文档视界 最新最全的文档下载
当前位置:文档视界 › 正态分布和t分布查表

正态分布和t分布查表

(完整版)t分布的概念及表和查表方法.doc

t分布介绍 在概率论和统计学中,学生 t - 分布(t -distribution ),可简称为 t 分布,用于根据小样本来估计呈正态分布且方差未知的总体的均值。如果总体方差已知(例如在样本数量足够多时),则应该用正态分布来估计总体均值。 t 分布曲线形态与 n(确切地说与自由度 df )大小有关。与标准正态分布曲线相比,自由度df 越小, t 分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高;自由度 df 愈大, t 分布曲线愈接近正态分布曲线,当自由度 df= ∞时, t 分布曲线为标准正态分布曲线。 中文名t 分布应用在对呈正态分布的总体 外文名t -distribution 别称学生 t 分布 学科概率论和统计学相关术语t 检验 目录 1历史 2定义 3扩展 4特征 5置信区间 6计算 历史 在概率论和统计学中,学生 t -分布( Student's t-distribution )经常应用在对呈正态分布的总体的均值进行估计。它是对两个样本均值差异进行显著性测试的学生t 测定的基础。 t 检定改进了Z 检定(en:Z-test ),不论样本数量大或小皆可应用。在样本数量大(超过 120 等)时,可以应用Z 检定,但 Z 检定用在小的样本会产生很大的误差,因此样本很小的情况下得改用学生t 检定。在数据有三组以上时,因为误差无法压低,此时可以用变异数分析代替学生t 检定。 当母群体的标准差是未知的但却又需要估计时,我们可以运用学生t-分布。 学生 t-分布可简称为t 分布。其推导由威廉·戈塞于 1908 年首先发表,当时他还在都柏林的健力士酿酒厂工作。因为不能以他本人的名义发表,所以论文使用了学生(Student )这一笔名。之后t 检验以及相关理论经由罗纳德·费雪的工作发扬光大,而正是他将此分布称为学生分布。 定义

t分布与t检验

t分布 从数理统计的理论上讲,并且上节的实例也已说明,在总体均数为μ,总体标准差为σ的正态总体中随机抽取n相等的许多样本,分别算出样本均数,这些样本均数呈正态分布。而当样本含量n不太小时,即使总体不呈正态分布,样本均数的分布也接近正态。在下式中, 由于μ与(样本均数的标准差)都是常量,又 X呈正态分布,所以u 也呈正态分布。但实际上总体标准差往往是不知道的,上式分母中的σ要由S替代,成为 ,那么由于样本标 准差有抽样波动,SX也有抽样波动,于是,在用S代替σ 后上式等号右边的变量便不呈正态分布而呈t分布,其定义公式是 (6.5)

t分布也是左右对称,但在总体均数附近的面积较正态分布的少些,两端尾部的面积则比正态分布的多些。t分布曲线随自由度而不同(如图6.1)。随着自由度的增大,t分布逐渐接近正态分布,当自由度为无限大时,t分布成为正态分布。 图6.1t分布(实线)与正态分布(虚线) 与正态分布相似,我们把t分布左右两端尾部面积之和α=0.05(即每侧尾部面积为0.025)相应的t值称为5%界,符号为t0.05,,,这里ν是自由度。把左右两端尾部面积之和α为0.01相应的t值称为1%界,符号为t0.01,,。t的5%界与1%界可查附表3,t值表。例如当自由度为10-1=9时,t0.05,9=2.262,t0.01,9=3.250。 可信区间的估计 一、参数估计的意义 一组调查或实验数据,如果是计量资料可求得平均数,标准差等统计指标,如果是计数资料则求百分率藉以概括说明这群观察数据的特征,故称特征值。由于样本特征值是通过统计求得的,所以又称为统计量以区别于总体特征值。总体特征值一般称为参数(总体量)。我们进行科研所要探索的是总体特征值即总体参数,而我们得到的却是样本统计量,用样本统计量估计或推论总体参数的过程叫参数估计。

t分布和标准规定正态分布

数理统计实验 t分布与标准正态分布 院(系): 班级: 成员:

成员: 成员: 指导老师: 日期:

