文档视界 最新最全的文档下载
当前位置:文档视界 › 铝合金化学镀镍

铝合金化学镀镍

铝合金化学镀镍
铝合金化学镀镍

铝合金化学镀镍

前言:所谓化学镀就是指不使用外电源,而是依靠金属的催化作用,通过可控制的氧化—还原反应,使镀液中的金属离子沉积到镀件上去的方法,因而化学镀也被称为自催化镀或无电镀。化学镀液组成一般包括金属盐、还原剂、络合剂、pH 缓冲剂、稳定剂、润湿剂和光亮剂等。当镀件进入化学镀溶液时,镀件表面被镀层金属覆盖以后,镀层本身对上述氧化和还原反应的催化作用保证了金属离子的还原沉积得以在镀件上继续进行下去。目前已能用化学镀方法得到镍、铜、钴、钯、铂、金、银、锡等金属或合金的镀层。化学镀既可以作为单独的加工工艺,用来改善材料的表面性能,也可以用来获得非金属材料电镀前的导电层。化学镀在电子、石油化工、航空航天、汽车制造、机械等领域有着广泛的应用。化学镀具有以下优点:表面硬度高,耐磨性能好;硬化层的厚度及其均匀,处理部件不受形状限制,不变形,特别是适用于形状复杂,深盲孔及精度要求高的细小及大型部件的表面强化处理;具有优良的抗耐蚀性能,在许多酸、碱、盐、氨和海水中具有良好的耐蚀性,其耐蚀性要比不锈钢优越的多;处理后的部件,表面光洁度高,表面光亮,不需要重新的机械加工和抛光,可直接装机使用;镀层与基体的结合力高,不易剥落,其结合力比电镀硬铬和离子镀要高;可处理的基体材料广泛。〔1〕化学镀分类(广义分类):

1. 置换镀(离子交换或电荷交换沉积):一种金属浸在第二种金属的金属盐溶液中,第一种金属的表面上发生局部溶解,同时在其表面自发沉积上第二种金属上。在离子交换的情况下,基体金属本身就是还原剂。

2. 接触镀:将欲镀的金属与另一种或另一块相同的金属接触,并沉浸在沉积金属的盐溶液中的沉积法。当欲镀的导电基体底表面与比溶液中待沉积的金属更为活泼的金属接触时,便构成接触沉积。

3. 真正的化学镀:从含有还原剂的溶液中沉积金属〔1 〕。

日前工业上应用最多的是化学镀镍和化学镀铜。可以使用化学镀进行表面加工的金属及合金有很多,下面以铝合金镀镍为例进行说明,而铝合金化学镀镍属于化学镀的第三种即真正的化学镀。铝合金简介铝合金具有机械强度高、密度小、导热导电性好、韧性好、易加工等特点,因而在工业部门,特别是航空航天、国防工业,乃至人们的日常生活中,都有较广泛的应用。铝合金表面覆盖一层致密的氧化膜,它可将铝合金与周围环境隔离开来,避免被氧化。但是这层氧化膜易受到强酸和强碱的腐蚀,同时铝合金易产生晶间腐蚀,表面硬度低,不耐磨。化学镀是赋予铝合金表面良好性能的新型工艺手段之一,它不仅是其抗蚀性、耐磨性、可焊性、和电接触能得到提高,镀层与铝合金机体间结合力好,镀层外观漂亮,

而且通过镀覆不同的镍基合金,可以赋予铝合金各种新性能,如磁性能、润滑性等。〔2〕

铝合金化学镀镍原理:

化学镀镍是利用镍盐溶液在强还原剂次亚磷酸钠的作用下,使镍离子还原成金属镍,同时次磷酸钠分解析出磷,因而在具有催化表面的镀件上,获得镍磷合金镀层。

对于次磷酸钠还原镍离子的总反应可以写成:

3NaH2PO2 +3H2 O+NiSO4 3 NaH 2PO3+H2SO4+2H2+Ni

同样的反应可写成如下离子式:

2 H2PO2-+ Ni 2++2H2O ---- 2 H 2PO3- + H2+2H++ Ni

或写成另一种形式:Ni2++H2PO2-+H2O -------- H 2PO3-+Ni +2H+

所有这些反应都发生在催化活性表面上,需要外界提供能量,即在较高温度(60w T W 95C )下,除了金属镍之外,还形成分子氢。此外,形成的氢离子使镀液变得更加酸性,同

- 〔 1 〕

时还生成亚磷酸离子HL PO3。

化学镀镍溶液的组成及作用:

(1) 镍盐通常采用的镍盐为硫酸镍,但也可以是氯化镍、碳酸镍等。提高镀液中镍盐的浓度可以提高沉积速度,但镀液的稳定性下降。

(2) 还原剂次亚磷酸钠,镀液中次磷酸钠的用量主要取决于镍盐浓度,镍盐与次磷酸钠含量比过低时,镀层发暗,镀液稳定性下降,比值过高时沉积速度很慢。这一比值还直接影响镀层中的磷含量,比

值越低,磷含量越高。

(3) 络合剂络合剂通过和镍产生成稳定的络合物,阻止氢氧化镍和亚磷酸镍沉淀的生

成,从而避免镀液的自然分且有利于得到结晶细致光亮的镀层。镀液中常用的络合剂有柠檬

酸、乳酸、乙醋酸、苹果酸、琥珀酸、焦磷酸钠、氯化铵等。

(4) pH 缓冲剂出于化学镀镍溶液的稳定性、沉积速度及镀层质量受镀液pH 的影响很大,需加入pH 缓冲剂以稳定镀液的pH。常用的pH缓冲剂有醋酸钠、硼酸、氯化铵和柠檬酸钠等。

(5) 稳定剂化学镀镍溶液中常有一些胶粒和固体微粒存在,它们作为催化中心将加速镀液的自分解。为此,常在镀液中加入微量稳定剂,它们优先吸附在胶粒和固体微粒表面,阻碍了镍在这些粒子上的还原,从而提高了镀液的稳定性。常用的稳定剂有硫代硫酸盐、硫脲、磺原酸乙酯、钼酸盐、铅离子、镉离子等。

(6) 光亮剂化学镀镍是一种功能性镀层,通常为半光亮外观,然而近年来人们对化学镀银的光亮性的要求越来超高。由于化学镀镍体系操作温度一般较高,而且位于镀液中工件

的表面要大量不断地析出氢气,特别是与电镀不同,工件不被阴极极化,因而无论酸性镀液

还是碱性镀液,其光亮剂的选择都是十分困难和重要的。

7) 促进剂化学镀镍溶液中的配位剂和稳定剂往往会使沉积速率下降。因此,常常在镀液中添加少量的能提高沉积速率的物质,即所谓促进剂,也称为加速剂。促进剂的加入,能促使次磷酸盐分子中氢和磷原子之间键变弱,使氢在被催化表面上更容易移动和吸附。也可以说促进剂能起活化次磷酸根离子的作用。可用作促进剂的物质有氨基羧酸、可溶性氟化物和某些溶剂等。

( 8)镀液的pH 值

( 9)温度

化学镀液的配制:

