敏度很高。由于

二极管温度计的发热量较大,常把它用作为控温敏

感元件。

此外,碳电阻温度计、渗碳玻璃电阻温度计和

热敏电阻温度计等也都是常用的低温半导体温度

计。显然,在大部分温区中,半导体具有负的电阻

温度系数,这是与金属完全不同的。

3.温差电偶温度计

当两种金属所做成的导线联成回路,并使其两个接触点维持在不同的温度时,该闭合回路中就会有温差电动势存在。如果将回路的一个接触点固定在一个已知的温度,例如液氮的正常沸点77. 4 K ,则可以由所测量得到的温差电动势确定回路的另一接触点的温度。温差热电偶就是根据这个原理用铜-康铜做成的,也可作为温度计。实验中就是用温差热电偶来预示(参考)样品与液氮之间的距离。

应该注意到,硅二极管pn 结的正向电压U 和温差电动势E 随温度T 的变化都不是线性的,因此在用内插方法计算中间温度时,必须采用相应温度范围内的灵敏度值。

实验装置与测量线路

一、实验装置

本实验装置采用北京大学物理学院提供的BW2型高温超导特性测试仪器,由四部分组成:

1.低温恒温器(俗称探头),其核心部件是安装有高临界温度超导样品(本实验采用的超

导样品为X 732O Cu Y Ba -)、铂电阻温度计、硅二极管温度计、铜-康铜温差电偶及25Ω锰铜加热器线圈的紫铜恒温块,如图7-4-5所示。

2.不锈钢杜瓦容器和支架,如图7-4-6所示。

3.直流数字电压表(5 1/2 位,1 μV);

4.BW2 型高温超导材料特性测试装置(俗称电源盒),以及一根两头带有19 芯插头的装置

连接电缆和若干根两头带有香蕉插头的面板连接导线。

二、测量线路

(一) 低温物理实验的特点

( 1 ) 使用低温液体(如液氮、液氦等)作为冷源时,必须了解其基本性质,并注意安全。 ( 2 ) 进行低温物理实验时,离不开温度的测量。对于各个温区和各种不同的实验条件,要求使用不同类型和不同规格的温度计。例如,在13.8 K —630.7 K 的温度范围内,常使用铂电阻温度计。然而,用作国际温标内插仪器的标准铂电阻温度计,与实验室用的小型铂电阻温度计和工业用的铂电阻温度计相比,不仅体积要大得多,而且结构也要复杂得多。又如,与具有正的电阻温度系数的铂电阻温度计不同,锗和硅等半导体电阻温度计具有负的电阻温度系数,在30 K 以下的低温具有很高的灵敏度;利用正向电压随温度变化的pn 结制成的半导体二极管温度计,在很宽的温度范围内有很高的灵敏度,常用作控温仪的温度传感器;温差电偶温度计测温结点小,制作简单,常用来测量小样品的温度变化;渗碳玻璃电阻温度计的磁效应很弱,可用于测量在强磁场条件下工作的部件的温度,等等。因此,我们必须了解各类温度传感器的特性和适用范围,学会标定温度计的基本方法。

( 3 ) 在液氮正常沸点到室温的温度范围,一般材料的热导较差,比热较大,使低温装置的各个部件具有明显的热惰性,温度计与样品之间的温度一致性较差。

( 4 ) 样品的电测量引线又细又长,引线电阻的大小往往可与样品电阻相比。对于超导样品,引线电阻可比样品电阻大得多,四引线测量法具有特殊的重要性。

( 5 ) 在直流低电势的测量中,克服乱真电动势的影响是十分重要的。特别是,为了判定超导样品是否达到了零电阻的超导态,必须使用反向开关。

实际上,即使电路中没有来自外电源的电动势,只要存在材料的不均匀性和温差,就有温差电动势存在,通常称为乱真电动势或寄生电动势。例如,有的实验用双刀双掷开关就有几个微伏的乱真电动势。如果我们把一段漆包铜线两端接在数字电压表测量端上,然后用蘸有干冰或液氮的棉花在漆包铜线上捋过,则可测量出该段漆包铜线上的乱真电动势,这正是检验漆包铜线均匀性的一种简便方法。在低温物理实验中,待测样品和传感器往往处在低温下,而测量仪器却处在室温,因此它们之间的连接导线处在温差很大的环境中。而且,沿导线的温度分布还会随着低温液体液面的降低、

低温恒温器的移动以及内部情况的其他变化而图7-4-5 紫铜恒温块(探头)结构 图7-4-6 低温恒温器和杜瓦容器结构

随时间改变。所以,在涉及低电势测量的低温物理实验中,特别是在超导样品的测量中,判定和消除乱真电动势的影响是十分重要的。当然,如果有条件,采用锁相放大器来测量低频交流电阻,是一种比较好的办法。

(二) 低温恒温器和不锈钢杜瓦容器

为了得到从液氮的正常沸点77.4 K 到室温范围内的任意温度,我们采用如图3所示的低温恒温器和杜瓦容器。液氮盛在不锈钢真空夹层杜瓦容器中,借助于手电筒我们可通过有机玻璃盖看到杜瓦容器的内部,拉杆固定螺母(以及与之配套的固定在有机玻璃盖上的螺栓)可用来调节和固定引线拉杆及其下端的低温恒温器的位置。低温恒温器的核心部件是安装有超导样品和温度计的紫铜恒温块,此外还包括紫铜圆筒及其上盖、上下档板、引线拉杆和19 芯引线插座等部件。

为了得到远高于液氮温度的稳定的中间温度,需将低温恒温器放在容器中远离液氮面的上方,调节通过电加热器的电流以保持稳定的温度。电加热器线圈由温度稳定性较好的锰铜线无感地双线并绕而成。这时,紫铜圆筒起均温的作用,上、下档板分别起起阻挡来自室温和液氮的辐射的作用。

一般而言,本实验的主要工作是测量超导转变曲线,并在液氮正常沸点附近的温度范围内(例如 77 K —140 K)标定温度计。为了使低温恒温器在该温度范围内降温速率足够缓慢,又能保证整个实验在3 小时内顺利完成,我们安装了可调式定点液面指示计,学生在整个实验过程中可以用它来简便而精确地使液氮面维持在紫铜圆筒底和下档板之间距离的1/2 处。在超导样品的超导转变曲线附近,如果需要,还可以利用加热器线圈进行细调。由于金属在液氮温度下具有较大的热容,因此当我们在降温过程中使用电加热器时,一定要注意紫铜恒温块温度变化的滞后效应。

为使温度计和超导样品具有较好的温度一致性,我们将铂电阻温度计、硅二极管和温差电偶的测温端塞入紫铜恒温块的小孔中,并用低温胶或真空脂将待测超导样品粘贴在紫铜恒温块平台上的长方形凹槽内。超导样品与四根电引线的连接是通过金属铟的压接而成的。此外,温差电偶的参考端从低温恒温器底部的小孔中伸出(见图7-4-5 和图7-4-6),使其在整个实验过程中都浸没在液氮内。

(三) 电测量原理及测量设备

电测量设备的核心是一台称为“BW2 型高温超导材料特性测试装置”的电源盒和一台灵敏度为1μV 的PZ158 型直流数字电压表。BW2 型高温超导材料特性测试装置主要由铂电阻、硅二极管和超导样品等三个电阻测量电路构成,每一电路均包含恒流源、标准电阻、待测电阻、数字电压表和转换开关等五个主要部件。

1.四引线测量法

电阻测量的原理性电路如图7-4-7 所示。测量电流由恒流源提供,其大小可由标准电阻n R 上的电压n U 的测量值得出,即/n n I U R =。如果测量得到了待测样品上的电压x U 则待测样品的电阻x R 为 x x x n n

U U R R I U == (7-4-5) 由于低温物理实验装置的原则之一是必须尽可能减小室温漏热,因此测量引线通常是又细又长,其阻值有可能远远超过待测样品(如超导样品)的阻值。为了减小引线和接触电阻对测量的影响,通常采用所谓的“四引线测量法”,即每个电阻元件都采用四根引线,其中两根为电流引线,两根为电压引线。四引线测量法的基本原理是:恒流源通过两根电流引线将测量电流I 提供给待测样品,而数字电压表则是通过两根电压引线来测量电流I 在样品上所形成的电势差U . 由于两根电压引线与样品的接点处在两根电流引线的接点之间,因此排除了电流引线与样品之间的接触电阻对测量的影响;又由于数字电压表的输入阻抗很高,电压引线的引线电阻以及它们与样品之间的接触电阻对测量的影响可以忽略不计。因此,四引线测量法减小甚至排除了引线和接触电阻对测量的影响,是国际上通用的标准测量方法。

