文档视界 最新最全的文档下载
当前位置:文档视界 › 曲线积分的计算法

曲线积分的计算法

曲线积分的计算法
曲线积分的计算法

曲线积分的计算法

曲线积 第一类 ( 对弧长 )

第二类 ( 对坐标 )

???转化 定积分 (1) 选择积分变量

用参数方程

用直角坐标方程

用极坐标方程 (2) 确定积分上下限

第一类: 下小上大 第二类: 下始上终 对弧长曲线积分的计算 定理 )

()()()](),([),(,],[)(),()(),(),(,

),(22βαψ?ψ?βαψ?βαψ?β

α<'+'=≤≤?

??==??dt t t t t f ds y x f t t t t y t x L L y x f L 且

上具有一阶连续导数在其中的参数方程为上有定义且连续在曲线弧设注意:

;

.1βα一定要小于上限定积分的下限.

,,),(.2而是相互有关的不彼此独立中y x y x f 特殊情

形 .

)

(:)1(b x a x y L ≤≤=ψ.

)(1)](,[),(2dx x x x f ds y x f b

a L ??'+=ψψ.

)(:)2(d y c y x L ≤≤=?.)(1]),([),(2dy y y y f ds y x f d c

L ??'+=??1. 基本

).(,sin ,cos :,象限第椭圆求I ???===?t b y t a x L xyds I L 解 dt t b t a t b t a I 2220

)cos ()sin (sin cos +-?=?π

dt t b t a t t ab 222220

cos sin cos sin +=?π

?-=a

b du u b a ab

222)cos sin (2222t b t a u +=令.)

(3)(22b a b ab a ab +++=例2 .)2,1()2,1(,4:,

2一段到从其中求-==?x y L yds I L

x

y 42=解 dy y y I 222)2

(1+=?-.

0=例3 )

20(.,

sin ,cos :,πθθθθ≤≤===Γ=?Γ的一段其中求k z a y a x xyzds I 解 θ

θθθd k a k a 222sin cos +??=π20

I .2

1222k a ka +-=π例4 ???=++=++Γ=?Γ.

0,,

22222z y x a z y x ds x I 为圆周其中求解 由对称性,

知 .222???ΓΓΓ==ds z ds y ds x ?Γ

++=ds z y x I )(31222故例1

对坐标的曲线积分的计算

,),(),(,0)()(,)(),(,

),(,),(),(,),(),,(22存在则曲线积分

且续导数一阶连

为端点的闭区间上具有及在以运动到终点沿的起点从点时到变单调地由当参数的参数方程为续上有定义且连

在曲线弧设?+≠'+'?

??==L

dy y x Q dx y x P t t t t B L A L y x M t t y t x L L y x Q y x P ψ?βαψ?βαψ?dt t t t Q t t t P dy y x Q dx y x P L

)}()](),([)()](),([{),(),(ψψ??ψ?β

α'+'=+??且特殊情形

.)

(:)1(b a x x y y L ,终点为起点为=.

)}()](,[)](,[{dx x y x y x Q x y x P Qdy Pdx b a L ??'+=+则.)

(:)2(d c y y x x L ,终点为起点为=.

]}),([)(]),([{dy y y x Q y x y y x P Qdy Pdx d

c L ??+'=+则例5 计,

d d )2(?+-L y x x y a 其中L 为摆线 ,

)sin (t t a x -=)cos 1(t a y -=上对应 t 从 0 到 2π 的一段弧.

提示: y x x y a d d )2(+-)cos 1(t a +=t

t a d )cos 1(-?t t a t t a d sin )sin (?-+t

t t a d sin 2=?=∴π

202d sin t

t t a 原式[]π202sin cos t t t a --=2

π2a -=?Γ=ds a 32

.323a π=),2(球面大圆周长?Γ

=ds a π

,d ?Γz z y x 其中Γ 由平面 y = z 截球

22y x +,12所得=+z 从 z 轴正向看沿逆时针方向. 提示: 因在 Γ 上有 ,1222=+y x 故

:Γ t

x cos =

t y sin 21

=)

π20(≤≤t

sin 21

t z =原式 = t

t t d sin cos π2022

221?t

t t d ?-?=2π022221)cos 1(cos 4??? ????-?=2π21

43

21

216

π

2=曲面积分的计算法

1. 基本方

曲面积分 ???第一类( 对面积 )

第二类( 对坐标 ) ???