(1) 称取计算量的镍盐、还原剂、络合剂、pH缓冲剂和添加剂,将它们分别用蒸馏水溶解。

(2) 将络合剂和缓冲剂溶液相互混合,然后将镍盐溶液加入并充分搅拌。

(3) 在搅拌状态下将除还原剂以外的其他溶液依次加入并搅拌均匀。

(4) 在强搅拌下加人还原剂溶液。

(5) 用蒸馏水稀释至规定体积,再用酸或碱调溶液pH 至规定体积。

(6) 过滤溶液。

铝合金化学镀镍工艺流程(浸锌预镀层法) :铝合金零件—除油—浸蚀—第一次浸锌—硝酸退除—第二次浸锌—碱性化学欲镀镍—烘烤—成品

铝合金化学镀镍配方(碱性) :

硫酸镍33g / L;次磷酸钠15 g / L;柠檬酸钠50 g / L; pH为8;温度90C〔5〕

铝合金化学镀镍主要工艺过程:

由于铝合金是一种难镀的金属基体,其表面极易生成氧化膜,这种氧化膜与镀层的结合

力很差; 此外, 铝的标准电极电位很负, 在镀液中容易与电位较正的金属离子发生置换反应 生成疏松层, 也会影响镀层与铝基体的结合力, 鉴于此, 铝合金化学镀镍的前处理尤为重要。 〔 4 〕

一般铝合金化学镀镍前处理主要用浸渍的方法, 它包括蒸汽脱脂, 喷水和流动水洗, 酸 洗等工序。 除油最好用超声波的方法。 但也可以用搅拌或移动零件的方法。 碱性除油是在高 温下进行, 效果也很好。 在进入化学镀镍前最好在高温水中清洗。 若水洗槽温度达不到化学 镀镍槽的温度,可以用高温预镀槽进行几分钟化学镀,再进行正式的化学镀镍。 〔 5〕

两次浸锌均在室温下进行, 采用相同的溶液,其组成为:120 g / L ZnO ; ,500 g / L NaOH 1 g / L FeCl 3,15 g / L KNaCH4O 。第一次浸锌时间 40?50s ,此时锌层颜色深,均匀性差, 需采用硝酸进行退锌处理后再进行第二次浸锌(时间为

30s )两次浸锌后所得的锌膜层致 密,色泽均匀。 〔6〕

镀后热处理: 一般认为镀态的镀层, 是由镍和磷的原子随机排列堆积起来的, 还有些微 晶区为无定形的非晶态,此时镀层抵抗局部塑性变形能力差,硬度较低,为

HV500? 600 左

右。使非晶态转化为晶态 〔 7〕,才能提高硬度。

镀层硬度随热处理温度的升高而升高。 当温度到400C 以后,硬度随温度升高反而下降。 热处理温度应根据工件的用途来选择,若需要防腐蚀,可低于 200 C 低温处理;若需要高硬

度,以提高耐磨性,可用400 C 热处理。对镀后热处理,国外采用真空炉或控气氛炉, 在400 C, 保温1h ,硬度900?1000。我们对工件进行技术保护后,在空气电阻炉中保温

1h ,硬度可 〔 8 〕

达 HV1100?1200.〔8〕

铝合金化学镀镍磷镀层的性能:

这种镀层具有厚度均匀,硬度高,脆性大,光滑,易于钎焊和耐蚀性好等特点。是一种 独特的工程材料。镀层经低温处理后可弥散强化,获得不同硬度,提高耐磨性。因此,镀镍 磷镀层在工业中得到广泛应用,并可代替贵重金属和不易加工的合金。 〔6〕

化学镀镍层厚度的均匀性很好, 是电镀层无法比拟的。 化学镀镍只要表面能通过液槽都 可获得均匀的厚度, 无论形状多么复杂, 均可得到均匀厚度的镀层。 只有在沉积过程中气泡 在表面聚集, 阻碍槽液到达零件表面, 才会造成镀层厚度不均, 所以在放零件时要避免上诉 情况的出现。在多数情况下,化学镀层能精确控制厚度,所以可以省去镀后加工的问题。

〔6〕 对于铝合金这种易钝化的金属基体, 开始时表面不发生置换反应, 附着力差, 但经过适 当的处理和活化, 镀层的键合强度大大增强, 在使用高强度铝合金外的其他铝基体零件,

经 化学镀镍后,必须在200 C 左右下处理1.5h ,用以提高镀层和基体的结合力。 镀后热处理即 可使镀层与基体间相互扩散, 也有除氢的作用。 若铝基零件不进行处理, 对其结合强度有很 大的影响。〔6〕

硬度和耐磨性在工程上是非常重要的指标。 未经任何热处理的化学镀镍层与许多硬化合 金钢的硬度差不多。 若经过热处理, 由于镀层的时效硬化, 它的硬度可达到 1100HV 100 ,与常 用的镀硬铬层强度相等。 有时, 镀层不允许高温热处理, 因为在高温条件下可使零件变形或 可能降低零件的强度。 所以, 有时在较低温度下经过较长时间的热处理也可能获得所需要的 硬度。〔 6〕

磁性能:化学镀镍的磁性能取决于含磷量和热处理温度。含磷量超过

性的, 含磷量在 11.4%以上, 完全没有磁性; 含磷量低于 8%的镀层才具有磁性, 但它的磁性 比电镀镍层小,热处理后磁性能有显著提高。 〔10〕

电阻率: 化学镀镍的电阻率与含磷量有关, 一般含磷量越高, 则电阻率越大。 在碱性溶 液中所获得的化学镀镍层, 其电阻率要比在酸性溶液中所获得的化学镀镍的电阻率小。 化学 镀镍的电阻率经热处理后会明显下降。 〔 10〕 铝合金在实际应用中在高温状态或瞬时高温时易烧蚀破坏, 在铝合金表面进行化学镀镍 是一种很好的表面强化方法, 它可以使铝合金表面具有高的硬度、 高的防腐蚀性和因为化学镀镍层的硬度高, 所以, 不管镀层是否经过热处理,

它都具有较好的耐磨损性 和耐腐蚀性。

6〕

8%的镀层是弱磁

高的耐磨性。化学镀镍工艺作为铝合金一种重要的表面改性技术,能够弥补铝合金易腐蚀、不耐磨、高温性能差等缺点。〔9〕

化学镀镍磷合金膜层好坏有很多的影响因素,例如在碱性化学镀镍液中,镍盐的浓度在20g /L 以下时,提高镍盐浓度使化学沉积速度有明显的提高;但当镍盐的浓度

高于25g /L 以上时,虽继续提高镍盐含量,其沉积速度趋于稳定。铝合金化学镀镍层性能检测方法

硬度检测:严格按照国标GB5934-86 轻工产品金属镀层的硬度测定方法。仪器为71 型显微硬度计,载荷为490CN,放大倍数为400X。

镀层结合力测定:根据GB2933-86 的规定,采用锉刀法、划痕法、砂轮机打磨法,手锯等方法进行试验,镀层均无剥落现象。

孔隙率测定:按照GB5935-86 的规定进行测定。

耐磨性能测定:在M-200型磨损试验机上进行,试验条件:载荷49N, 400r / min,机油润滑2h。〔8〕小结在表面处理技术过程中, 化学镀占有很重要的位置, 它主要是利用的还原剂使溶液中的金属离子有选择性的在经催化剂活化的表面上还原析出成金属镀层的一种化学处理方法。