2.铂电阻和硅二极管测量电路

在铂电阻和硅二极管测量电路中,提供电流的都是只有单一输出的恒流源,它们输出电流的标称值分别为1 mA 和100 μA. 在实际测量中,通过微调我们可以分别在100Ω和10K Ω 的标准电阻上得到100. 00 mV 和1. 0000 V 的电压。

在铂电阻和硅二极管测量电路中,使用两个内置的灵敏度分别为10 μV 和100 μV 的4 1/2 位数字电压表,通过转换开关分别测量铂电阻、硅二极管以及相应的标准电阻上的电压,由此可确定紫铜恒温块的温度。

3.超导样品测量电路

由于超导样品的正常电阻受到多种因素的影响,因此每次测量所使用的超导样品的正常电阻可能有较大的差别。为此,在超导样品测量电路中,采用多档输出式的恒流源来提供电流。在本装置中,该内置恒流源共设标称为100 μA 、1 mA 、5 mA 、10 mA 、50 mA 、100 mA 的六档电流输出,其实际值由串接在电路中的10Ω标准电阻上的电压值确定。

为了提高测量精度,使用一台外接的灵敏度为1 μV 的5位半的PZ158 型直流数字电压表,来测量标准电阻和超导样品上的电压,由此可确定超导样品的电阻。

为了消除直流测量电路中固有的乱真电动势的影响,我们在采用四引线测量法的基础上还增设了电流反向开关,用以进一步确定超导体的电阻确已为零。当然,这种确定受到了测量仪器灵敏度的限制。然而,利用超导环所做的持久电流实验表明,超导态即使有电阻也小于2710m -Ω?。

4.温差电偶及定点液面计的测量电路

利用转换开关和PZ158 型直流数字电压表,可以监测铜.康铜温差电偶的电动势以及可调式定点液面计的指示。

5. 电加热器电路

BW2 型高温超导材料特性测试装置中,一个内置的直流稳压电源和一个指针式电压表构成了一个为安装在探头中的25Ω锰铜加热器线圈供电的电路。利用电压调节旋扭可提供0 . 5 V 的输出电压,从而使低温恒温器获得所需要的加热功率。

6.其他

在BW2 型高温超导材料特性测试装置的面板上,后边标有“(探头)”字样的铂电阻、硅二极管、超导样品和25Ω加热器等四个部件,以及温差电偶和液面计,均安装在低温恒温器中。利用一根两头带有19 芯插头的装置连接电缆,可将BW2 型高温超导材料特性测试装置与低温恒温器连为一体。

在每次实验开始时,学生必须利用所提供的带有香蕉插头的面板连接导线,把面板上用虚线连接起来的两两插座全部连接好。只有这样,才能使各部分构成完整的电流回路。 恒流源

标准电阻n R 样品电阻x R

图 7-4-7 四引线法测量电阻

(四) 实验电路图

本实验的测量线路图如图7-4-8 所示。

图7-4-8 实验电路图

实验内容

1.液氮的灌注

首先检查不锈钢杜瓦容器中是否有剩余液氮或其他杂物,如有则须将其倒出。清理干净后,缓慢倒入液氮,使液氮平静下来时的液面位置在距离容器底部约30 cm 的地方。使用液氮时一定要注意安全,例如,不要让液氮溅到人的身体上,也不要把液氮倒在有机玻璃盖板、测量仪器或引线上;液氮气化时体积将急剧膨胀,切勿将容器出气口封死;氮气是窒息性气体,应保持实验室有良好的通风。

2.电路的连接

将“装置连接电缆”两端的19 芯插头分别插在低温恒温器拉杆顶端及“BW2 型高温超导材料特性测试装置”(以下称“电源盒”)右侧面的插座上,同时接好“电源盒”面板上虚线所示的

待连接导线,并将158 PZ 型直流数字电压表与“电

源盒”面板上的“外接158 PZ ”相连接。

3.室温检测

打开158 PZ 型直流数字电压表的电源开关

(将其电压量程置于200 mV 档)以及“电源盒”的总

电源开关,并依次打开铂电阻、硅二极管和超导

样品等三个分电源开关,调节两支温度计的工作

电流,测量并记录其室温的电流和电压数据(本实

验中,铂温度计工作电流为1.0008mA,硅二极管

温度计工作电流为0.10004mA,样品电流为

1mA。)。原则上,为了能够测量得到反映超导样

品本身性质的超导转变曲线,通过超导样品的电

流应该越小越好。然而,为了保证用158 PZ 型直

流数字电压表能够较明显地观测到样品的超导转

变过程,通过超导样品的电流就不能太小。对于

一般的样品,可按照超导样品上的室温电压大约

图7-4-9紫铜恒温块温度随时间的变化为50μV,200μV来选定所通过的电流的大小,但

最好不要大于50 mA.最后,将转换开关先后旋至“温差电偶”和“液面指示”处,此时158 PZ 型直流数字电压表的示值应当很低。

4.低温恒温器降温速率的控制及低温温度计的比对

( 1 ) 低温恒温器降温速率的控制

低温测量是否能够在规定的时间内顺利完成,关键在于是否能够调节好低温恒温器的下档板浸入液氮的深度,使紫铜恒温块以适当速率降温。为了确保整个实验工作可在3 小时以内顺利完成,我们在低温恒温器的紫铜圆筒底部与下档板间距离的1/2 处安装了可调式定点液面计。在实验过程中只要随时调节低温恒温器的位置以保证液面计指示电压刚好为零,即可保证液氮表面刚好在液面计位置附近,这种情况下紫铜恒温块温度随时间的变化大致如图7-4-9所示。

具体步骤如下:

1 ) 确认是否已将转换开关旋至“液面指示”处。

2 ) 为了避免低温恒温器的紫铜圆筒底部一开始就触及液氮表面而使紫铜恒温块温度骤然降低造成实验失败,可在低温恒温器放进杜瓦容器之前,先用米尺测量液氮面距杜瓦容器口的大致深度,然后旋松拉杆固定螺母,调节拉杆位置使得低温恒温器下档板至有机玻璃板的距离刚好等于该深度,重新旋紧拉杆固定螺母,并将低温恒温器缓缓放入杜瓦容器中。当低温恒温器的下档板碰到了液氮面时,会发出像烧热的铁块碰到水时的响声,同时用手可感觉到有冷气从有机玻璃板上的小孔喷出,还可用手电筒通过有机玻璃板照射杜瓦容器内部,仔细观察低温恒温器的位置。

3 ) 当低温恒温器的下档板浸入液氮时,液氮表面将会像沸腾一样翻滚并拌有响声和大量冷气的喷出,大约1 分钟后液面逐渐平静下来。这时,可稍许旋松拉杆固定螺母,控制拉杆缓缓下降,并密切监视与液面指示计相连接的158 PZ 型直流数字电压表的示值(以下简称“液面计示值”),使之逐渐减小到“零”,立即拧紧固定螺母。这时液氮面恰好位于紫铜圆筒底部与下档板间距离的1/2 处(该处安装有液面计)。伴随着低温恒温器温度的不断下降,液氮面也会缓慢下降,引起液面计示值的增加。一旦发现液面计示值不再是“零”,应将拉杆向下移动少许(约2 mm,切不可下移过多),使液面计示值恢复“零”值。因此,在低温恒温器的整个降温过程中,我们要不断地控制拉杆下降来恢复液面计示值为零,维持低温恒温器下档板的浸入深度不变。

( 2 ) 低温温度计的比对

当紫铜恒温块的温度开始降低时,观察和测量各种温度计及超导样品电阻随温度的变化,大约每隔5 分钟测量一次各温度计的测温参量(如:铂电阻温度计的电阻、硅二极管温度计的正向电压、温差电偶的电动势),即进行温度计的比对。

具体而言,由于铂电阻温度计已经标定,性能稳定,且有较好的线性电阻温度关系,因此可以利用所给出的本装置铂电阻温度计的电阻温度关系简化公式,由相应温度下铂电阻温度计的电阻值确定紫铜恒温块的温度,再以此温度为横坐标,分别以所测得的硅二极管的正向电压值和温差电偶的温差电动势值为纵坐标,画出它们随温度变化的曲线。