目录 t分布与标准正态分布的关系 (1) 一、实验目的 (1) 二、实验原理 (1) 三、实验内容及步骤 (1) 四、实验器材 (6) 五、实验结果分析 (6) 六、实验结论 (6)

t分布与标准正态分布的关系 一、实验目的 正态分布是统计中一种很重要的理论分布,是许多统计方法的理论基础。正态分布有两个参数,μ和σ,决定了正态分布的本质。为了应用和计算方便,常将一般的正态变量X通过μ变换[(X-μ)/σ]转化成标准正态变量μ,以使原来各种形态的正态分布都转换为μ=0,σ=1的标准正态分布,亦称μ分布。对于标准正态分布来说,μ是数据整体的平均值,σ是整体的标准差。但实际操作过程中,人们往往难以获得μ和σ。因此人们只能通过样本对这两个参数做出估计,用样本平均值和样本标准差代替整体的平均值和标准差,从而得出了t分布。另外从图像的层面说,正态分布的位置和形态只与μ和σ有关,而t分布不只与样本平均值和样本标准差有关,还与自由度相关。通过实验了解t分布与标准正态分布之间的关系。 二、实验原理 运用EXCEL软件验证t分布与标准正态分布的关系,绘制相应的统计图表进行分析。 三、实验内容及步骤 1.打开Excel文件,将“t分布与标准正态分布N(0,1)”合并并居中,黑体,20字号,红色;

2.选中文件,选项,自定义功能区,加载开发工具.在开发工具中插入滚动条,调节滚动条大小; 3.设置A2单元格格式,数字自定义区”!n=#,##0;[红 色]¥-#,##0”.然后左对齐,设置为红色;

标准正态分布表

标准正态分布表 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

标准正态分布表

4432198653 1.80.964 1 0.964 8 0.965 6 0.966 4 0.967 2 0.967 8 0.968 6 0.969 3 0.970 0.970 6 1.90.971 3 0.971 9 0.972 6 0.973 2 0.973 8 0.974 4 0.975 0.975 6 0.976 2 0.976 7 20.977 2 0.977 8 0.978 3 0.978 8 0.979 3 0.979 8 0.980 3 0.980 8 0.981 2 0.981 7 2.10.982 1 0.982 6 0.983 0.983 4 0.983 8 0.984 2 0.984 6 0.985 0.985 4 0.985 7 2.20.986 1 0.986 4 0.986 8 0.987 1 0.987 4 0.987 8 0.988 1 0.988 4 0.988 7 0.989 2.30.989 3 0.989 6 0.989 8 0.990 1 0.990 4 0.990 6 0.990 9 0.991 1 0.991 3 0.991 6 2.40.991 8 0.992 0.992 2 0.992 5 0.992 7 0.992 9 0.993 1 0.993 2 0.993 4 0.993 6 2.50.993 8 0.994 0.994 1 0.994 3 0.994 5 0.994 6 0.994 8 0.994 9 0.995 1 0.995 2 2.60.995 3 0.995 5 0.995 6 0.995 7 0.995 9 0.996 0.996 1 0.996 2 0.996 3 0.996 4 2.70.996 5 0.996 6 0.996 7 0.996 8 0.996 9 0.997 0.997 1 0.997 2 0.997 3 0.997 4 2.80.997 4 0.997 5 0.997 6 0.997 7 0.997 7 0.997 8 0.997 9 0.997 9 0.998 0.998 1 2.90.998 1 0.998 2 0.998 2 0.998 3 0.998 4 0.998 4 0.998 5 0.998 5 0.998 6 0.998 6 x00.10.20.30.40.50.60.70.80.9 30.998 7 0.999 0.999 3 0.999 5 0.999 7 0.999 8 0.999 8 0.999 9 0.999 9 1.000 正态分布概率表 Φ( u ) =

t分布的概念及表和查表方法

t分布介绍 在概率论和统计学中,学生t-分布(t-distribution),可简称为t分布,用于根据小样本来估计呈正态分布且方差未知的总体的均值。如果总体方差已知(例如在样本数量足够多时),则应该用正态分布来估计总体均值。 t分布曲线形态与n(确切地说与自由度df)大小有关。与标准正态分布曲线相比,自由度df越小,t分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高;自由度df愈大,t分布曲线愈接近正态分布曲线,当自由度df=∞时,t分布曲线为标准正态分布曲线。 目录 1历史 2定义 3扩展 4特征 5置信区间 6计算 历史 在概率论和统计学中,学生t-分布(Student's t-distribution)经常应用在对呈正态分布的总体的均值进行估计。它是对两个样本均值差异进行显著性测试的学生t测定的基础

。t检定改进了Z检定(en:Z-test),不论样本数量大或小皆可应用。在样本数量大(超过120等)时,可以应用Z检定,但Z检定用在小的样本会产生很大的误差,因此样本很小的情况下得改用学生t 检定。在数据有三组以上时,因为误差无法压低,此时可以用变异数分析代替学生t检定。 当母群体的标准差是未知的但却又需要估计时,我们可以运用学生t-分布。 学生t-分布可简称为t分布。其推导由威廉·戈塞于1908年首先发表,当时他还在都柏林的健力士酿酒厂工作。因为不能以他本人的名义发表,所以论文使用了学生(Student)这一笔名。之后t检验以及相关理论经由罗纳德·费雪的工作发扬光大,而正是他将此分布称为学生分布。 定义 由于在实际工作中,往往σ是未知的,常用s作为σ的估计值,为了与u变换区别,称为t变换,统计量t 值的分布称为t分布。 假设X服从标准正态分布N(0,1),Y服从分布,那么的分布称为自由度为n 的t分布,记为。 分布密度函数, 其中,Gam(x)为伽马函数。