在化学镀中,金属离子是依靠在溶液中得到所需的电子而还原成金属。

还原剂的有效程度是用它的标准氧化电位来推断,若标准氧化还原电位太小或为负值, 则金属还原将难以发生。化学镀溶液的组成或其相应工作条件必须是反应只限在具有催化作

用的制件,或溶液不应自己本身发生氧化还原,以避免自然分解,造成溶液过快地失效。较成熟的化学镀是镀铜和镍, 现在, 化学镀镍已形成较完善的工艺, 由于化学镀镍具有较好的耐磨性和抗腐蚀性, 镀层均匀、结晶细、孔隙率低, 使某些金属和非金属表面具有钎焊和锡焊能力;镀液深镀能力好,化学稳定性高,操作简单等优点。〔5〕

参考文献:

1. 化学镀的特点、原理及应用;

2. 张天顺,张晶秋,张琦铝及铝合金化学镀Ni —P工艺研究〔J〕,电镀与涂饰,

2006,25 (8);41—43;

3. 赵斌,董世知铝合金化学镀Ni---P 合金的研究进展电镀与涂饰, 2008,1 ;

24—26;

4. 孙华,马洪芳,刘科高,刘义铝合金镀Ni —P前处理工艺的优化,表面技术,

2010,2 ;67—70;

5. 胡传炘化学镀表面处理技术手册,北京工业大学出版社, 284;

6. 梁平铝合金化学镀Ni —P合金层及其耐蚀性研究表面技术2010,2 ;34—36;

7. 陈亨元络合金电子机壳的化学镀镍〔J〕;电镀与涂饰,1996,15 (3);

8. 刘英,张瑞杰Al及Al合金化学镀Ni —P工艺性能研究;郑州纺织工学院学报,1999,6 ;

17—19;

9. 杨艳波,蔡刚毅,陈宇,吕广庶高强度铝合金的化学镀镍镍层性能研究有色金属(冶炼部分)

2009, 45 —48;

10.化学镀百度文库

化学镀工艺流程

化学镀所需仪器:电热恒温水浴锅;8522型恒温磁力搅拌器控温搅拌;增力电动搅拌机。 化学镀工艺流程:机械粗化→化学除油→水洗→化学粗化→水洗→敏化→水洗→活化→水洗→解胶→水洗→化学镀→水洗→干燥→镀层后处理。 1化学镀预处理 机械粗化:用机械法或化学方法对工件表面进行处理(机械磨损或化学腐蚀),从而在工件表面得到一种微观粗糙的结构,使之由憎水性变为亲水性,以提高镀层与制件表面之间结合力的一种非导电材料化学镀前处理工艺。 1.1 化学除油 镀件材料在存放、运输过程中难免沾有油污,为保证预处理效果,必须首先进行除油处理,去除其表面污物,增加基体表面的亲水性,以确保基体表面能均匀的进行金属表面活化。化学除油试剂分有机除油剂和碱性除油剂两种;有机除油剂为丙酮(或乙醇)等有机溶剂,一般用于无机基体如鳞片状石墨、膨胀石墨、碳纤维等除油;碱性除油剂的配方为:NaOH:80g/l,Na2CO3(无水):15g/l,Na3PO4:30g/l,洗洁精:5ml/l,用于有机基体如聚乙烯、聚氯乙烯、聚苯乙烯等除油;无论使用哪种除油试剂,作用时都需要进行充分搅拌。 1.2 化学粗化 化学粗化的目的是利用强氧化性试剂的氧化侵蚀作用改变基体表面微观形状,使基体表面形成微孔或刻蚀沟槽,并除去表面其它杂质,提高基体表面的亲水性和形成适当的粗糙度,以增强基体和镀层金属的结合力,以保证镀层有良好的附着力。粗化是影响镀层附着力大小的很关键的工序,若粗化效果不好,就会直接影响后序的活化和化学镀效果。化学粗化试剂的配方为:CrO3:40g/l,浓H2SO4:35g/l,浓H3PO4(85%):5g/l。化学粗化的本质是对基体表面的轻度腐蚀作用;因此,有机基体采用此处理过程,无机基体因不能被粗化液腐蚀而不需此处理。 1.3 敏化 敏化处理是使粗化后的有机基体(或除油后的无机基体)表面吸附一层具有还原性的二价锡离子Sn2+,以便在随后的活化处理时,将银或钯离子由金属离子还原为具有催化性能的银或钯原子。敏化液配方为:SnCl2·2H2O:20g/l,浓HCl:40ml/l,少量锡粒;加入锡粒的目的是防止二价锡离子的氧化。 1.4 活化 活化处理是化学镀预处理工艺中最关键的步骤, 活化程度的好坏,直接影响后序的施镀效果。化学镀镀前预处理的其它各个工序归根结底都是为了优化活化效果,以保证催化剂在镀件表面附着的均匀性和选择性,从而决定化学镀层与镀件基体的结合力以及镀层本身的连续性。活化处理的目的是使活化液中的钯离子Pd2+或银离子Ag+离子被镀件基体表面的Sn2+离子还原成金属钯或银微粒并紧附于基体表面,形成均匀催化结晶中心的贵金属层, 使化学镀能自发进行。目前,普遍采用的活化液有银氨活化液和胶体钯活化液两种;化学镀铜比较容易,用银即能催化;化学镀钴、化学镀镍较困难,用银不能催化,必须使用催