如果要在较高的温度范围进行较精确的温度计比对工作,则应将低温恒温器置于距液面尽可能远的地方,并启用电加热器,以使紫铜恒温块能够稳定在中间温度。即使在以测量超导转变为主要目的的实验过程中,尽管紫铜恒温块从室温到150 K 附近的降温过程进行得很快(见图9),仍可以通过测量对具有正和负的温度系数的两类物质的低温物性有深刻的印象,并可以利用这段时间熟悉实验装置和方法,例如利用液面计示值来控制低温恒温器降温速率的方法,装置的各种显示,转换开关的功能,三种温度计的温度和超导样品电阻的测量方法等等。

(五) 超导转变曲线的测量:

当紫铜恒温块的温度降低到130 K 附近时,开始测量超导体的电阻以及这时铂电阻温度计所给出的温度,测量点的选取可视电阻变化的快慢而定,例如在超导转变发生之前可以每5 分钟测量一次,在超导转变过程中大约每半分钟测量一次。在这些测量点,应同时测量各温度计的测温参量,进行低温温度计的比对。

由于电路中的乱真电动势并不随电流方向的反向而改变,因此当样品电阻接近于零时,可利用电流反向后的电压是否改变来判定该超导样品的零电阻温度。具体做法是,先在正向电流下测量超导体的电压,然后按下电流反向开关按钮,重复上述测量,若这两次测量所得

到的数据相同,则表明超导样品达到了零电阻状态。

在上述测量过程中,低温恒温器降温速率的控制依然是十分重要的。在发生超导转变之前,即在T > T c,onset 温区,每测完一点都要把转换开关旋至“液面计”档,用158 PZ 型直流数字电压表监测液面的变化。在发生超导转变的过程中,即在T c0 < T < T c,onset 温区,由于在液面变化不大的情况下,超导样品的电阻随着温度的降低而迅速减小,因此不必每次再把转换开关旋至“液面计”档,而是应该密切监测超导样品电阻的变化。当超导样品的电阻接近零值时,如果低温恒温器的降温已经非常缓慢甚至停止,这时可以逐渐下移拉杆,使低温恒温器进一步降温,以促使超导转变的完成。最后,在超导样品已达到零电阻之后,可将低温恒温器紫铜圆筒的底部接触(不要深入)液氮表面,使紫铜恒温块的温度尽快降至液氮温度。在此过程中,转换开关应放在“温差电偶”档,以监视温度的变化。

数据处理

1. 用坐标纸分别绘出测得的超导样品、铂电阻、硅二极管、温差电偶随温度变化的曲

线;

2. 根据测得超导体电阻随温度变化曲线,确定其起始转变温度c,conset T 、转变温度cm T 和

零电阻温度0c T ; .

3. 计算铂电阻在85~130K 温度时线性方程的a 、b 值。

注意事项

1.所有测量必须在同一次降温过程中完成,应避免紫铜恒温块的温度上下波动。如果实验失败或需要补充不足的数据,必须将低温恒温器从杜瓦容器中取出并用电吹风机加热使其温度接近室温,待低温恒温器温度计示值重新恢复到室温数据附近时,重做本实验。

2.恒流源不可开路,稳压电源不可短路。PZ158 直流数字电压表也不宜长时间处在开路状态,必要时可利用随机提供的校零电压引线将输入端短路。

3.低温下,塑料套管又硬又脆,极易折断。在实验结束取出低温恒温器时,一定要避免温差电偶和液面计的参考端与杜瓦容器(特别是出口处)相碰。

4.在旋松固定螺母并下移拉杆时,一定要握紧拉杆,以免拉杆下滑。

问题思考

1.如何判断低温恒温器的下档板或紫铜圆筒底部碰到了液氮面?

2.为什么采用四引线法可以避免引线电阻的影响?在“四引线法测量”中,电流引线和电压引线能否互换?为什么?

3.确定超导样品的零电阻时,测量电流为何必须反向?该方法所判定的“零电阻”与实验仪器的灵敏度和精度有何关系?

参考文献

1. 张礼主编,近代物理学进展,北京:清华大学出版社,1997

2. 陆果等,高温超导材料特性测试装置,物理实验,2001.21(5);7-12

3.

热敏电阻器的电阻温度特性测量【最新】

热敏电阻器的电阻温度特性测量【最新】实验8 热敏电阻器的电阻温度特性测量 实验目的 1、用温度计和直流电桥测定热敏电阻器与温度的关系; 2、掌握NTC热敏电阻器的阻值与温度的关系特性、并学会通过数 据处理来求得经验公式的方法。 实验仪器 温度传感器温度特性实验仪电阻箱杜瓦瓶 实验原理 热敏电阻通常是用半导体材料制成的,它的电阻随温度变化而急剧变化。热敏电阻分为负温度系数(NTC)热敏电阻和正温度系数(PTC)热敏电阻两种。NTC热敏电阻的体积很小,其阻值随温度变化比金属电阻要灵敏得多,因此,它被广泛用于温度测量、温度控制以及电路中的温度补偿、时间延迟等。PTC热敏电阻分为陶瓷PTC热敏电阻及有机材料PTC热敏电阻两类。PTC热敏电阻是20世纪80年代初发展起来的一种新型材料电阻器,它的特点是存在一个“突变点温度”,当这种材料的温度超过突变点温度时,其阻值可急剧增加 175-6个数量级,(例如由10Ω急增到10Ω以上),因而具有极其广泛的应用价值。 近年来,我国在PTC热敏电阻器件开发与应用方面有了很大发展,陶瓷PTC热敏电阻由于其工作功率较大及耐高温性好,已被应用于工业机械、冰箱等作电流过载保护,并可替代镍铬电热丝作恒温加热器和控温电路,用于自热式电蚊香加热器、新型自动控温烘干机、各种电加热器等一系列安全可靠的家用电器;而有机材料PTC的热敏电阻具有动作时间短、体积小、阻值低等特点,现已被用于国内电话

程控交换机、便携式电脑、手提式无绳电话等高科技领域作过载保护,应用范围很广。 本实验用温度计和直流电桥测定热敏电阻器与温度的关系,要求掌握NTC热敏电阻器的阻值与温度的关系特性、并学会通过数据处理来求得经验公式的方法。 1.负温度系数热敏电阻器的电阻-温度特性 NTC热敏电阻通常由Mg、Ni、Cr、Co、Fe、Cu等金属氧化物中 o的2-3种均匀混合压制后,在600-1500C温度下烧结而成,由这类金属氧化物半导体制成的热敏电阻,具有很大的负温度系数。在一定的温度范围内,NTC热敏电阻的阻值与温度关系满足下列经验公式: (1) 式中,R为该热敏电阻在热力学温度T时的电阻值,R为热敏电阻处0 于热力学温度T时的阻值。B是材料常数,它不仅与材料性质有关,0 而且与温度有关,在一个不太大的范围内,B是常数。 由(1)式可求得,NTC热敏电阻在热力学温度T时的电阻温度0 系数 (2) 由(2)式可知,NTC热敏电阻的电阻温度系数是热力学温度的平方有关的量,在不同温度下,值不相同。 对(1)式两边取对数,得

三极管伏安特性测量实验报告

实验报告 课程名称:__电路与模拟电子技术实验 _______指导老师:_____干于_______成绩:__________________ 实验名称:_______三极管伏安特性测量______实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1. 深入理解三极管直流偏置电路的结构和工作原理 2. 深入理解和掌握三极管输入、输出伏安特性 二、实验原理 三极管的伏安特性曲线可全面反映各电极的电压和电流之间的关系,这些特性曲线实际上就是PN结性能的外部表现。从使用的角度来看,可把三极管当做一个非线性电阻来研究它的伏安特性,而不必涉及它的内部结构。其中最常用的是输入输出特性。 1)输入特性曲线 输入特性曲线是指在输入回路中,Uce 为不同常数值时的Ib ~Ube 曲线。分两种情形来讨论。 (1) 从图(a)来看,Uce =0,即c、e间短路。此时Ib 与Ube 间的关系就是两个正向二极 管并联的伏安特性。每改变一次Ube ,就可读到一组数据(Ube ,Ib ),用所得数据在坐标纸上作图,就得到图(b)中Uce =0时的输入特性曲线。 2)输出特性曲线 输出特性曲线是指在Ib 为不同常量时输出回路中的Ic ~Uce 曲线。测试时,先固定一个Ib ,改变Uce ,测得相应的Ic 值,从而可在Ic ~Uce 直角坐标系中画出一条曲线。Ib 取不同常量值时,即可测得一系列Ic ~Uce 曲线,形成曲线族,如图所示。 专业:___ _________ 姓名:___ _________ 学号: ______ 日期:_____ ______ 地点:_____ ___