标准正态分布

标准正态分布 标准正态分布(英语:standard normal distribution,德语Standardnormalverteilung),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。期望值μ=0,即曲线图象对称轴为Y轴,标准差σ=1条件下的正态分布,记为N(0,1)。 定义: 标准正态分布又称为u分布,是以0为均数、以1为标准差的正态分布,记为N(0,1)。标准正态分布曲线下面积分布规律是:在-1.96~+1.96范围内曲线下的面积等于0.9500,在-2.58~+2.58范围内曲线下面积为0.9900。统计学家还制定了一张统计用表(自由度为∞时),借助该表就可以估计出某些特殊u1和u2值范围内的曲线下面积。 正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是位置参数均数为0, 尺度参数:标准差为1的正态分布 特点: 密度函数关于平均值对称 平均值与它的众数(statistical mode)以及中位数(median)同一数值。 函数曲线下68.268949%的面积在平均数左右的一个标准差范围内。 95.449974%的面积在平均数左右两个标准差的范围内。 99.730020%的面积在平均数左右三个标准差的范围内。 99.993666%的面积在平均数左右四个标准差的范围内。 函数曲线的反曲点(inflection point)为离平均数一个标准差距离的位置。 标准偏差:

深蓝色区域是距平均值小于一个标准差之内的数值范围。在正态分布中,此范围所占比率为全部数值之68%,根据正态分布,两个标准差之内的比率合起来为95%;三个标准差之内的比率合起来为99%。 在实际应用上,常考虑一组数据具有近似于正态分布的概率分布。若其假设正确,则约68.3%数值分布在距离平均值有1个标准差之内的范围,约95.4%数值分布在距离平均值有2个标准差之内的范围,以及约99.7%数值分布在距离平均值有3个标准差之内的范围。称为“68-95-99.7法则”或“经验法则”

正态分布、T分布、F分布表

附表1. 标准正态分布表 x0.000.010.020.030.040.050.060.070.080.09 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.90.500 0 0.539 8 0.579 3 0.617 9 0.655 4 0.691 5 0.725 7 0.758 0 0.788 1 0.815 9 0.841 3 0.864 3 0.884 9 0.903 2 0.919 2 0.933 2 0.945 2 0.955 4 0.964 1 0.971 3 0.977 2 0.982 1 0.986 1 0.989 3 0.991 8 0.993 8 0.995 3 0.996 5 0.997 4 0.998 1 0.504 0 0.543 8 0.583 2 0.621 7 0.659 1 0.695 0 0.729 1 0.761 1 0.791 0 0.818 6 0.843 8 0.866 5 0.886 9 0.904 9 0.920 7 0.934 5 0.946 3 0.956 4 0.964 8 0.971 9 0.977 8 0.982 6 0.986 4 0.989 6 0.992 0 0.994 0 0.995 5 0.996 6 0.997 5 0.998 2 0.508 0 0.547 8 0.587 1 0.625 5 0.662 8 0.698 5 0.732 4 0.764 2 0.793 9 0.821 2 0.846 1 0.868 6 0.888 8 0.906 6 0.922 2 0.935 7 0.947 4 0.957 3 0.965 6 0.972 6 0.978 3 0.983 0 0.986 8 0.989 8 0.992 2 0.994 1 0.995 6 0.996 7 0.997 6 0.998 2 0.512 0 0.551 7 0.591 0 0.629 3 0.666 4 0.701 9 0.735 7 0.767 3 0.796 7 0.823 8 0.848 5 0.870 8 0.890 7 0.908 2 0.923 6 0.937 0 0.948 4 0.958 2 0.966 4 0.973 2 0.978 8 0.983 4 0.987 1 0.990 1 0.992 5 0.994 3 0.995 7 0.996 8 0.997 7 0.998 3 0.516 0 0.555 7 0.594 8 0.633 1 0.670 0 0.705 4 0.738 9 0.770 3 0.799 5 0.826 4 0.850 8 0.872 9 0.892 5 0.909 9 0.925 1 0.938 2 0.949 5 0.959 1 0.967 2 0.973 8 0.979 3 0.983 8 0.987 4 0.990 4 0.992 7 0.994 5 0.995 9 0.996 9 0.997 7 0.998 4 0.519 9 0.559 6 0.598 7 0.636 8 0.673 6 0.708 8 0.742 2 0.773 4 0.802 3 0.828 9 0.853 1 0.874 9 0.894 4 0.911 5 0.926 5 0.939 4 0.950 5 0.959 9 0.967 8 0.974 4 0.979 8 0.984 2 0.987 8 0.990 6 0.992 9 0.994 6 0.996 0 0.997 0 0.997 8 0.998 4 0.523 9 0.563 6 0.602 6 0.640 4 0.677 2 0.712 3 0.745 4 0.776 4 0.805 1 0.835 5 0.855 4 0.877 0 0.896 2 0.913 1 0.927 9 0.940 6 0.951 5 0.960 8 0.968 6 0.975 0 0.980 3 0.984 6 0.988 1 0.990 9 0.993 1 0.994 8 0.996 1 0.997 1 0.997 9 0.998 5 0.527 9 0.567 5 0.606 4 0.644 3 0.680 8 0.715 7 0.748 6 0.779 4 0.807 8 0.834 0 0.857 7 0.879 0 0.898 0 0.914 7 0.929 2 0.941 8 0.952 5 0.961 6 0.969 3 0.975 6 0.980 8 0.985 0 0.988 4 0.991 1 0.993 2 0.994 9 0.996 2 0.997 2 0.997 9 0.998 5 0.531 9 0.571 4 0.610 3 0.648 0 0.684 4 0.719 0 0.751 7 0.782 3 0.810 6 0.836 5 0.859 9 0.881 0 0.899 7 0.916 2 0.930 6 0.943 0 0.953 5 0.962 5 0.970 0 0.976 2 0.981 2 0.985 4 0.988 7 0.991 3 0.993 4 0.995 1 0.996 3 0.997 3 0.998 0 0.998 6 0.535 9 0.575 3 0.614 1 0.651 7 0.687 9 0.722 4 0.754 9 0.785 2 0.813 3 0.838 9 0.862 1 0.883 0 0.901 5 0.917 7 0.931 9 0.944 1 0.953 5 0.963 3 0.970 6 0.976 7 0.981 7 0.985 7 0.989 0 0.991 6 0.993 6 0.995 2 0.996 4 0.997 4 0.998 1 0.998 6 x0.00.10.20.30.40.50.60.70.80.9 30.998 70.999 00.999 30.999 50.999 70.999 80.999 80.999 90.999 9 1.000 0