化学镀镍磷合金英文文献

An investigation on effects of heat treatment on corrosion properties of Ni–P electroless nano-coatings Taher Rabizadeh,Saeed Reza Allahkaram *,Arman Zarebidaki School of Metallurgy and Materials Engineering,University College of Engineering,University of Tehran,P.O.Box 11155-4563,Tehran,Iran a r t i c l e i n f o Article history: Received 19January 2010Accepted 15February 2010 Available online 17February 2010Keywords:C.Coating C.Heat treatment E.Corrosion a b s t r a c t Electroless Ni–P coatings are recognized for their excellent properties.In the present investigation elec-troless Ni–P nano-crystalline coatings were prepared.X-ray diffraction technique (XRD),scanning elec-tron microscopy (SEM),potentiodynamic polarization and electrochemical impedance spectroscopy (EIS)were utilized to study prior and post-deposition vacuum heat treatment effects on corrosion resis-tance together with the physical properties of the applied coatings. X-ray diffraction (XRD)results indicated that the As-plated had nano-crystalline structure.Heat treat-ment of the coatings produced a mixture of polycrystalline phases.The highest micro-hardness was achieved for the samples annealed at 600°C for 15min due to the formation of an inter-diffusional layer at the substrate/coating interface. Lower corrosion current density values were obtained for the coatings heat treated at 400°C for 1h.EIS results showed that proper heat treatments also enhanced the corrosion resistance,which was attributed to the coatings’structure improvement. ó2010Elsevier Ltd.All rights reserved. 1.Introduction Since the invention of electroless plating technology in 1946by A.Brenner and G.Riddell,electroless nickel (EN)coatings have been actively and widely studied [1,2]. Nano-crystalline Ni–P alloys show a high degree of hardness,wear resistance,low friction coef?cient,non-magnetic behavior and high electro-catalytic activity.Today such Ni–P alloys are widely used in the electronic industry as under-layer in thin ?lm memory disks and in a broad range of other evolving technological applications.It is generally accepted that only nano-crystalline al-loys –irrespective of the way of production –show high corrosion resistance.Indeed,electrodeposited Ni–P alloys with crystalline structure (6–11at.%P)showed anodic dissolution in 0.1M NaCl.On nano-crystalline samples (17–28at.%P)a current arrest was found instead [3–5]. To explain high corrosion resistance of Ni–P electroless coatings different models have been proposed,but the issue is still under discussion:a protective nickel phosphate ?lm,the barrier action of hypophosphites (called ‘‘chemical passivity”),the presence of phosphides,a stable P-rich amorphous phase or the phosphorus enrichment of the interface alloy-solution were proposed.Note that such phosphorus enrichment at the interface was reported by some of the authors to explain the outstanding corrosion resis-tance of Fe70Cr10P13C7amorphous alloys [5]. Electroless Ni–P alloys are thermodynamically unstable and eventually form stable structures of face-centered cubic (fcc)Ni crystal and body-centered tetragonal (bct)nickel phosphide (Ni 3P)compounds.Different results have been reported regarding the microstructures in the As-deposited condition and the stable phases after heat treatments.For low P and medium P alloys,nickel crystal precipitated ?rstly and Ni 3P followed;however,Ni 3P and (or)Ni x P y compounds such as Ni 2P,Ni 5P 2,Ni 12P 5,and Ni 7P 3occur ?rstly in high P alloys [6–8]. In general,the hardness of the electroless Ni–P coatings can be improved by appropriate heat treatment,which can be attributed to ?ne Ni crystallites and hard inter-metallic Ni 3P particles precip-itated during crystallization of the amorphous phase [8–10]. The main reasons for heat treatment are:(1)to eliminate any hydrogen embrittlement in the basic metal,(2)to increase deposit hardness or abrasion resistance,(3)to increase deposit adhesion in the case of certain substrate and (4)to increase temporary corro-sion resistance or tarnish resistance [11]. The crystallization and phase transformation behavior of elec-troless-plated Ni–P deposits during thermal processing has also been the subject of various investigations;it has been shown that different alloy compositions and heat treatment conditions could affect both the corrosion resistance and crystallization behavior of the deposit [8]. 0261-3069/$-see front matter ó2010Elsevier Ltd.All rights reserved.doi:10.1016/j.matdes.2010.02.027 *Corresponding author.Tel./fax:+982161114108.E-mail address:akaram@ut.ac.ir (S.R.Allahkaram). Materials and Design 31(2010) 3174–3179 Contents lists available at ScienceDirect Materials and Design j o u r n a l h o m e p a g e :w w w.e l s e vier.c om/loc ate/mat des

钢铁的化学镀镍磷

钢铁的化学镀镍磷 金属1002 陈浩 3100702039 摘要:本文简要介绍了钢铁化学镀镍磷的原理与工艺流程,简述了镀层的性能及技术指标,随之分析了影响镀层性能的主要因素,并据此给出了工艺中的除锈配方和镀液配方,最后对试验参数进行了测定与比较,得出了一定的结论。 关键词:化学镀镀镍磷表面强化耐磨耐腐蚀性 一.前言 化学镀镍磷工艺是近年来迅速发展起来的一种新型表面保护和表面强化技术手段,具有广泛的应用前景。目前化学镀镍磷合金已广泛地应用在石油化工、石油炼制、电子能源、汽车、化工等行业。石油炼制和石油化工是其最大的市场,并且随着人们对这一化学镀特性的认识,它的应用也越来越广泛,主要用在石油炼制、石油化工的冷换设备上,化学镀镍磷能够显著提高设备的耐磨、耐蚀性能,延长其寿命,性能优于目前使用的有机涂料,而且适用于碳钢、铸铁、有色金属等不同基材。 二.实验原理 化学镀镍磷合金是一种在不加电流的情况下,利用还原剂在活化零件表面上自催化还原沉积得到镍磷镀层的方法。其主要反应为应用次亚磷酸钠还原镍离子为金属镍,即在水溶液中镍离子和次亚磷酸根离子碰撞时,由于镍触媒作用析出原子态氢,而原子态氢又被催化金属吸附并使之活化,把水溶液中的镍离子还原为金属镍形成镀层,另外次亚磷酸根离子由于在催化表面析出原子态氢的作用,被还原成活性磷,与镍结合形成Ni-P合金镀层。 以次磷酸钠为还原剂的化学镀镍磷工艺,其反应机理,现普遍被接受的是“原子氢态理论”和“氢化物理论”。下面介绍“原子氢态理论”,其过程可分为以下四步: 1、化学沉积镍磷合金镀液加热时不起反应,而是通过金属的催化作用,次亚磷酸根在水溶液中脱氢而形成亚磷酸根,同时放出初生态原子氢。 H 2PO 2 -+H 2 O→HPO 3 -+2H+H-

化学镀镍磷合金最新进展

化学镀镍磷合金研究进展 摘要:化学镀镍磷合金镀层由于其优良的耐磨耐蚀、无磷和镀层均匀等特性,在许多领域得到广泛应 用。本文综述了化学镀镍磷合金在各方面的研究进展,对化学镀镍磷工艺、沉积过程及沉积机理、镀层组织结构、性能及应用作了详细论述。 关键词化学镀,镍磷合金,组织结构,性能 Abstract Electroless despite of nickel phosphorus alloy has been widely used in diverse fieldsfortheiruniquecombinationsofpropertiessuchasrestistance,corrosionesistance,non-magnetism and uniformity of coating thick-ness. Research development of electroless Ni-P deposit on various aspect is summarized in this paper.Special attention has been focused on deposition process,depositionmechanism,microstructure,as well as some properties and applications of the despoists. Key words Electrolessdepoists,Ni-P alloy,Microstructure,Property 1概述 化学镀是用还原剂还原溶液中的络合金属离子,在催化活化表面获得所需的金属镀层,而赋予基体材料本身并不具有的表面性能。化学镀具有如下特点:(l)优良的深镀及均镀能力;(2)适用范围广,可在常用金属及经特殊处理的非导体和半导体材料表面沉积出镀层;(3)设备简单,操作方便;(4)镀层致密,无针孔,具有优良的耐蚀性;(5)镀层具有较高硬度和良好的耐磨性;(6)镀层成分可以根据需要改变镀液类型及操作条件来加以选择。化学镀镍由于其独特的沉积特性和优越的物理、化学和力学性能而在石油、化工、航空、航天、电子、计算机、汽车等工业领域获得广泛应用。 目前,得到深人研究及广泛应用的是化学镀镍层。在美国、日本、欧洲等国家都有商品化学镀镍液出售,并已形成门类齐全的商品系列,镍用于化学镀的消耗量每年以15%的速度增长。化学镀镍分Ni一P、Ni一B两类工艺,本文将主要探讨以次亚磷酸钠为还原剂的化学镀Ni一P层的各方面研究。 2化学镀镍磷工艺 60年代初,具有广泛适用性的专利性化学镀镍工艺进人了美国市场,当时的产品都是中等磷含量[5%一8%P(质量分数)]镀层,该镀层通常采用了含硫稳定剂或重金属离子,在各种性能上有一定的局限性。70年代后期到80年代,研究重点转向高磷化学镀镍层[9%一12%P(质量分数)],该种镀层具有非晶态结构,而赋予镀层极佳的耐蚀性,改善了压应力,延长了疲劳寿命,并具有非磁特性,而深得广大工程技术人员的青睐。近期人们研究发现,低磷镀层[1%一5%P(质量分数)]具有高的镀态硬度和优良的耐碱蚀特性,在许多应用场合可用来代替硬铬及镍硼镀层,特别适用于要求耐磨性而不能经受高温热处理的材料(如铝及铝合金),显示出广阔的开发应用前景。 化学镀Ni-P工艺按溶液pH值可分为酸性和碱性两大体系,镀液的主要成分是NISO4·6H2O和NaH2PO2·2H2O,同时为了保证镀液稳定和镀层质量,镀液中还必须加入一定量的络合剂、加速剂、稳定剂、光亮剂等。只有在正确选择了各种添加剂及含量的情况下,才能获得优良的化学镀镍工艺,要求工艺不仅有较快的沉积速度,而且镀液稳定性好,使用周期长,同时还要保证镀层优良的使用性能。 3化学镀镍磷沉积过程与沉积机理 3.1化学镀镍磷的沉积速度及镀层组成 化学镀镍沉积反应的动力学同时控制着沉积速率和镀层组成。对于化学镀镍这样一个含有多种化学成分的复杂反应体系,人们广泛研究了各种操作参数及溶液组成对沉积速度和镀