转化

二重积分

(2) 积分元素投影 ???第一类: 始终非负

第二类: 有向投影

(3) 确定二重积分域

例 6 计算 (1) 选择积分变量 — 代入曲面方程 — 把曲面积分域投影到相关坐标面

定理: 设有光滑曲

面 y

x D y x y x z z ∈=∑),(),,(:f (x, y, z ) 在 ∑ 上连续,

则曲面积分 ??∑S

z y x f d ),,(存在, 且有 ??∑S z y x f d ),,(??=y x D y x f ),,(),(y x z y

x y x z y x z y x d d ),(),(122++ 例7 计算??∑++ds z y x )(, 其中∑为

平面5=+z y 被柱面2522=+y x 所截得的部分. 解 积分曲面 ∑:y z -=5 ,

dxdy

z z dS y x 22

1'+'+=dxdy

2)1(01-++=,2dxdy =??∑

++ds z y x )(故

??-++=xy D dxdy y y x )5(2投影域 :}25|),{(22≤+=y x y x D xy

??+=xy

D dxdy x )5(2rdr r d ??+=5

020)cos 5(2θθπ.

2125π=对坐标的曲面积分计算:一投、二代、三定号

例8. 计算曲面积分 ,d d ??∑y x xyz 其中 ∑ 为球面 +2x 12

2=++z y 1

22=++z y 外侧在第一和第五卦限部分.

解: 把 ∑ 分为上下两部分 2211:y x z ---=∑2221:y x z --=∑

对面积的曲面积分

???≥≥≤+∈0,01:),(22y x y x D y x y

x

??

=1d d y x z y x

例9

??∑+dydz x z )(2??∑

+=ds

x z αcos )(2??∑+=dxdy x z γαcos cos )

(2有上在曲面,∑.11cos ,1cos 2222y x y x x ++-=++=γα????∑∑

--+=-+∴dxdy

z x x z zdxdy dydz x z ]))([()(22??+--?++-=xy D dxdy y x x x y x )}(21)(])(41{[2222??++=xy

D dxdy y x x )](21[222??+=2022220)2

1cos (rdr r r d θθπ.8π=??∑

∴y x z y x d d ??∑+2d d y x z y x ??--=y x D y

x y x y x d d 12222

21cos sin 2r r y x D

-=??θθθd d r r ?=20d 2sin πθθr

r r d 12103-?15

2= 计算zdxdy dydz x z -+??∑)(2,其中Σ是旋转抛物面)(2

122y x z +=介于平面0=z 及 2=z 之间的部分的下侧. 解

平曲线要素计算

拉坡后,坡度差已知,变坡点高程已知,切线上各点和高程也就知道了。选定竖曲线半径R ,用竖距计算公式求出切线上各点的竖距,切线高程减竖距就是竖曲线高程。竖距公式如下: 一、路线转角、交点间距的计算 (一)在地形图上量出路线起终点及各路线交点的坐标: ()()()21Q 23810,27180JD 2399626977JD 2468426591D 、,、,、()3JD 24848025885,、()4JD 2535025204,、()ZD 2606225783, (二)计算公式及方法 设起点坐标为()00,QD X Y ,第i 个交点坐标为(),,1,2,3,4,i i i JD X Y i =则坐标增量11,i i i i DX X X DY Y Y --=-=- 交点间距D =象限角 arctan DY DX θ= 方位角A 是由象限角推算的: 转角1i i i A A α-=- 1.1JD QD 与之间: 坐标增量10=2396623810=1860DX X X =--> 1026977271802030DY Y Y =-=-=-<

交点间距275.33D m === 象限角 203 arctan arctan 47.502186 DY DX θ-=== 方位角036036047.502312.498A θ=-=-= 2.12JD JD 与之间: 坐标增量21X =2468423966=6880DX X =--> 21Y 26591269773860DY Y =-=-=-< 交点间距788.89D m === 象限角 386 arctan arctan 29.294688 DY DX θ-=== 方位角136036029.294330.706A θ=-=-= 转角110=330.706312.49818.208A A α-=-= 3. 23JD JD 与之间: 坐标增量32X =2484024684=1560DX X =--> 32Y 25885265917060DY Y =-=-=-< 交点间距723.03D m === 象限角 706 arctan arctan 77.54156 DY DX θ-=== 方位角236036077.54282.46A θ=-=-= 转角221=282.46330.70648.246A A α-=-=- 4. 34JD JD 与之间: 坐标增量43X =2535024840=5100DX X =--> 43Y 25204258856810DY Y =-=-=-< 交点间距850.8D m === 象限角 510 arctan arctan 53.171681 DY DX θ===- 方位角336036053.171306.829A θ=-=-= 转角332=306.829282.4624.369A A α-=-=