电路元件伏安特性的测量

实验一电路元件伏安特性的测量 一、实验目的 1、熟悉万用表的使用方法。 2、加深理解线性电阻的伏安特性与电流、电压的参考方向。 3、加深理解非线性电阻元件的伏安特性。 4、加深对理想电源、实际电源伏安特性的理解。 二、实验设备和器材 直流可调稳压电源0~30 V 万用表MF-500型 电位器 1 kΩ 电阻器100Ω,510Ω,1000Ω 二极管IN4007 三、实验原理与说明 1、线性电阻是双向元件,其端电压u与其中的电流i成正比,即u = Ri,其伏安特性是u—i 平面内通过坐标原点的一条直线,直线斜率为R,如实验图1-1所示。 2、非线性电阻如二极管是单向元件,其u、i的关系为 )1 (- =u S e I iα,其伏安特性是u—i 平面内过坐标原点的一条曲线,如实验图1-2所示。 3、理想电压源的输出电压是不变的,其伏安特性是平行于电流轴的直线,与流过它的电流无关,流过它的电流由电源电压U s与外电路共同决定,其伏安特性为平行于电流轴的一条直线,如实验图1-3所示。。 4、实际电压源为理想电压源U s与内阻R s的串联组合。其端口电压与端口电流的关系为:U = U s -R s I,伏安特性为斜率是R s的一条直线,如实验图1-4所示。

四、实验内容及步骤 1、学习万用表的使用 用万用表测量线性电阻、直流电流和直流电压,测量电路如实验图1-5所示。 (1)用直接法测电阻R1 = 100Ω,R2= 510Ω,R3= 1000Ω。 (2)按实验图1-5接好电路,用万用表测量电压U s、U1、U2,电流I、I1、I2。 (3)用间接法求电阻R1、R2、R3、R(总)。 (4)自制表格填入相关数据。 2、测量线性电阻的伏安特性 (1)按实验图1-6接线,检查无误后,接通电源。 (2)调节直流电源的输出电压,使U分别为实验表1-1所列数据,测量相应的I值填入表中。 (3)画出线性电阻的伏安特性曲线。 实验表1-1 3、测量非线性电阻元件的伏安特性 (1)按实验图1-7接好电路,检测无误后接通电源。

测量热敏电阻的温度系数

3.5.2 用热敏电阻测量温度 (本文内容选自高等教育出版社《大学物理实验》) 热敏电阻是由对温度非常敏感的半导体陶瓷质工作体构成的元件。与一般常用的金属电阻相比,它有大得多的电阻温度系数值。根据所具有电阻温度系数的不同,热敏电阻可分三类:1.正电阻温度系数热敏电阻;2.临界电阻温度系数热敏电阻;3.普通负电阻温度系数热敏电阻。前两类的电阻急变区的温度范围窄,故适宜用在特定温度范围作为控制和报警的传感器。第三类在温度测量领域应用较广,是本实验所用的热敏元件。热敏电阻作为温度传感器具有用料省、成本低、体积小、结构简易,电阻温度系数绝对值大等优点,可以简便灵敏地测量微小温度的变化。我国有关科研单位还研制出可测量从-260℃低温直到900℃高温的一系列不同类型的热敏电阻传感器,在人造地球卫星和其他有关宇航技术、深海探测以及科学研究等众多领域得到广泛的应用。本实验旨在了解热敏电阻-温度特性和测温原理,掌握惠斯通电桥的原理和使用方法。学习坐标变换、曲线改直的技巧和用异号法消除零点误差等方法。 实验原理 1. 半导体热敏电阻的电阻——温度特性 某些金属氧化物半导体(如:Fe 3O 4、MgCr 2O 4等)的电阻与温度关系满足式(1): T B T e R R ∞= (1) 式中R T 是温度T 时的热敏电阻阻值,R ∞是T 趋于无穷时热敏电阻的阻值,B 是热敏电阻的材 料常数,T 为热力学温度。 金属的电阻与温度的关系满足(2): )](1[1212t t a R R t t -+= (2) 式中a 是与金属材料温度特性有关的系数,R t1、R t2分别对应于温度t 1、t 2时的电阻值。 根据定义,电阻的温度系数可由式(3)来决定: dt dR R a t t 1= (3) R t 是在温度为t 时的电阻值,由图3.5.2-1(a )可知,在R-t 曲线某一特定点作切线,便可求出该温度时的半导体电阻温度系数a 。 由式(1)和式(2)及图3.5.2-1可知,热敏电阻的电阻-温度特性与金属的电阻-温度特性比较,有三个特点: (1) 热敏电阻的电阻-温度特性是非线性的(呈指数下降),而金属的电阻-温度特性是线性的。

二极管伏安特性曲线测量方法

二极管伏安特性曲线 测量方法 电路中有各种电学元件,如碳膜电阻、线绕电阻、晶体二极管和三 极管、光敏和热敏元件等。人们常需要了解它们的伏安特性,以便正确 的选用它们。通常以电压为横坐标,电流为纵坐标作出元件的电压一电 流关系曲线,叫做该元件的伏安特性曲线。如果元件的伏安特性曲线是 一条直线,说明通过元件的电流与元件两端的电压成正比,则称该元件 为线性元件(例如碳膜电阻);如果元件的伏安特性曲线不是直线,则 称其为非线性元件(例如晶体二极管、三极管)。本实验通过测量二极 管的伏安特性曲线,了解二极管的单向导电性的实质。 1实验原理 晶体二极管是常见的非线性元件,其伏安特性曲线如图1所示。 当对晶体二极管加上正向偏置电压,则有正向电流流过二极管, 且随正向偏置电压的增大而增大。开始 电流随电压变化较慢,而当正向偏压增到接近二极管的导通电压(锗二 极管为0.2左右,硅二极管为0.7左右时),电流明显变化。在导通 后,电压变化少许,电流就会急剧变化。 当加反向偏置电压时,二极管处于截止状态,但不是完全没有电 流,而是有很小的反向电流。该反向电流随反向偏置电压增加得很 慢,但当反向偏置电压增至该二极管的击穿电压时,电流剧增,二 极管PN结被反 向击穿。 2、实验方法 2.1伏安法 IN4007 Re 电流表外接法:如图2.1.1所示(开关K打向2位置)⑴,此时电压表的读数等于二极管两端电压U D ;电流表的读数I是流过二极管和电压表的电流之和(比实际值大),即I = |D +lv。

匸V/Rv+V/ R D(1.1)由欧姆定律可得:

用V、I所作伏安特性曲线电流是电压表和二极管的电流之和,显然不是二极管的伏安特性曲线, 所用此方法测量存在理论误差。在测量低电压时,二极管内阻较大,误差较大,随着测量点电压升高,二极管内阻变小,误差也相对减小;在测量二极管正向伏安曲线时,由于二极管正向内阻相对较小,用此方法误差相对较小。 2.1.1 电流表内接法:如图2.1.1所示(开关K打向1位置),这时电流表的读数I为通过二极管D的电流,电压表读数是电流表和二极管电压之和,U = U D + U A o 由欧姆定律可得:U =I ( R D+ R A) 此方法作曲线所用电压值是二极管和电流表电压之和,存在理论误差,在测量过程中随着电压 U提高,二极管的等效内阻R D减小,电流表作用更大,相对误差增加;小量程电流表内阻R A较大, 引起误差较大。但此方法在测量二极管反向伏安特性曲线时,由于二极管反向内阻特别大,故误差较小。 2.1.2 表2.1.3 此次测量在上图作标纸中绘出伏安曲线 采用伏安法测量时由于电压或电流总有其一不能准确测得,结果总存在理论误差,测量结果较粗略,但此方法电路简单,操作方便。 2.2补偿法 补偿法测量基本原理如图 2.2.1 所示[2]o

热敏电阻的温度特性

测量热敏电阻的温度特性 热敏电阻是用半导体材料制成的热敏器件,根据其电阻率随温度变化的特性不同,大致可分为三种类型:(1)NTC (负温度系数)型热敏电阻;(2)PTC (正温度系数)型热敏电阻;(3)CTC (临界温度系数)型热敏电阻。其中PTC 型和CTC 型热敏电阻在一定温度范围内,阻值随温度剧烈变化,因此可用做开关元件。热敏电阻器在温度测控、现代电子仪器及家用电器(如电视机消磁电路、电子驱蚊器)等中有广泛用途。在温度测量中使用较多的是NTC 型热敏电阻,本实验将测量其电阻温度特性。 1.实验目的 (1)测量NTC 型热敏电阻的温度特性; (2)学习用作图法处理非线性数据。 2.实验原理 NTC 型热敏电阻特性 NTC 型热敏电阻是具有负的温度系数的热敏电阻,即随着温度升高其阻值下降,在不太宽的温度范围内(小于450℃),其电阻-温度特性符合负指数规律。 NTC 热敏电阻值R 随温度T 变化的规律由式(1-1)表示 T B T Ae R = (1-1) 其中A 、B 为与材料有关的特性常数,T 为绝对温度,单位K 。对于一定的热敏电阻, A 、 B 为常数。对式(1-1)两边取自然对数有 T B A R T + =ln ln (1-2) 从T R T 1ln -的线性拟合中,可得到A 、B 的值,写出热敏电阻温度特性 的经验公式。 3.实验内容 (1)连接电路。 (2)观察NTC 型热敏电阻的温度特性。 (3)测量NTC 型热敏电阻的温度特性。