化学镀镍配方_铝合金化学镀镍工艺研究论文

化学镀镍配方_铝合金化学镀镍工艺研究论文 摘要:研究了铝合金表面化学镀Ni-P合金的预处理、镀液配方及镀后热处理。采用碱性化学镀镍作底层,然后进行酸性化学镀镍, 能在铝合金表面获得光亮、平整、附着力良好化学镀镍Ni-P层。镀层硬度为686HV,含磷量为11.17%。 关键词:铝合金;预处理;化学镀镍;附着力 1 引言 化学镀Ni-P具有厚度均匀、硬度高、抗蚀性优异等特点,因此镀层广泛被应用于需耐磨的工件。但是,铝合金表面即使在空气中停留时间极短也会迅速地形成一层氧化膜,以致影响镀层质量,降低镀层与基体的结合力。 本项研究得出了比较好的预处理方案,从而得到结合力良好,表面比较光亮的Ni-P 镀层。 2 实验方法 2.1 实验工艺流程 试样制备→配制除油溶液→化学除油→水洗→侵蚀→水洗→超声波水洗→去离子水洗→一次锓锌→水洗→退锌→水洗→超声波水洗→去离子水洗→二次锓锌→水洗→去离子水洗→碱性镀→水洗→酸性镀→去离子水洗→吹干→冷却 2.2 除油配方及工艺 除油:Na3PO412H2O 30 g/LNaCO3 30 g/L温度(65℃)时间(3min) 2.3 浸锌配方及工艺 ZnSO440g/l NaOH90g/l NaF1g/l Fecl31g/l KNaC4O4H40610g/L 温度(42℃)一次浸锌时间(90S)二次浸锌时间(18S) 2.4 镀液配方与工艺 碱性预镀液NiSO46H2O(30g/l)NaH2PO2H2O(25g/l)NH4C6H5O7 H2O(100g/l)温度(65℃) PH值(8.2)施镀时间(8min) 酸性镀液NiSO46H2O(30g/l) NaH2PO2H2O(25g/l) NH4C6H5O7 H2O(10g/l) 乳酸C3H6O3(40ml/l) NaC2H302(10g/ L)温度(85℃) PH值(4.8)施镀时间(120min) 3 实验结果与分析

化学镀镍工艺

化学镀镍工艺 化学镀镍机理: 1)原子氢析出机理。原子氢析出机理是1946年提出的,核心是还原镍的物质是原子氢,其反应过程如下: H2P02-+H20→HP032-+H++2H Ni2++2H→Ni+2H+ H2P02-+H++H→2H20+P 2H→H2 水和次磷酸根反应产生了吸附在催化表面上的原子氢,吸附氢在催化表面上还原镍离子。同时,吸附氢在催化表面上也产生磷的还原过程。原子态的氢相互结合也析出氢气。2)电子还原机理(电化学理论)电子还原机理反应过程如下: H2P02-+H20→HP032-+H++2e Ni2++2e→Ni H2P02-+2H++e→2H20+P 2H++2e→H2 酸性溶液中,次磷酸根与水反应产生的电子使镍离子还原成金属镍。在此过程中电子也同时使少部分磷得到还原。 3)正负氢离子机理。该理论最大特点在于,次磷酸根离子与磷相连的氢离解产生还原性非常强的负氢离子,还原镍离子、次磷酸根后自身分解为氢气。 H2P02-+H20→HP032-+H++H- Ni2++2H-→Ni+H2 H2P02-+2H++H-→2H20+P +1/2H2 H-+H+→H2 分析上述机理,可以发现核心在于次磷酸根的P-H键。次磷酸根的空间结构是以磷为中心的空间四面体。空间四面体的4个角顶分别被氧原子和氢原子占据,其分子结构式为: 各种化学镀镍反应机理中共同点是P-H键的断裂。P-H键吸附在金属镍表面的活性点上,在镍的催化作用下,P-H键发生断裂。如果次磷酸根的两个P-H键同时被吸附在镍表面的活性点上,键的断裂难以发生,只会造成亚磷酸盐缓慢生成。对于P-H键断裂后,P-H间共用电子对的去向,各种理论具有不同的解释。如电子在磷、氢之间平均分配,这就是原子氢析出理论;如果电子都转移至氢,则属于正负氢理论;而电子还原机理则认为电子自由游离出来参与还原反应。因此,可以根据化学镀镍机理的核心对各种宏观工艺问题进行分析解释。 化学镀镍工艺过程 化学镀镍前处理工艺 一:除油:

化学镍金的工艺

化学镍金的工艺 Tags: 化学镍金,印制电路板, 积分Counts:907 次 本文在简单介绍印制板化学镀镍金工艺原理的基础上,对化学镍金之工艺流程、化学镍金之工艺控制、化学镍金之可焊性控制及工序常见问题分析进行了较为详细的论述。在一个印制电路板的制造工艺流程中,产品最终之表面可焊性处理,对最终产品的装配和使用起着至关重要的作用。综观当今国内外,针对印制电路板最终表面可焊性涂覆表面处理的方式,主要包括以下几种:Electroless Nickel and Immersion Gold形电镀铜的常见缺陷及故障排除。 1.前言 由于行业竞争的激烈,印制板的制造商不断降低成本提高产品质量,追求零缺陷,以质优价廉取胜。而客户对印制板的要求也没有单纯停留在对产品性能的可靠性上,同时对产品的外观也提出了更严格的要求。而图形电镀铜作为化学沉铜的加厚层或其它涂覆层的底层,其质量与成品的关系可谓休戚相关“一荣俱荣,一损俱损”。所以图形电镀铜上的任何缺陷如镀层粗糙、麻点针孔、凹坑、手印等的存在,严重影响成品的外观,透过涂覆其上的阻碍或铅锡镀层或是镍金层,都能清楚的显露出来。 本文主要叙述图形电镀铜常见的系列故障及缺陷,并针对这些缺陷进行跟踪调查、模拟实验,找出产生缺陷的成因,制定切实的纠正措施,保证生产的正常进行。 2.缺陷特点及成因 2.1 镀层麻点 图形电镀铜上出现麻点,在板中间较为突出,退完铅锡后铜面不平整,外观欠佳。 刷板清洁处理后表面麻点仍然存在,但已基本磨平不如退完锡后明显。此现象出现后首先想到电镀铜溶液问题,因为出现故障的前一天(4月2日)刚对溶液进行活性炭处理,步骤如下:1)在搅拌条下件下加入2升H2O2 2)充分搅拌后将溶液转至一个备用槽中,加入4kg活性碳细粉,并加入空气搅拌2小时,之后关闭搅拌,让溶液沉降。 从调查中发现,生产线考虑到次日有快板,当晚将溶液从备用槽中转回工作槽。未经过充分过滤沉降活性炭,而转移溶液时未经循环过滤泵(慢)直接从工作槽的输出管理返回(管道粗,快)。因为溶液转回工作槽后已过下班时间,电镀人员没有小电流密度空镀处理阳极。在4月3日按新开缸液加完光亮剂FDT-1就开始电镀。 问题已经清楚,电镀铜上有麻点,来源于电渡溶液里的活性炭颗粒或其它脏东西。因为调度安排工作急,电镀人员未按照工艺文件的程序进行操作,溶液没有充分循环过滤,导致溶液里的机械杂质影响镀层质量。另一个因素是磷铜阳极清洗后,未通过电解处理直接工作,没来得及在阳极表面生成一层黑色均匀的“磷膜”,导致Cu+大量积累,Cu+水解产生铜粉,致使镀层粗糙麻点。 金属铜的溶解受控制步骤制约,Cu+不能迅速氧化成Cu2+。而阳极膜未形成,Cu-e.Cu2+ 的反应不断以快的方式进行,造成Cu+的积累,而Cu+具有不稳定性,通过歧化反应:2Cu+.Cu2+Cu,所生成的会在电镀过程中以电泳的方式沉积于镀层,影响镀层的质量。阳极经过小电流电解处理后生成的阳极膜能有效控制Cu的溶解速度,使阳极电流效率接近阴极电流效率,镀液中的铜离子保持平衡,阻止Cu+的产生,