曲线计算公式

一、曲线要素计算 已知:JDZH 、JDX 、JDY 、R 、L S1、L S2、L H 、T 、A 1、A 2(L H =L S1+L S2+圆曲线长) 1、求ZH 点(或ZY 点)坐标及方位角 ?? ? ??-=-=-=11sin cos A T JDY ZHY A T JDX ZHX T JDZH ZHZH 2、求HZ 点(或YZ 点)坐标及方位角 ?? ? ??+=+=+-=22sin cos A T JDY HZY A T JDX HZX L T JDZH HZZH H 3、求解切线长T 、外距E 、曲线长L (1)圆曲线 ?? ? ??=-==180/)1)2/cos(/1()2/tan( απααR L R E R T (2)缓圆曲线 )2/(2/)2/cos(/)(2180/)21()2/tan( )(02 0R l l l Rl l R p R E l R L q p R T s s s H s H H ===?????-+=+?-=+?+=ββαπβα时当其中 二、直线上各桩号坐标及方位角计算 已知:ZH 、X 、Y 、A ??? ??+=+==-=A L Y DY A L X DX A T ZH DZH L sin cos 三、第一缓和曲线上各桩号点坐标及方位角计算 已知:ZHZH 、ZHX 、ZHY 、A 1、R 、L S1、i (Z+1Y-1) ?? ? ???-+=?++=??-==-=-=1111121132 125cos sin sin cos /180)2/() 6/()40/(A y i A x ZHY DY A y i A x ZHX DX Rl l i A T Rl L y l R L L x ZHZH DZH L s s s π 四、圆曲线上各桩号点坐标及方位角计算 已知:ZHZH 、ZHX 、ZHY 、A 1、R 、L S1、i (Z+1Y-1) ?? ? ???-+=?++=?+?-=?? ???=-==++-=-++=--=11111212311102 1123 1111 cos sin sin cos /180)/2/(24/240/2/2/24/)]/2/cos(1[240/2/)/2/sin(A y i A x ZHY DY A y i A x ZHX DX R L R l i A T R l p R l l q R l R l R L R l R y R l l R L R l R x ls ZHZH DZH L s s s s s s s s s s πβ其中 五、第二缓和曲线上个桩号坐标及方位角计算 已知:HZZH 、HZX 、HZY 、A2、R 、L S2、i (Z+1Y-1) ??????--=?+-=??+==-=-=222222223 2 225cos sin sin cos /180)2/()6/() 40/(A y i A x HZY DY A y i A x HZX DX Rl l i A T Rl L y l R L L x DZH HZZH L s s s π 六、边桩坐标求解 已知:DZH 、X 、Y 、T 、BZJL (Z+Y-)、DLJJ 、N (距中桩距离,左正右负) ?? ? ??-=-=+=T N Y BDY T N X BDX T T sin cos α 七、纵断面高程计算 (1) 直线段上高程计算 已知:直线上任一点桩号(ZH )、高程(H )、纵坡(i ) )(*ZH DZH i H DH -+= (2) 竖曲线上高程计算 已知:竖曲线起点桩号(ZH )、起点高程(H )、竖曲线半径R 、起点坡度(i )、k (凸曲线+1、凹曲线-1) ) 2/(2 R l k il H DH ZH DZH l ?-+=-= 注: JDZH 、JDX 、JDY :交点桩号、交点X 、Y 坐标 R 、L S1、L S2:半径、缓和曲线1、缓和曲线2 LH :缓和曲线1长 +圆曲线长+ 缓和曲线2长 A1、A2:方位角1、方位角2 T :在曲线要素中代表切线长;在坐标计算中代表被求解点的坐标方位角。 DLJJ :道路交角(右夹角α)。 BZJL :边桩距中桩距离:左为正值,右为负值 DZH 、DX 、DY 、DH 、BDX 、BDY :被求解点桩号、点X 值、点Y 值、点高程值、边桩点X 值、边桩点Y 值 i (Z+1Y-1):JD 处道路转向:左转时+1,右转时为-1