(4)数据处理 R 特性曲线; a. 画出热敏电阻的t

b. 画出T R T 1ln 曲线,求出其直线的截距、斜率,即可求得A 、B ,写 出热敏电阻温度特性的经验公式。 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)

热电阻测温特性实验及其数据分析

实验二热电阻测温特性实验 1 实验目的 了解热电阻的特性与应用。 2 基本原理 利用导体电阻随温度变化的特性,热电阻用于测量时,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。常用铂电阻和铜电阻,铂电阻在0~630.74℃以内,电阻Rt与温度t的关系为Rt = R0(1 + αt + βt2),其中R0是温度为0 °C时的电阻。本实验R0 = 100 Ω,α= 3.9684×10?2°C?1,β= ?5.847×10?7°C?2,铂电阻使用三引线,其中一端接二根引线,主要为消除引线电阻对测量的影响。 3 需用器件与单元 加热源、K 型热电偶、Pt100热电阻、温度控制单元、温度传感器实验模板、数显单元、万用表。

4 实验步骤 4.1 差动放大器调零 将实验模板调节增益电位器RW2顺时针调节大致到中间位置,将±15V电源及地从主控箱接入模板,检查无误后,合上主控箱电源开关,进行差动放大器调零。 4.2 将K 型热电偶插入到热源孔,将自由端按极性正确接至主控板上,用于温度设定。 4.3 将Pt100铂电阻引线接入Rt端的a、b 上。Pt100三根线中,其中两根线为铂电阻的一端。采用三线制的第一对称接法将Pt100接入电桥,这样Rt、R3和Rl、RWl、R4并联组成单臂电桥,见图2.2。

4.4 在端点a 与地之间加直流源4V,合上主控箱电源开关,调RW1使Vi输出为零,即桥路输出为零(平衡)。然后将Pt100热电阻探头插入到热源孔。 4.5 按Δt = 5℃进行升温,温度稳定后,读取数显表值,将结果填入表2.1。实验结束后将温度控制器温度设定为零,关闭电源开关。 表2.1 铂电阻热电势与温度值 5 思考题 5.1 根据表2.1值计算温度测量系统的灵敏度,S =?uO/?t(?uO输出电压变化量,?t温度变化量);及其非线性误差。 5.2 如何根据测温范围和精度要求选用热电阻? 数据处理: 1、计算温度测量系统的灵敏度:其中Δt=5℃,

实验七_线性和非线性电学元件伏安特性的测量

实验七线性电阻和非线性电阻的伏安特性曲线 电阻是电学中常用的物理量。利用欧姆定律求导体电阻的方法称为伏安法,它是测量电阻的基本方法之一。 为了研究材料的导电性,通常作出其伏安特性曲线,了解它的电压与电流的关系。伏安特性曲线是直线的元件称为线性元件,伏安特性曲线不是直线的元件称为非线性元件。这两种元件的电阻都可用伏安法测量。但由于测量时电表被引入测量线路,电表内阻必然会影响测量结果,因而应考虑对测量结果进行必要的修正,以减少系统误差。 【实验目的】 1.通过对线性电阻伏安特性的测量,学习正确选择和使用伏安法测电阻的两种线路。 2.通过对二极管伏安特性的测量,了解非线性电学元件的导电特性。 3.习按电路图正确地接线,掌握限流电路和分压电路的主要特点。 4.学会用作图法处理实验数据。 【实验仪器】 欧姆定律实验盒直流稳压电源滑线变阻器(2个)单刀开关数字电流表 数字电压表保护电阻 【实验原理】 当一个元件两端加上电压,元件内有电流通过时,电压与电流之比称为该元件的电阻。若一个元件两端的电压与通过它的电流成比例,则伏安特性曲线为一条直线,这类元件称为线性元件。若元件两端的电压与通过它的电流不成比例,则伏安特性曲线不再是直线,而是一条曲线,这类元件称为非线性元件。 一般金属导体的电阻是线性电阻,它与外加电压的大小和方向无关,其伏安特性是一条直线(见图1),从图上看出,直线通过一、三象限。它表明,当调换电阻两端电压的极性时,电流也换向,而电阻始终为一定值,等于直线斜率的倒数R =V/I。 常用的半导体二极管是非线性电阻,其电阻值不仅与外加电压的大小有关,而且还与方向有关。为了了解半导体二极管的导电特性,下面对它的结构和电学性能作一简单介绍。 图1 线性电阻的伏安特性图2 半导体二极管的p-n结和表示符号半导体二极管又叫晶体二极管。半导体的导电性能介于导体和绝缘体之间。如果在纯净的半导体中适当地掺入极微量的杂质,则半导体的导电能力就会有上百万倍的增加。加到半导体中的杂质可分成两种类型:一种杂质加到半导体中去后,在半导体中会产生许多带负电的电子,这种半导体叫电子型半导体(也叫N型半导体);另一种杂质加到半导体中会产生许多缺少电

实验一 电路元件伏安特性的测试

实验一电路元件伏安特性的测试 一、实验目的 1.学会识别常用电路元件的方法 2.掌握线性电阻、非线性电阻元件伏安特性的测试方法 3.熟悉实验台上直流电工仪表和设备的使用方法 二、原理说明 电路元件的特性一般可用该元件上的端电压U 与通过该元件的电流I 之间的函数关系I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。电阻元件是电路中最常见的元件,有线性电阻和非线性电阻之分。实际电路中很少是仅由电源和线性电阻构成的“电平移动”电路,而非线性器件却常常有着广泛的使用,例如非线性元件二极管具有单向导电性,可以把交流信号变换成直流量,在电路中起着整流作用。 万用表的欧姆档只能在某一特定的U和I下测出对应的电阻值,因而不能测出非线性电阻的伏安特性。一般是用含源电路“在线”状态下测量元件的端电压和对应的电流值,进而由公式R=U/I求测电阻值。 1.线性电阻器的伏安特性符合欧姆定律U=RI,其阻值不随电压或电流值的变化而变化,伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示,该直线的斜率等于该电阻器的电阻值。 图1-1 元件的伏安特性 2.白炽灯可以视为一种电阻元件,其灯丝电阻随着温度的升高而增大。一般灯泡的“冷电阻”与“热电阻”的阻值可以相差几倍至十几倍。通过白炽灯的电流越大,其温度越高,阻值也越大,即对一组变化的电压值和对应的电流值,所得U/I不是一个常数,所以它的伏安特性是非线性的,如图1-1(b)所示。 3.半导体二极管也是一种非线性电阻元件,其伏安特性如图1-1(c)所示。二极管的电阻值随电压或电流的大小、方向的改变而改变。它的正向压降很小(一般锗管约为0.2~0.3V,硅管约为0.5~0.7V),正向电流随正向压降的升高而急剧上升,而反向电压从零一直增加到十几至几十伏时,其反向电