钢的化学镀镍磷

钢的化学镀镍磷 DC 金属3090****** 材料科学与工程学院 摘要:本文简要介绍了钢铁化学镀镍磷的原理与工艺流程,简述了镀层的性能及技术指标,随之分析了影响镀层性能的主要因素,并据此给出了工艺中的除锈配方和镀液配方,最后对试验参数进行了测定与比较,得出了一定的结论,由此论证了化学镀镍磷的重要作用和这一工艺对钢铁性能改进的重要影响。 关键词:原子氢态理论镀层工艺热处理参数测定 前言:化学镀镍磷工艺是近年来迅速发展起来的一种新型表面保护和表面强化技术手段,具有广泛的应用前景。目前化学镀镍磷合金已广泛地应用在石油化工、石油炼制、电子能源、汽车、化工等行业。石油炼制和石油化工是其最大的市场,并且随着人们对这一化学镀特性的认识,它的应用也越来越广泛,主要用在石油炼制、石油化工的冷换设备上,化学镀镍磷能够显著提高设备的耐磨、耐蚀性能,延长其寿命,性能优于目前使用的有机涂料,而且适用于碳钢、铸铁、有色金属等不同基材[1]。 一、实验原理 化学镀镍磷合金是一种在不加电流的情况下,利用还原剂在活化零件表面上自催化还原沉积得到镍磷镀层的方法。其主要反应为应用次亚磷酸钠还原镍离子为金属镍,即在水溶液中镍离子和次亚磷酸根离子碰撞时,由于镍触媒作用析出原子态氢,而原子态氢又被催化金属吸附并使之活化,把水溶液中的镍离子还原为金属镍形成镀层,另外次亚磷酸根离子由于在催化表面析出原子态氢的作用,被还原成活性磷,与镍结合形成Ni-P合金镀层。 以次磷酸钠为还原剂的化学镀镍磷工艺,其反应机理,现普遍被接受的是“原子氢态理论”和“氢化物理论”。下面介绍“原子氢态理论”,其过程可分为以下四步: 1、化学沉积镍磷合金镀液加热时不起反应,而是通过金属的催化作用,次亚磷酸根在水溶液中脱氢而形成亚磷酸根,同时放出初生态原子氢。 H2PO2-+H2O→HPO3-+2H+H-

化学镀镍配方汇编

简述电镀槽液加料方法与溶液密度测定方法 1.电镀生产现场工艺管理的主要内容: 1)控制各槽液成分在工艺配方规范内。遵守规定的化学分析周期。 2)保持电镀生产的工艺条件。如温度、电流密度等。 3)保持阴极与阳极电接触良好。 4)严格的阴极与阳极悬挂位置。 5)保持镀液的清洁和控制镀液杂质。 6)保持电镀挂具的完好和挂钩、挂齿良好的电接触。 2.电镀槽液加料方法:加料要以“勤加”“少加”为原则。 2.1固体物料的补充,某些有机固体料先用有机溶剂溶解,再慢慢加入以提高增溶性。若直接加入往往会使镀液混浊。一般的固体物料,可用镀槽中的溶液来分批溶解。即取部分电镀液把要加的料在搅拌下慢慢加入,待静止澄清,把上层清液加入镀槽。未溶解的部分,再加入镀液,搅拌溶解。这样反复作业,直到全部加完。在不影响镀液总体积的情况下,也可以用去离子水或热的去离子水搅拌溶解后加入镀槽。有些固体料易形成团状,影响溶解过程。可以先用少量水调成稀浆糊状,逐步冲稀以避免团状物的形成。 2.2液体物料的补充,可以用去离子水适当稀释或用镀液稀释后在搅拌下慢慢加入。严禁将添加剂光亮剂的原液加入镀槽。 2.3补充料的时机,加料最好是在停镀时进行。加入后经过充分搅匀再投入生产。在生产中加料,要在工件刚出槽后的“暂休”时段加入。可在

循环泵的出液口一方加入,加入速度要慢,药料随着出液口的冲击力很快分散开来。 2.4加料方法不当可能造成的后果: 2.4 1)如果加入的是光亮剂,则易造成此槽工件色泽差异。 2.4.2)如果加入的是没有溶解的固体料,则易造成镀层毛刺或粗糙。 2.4.3)如果是加入酸调节pH,会造成槽液内部pH不均匀而局部造成针孔。 3.镀液及其它辅助溶液密度的测试方法: 3.1要经常测定溶液的密度,新配制的镀液或其它辅助液,都要测定它的密度并作为档案保存起来供以后对比。镀液的密度一般随着槽龄增加而增加。这是由于镀液中杂质离子、添加剂分解产物等积累的结果,因此可以把溶液密度与溶液成分化验数据一起综合进行分析,判断槽液故障原因以利排除。 3.2溶液密度测定方法,在电镀生产中,常用密度计或波美计测试溶液密度。密度与波美度可以通过下列公式转换。对重于水的液体密度 =145/(145-波美度),波美度=(145x145)/密度,在用波美计测试时,其量程要从小开始试测,若波美计量程选择不当,会损坏波美计。 测试密度不要在镀槽内进行,应取出部分镀液在槽外进行。在镀槽中测试,当比重计或波美计万一损坏,镀液会被铅粒污染。应将待测液取出1.5L左右(用2000mL烧杯),热的溶液可用水浴冷却。然后将样液转移至1000mL直形量筒中,装入量为距筒口约20mm处,就可用比重计测量。 脉冲电镀电源使用须知