卡方分布概念及表和查表方法

若n个相互独立的随机变量ξ?,ξ?,...,ξn,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布(chi-square distribution)。 目录 1简介 2定义 3性质 4概率表 简介 分布在数理统计中具有重要意义。分布是由阿贝(Abbe)于1863年首先提出的,后来由海尔墨特(Hermert)和现代统计学的奠基人之一的卡·皮尔逊(C K·Pearson)分别于1875年和1900年推导出来,是统计学中的一个非常有用的著名分布。 定义 若n个相互独立的随机变量ξ?、ξ?、……、ξn ,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为分布(chi-square distribution), 卡方分布是由正态分布构造而成的一个新的分布,当自由度很大时,分布近似为正态分布。

对于任意正整数x,自由度为的卡方分布是一个随机变量X的机率分布。 性质 1) 分布在第一象限内,卡方值都是正值,呈正偏态(右偏态),随着参数 的增大,分布趋近于正态分布;卡方分布密度曲线下的面积都是1。 2) 分布的均值与方差可以看出,随着自由度的增大,分布向正无穷方向延伸(因为均值越来越大),分布曲线也越来越低阔(因为方差越来越大)。 3)不同的自由度决定不同的卡方分布,自由度越小,分布越偏斜。 4) 若互相独立,则:服从分布,自由度为 。 5) 分布的均数为自由度,记为 E( ) = 。 6) 分布的方差为2倍的自由度( ),记为 D( ) = 。 概率表 分布不象正态分布那样将所有正态分布的查表都转化为标准正态分布去查,在 分布中得对每个分布编制相应的概率值,这通过分布表中列出不同的自由度来表示, 查分布概率表时,按自由度及相应的概率去找到对应的值。如上图所示的单侧概率(7)=的查表方法就是,在第一列找到自由度7这一行,在第一行中找到概率这一列,行列的交叉处即是。 表中所给值直接只能查单侧概率值,可以变化一下来查双侧概率值。例如,要在自由度为7的卡方分布中,得到双侧概率为所对应的上下端点可以这样来考虑:双侧概率指的是在