测试装置的基本特性

第二章 测试装置的基本特性 (一)填空题 1、 某一阶系统的频率响应函数为1 21 )(+=ωωj j H ,输入信号2sin )(t t x =,则输出信号)(t y 的频率为=ω ,幅值=y ,相位=φ 。 2、 试求传递函数分别为5.05.35.1+s 和2 224.141n n n s s ωωω++的两个环节串联后组成的系统的总灵敏度。 3、 为了获得测试信号的频谱,常用的信号分析方法有 、 和 。 4、 当测试系统的输出)(t y 与输入)(t x 之间的关系为)()(00t t x A t y -=时,该系统能实现 测试。此时,系统的频率特性为=)(ωj H 。 5、 传感器的灵敏度越高,就意味着传感器所感知的 越小。 6、 一个理想的测试装置,其输入和输出之间应该具有 关系为最佳。 (二)选择题 1、 不属于测试系统的静特性。 (1)灵敏度 (2)线性度 (3)回程误差 (4)阻尼系数 2、 从时域上看,系统的输出是输入与该系统 响应的卷积。 (1)正弦 (2)阶跃 (3)脉冲 (4)斜坡 3、 两环节的相频特性各为)(1ωQ 和)(2ωQ ,则两环节串联组成的测试系统,其相频特性 为 。 (1) )()(21ωωQ Q (2))()(21ωωQ Q + (3)) ()()()(2121ωωωωQ Q Q Q +(4))()(21ωωQ Q - 4、 一阶系统的阶跃响应中,超调量 。 (1)存在,但<5% (2)存在,但<1 (3)在时间常数很小时存在 (4)不存在 5、 忽略质量的单自由度振动系统是 系统。 (1)零阶 (2)一阶 (3)二阶 (4)高阶 6、 一阶系统的动态特性参数是 。 (1)固有频率 (2)线性度 (3)时间常数 (4)阻尼比 7、 用阶跃响应法求一阶装置的动态特性参数,可取输出值达到稳态值 倍所经过的 时间作为时间常数。 (1)0.632 (2)0.865 (3)0.950 (4)0.982 (三)判断对错题(用√或×表示) 1、 一线性系统不满足“不失真测试”条件,若用它传输一个1000Hz 的正弦信号,则必然导致输出波形失真。( ) 2、 在线性时不变系统中,当初始条件为零时,系统的输出量与输入量之比的拉氏变换称为传递函数。( ) 3、 当输入信号)(t x 一定时,系统的输出)(t y 将完全取决于传递函数)(s H ,而与该系统

二极管伏安特性曲线的测定

实验四二极管伏安特性曲线的测定 【一】实验目的 电路中有各种电学元件,如碳膜电阻、线绕电阻、晶体二极管和三极管、光敏和热敏元件等。人们常需要了解它们的伏安特性,以便正确的选用它们。通常以电压为横坐标,电流为纵坐标作出元件的电压—电流关系曲线,叫做该元件的伏安特性曲线。如果元件的伏安特性曲线是一条直线,说明通过元件的电流与元件两端的电压成正比,则称该元件为线性元件(例如碳膜电阻);如果元件的伏安特性曲线不是直线,则称其为非线性元件(例如晶体二极管、三极管)。本实验通过测量二极管的伏安特性曲线,了解二极管的单向导电性的实质。 【二】实验原理 晶体二极管是常见的非线性元件,其伏安特性曲线如图1所示。 当对晶体二极管加上正向偏置电压,则有正向电流流过二极管,且随正向偏置电压的增大而增大。开始电流随电压变化较慢,而当正向偏压增到接近二极管的导通电压(锗二极管为0.2左右,硅二极管为0.7左右时),电流明显变化。在导通后,电压变化少许,电流就会急剧变化。 当加反向偏置电压时,二极管处于截止状态,但不是完全没有电流,而是有很小的反向电流。该反向电流随反向偏置电压增加得很慢,但当反向偏置电压增至该二极管的击穿电压时,电流剧增,二极管PN结被反向击穿。

二极管一般工作在正向导通或反向截止状态。当正向导通时,注意不要超过其规定的额定电流;当反向截止时,更要注意加在该管的反向偏置电压应小于其反向击穿电压。但是,稳压二极管却利用二极管的反向击穿特性而恰恰工作于反向击穿状态。本实验用伏安法测定二极管的伏安特性,测量电路如图2所示。 测定二极管的电压与电流时,电压表与电流表有两种不同的接法。如图2,电压表接A 、D 两端叫做电流表外接;电压表接A 、D ′端叫做电流表内接。电流表外接时,其读数为流过二极管的电流I D 与流过电压表电流I V 之和,即测得的电流偏大;电流表内接时,电压表读数为二极管电压V D 与电流表电压V A 之和,即测得的电压偏大。因此,这两种接法都有测量误差。这种由于电表接入电路而引起的测量误差叫做接入误差。接入误差是系统误差,只要知道电压表的内阻R V 或电流表的内阻R A ,就可以把接法造成的测量误差算出来,然后选用测量误差较小的那种接法。电流表外接,造成的电流测量误差为: V D D V D D R R I I I I ==? 电流表内接,造成的电压测量误差为: D A D A D D R R V V V V ==? 其中R D 、R V 、R A 、分别是二极管的内阻,电压表的内阻和电流表的内阻。测量时究竟选用哪种接法,要看R D 、R V 、R A 的大小而定。显然,若R D /R V >R A /R D 应选用电流表内接,反之则选用电流表外接。 【三】 实验装置 直流稳压电源、直流电压表2个、直流电流表2个、滑线变阻器、待测二极管、开关、导线等。 注意事项: 1. 为保护直流稳压电源,接通或断开电源前均需先使其输出为零;对输出调节旋钮的调节 必须轻而缓慢。 2. 更换测量内容前,必须使电源输出为零,然后再逐步增加至需要值,以免损坏元件。 3. 测定2AP 型锗二极管的正、反向伏安特性曲线时,注意正向电流不要超过20mA ,反向 电压不要超过25V 。

金属电阻率及其温度系数

金属电阻率及其温度系数金属电阻率及其温度系数 物质物质 温度温度 t/℃ t/℃ t/℃ 电阻率电阻率 Ω·m 电阻温度系数电阻温度系数 a a R /℃-1 银 20 1.586×10-8 0.0038(20℃) 铜 20 1.678×10-8 0.00393(20℃) 金 20 2.40×10-8 0.00324(20℃) 铝 20 2.6548×10-8 0.00429(20℃) 钙 0 3.91×10-8 0.00416(0℃) 铍 20 4.0×10-8 0.025(20℃) 镁 20 4.45×10-8 0.0165(20℃) 钼 0 5.2×10-8 铱 20 5.3×10-8 0.003925(0℃~100℃) 钨 27 5.65×10-8 锌 20 5.196×10-8 0.00419(0℃~100℃) 钴 20 6.64×10-8 0.00604(0℃~100℃) 镍 20 6.84×10-8 0.0069(0℃~100℃) 镉 0 6.83×10-8 0.0042(0℃~100℃) 铟 20 8.37×10-8 铁 20 9.71×10-8 0.00651(20℃) 铂 20 10.6×10-8 0.00374(0℃~60℃) 锡 0 11.0×10-8 0.0047(0℃~100℃) 铷 20 12.5×10-8 铬 0 12.9×10-8 0.003(0℃~100℃) 镓 20 17.4×10-8 铊 0 18.0×10-8 铯 20 20×10-8 铅 20 20.684×10-8 0.00376(20℃~40℃) 锑 0 39.0×10-8 钛 20 42.0×10-8 汞 50 98.4×10-8 锰 23~100 185.0×10-8 锰铜 20 44.0×10-8 康铜 20 50.0×10-8 镍铬合金 20 100.0×10-8 铁铬铝合金 20 140.0×10-8 铝镍铁合金 20 160.0×10-8 不锈钢 0~900 70~130×10-8 不锈钢304 20 72×10-8 不锈钢316 20 74×10-8

第三章测试装置的基本特性

第三章测试装置的基本特性 第一节测试装置的组成及基本要求 一、对测试系统的基本要求 测试过程是人们获取客观事物有关信息的认识过程。在这一过程中,需要利用专门的测试系统和适当的测试方法,对被测对象进行检测,以求得所需要的信息及其量值。对测试系统的基本要求自然是使测试系统的输出信号能够真实地反映被测物理量的变化过程,不使信号发生畸变,即实现不失真测试。任何测试系统都有自己的传输特性,如果输入信号用x(t)表 示,测试系统的传输特性用h(t)表示,输 出信号用y(t)表示,则通常的工程测试问 题总是处理x(t)、h(t)和y(t)三者之间的 关系,如图2-1所示,即 1)若输入x(t)和输出y(t)是已知量, 图3-1 则通过输入、输出可推断出测试系统的传 输特性h(t)。 2)若测试系统的传输特性h(t)已知,输出y(t)亦已测得,则通过h(t)和y(t)可推断出对应于该输出的输入信号x(t)。 3)若输入信号x(t)和测试系统的传输特性h(t)已知,则可推断出测试系统的输出信号y(t)。 本章主要讨论系统传递(传输)特性的描述方法。 二、测试系统的组成 一个完善的测试系统是由若干个不同功能的环节所组成的,它们是实验装置、测试装置(传感器、中间变换器)、数据处理装置及显示或记录装置,如图2-2所示。 当测试的目的和要求不同时,以上四个部分并非必须全部包括。如简单的温度测试系统只需要一个液柱式温度计,它既包含了测量功能,又包含了显示功能。而用于测量 图3-2