铝合金化学镀镍的研究 开题报告

题目:铝合金化学镀镍的研究

1.毕业设计(论文)综述(题目背景、研究意义及国内外相关研究情况) 化学镀镍是一种比较新的工艺技术[1]。1844年,A.Wurtz发现金属镍可以从金属镍盐的水溶液中被次亚磷酸盐还原而沉积出来。化学镀镍技术的真正发现并应用是在1944年[2],美国国家标准局的A.Brenner和G.Riddell进行了第一次实验室试验[3]。到20世纪70年代,科学技术的发展和工业的进步,促进了化学镀镍的应用与研究。20世纪80年代中期化学镀镍的年产量为1500t按厚度为25um计,面积达到7.50km2.其中美国占40%,远东地区20%,其余为南非和南美洲。美国有900个化学镀镍的工厂,产值约2亿美元。 化学镀镍是通过向溶液中加入适当的还原剂,使镍离子还原成金属镍,并在镀件表面沉积的过程。和电镀镍相比,化学镀镍具有许多优点,主要表现为:1镀层均匀,和同等厚度的电镀镍层比较,化学镀镍层的微孔隙小于电镀镍层,因而其镀层的防腐蚀性能优于电镀镍层;2由于化学镀镍层的致密结构,具有很高的硬度,因而具有优良的耐磨性;3均镀能力好,操作简便,易于掌握,配槽与调整十分简便;4镀液已形成系列化商品;5通过施镀,使某些金属和非金属具有钎焊和锡焊能力;6 生产效率高[4-8]。由于这些优点,化学镀镍已在机械、电子及微电子、航空航天、石油化工、汽车、纺织、食品、军事等工业部门获得广泛应用。 化学镀镍磷合金具有结晶细致、光亮、抗蚀性和耐磨性好等特点,对形状复杂和尺寸精度高的零部件,更具有其独特的优越性[9]。采用化学镀镍再进行必要的热处理,将会大大提高制件的使用寿命。 近10年来,在各种期刊上发表了许多有关镀镍的论文、综述、书评和会议纪要。英国化学镀镍协会和金属精饰学会、美国产品精饰杂志都对化学镀镍进行了研究报告。同样化学镀镍在国内也引起了充分的重视。我国的化学镀镍工业化生产起步较晚,但近几年的发展十分迅速。据推测国内目前每年的化学镀镍以每年10%~15%的速度发展。近来的化学镀镍主要向着以下方向发展:化学镀镍、低温化学镀镍、用自来水代替蒸馏水、局部化学镀、复合镀层及多元镀层[10]。 2.本课题研究的主要内容和拟采用的研究方案、研究方法或措施 在基体表面镀镍能使其表面获得非结晶态的镀层,使基体表面光亮,起到防腐、耐磨功能。 研究出一种多功能的化学镀镍液,可用于多种基体材料,并尽可能模拟工厂生产

优秀的化学镀镍,这些步骤一个都不能少!

优秀的化学镀镍,这些步骤一个都不能少! 化学镀镍不受镀件形状的影响,对于形状复杂怪异的仪器零件、管道或容器内壁,甚至是特殊条件下的阀和搅拌器等均能提供非常均匀的镀层。这些是其他电镀工艺难以实现的,而且化学镀镍生产设备比较简单、操作方便,因此化学镀镍被广泛应用于各种设备零件。 其次,化学镀镍有优异的耐磨性能和耐腐蚀性能,因此被用于制造手术刀和缝合器等医疗器械、航天航空器发动机的零件、轴和滚筒类的零件、大型模具或零件、高精密零件等。 第三,化学镀镍的均匀厚度和始终如一的电热性等物理性能,使其在电子工业上也大放异彩,经过化学镀镍能提高电子元件的可靠性,目前计算机生产中的硬盘、驱动器、软盘、光盘、打印机鼓等绝大部分都采用了化学镀镍。 化学镀镍的工艺流程包括前处理、化学镀镍和后处理3大部分,每一部分都对化学镀镍的最终效果起关键性作用。 化学镀镍前处理包括了研磨抛光、除油、除锈、活化等过程,与其他电镀加工的方法类似,其中研磨和机械抛光是对待镀件表面进行整平处理的机械加工过程;除油、除锈则是为了除去待镀件表面的油污和锈迹,以便镀层结合更牢固;活化是为了是待镀件获得充分活化的表面,以催化化学镀反应的进行。 化学镀镍的操作在这里就不详细叙述了,下面来了解一下经过化学镀镍操作后,如何做好最后一个步骤:化学镀镍后处理,来提升其效果性能或为后续的二次电镀做好准备。

零件在化学镀镍后必须采取清洗和干燥,目的在于除净零件表面残留的化学镀液、保持镀层具有良好的外观,并且防止在零件表面形成“腐蚀电池”条件,保证镀层的耐蚀性。除此之外,为了不同的目的和技术要求还可能进行如下后续处理。 1、烘烤除氢,提高镀层的结合强度,防止氢脆。 2、热处理,改变镀层组织结构和物理性质,如提高镀层硬度和耐磨性。 3、打磨抛光,提高镀层表面光亮度。 4、铬酸盐钝化,提高镀层耐蚀性。 5、活化和表面预备,为了涂覆其他金属或非金属涂层,提高镀层耐蚀性、耐磨性或者进行其他表面功能化处理。 我们可以看到,要做好化学镀镍的加工,前处理与后处理是极其重要的。其实不仅是化学镀镍,阳极氧化、电镀锌、镀硬铬、不锈钢表面处理等电镀加工都需注意前处理与后处理。因此拥有一套完善成熟的电镀处理流程对于电镀企业来说是重中之重。