(完整版)t分布表

附表4 t 分布表 αα =>)}()({n t n t P n α=0.25 α=0.10 α=0.05 α=0.025 α=0.01 α=0.005 1 1.0000 3.0777 6.3138 12.7062 31.8207 63.6574 2 0.8165 1.8856 2.9200 4.3027 6.9646 9.9248 3 0.7649 1.6377 2.3534 3.1824 4.5407 5.8409 4 0.7407 1.5332 2.1318 2.7764 3.7469 4.6041 5 0.7267 1.4759 2.0150 2.5706 3.3649 4.0322 6 0.7176 1.4398 1.9432 2.4469 3.142 7 3.7074 7 0.7111 1.4149 1.8946 2.3646 2.9980 3.4995 8 0.7064 1.3968 1.8595 2.3060 2.8965 3.3554 9 0.7027 1.3830 1.8331 2.2622 2.8214 3.2498 10 0.6998 1.3722 1.8125 2.2281 2.7638 3.1693 11 0.6974 1.3634 1.7959 2.2010 2.7181 3.1058 12 0.6955 1.3562 1.7823 2.1788 2.6810 3.0545 13 0.6938 1.3502 1.7709 2.1604 2.6503 3.0123 14 0.6924 1.3450 1.7613 2.1448 2.6245 2.9768 15 0.6912 1.3406 1.7531 2.1315 2.6025 2.9467 16 0.6901 1.3368 1.7459 2.1199 2.5835 2.9208 17 0.6892 1.3334 1.7396 2.1098 2.5669 2.8982 18 0.6884 1.3304 1.7341 2.1009 2.5524 2.8784 19 0.6876 1.3277 1.7291 2.0930 2.5395 2.8609 20 0.6870 1.3253 1.7247 2.0860 2.5280 2.8453

标准正态分布表

标准正态分布表 x 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0 0.500 0 0.504 0 0.508 0 0.512 0 0.516 0 0.519 9 0.523 9 0.527 9 0.531 9 0.535 9 0.1 0.539 8 0.543 8 0.547 8 0.551 7 0.555 7 0.559 6 0.563 6 0.567 5 0.571 4 0.575 3 0.2 0.579 3 0.583 2 0.587 1 0.591 0 0.594 8 0.598 7 0.602 6 0.606 4 0.610 3 0.614 1 0.3 0.617 9 0.621 7 0.625 5 0.629 3 0.633 1 0.636 8 0.640 4 0.644 3 0.648 0 0.651 7 0.4 0.655 4 0.659 1 0.662 8 0.666 4 0.670 0 0.673 6 0.677 2 0.680 8 0.684 4 0.687 9 0.5 0.691 5 0.695 0 0.698 5 0.701 9 0.705 4 0.708 8 0.712 3 0.715 7 0.719 0 0.722 4 0.6 0.725 7 0.729 1 0.732 4 0.735 7 0.738 9 0.742 2 0.745 4 0.748 6 0.751 7 0.754 9 0.7 0.758 0 0.761 1 0.764 2 0.767 3 0.770 3 0.773 4 0.776 4 0.779 4 0.782 3 0.785 2 0.8 0.788 1 0.791 0 0.793 9 0.796 7 0.799 5 0.802 3 0.805 1 0.807 8 0.810 6 0.813 3 0.9 0.815 9 0.818 6 0.821 2 0.823 8 0.826 4 0.828 9 0.835 5 0.834 0 0.836 5 0.838 9 1 0.841 3 0.843 8 0.846 1 0.848 5 0.850 8 0.853 1 0.855 4 0.857 7 0.859 9 0.86 2 1 1.1 0.864 3 0.866 5 0.868 6 0.870 8 0.872 9 0.87 4 9 0.877 0 0.879 0 0.881 0 0.883 0 1.2 0.884 9 0.886 9 0.888 8 0.890 7 0.892 5 0.894 4 0.89 6 2 0.898 0 0.899 7 0.901 5 1.3 0.903 2 0.904 9 0.906 6 0.90 8 2 0.90 9 9 0.911 5 0.913 1 0.914 7 0.916 2 0.917 7 1.4 0.919 2 0.920 7 0.922 2 0.923 6 0.925 1 0.926 5 0.927 9 0.929 2 0.930 6 0.931 9 1.5 0.933 2 0.934 5 0.935 7 0.937 0 0.938 2 0.939 4 0.940 6 0.941 8 0.943 0 0.944 1 1.6 0.945 2 0.946 3 0.947 4 0.948 4 0.949 5 0.950 5 0.951 5 0.952 5 0.953 5 0.953 5 1.7 0.955 4 0.956 4 0.957 3 0.958 2 0.959 1 0.959 9 0.960 8 0.961 6 0.962 5 0.963 3 1.8 0.964 1 0.964 8 0.965 6 0.966 4 0.967 2 0.967 8 0.968 6 0.969 3 0.970 0 0.970 6 1.9 0.971 3 0.971 9 0.972 6 0.973 2 0.973 8 0.974 4 0.975 0 0.975 6 0.976 2 0.976 7 2 0.977 2 0.977 8 0.978 3 0.978 8 0.979 3 0.979 8 0.980 3 0.980 8 0.981 2 0.981 7 2.1 0.982 1 0.982 6 0.983 0 0.983 4 0.983 8 0.984 2 0.984 6 0.98 5 0 0.985 4 0.985 7 2.2 0.98 6 1 0.986 4 0.986 8 0.98 7 1 0.987 4 0.987 8 0.988 1 0.988 4 0.988 7 0.98 9 0 2.3 0.989 3 0.989 6 0.989 8 0.990 1 0.990 4 0.990 6 0.990 9 0.991 1 0.991 3 0.991 6 2.4 0.991 8 0.992 0 0.992 2 0.992 5 0.992 7 0.992 9 0.993 1 0.993 2 0.993 4 0.993 6 2.5 0.993 8 0.994 0 0.994 1 0.994 3 0.994 5 0.994 6 0.994 8 0.994 9 0.995 1 0.995 2 2.6 0.995 3 0.995 5 0.995 6 0.995 7 0.995 9 0.996 0 0.996 1 0.996 2 0.996 3 0.996 4 2.7 0.996 5 0.996 6 0.996 7 0.996 8 0.996 9 0.997 0 0.997 1 0.997 2 0.997 3 0.997 4 2.8 0.997 4 0.997 5 0.997 6 0.997 7 0.997 7 0.997 8 0.997 9 0.997 9 0.998 0 0.998 1 2.9 0.998 1 0.998 2 0.998 2 0.998 3 0.998 4 0.998 4 0.998 5 0.998 5 0.998 6 0.998 6 x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 3 0.998 7 0.999 0 0.999 3 0.999 5 0.999 7 0.999 8 0.999 8 0.999 9 0.999 9 1.000 0