机械构件频率响应的测试系统,则是一个相当复杂的多环节系统,如图2-3所示。 实验装置是使被测对象处于预定状态下,并将其有关方面的内在特性充分显露出来,它是使测量能有效进行的一种专门装置。例如,测定结构的动力学参数时,所使用的激振系统就是一种实验装置。它由信号发生器、功率放大器和激振器组成。信号发生器提供正弦信号,其频率可在一定范围内变化,此正弦信号经功率放大器放大后,去驱动激振器。激振器产生与信号发生器的频率相一致的交变激振力,此力通过力传感器作用于被测对象上,从而使被测对象处于该频率激振下的强迫振动状态。 测试装置的作用是将被测信号(如激振力、振动产生的位移、速度或加速度等)通过传感器变换成电信号,然后再经过后接仪器的再变换、放大和运算等,将其变成易于处理和记录的信号。测试装置是根据不同的被测机械参量,选用不同的传感器和相应的后接仪器而组成的。例如图中采用测力传感器和测力仪组成力的测试装置,同时又采用测振传感器和测振仪组成振动位移(或振动速度、振动加速度)的测试装置。 数据分析处理装置是将测试装置输出的电信号进一步分析处理,以便获得所需要的测试结果。如图中的双通道信号分析仪,它可对被测对象的输入信号(力信号)x (t )与输出信号(被测对象的振动位移信号)y (t )进行频率分析、功率谱分析、相关分析、频率响应函数分析、相干分析及概率密度分析等,以便得到所需要的明确的数据和资料。 显示或记录装置是测试系统的输出环节,它将分析和处理过的被测信号显示或记录(存储)下来,以供进一步分析研究。在测试系统中,现常以微处理机、打印机和绘图仪等作为显示和记录的装置。 在测试工作中,作为整个测试系统,它不仅包括了研究对象,也包括了测试装置,因此要想从测试结果中正确评价研究对象的特性,首先要确知测试装置的特性。 理想的测试装置应该具有单值的、确定的输入、输出关系。其中以输出和输入成线性关系为最佳。在静态测量中,虽然我们总是希望测试装置的输入输出具有这种线性关系,但由于在静态测量中,用曲线校正或输出补偿技术作非线性校正尚不困难,因此,这种线性关系并不是必须的;相反,由于在动态测试中作非线性校正目前还相当困难,因而,测试装置本身应该力求是线性系统,只有这样才能作比较完善的数学处理与分析。一些实际测试装置 ,

电阻温度系数

电阻温度系数(TCR表示电阻当温度改变 1 度时,电阻值的相对变化,当温度每升高1C 时,导体电阻的增加值与原来电阻的比值。单位为ppm/C(即10E (-6 )「C)。定义式如下:T CR=dR/R.dT 实际应用时,通常采用平均电阻温度系数,定义式如下:TCR(平均)=(R2-R1) /( R1*( T 2-T1 )) = (R2-R1) /(R1* △ T) R1--温度为t1时的电阻值,Q; R2--温度为t2时的电阻值,Q。 很多人对镀金,镀银有误解,或者是不清楚镀金的作用,现在来澄清下。。。 1。镀金并不是为了减小电阻,而是因为金的化学性质非常稳定,不容易氧化,接头上镀金是为了防止接触不良(不是因为金的导电能力比铜好) 。 2。众所周知,银的电阻率最小,在所有金属中,它的导电能力是最好的。 3 。不要以为镀金或镀银的板子就好,良好的电路设计和PCB 的设计,比镀金或镀银对电路性能的 影响更大。 4。导电能力银好于铜,铜好于金!现在贴上常见金属的电阻率及其温度系数:物质温度t/C 电阻率电阻温度系数aR/ C-1 银20 1.586 0.0038(20 C ) 铜20 1.678 0.00393(20 C ) 金20 2.40 0.00324(20 C ) 铝20 2.6548 0.00429(20 C ) 钙0 3.91 0.00416(0 C ) 铍20 4.0 0.025(20 C ) 镁20 4.45 0.0165(20 C ) 钼0 5.2 铱20 5.3 0.003925(0 C~100 C) 钨27 5.65 锌20 5.196 0.00419(0 C~100 C) 钴20 6.64 0.00604(0 C~100 C) 镍20 6.84 0.0069(0 C~100 C) 镉0 6.83 0.0042(0 C~100 C) 铟20 8.37 铁20 9.71 0.00651(20 C ) 铂20 10.6 0.00374(0 C~60C ) 锡0 11.0 0.0047(0 C~100 C) 铷20 12.5 铬0 12.9 0.003(0 C~100 C ) 镓20 17.4 铊0 18.0 铯20 20 铅20 20.684 (0.0037620 C~40C ) 锑0 39.0 钛20 42.0 汞50 98.4 锰23?100 185.0 电阻的温度系数,是指当温度每升高一度时,电阻增大的百分数。 例如,铂的温度系数是0.00374/ C。它是一个百分数。 在20 C时,一个1000欧的铂电阻,当温度升高到21 C时,它的电阻将变为1003.74欧。 实际上,在电工书上给出的是电阻率温度系数”,因为我们知道,一段电阻线的电阻由四个 因素决定:1、电阻线的长度;2、电阻线的横截面积;3、材料;4、温度。前三个因素是自身因素,第四个因素是外界因素。电阻率温度系数就是这第四个因素的作用大小。 实验证明,绝大多数金属材料的电阻率温度系数都约等于千分之4左右,少数金属材料的电 阻率温度系数极小,就成为制造精密电阻的选材,例如:康铜、锰铜等。

电阻温度特性

热敏电阻温度特性的研究 一、实验目的 了解和测量热敏电阻阻值与温度的关系 二、实验仪器 YJ-RZ-4A 数字智能化热学综合实验仪、NTC 热敏电阻传感器、Pt100传感器、 数字万用表 三、实验原理 热敏电阻是其电阻值随温度显著变化的一种热敏元件。热敏电阻按其电阻随温度变化的典型特性可分为三类,即负温度系数(NTC )热敏电阻,正温度系数(PTC )热敏电阻和临界温度电阻器(CTR )。PTC 和CTR 型热敏电阻在某些温度范围内,其电阻值会产生急剧变化。适用于某些狭窄温度范围内的一些特殊应用,而NTC 热敏电阻可用于较宽温度范围的测量。热敏电阻的电阻-温度特性曲线如图1所示。 图1 NTC 半导体热敏电阻是由一些金属氧化物,如钴、锰、镍、铜等过渡金属的氧化物,采用不同比例的配方,经高温烧结而成,然后采用不同的封装形式制成珠状、片状、杠状、垫圈状等各种形状。与金属导热电阻比较,NTC 半导体热敏电阻具有以下特点: 1.有很大的负电阻温度系数,因此其温度测量的灵敏度也比较高; 2.体积小,目前最小的珠状热敏电阻的尺寸可达mm 2.0φ,故热容量很小可作为点温 或表面温度以及快速变化温度的测量; 3.具有很大的电阻值(Ω-5 2 1010),因此可以忽略线路导线电阻和接触电阻等的影响,特别适用于远距离的温度测量和控制; 4.制造工艺比较简单,价格便宜。半导体热敏电阻的缺点是温度测量范围较窄。 NTC 半导体热敏电阻具有负温度系数,其电阻值随温度升高而减小,电阻与温度的关系可以用下面的经验公式表示

)/exp(T B A R T = (1) 式中,T R 为在温度为T 时的电阻值,T 为绝对温度(以K 为单位),A 和B 分别为具有电阻量纲和温度量纲,并且与热敏电阻的材料和结构有关的常数。由式(1)可得到当温度为0T 时的电阻值0R ,即 )/exp(00T B A R = (2) 比较式(1)和式(2),可得 )]1 1(exp[0 0T T B A R R T -= (3) 由式(3)可以看出,只要知道常数B 和在温度为0T 时的电阻值0R ,就可以利用式(3)计算在任意温度T 时的T R 值。常数B 可以通过实验来确定。将式(3)两边取对数,则有: )1 1(ln ln 0 0T T B R R T -+= (4) 由式(4)可以看出,T R ln 与 T 1 成线性关系,直线的斜率就是常数B ,热敏电阻的材料常数B 一般在2000—6000K 范围内。 热敏电阻的温度系数T α定义如下 21T B dT dR R T T T -=?= α (5) 由式(5)可以看出,T α是随温度降低而迅速增大。T α决定热敏电阻在全部工作范围内的温度灵敏度。热敏电阻的测温灵敏度比金属热电阻的高很多。例如,B 值为4000K ,当 )20(15.293C K T ?=时,热敏电阻的%7.4=T α 1)(-?C ,约为铂电阻的12倍。 四、实验内容和步骤 1、连接好实验仪器,如图 2、图3所示: 图2 内有加热引线和温度传感器引线 隔热板 恒温腔