平曲线要素计算公式(给学生用的)

第三节 竖曲线 纵断面上两个坡段的转折处,为方便行车,用一段曲线来缓和,称为竖曲线采用抛物线拟合。 一、竖曲线要素的计算公式 (2)曲线主点桩号计算: ZH(桩号)=JD(桩号)-T HY(桩号)=ZH(桩号)+l s QZ(桩号)=HZ(桩号)-L/2 YH(桩号)=HY(桩号)+L y HZ(桩号)=YH(桩号)+l s JD(桩号)=QZ(桩号)+J/2 30-3 336629-3 4028)-(3 )(227-3 2 sec )(26-3 225-3 2ls 180)2(m 18024) -(3 2 )(23) -(3 9022)-(3 23842421)-(3 )( 24023 4202 30003 422 3m R l R l y m R l l x m L T J m R p R E m l L L R l R L m q tg p R T R l m R l R l p m R l l q s s s s s Y s s s s s s -=-=-=-?+=-=+??-=+??=+?+=???=-=-=α π βααπα πβ

相邻坡段的坡度为i1和i2,代数差为ω=i2 -i1 ω为正时,是凹曲线;ω为负,是凸曲线。 2.竖曲线诸要素计算公式 竖曲线长度或竖曲线半径R: (前提:ω很小) L=Rω 竖曲线切线长:T=L/2=Rω/2 竖曲线上任一点竖距h: 竖曲线外距: [例1]、某山岭区二级公路,变坡点桩号为K5+,标高为,变坡点桩号的地面高程为,i1=+5%,i2=-4%,竖曲线半径R=2000m。试计算竖曲线诸要素以及桩号为K5+和K5+处的设计高程,BPD的设计高程与施工高。 解:1.计算竖曲线要素 ω= |i2-i1|= | =,为凸型。 曲线长L=Rω=2000×=180m 切线长T=L/2=180/2=90m

二重积分的计算方法(1)

1 利用直角坐标系计算 1.1 积分区域为X 型或Y 型区域时二重积分的计算 对于一些简单区域上的二重积分,可以直接化成二次积分来解决.在直角坐标系下,被积分函数(,)f x y 在积分区域D 上连续时,若D 为x 型区域(如图1),即 {}12(,)()(),D x y x x x a x b ??=≤≤≤≤,其中12(),()x x ??在[,]a b 上连续,则有 21() () (,)(,)b x a x D f x y d dx f x y dy ??σ=?? ?? ; (1) 若D 为y 型区域(如图2),即{}12(,)()(),D x y y y y c y d ψψ=≤≤≤≤,其中12(),()y y ψψ在[,]c d 上连续,则有 21() () (,)(,)d y c y D f x y d dy f x y dx ψψσ=?? ?? .[1] (2) 例1 计算2 2D y dxdy x ?? ,其中D 是由2x =,y x =,及1xy =所围成. 分析 积分区域如图3所示,为x 型区域()1D=,12,x y x y x x ?? ≤≤≤≤????.确定了积分区域然后可以 利用公式(1)进行求解. 解 积分区域为x 型区域 ()1D=,12,x y x y x x ?? ≤≤≤≤???? 则 2 2 21221x x D y y dxdy dx dy x x =???? y y=x xy=1 D2 D1 x O 2 1 1 2 图3 图1

32 121 3x x y dx x ??= ???? 2 51 133x dx x ?? =- ???? 221412761264x x ??=+= ??? 1.2 积分区域非X 型或Y 型区域二重积分的计算 当被积函数的原函数比较容易求出,但积分区域并 不是简单的x 型或y 型区域,不能直接使用公式(1)或者(2)进行计 算,这是可以将复 杂的积分区域划分为若干x 型或y 型区域,然后利用公式 1 2 3 (,)(,)(,)(,)D D D D f x y d f x y d f x y d f x y d σσσσ=++???????? (3) 进行计算, 例2 计算二重积分D d σ??,其中D 为直线2,2y x x y ==及3x y +=所围成的区域. 分析:积分区域D 如图5所示,区域D 既不是x 型区域也不 是y 型区域,但是将可D 划分为 ()(){}12,01,22,13,23x D x y x y x D x y x y y x ??=≤≤≤≤?? ??=≤≤≤≤-均为x 型区 域,进而通过公式 (3)和(1)可进行计算. 解 D 划分为 ()1,01,22x D x y x y x ??=≤≤≤≤???? , (){}2,13,23D x y x y y x =≤≤≤≤- 则 1 2 D D D d d d σσσ=+??????12230 12 2 x x x x dx dy dx dy -=+?? ?? 1 20112322x x dx x dx ? ???=-+-- ? ???? ??? 1 2 22013333442x x x ??? ?=+-=??????? ? 1.3 被积函数较为复杂时二重积分的计算 3D o x y 1 D 2D 图 4 y x O x=2y y=2x x+y=3 图5