t分布的概念及表和查表方法

t分布的概念及表和查 表方法 本页仅作为文档封面,使用时可以删除 This document is for reference only-rar21year.March

t分布介绍 在概率论和统计学中,学生t-分布(t-distribution),可简称为t分布,用于根据小样本来估计呈正态分布且方差未知的总体的均值。如果总体方差已知(例如在样本数量足够多时),则应该用正态分布来估计总体均值。 t分布曲线形态与n(确切地说与自由度df)大小有关。与标准正态分布曲线相比,自由度df越小,t分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高;自由度df愈大,t分布曲线愈接近正态分布曲线,当自由度df=∞时,t分布曲线为标准正态分布曲线。 目录 1历史 2定义 3扩展 4特征 5置信区间 6计算 历史 在概率论和统计学中,学生t-分布(Student's t-distribution)经常应用在对呈正态分布的总体的均值进行估计。它是对两个样本均值差异进行显著性测试的学生t测定的基础。t检定改进了Z检定(en:Z-test),不论样本数量大或小皆可应用。在样本数量大(超过120等)时,可以应用Z检定,但Z检定用在小的样本会产生很大的误差,因此样本很小的情况下得改用学生t检定。在数据有三组以上时,因为误差无法压低,此时可以用变异数分析代替学生t检定。 当母群体的标准差是未知的但却又需要估计时,我们可以运用学生t-分布。 学生t-分布可简称为t分布。其推导由威廉·戈塞于1908年首先发表,当时他还在都柏林的健力士酿酒厂工作。因为不能以他本人的名义发表,所以论文使用了学生(Student)这一笔名。之后t检验以及相关理论经由罗纳德·费雪的工作发扬光大,而正是他将此分布称为学生分布。

f分布t分布与卡方分布

f分布t分布与卡方分布Last revision on 21 December 2020

§ 常用的分布及其分位数 1. 卡平方分布 卡平方分布、t 分布及F 分布都是由正态分布所导出的分布,它们与正态分布一起,是试验统计中常用的分布。 当X 1、X 2、…、Xn 相互独立且都服从N(0,1)时,Z=∑i i X 2 的分布称为自由度等于n 的2χ分布,记作Z ~2χ(n),它的 分布密度 p(z )=??? ????>? ?? ??Γ--,,00 ,2212122其他z e x n z n n 式中的?? ? ??Γ2n =u d e u u n ?∞ +--01 2 ,称为Gamma 函数,且()1Γ=1, ? ? ? ??Γ21=π。2χ分布是非对称分布,具有可加性,即当Y 与Z 相互独立,且Y ~2χ(n ),Z ~2χ(m ),则Y+Z ~2χ(n+m )。 证明: 先令X 1、X 2、…、X n 、X n+1、X n+2、…、X n+m 相互独立且都服从N(0,1),再根据2χ分布的定义以及上述随机变量的相互独立性,令 Y=X 21+X 22+…+X 2n ,Z=X 21+n +X 22+n +…+X 2m n +, Y+Z= X 21+X 22+…+X 2n + X 21+n +X 22+n +…+X 2m n +, 即可得到Y+Z ~2χ(n +m )。 2. t 分布 若X 与Y 相互独立,且 X ~N(0,1),Y ~2χ(n ),则Z =n Y X 的分布称为自由度等 于n 的t 分布,记作Z ~ t (n ),它的分布密度 P(z)= )()(221 n n n ΓΓ+2121+- ???? ? ?+n n z 。 请注意:t 分布的分布密度也是偶函数,且当n>30时,t 分布与标准正态分布N(0,1)的密度曲线几乎重叠为一。这