非线性电阻伏安特性曲线实验

线性电阻和非线性电阻的伏安特性曲线 【教学目的】 1、测绘电阻的伏安特性曲线,学会用图线表示实验结果。 2、了解晶体二极管的单向导电特性。 【教学重点】 1、测绘电阻的伏安特性曲线; 2、了解二极管的单向导电特性。 【教学难点】 非线性电阻的导电性质。 【课程讲授】 提问:1.如何测绘伏安特性曲线? 2.二极管导电有何特点? 一、实验原理 常用的晶体二极管是非线性电阻,其电阻值不仅与外加电压的大小有关,而且还与方向有关。下面对它的结构和电学性能作一简单介绍。 图1线性电阻的伏安特性图2晶体二极管的p-n结和表示符号晶体二级管又叫半导体二极管。半导体的导电性能介于导体和绝缘体之间。如果在纯净的半导体中适当地掺入极微量的杂质,则半导体的导电能力就会有上百万倍的增加。加到半导体中的杂质可分成两种类型:一种杂质加到半导体中去后,在半导体中会产生许多带负电的电子,这种半导体叫电子型半导体 (也叫n型半导体);另一种杂质加到半导体中会产生许多缺少电子的空穴(空位),这种半导体叫空穴型半导体 (也叫p型半导体)。 晶体二极管是由两种具有不同导电性能的n型半导体和p型半导体结合形成的p-n结构成的。它有正、负两个电极,正极由p型半导体引出,负极由n型半导体引出,如图2(a)所示。p-n结具有单向导电的特性,常用图2(b)所示的符号表示。 关于p-n结的形成和导电性能可作如下解释。

图3 p-n结的形成和单向导电特性 如图3(a)所示,由于p区中空穴的浓度比n区大,空穴便由p区向n区扩散;同样,由于n区的电子浓度比p区大,电子便由p区扩散。随着扩散的进行,p区空穴减少,出现 了一层带负电的粒子区(以?表示);n区的电子减少,出现了一层带正电的粒子区(以⊕表示)。 结果在p型与n型半导体交界面的两侧附近,形成了带正、负电的薄层,称为p-n结。这个带电薄层内的正、负电荷产生了一个电场,其方向恰好与载流子(电子、空穴)扩散运动的方向相反,使载流子的扩散受到内电场的阻力作用,所以这个带电薄层又称为阻挡层。当扩散作用与内电场作用相等时,p区的空穴和n区的电子不再减少,阻挡层也不再增加,达到动态平衡,这时二极管中没有电流。 如图3(b)所示,当p-n结加上正向电压(p区接正,n区接负)时,外电场与内电场方向相反,因而削弱了内电场,使阻挡层变薄。这样,载流子就能顺利地通过p-n结,形成比较大的电流。所以,p-n结在正向导电时电阻很小。 如图3(c)所示,当p-n结加上反向电压(p区接负,n区接正)时,外加电场与内场方向相同,因而加强了内电场的作用,使阻挡层变厚。这样,只有极少数载流子能够通过p-n 结,形成很小的反向电流。所以p-n结的反向电阻很大。 晶体二极管的正、反向特性曲线如图12-4所示。从图上看出,电流和电压不是线性关系,各点的电阻都不相同。凡具有这种性质的电阻,就称为非线性电阻。 图4晶体二极管的伏安特性图5测电阻伏安特性的电路 二、实验仪器 直流稳压电源,万用表(2台),电阻,白炽灯泡,灯座,短接桥和连接导线,实验用 九孔插件方板。

电阻温度系数的测定

电阻温度系数的测定 一、实验目的 1.了解电阻温度系数的测定原理; 2. 了解测量电阻温度系数的方法。 二、实验仪器 DZW 型电阻温度特性测定仪 三、实验原理 大多数物质的电阻率会随温度的变化而变化,在设计电子元件及电路时需考虑温度对电阻和元件的影响。为反应电阻率随温度的变化特征,常用电阻温度系数来表示: d dT ραρ= (1) 部分情况下在温度变化不大的范围内常用平均电阻温度系数表示: 21121() R R R T T α-=- (2) 即:温度每升改变一度电阻的相对变化率。 四、实验内容及步骤 1.试样安装:将试样两引线端与两测试探头连接好,紧固连接螺丝,然后将盖板盖上。 2.温度设置:打开电源开关,确定AL810表自动状态已关闭,PV 口显示温度情况下。先按下温控表AL810面板上的“PAR ”键不松,立即再按住“▼”键(3秒不动),PV 栏显示“LC ”时松开两键,然后按“▲”或“▼”键将其设置为“1”;

再次按“PAR”键PV口显示r1,按“▲”或“▼”键将第一段升温速度设置为2.00(℃/分钟);再次按“PAR”键PV口显示L1,按“▲”或“▼”键将第一段目标温度设置为100(℃);再次按“PAR”键PV 口显示d1,按“▲”或“▼”将第一段保温时间设置为2(分钟)。再次按“PAR”键PV口显示r2,此时可设置第二温度控制阶段,设置方法同第一阶段相同,本实验只需第一段升温过程,第二段升温速度r2设置为“END”即可。 3.升温操作:在PV显示温度时,按住“PAR”键3秒,PV口显示“PROG”时松开,按“▲”或“▼”键选择“run”,再次按“PAR”键确认,即进入自动升温状态。开始升温后PV口显示炉膛内部实际测量温度。 4.电阻值测试:测量电阻仪器为内嵌于设备的万用表。打开试验开关,根据试样电阻值选择合适的电阻量程档位,温度到达30℃时开始记录样品的电阻值,从30℃至100℃每隔10℃记录一次,共8组数据。 5.实验完成后关闭试验开关和电源开关。 五、数据处理

(完整版)测试装置的基本特性

第二章测试装置的基本特性 本章学习要求 1.建立测试系统的概念 2.了解测试系统特性对测量结果的影响 3.了解测试系统特性的测量方法 为实现某种量的测量而选择或设计测量装置时,就必须考虑这些测量装置能否准确获取被测量的量值及其变化,即实现准确测量,而是否能够实现准确测量,则取决于测量装置的特性。这些特性包括静态与动态特性、负载特性、抗干扰性等。这种划分只是为了研究上的方便,事实上测量装置的特性是统一的,各种特性之间是相互关联的。系统动态特性的性质往往与某些静态特性有关。例如,若考虑静态特性中的非线性、迟滞、游隙等,则动态特性方程就称为非线性方程。显然,从难于求解的非线性方程很难得到系统动态特性的清晰描述。因此,在研究测量系统动态特性时,往往忽略上述非线性或参数的时变特性,只从线性系统的角度研究测量系统最基本的动态特性。 2.1 测试系统概论 测试系统是执行测试任务的传感器、仪器和设备的总称。当测试的目的、要求不同时,所用的测试装置差别很大。简单的温度测试装置只需一个液柱式温度计,而较完整的动刚度测试系统,则仪器多且复杂。本章所指的测试装置可以小到传感器,大到整个测试系统。 玻璃管温度计 轴承故障检测仪 图2.1-1 在测量工作中,一般把研究对象和测量装置作为一个系统来看待。问题简化为处理输入量x(t)、系统传输特性h(t)和输出y(t)三者之间的关系。常见系统分析分为如下三种情况: 1)当输入、输出能够测量时(已知),可以通过它们推断系统的传输特性。-系统辨识 2)当系统特性已知,输出可测量,可以通过它们推断导致该输出的输入量。-系统反求 3)如果输入和系统特性已知,则可以推断和估计系统的输出量。-系统预测 图2.1-2 系统、输入和输出 2.1.1 对测试系统的基本要求 理想的测试系统应该具有单值的、确定的输入-输出关系。对于每一输入量都应该只有单一的输出量与之对应。知道其中一个量就可以确定另一个量。其中以输出和输入成线性关系最佳。许多实际测量装置无法在较大工作范围内满足线性要求,但可以在有效测量范围内近似满足线性测量关系要求。一般把测试系统定常线性系统考虑。 2.1.2 线性系统及其主要性质 若系统的输入x(t)和输出y(t)之间的关系可以用常系数线性微分方程来描述 a n y(n)(t)+a n-1y(n-1)(t)+…+a1y(1)(t)+a0y(0)(t) = b m x(m)(t)+b m-1x(m-1)(t)+b1x(1)(t)+b0x(0)(t) (2.1-1)

相关文档
相关文档 最新文档