铝合金化学镀镍

铝合金化学镀镍 前言:所谓化学镀就是指不使用外电源,而是依靠金属的催化作用,通过可控制的氧化—还原反应,使镀液中的金属离子沉积到镀件上去的方法,因而化学镀也被称为自催化镀或无电镀。化学镀液组成一般包括金属盐、还原剂、络合剂、pH缓冲剂、稳定剂、润湿剂和光亮剂等。当镀件进入化学镀溶液时,镀件表面被镀层金属覆盖以后,镀层本身对上述氧化和还原反应的催化作用保证了金属离子的还原沉积得以在镀件上继续进行下去。目前已能用化学镀方法得到镍、铜、钴、钯、铂、金、银、锡等金属或合金的镀层。化学镀既可以作为单独的加工工艺,用来改善材料的表面性能,也可以用来获得非金属材料电镀前的导电层。化学镀在电子、石油化工、航空航天、汽车制造、机械等领域有着广泛的应用。化学镀具有以下优点:表面硬度高,耐磨性能好;硬化层的厚度及其均匀,处理部件不受形状限制,不变形,特别是适用于形状复杂,深盲孔及精度要求高的细小及大型部件的表面强化处理;具有优良的抗耐蚀性能,在许多酸、碱、盐、氨和海水中具有良好的耐蚀性,其耐蚀性要比不锈钢优越的多;处理后的部件,表面光洁度高,表面光亮,不需要重新的机械加工和抛光,可直接装机使用;镀层与基体的结合力高,不易剥落,其结合力比电镀硬铬和离子镀要高;可处理的基体材料广泛。〔1〕 化学镀分类(广义分类): 1.置换镀(离子交换或电荷交换沉积):一种金属浸在第二种金属的金属盐溶液中,第一种金属的表面上发生局部溶解,同时在其表面自发沉积上第二种金属上。在离子交换的情况下,基体金属本身就是还原剂。 2.接触镀:将欲镀的金属与另一种或另一块相同的金属接触,并沉浸在沉积金属的盐溶液中的沉积法。当欲镀的导电基体底表面与比溶液中待沉积的金属更为活泼的金属接触时,便构成接触沉积。 3.真正的化学镀:从含有还原剂的溶液中沉积金属〔1〕。 日前工业上应用最多的是化学镀镍和化学镀铜。可以使用化学镀进行表面加工的金属及合金有很多,下面以铝合金镀镍为例进行说明,而铝合金化学镀镍属于化学镀的第三种即真正的化学镀。 铝合金简介 铝合金具有机械强度高、密度小、导热导电性好、韧性好、易加工等特点,因而在工业部门,特别是航空航天、国防工业,乃至人们的日常生活中,都有较广泛的应用。铝合金表面覆盖一层致密的氧化膜,它可将铝合金与周围环境隔离开来,避免被氧化。但是这层氧化膜易受到强酸和强碱的腐蚀,同时铝合金易产生晶间腐蚀,表面硬度低,不耐磨。化学镀是赋予铝合金表面良好性能的新型工艺手段之一,它不仅是其抗蚀性、耐磨性、可焊性、和电接触能得到提高,镀层与铝合金机体间结合力好,镀层外观漂亮,而且通过镀覆不同的镍基合金,可以赋予铝合金各种新性能,如磁性能、润滑性等。〔2〕 铝合金化学镀镍原理: 化学镀镍是利用镍盐溶液在强还原剂次亚磷酸钠的作用下,使镍离子还原成金属镍,同时次磷酸钠分解析出磷,因而在具有催化表面的镀件上,获得镍磷合金镀层。 对于次磷酸钠还原镍离子的总反应可以写成: 3NaH 2PO 2 +3H 2 O+NiSO 4 -----3 NaH 2 PO 3 +H 2 SO 4 +2H 2 +Ni 同样的反应可写成如下离子式: 2 H 2PO 2 -+ Ni2++2H 2 O-----2 H 2 PO 3 -+ H 2 +2H++ Ni 或写成另一种形式:Ni 2++H 2 PO 2 -+H 2 O------H 2 PO 3 -+Ni+2H+ 所有这些反应都发生在催化活性表面上,需要外界提供能量,即在较高温度(60≤T≤

化学镀镍技术常识

化学镀镍技术常识 化学镀镍工艺在国外发展了40余年,80年代达到开发研究与应用高潮。目前化学镀镍工艺从溶液使用寿命到自动控制和自动补加都达 化学镀镍工艺在国外发展了40余年,80年代达到开发研究与应用高潮。目前化学镀镍工艺从溶液使用寿命到自动控制和自动补加都达到相当高的水平,居于领先地位的Atotech,OMI,日本上村工业(株)、奥野制药工业(株)都有系列化的商品出售。 我国化学镀镍的现代工艺及材料研究起步较晚,八十年代中期才起步,我国的高等学校、研究所投入不少人力和财力,使开发研究上升很快,一下跃升到第三代,第四代。即镍盐+次亚磷酸钠+络合剂+稳定剂(第三代) 镍盐+次亚磷酸钠+复合络合剂+稳定剂+促进剂+缓冲剂+润湿剂(第四代)。工艺性能基本上接近国际水平。 如哈尔滨工业大学的EN化学镍和武汉材保所的HN625化学镀镍都有较高的研究深度和应用面,但大多数在功能上的应用为多,此外南京大学、北京科技大学、南京航空学院等都有相当水平的工艺和材料。 国内开发新的复合化学镀镍工艺,在还原剂研究上,应用二甲胺基硼烷或硼氢化钠,为Ni-B的工业化打下基础,但在工艺的设备研究上与国外仍有较大差距。还没有十分可靠的自动控制系统,自动补加装置作为商品出售。限制了化学镀镍工艺的扩大应用。 最近几年光亮化学镀镍工艺得到许多电镀厂的青睐,浙江恩森公司从境外带进来的JS-934超光亮化学镀镍就是一个具有镀速高,循环使用寿命长,镀层外观白亮的工艺,在深圳获得大面积应用,它的特点: ①溶液稳定性好,可以循环使用,使用寿命达到8-10循环,1个循环的含义是每升镀液将全部镍镀出再补充到原来的镍含量称为1 M.T.O.。 ②沉积速度快,达到18-30μm /hr,提高生产效率。 ③镀层外观光亮,具有镜面光泽。 ④镀层防腐性能高。 ⑤对复杂零件具有优异的均镀能力。 ⑥镀层孔隙率低。 ⑦操作简单,使用方便。 ⑧优异的耐磨性能,经热处理后镀层硬度可达1050 VHN。 * |5 n8 k9 V, A化学镀镍适用于大多数材料的零部件,如钢铁、铸铁、铝合金、铜及铜合金、不锈钢、钕铁硼粉末烧焙件、钛合金以及塑料、陶瓷等非金属材料。广泛应用在计算机的硬磁盘、石油机械、电子、汽车工业、办公机器以及机器制造工业。'

化学镀工艺流程详解.

化学镀工艺流程 化学镀是一种在无电流通过的情况下,金属离子在同一溶液中还原剂的作用下通过可控制的氧化还原反应在具有催化表面(催化剂一般为钯、银等贵金属离子的镀件上还原成金属,从而在镀件表面上获得金属沉积层的过程,也称自催化镀或无电镀。化学镀最突出的优点是无论镀件多么复杂,只要溶液能深入的地方即可获得厚度均匀的镀层,且很容易控制镀层厚度。与电镀相比,化学镀具有镀层厚度均匀、针孔少、不需直流电源设备、能在非导体上沉积和具有某些特殊性能等特点;但化学镀镀层质量不很好,厚度上不去,且可镀的品种不多,故主要用于不适于电镀的特殊场合。 近年来, 化学镀技术得到了越来越广泛的应用,在各种非金属纤维、微球、微粉等粉体材料上施镀成为研究的热点之一;用化学镀方法可以在非金属纤维、微球、微粉镀件表面获得完整的非常薄而均匀的金属或合金层,而且镀层厚度可根据需要确定。这种金属化了的非金属纤维、微球、微粉镀件具有良好的导电性,作为填料混入塑料时能获得较好的防静电性能及电磁屏蔽性能,有可能部分取代金属粉用于电磁波吸收或电磁屏蔽材料。美国国际斯坦福研究所采用在高聚物基体上化学镀铜来研制红外吸收材料。毛倩瑾等采用化学镀的方法对空心微珠进行表面金属化改性研究,发现改性后的空心微珠具有较好的吸波性能,可用于微波吸收材料、轻质磁性材料等领域。 化学镀所需仪器:电热恒温水浴锅;8522型恒温磁力搅拌器控温搅拌;增力电动搅拌机。化学镀工艺流程:机械粗化→化学除油→水洗→化学粗化→水洗→敏化→水洗→活化→水洗→解胶→水洗→化学镀→水洗→干燥→镀层后处理。 1化学镀预处理 需进行化学镀的镀件一般不溶于水或者难溶于水。化学镀工艺的关键在于预处理,预处理的目的是使镀件表面生成具有显著催化活性效果的金属粒子,这样才能最终在基体表面沉积金属镀层。由于镀件微观表面凸凹不平,必须进行严格的镀前预处理,否则易造成镀层不均匀、密着性差,甚至难于施镀的后果。

相关文档