标准正态分布表

标准正态分布表 就力二「冷=亡P(X

正态分布概率表 0( u ) t F(t)t F(0t F( t)t F(t) 0+00O.COOO0,230.181 90,460.354 50.690.509 8 0.010.008 00.24o, m70.470,361 60J00.516 1 0+020.016 00,250,197 40,480.368 80+710,522 3 0+030023 90 260.205 10,490.375 91720.528 5 0.04 C.031 90.270.212 80.500.382 90.730.534 6 0.050+039 90.280.220 50.510.389 90.740.540 7 0.060.047 80 290. 22S 20.520.396 90.750.546 7 0,070,055 S0. 300.235 80.530.403 90.760.552 7 0.0S0.063 8(1. 310.243 40.540.410 80.770.558 7 0 + 090.071 7C,320.251 00&0.417 70+780.564 6 (k 1U0079 7(J. 330.258 60.560.424 50+790.570 5 0.11O.fi87 6 C. 340.266 10.570.431 3o.so0, 57 6 3 4 120.09 5 50 350.273 70,5S0,43S 1 0.S10.582 1 A130.103 1 C. 360.281 20.590.444 80,820.587 8 0.140,111 30. 370.288 60.600.451 50.S30.593 5 0+150.119 20.380,29 6 10.610.458 1 (U40*599 1 0.160,12 7 ] 0.390, 303 50.620.464 70.350,604 7 0.170 135 0G.400310 80.630.471 30, R60.6102 0.180J42 S0.410.31 8 20.640.477 S0+870,15 7 0.190.150 70 420325 50.650.484 30+880.621 1 0.200.158 50.430. 332 80.660.490 70.890 . 62 6 5 0,210J66 3C,440.340 10.670.497 1 0.900.631 9 A 220.174 ] 0.45(L 347 30.680.503 50.910.637 2

t分布和标准正态分布

数理统计实验 t 分布与标准正态分布 院(系): 班 级 : 成 员: 成 员 : 成 员 : 指导老师: 日 期:

目录 t分布与标准正态分布的关系 (1) 一、实验目的 (1) 二、实验原理 (1) 三、实验内容及步骤 (1) 四、实验器材 (5) 五、实验结果分析 (5) 六、实验结论 (6)

t分布与标准正态分布的关系 一、实验目的 正态分布是统计中一种很重要的理论分布,是许多统计方法的理 论基础。正态分布有两个参数,□和。,决定了正态分布的本质。为了应用和计算方便,常将一般的正态变量X通过□变换[(X-卩)/ (T ] 转化成标准正态变量卩,以使原来各种形态的正态分布都转换为口=0,0 =1的标准正态分布,亦称卩分布。对于标准正态分布来说,□是数据整体的平均值,。是整体的标准差。但实际操作过程中,人们往往难以获得口和°。因此人们只能通过样本对这两个参数做出估计,用样本平均值和样本标准差代替整体的平均值和标准差,从而得出了t分布。另外从图像的层面说,正态分布的位置和形态只与□和°有关,而t分布不只与样本平均值和样本标准差有关,还与自由度相关。通过实验了解t分布与标准正态分布之间的关系。 二、实验原理 运用EXCELS件验证t分布与标准正态分布的关系,绘制相应的统计图表进行分析。 三、实验内容及步骤 1. 打开Excel文件,将“ t分布与标准正态分布N (0, 1)”合并并居中,黑体,20字号,红色;

2. 选 中文件,选项,自定义功能区,加载开发工具.在开发工具中 插入滚动条,调节滚动条大小; 3. 设置A2单元格格式,数字自定义区” !n=#,##0;[红 色]¥#,##0 ” .然后左对齐,设置为红色; 4. 设置滚动条格式,单元格连接为$A$2; art j f S!SiT :.?? Ml !■,?*■ | Itc - ,|S 丄-.」 -」 t 介布Jj 标准正态分谢N(OJ r 烟甘请宜@1區 UM -£11 □ ” > QHE 行 A 时量时” Y ?/ I "” * ?* ■曲:j UdJ * f 帝科 ¥ lQ9 」d^W71 i | 辽昌 | ---- -~—H?- ■MMM1

t分布的概念表和查表方法

t分布介绍 在和中,学生t-分布(t-distribution),可简称为t分布,用于根据小样本来估计呈且方差未知的总体的均值。如果总体方差已知(例如在样本数量足够多时),则应该用正态分布来估计总体均值。 t分布曲线形态与n(确切地说与自由度df)大小有关。与标准正态分布曲线相比,自由度df越小,t分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高;自由度df愈大,t分布曲线愈接近正态分布曲线,当自由度df=∞时,t分布曲线为标准正态分布曲线。 目录 1 2 3 4 5 6 历史 在和统计学中,学生t-分布(Student's t-distribution)经常应用在对呈的总体的进行估计。它是对两个差异进行测试的学生t测定的基础。t检定改进了Z检定(en:Z-test),不论样本数量大或小皆可应用。在样本数量大(超过120等)时,可以应用Z检定,但Z检定用在小的样本会产生很大的误差,因此样

本很小的情况下得改用学生t检定。在数据有三组以上时,因为误差无法压低,此时可以用代替学生t检定。 当母群体的是未知的但却又需要估计时,我们可以运用学生t-分布。 学生t-分布可简称为t分布。其推导由于1908年首先发表,当时他还在都柏林的健力士酿酒厂工作。因为不能以他本人的名义发表,所以论文使用了学生(Student)这一笔名。之后t检验以及相关理论经由的工作发扬光大,而正是他将此分布称为学生分布。 定义 由于在实际工作中,往往σ是未知的,常用s作为σ的估计值,为了与u变换区别,称为t变换,统计量t 值的分布称为t分布。 假设X服从标准正态分布N(0,1),Y服从分布,那么的分布称为自由度为n 的t分布,记为。 分布密度函数, 其中,Gam(x)为伽马函数。 扩展

t分布的概念及表和查表方法

在概率论和统计学中,学生t-分布(t-distributen ),可简称为t分布,用于根据 小样本来估计呈正态分布且方差未知的总体的均值。如果总体方差已知(例如在样本数量足够多时),则应该用正态分布来估计总体均值。 t分布曲线形态与n (确切地说与自由度df)大小有关。与标准正态分布曲线相比,自由度df越小,t分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高;自由度df愈大, t分布曲线愈接近正态分布曲线,当自由度df= %时,t分布曲线为标准正态分布曲线。 目录 1历史 2定义 3扩展 4特征 5置信区间 6计算 历史 在概率论和统计学中,学生t -分布(Student's t-distribution )经常应用在对呈正态分布的总体 的均值进行估计。它是对两个样本均值差异进行显著性测试的学生t测定的基础。t检定改进了Z检定(en:Z-test ),不论样本数量大或小皆可应用。在样本数量大(超过120等)时,可以应用Z检定,但

Z检定用在小的样本会产生很大的误差,因此样本很小的情况下得改用学生t检定。在数据有三组以上时,

t-分布。 当母群体的标准差是未知的但却又需要估计时,我们可以运用学生 学生t-分布可简称为t分布。其推导由威廉?戈塞于1908年首先发表,当时他还在都柏林的健力士酿酒厂工作。因为不能以他本人的名义发表,所以论文使用了学生( Student )这一笔名。之后t检验以 及相关理论经由罗纳德?费雪的工作发扬光大,而正是他将此分布称为学生分布。 定义 由于在实际工作中,往往(7是未知的,常用S作为(T的估计值,为了与U变换区别,称为t变换, 统计量t值的分布称为t分布。 假设X服从标准正态分布N(0,1 ), Y服从分布,那么的分布称为自由度为n的t分布,记为。 分布密度函数, 其中,Gam(x)为伽马函数。 扩展 正态分布(normal distribution )是数理统计中的一种重要的理论分布,是许多统计方法的理论基 础。正态分布有两个参数,卩和7,决定了正态分布的位置和形态。为了应用方便,常将一般的正态变 量X通过u变换[(X-卩)/ 7 ]转化成标准正态变量u,以使原来各种形态的正态分布都转换为卩=0,7 =1 的标准正态分布(standard normal distribution ),亦称u分布。 根据中心极限定理,通过上述的抽样模拟试验表明,在正态分布总体中以固定n,抽取若干个样本时,样本均数的分布仍服从正态分布,即N(「)。所以,对样本均数的分布进行u变换,也可变换为标 准正态分布N (0,1)。 特征 1.以0为中心,左右对称的单峰分布; 2.t分布是一簇曲线,其形态变化与n(确切地说与自由度df )大小有关。自由度df越小,t分布曲线越低平;自由度df越大,t分布曲线越接近标准正态分布(u分布)曲线,如图:

相关文档