公路工程常用公式

公路工程常用公式 一、三角函数公式: 1)、在直角三角形ABC中,如果∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,那么 ○1三边之间的关系为(勾股定理) ○2锐角之间的关系为∠A+∠B=90° ○3边角之间的关系为 (4)其他有关公式 面积公式:(hc为c边上的高) 2)、正弦公式,即为正弦定理 在一个三角形中,各边和它所对角的正弦的比相 等。 即a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形 中是恒量,是此三角形外接圆的半径的两倍) 这一定理对于任意三角形ABC,都有 (1)a/sinA=b/sinB=c/sinC=2R R为三角形外接圆半径 正弦定理的变形公式 (1) a=2RsinA, b=2RsinB, c=2RsinC; (2) sinA : sinB;sinC = a : b : c; 3)任意三角形余弦公式:a2=b2+c2-2bc(cosA) ;cosA=(b2+c2-a2)/2bc 二、弧长公式:n∏r/180;扇形面积公式:n∏r2/360 公路测量常用公式: 一、圆曲线:曲线要素的计算若已知:转角α 及半径 R ,则:切线长:;曲线长: 外距:;切曲差: (1)主点里程的计算 ZY 里程 =JD 里程 -T ; YZ 里程 =ZY 里程 +L ;

QZ 里程 =YZ 里程 -L/2 ; JD 里程 =QZ 里程 +D/2 (用于校核) 二、缓和曲线 (spiral) 的测设 1、概念:为缓和行车方向的突变和离心力的突然产生与消失,需要在直线(超高为 0 )与圆曲线(超高为 h )之间插入一段曲率半径由无穷大逐渐变化至圆曲线半径的过渡曲线(使超高由 0 变为 h ),此曲线为缓和曲线。主要有回旋线、三次抛物线及双纽线等。 2、回旋型缓和曲线基本公式 ——缓和曲线全长。 (1)切线角公式:——缓和曲线长所对应的中心角。 (2)缓和曲线角公式:——缓和曲线全长所对应的中心角亦称缓和曲线角。 (3)缓和曲线的参数方程: (4)圆曲线终点的坐标:

缓和曲线常用计算公式

一、缓和曲线常数 1、 内移距P : 3420268824R l R l P n -= 2、 切垂距m : 2 302402R l l m -= 3、缓和曲线基本角: R l R l πβ000902== 3、 缓和曲线偏角: R l R l πδ000306== 5、缓和曲线反偏角: R l R l b π000603== 缓和曲线常数既有线元素,又有角元 素,且均 为圆曲线半径R 和缓和曲线 长0l 的函数。线元素要计算到mm ,角元素要计算到秒。 二、缓和曲线综合要素 切线长:()m P R T +?? ? ??+=2tan α 曲线长:()0022l R L +-=βα 外视距:R P R E -?? ? ??+=2cos 0α 切曲差:L T q -=2 曲线综合要素均为线元素,且均为转向角 α、圆曲线半径R 和缓和曲线长0 l 的函数。曲线综合要素计算到cm 。 三、缓和曲线任意点偏角计算

2020202902306Rl l Rl l Rl l Rl l t t t t t t πβπδ==== 0202603Rl l Rl l b t t t π== 实际应用中,缓和曲线长0l 均选用10m 的倍数。 四、偏角法测设缓和曲线遇障碍 ()()T B B T l l l l Rl 2610 +-=βδ ()()()()T F T F T F T F F l l l l Rl l l l l Rl 23026100 +-=+-= πδ —B l 为靠近ZH(HZ)点的缓和曲线长; —T l 为置镜点的缓和曲线长; —F l 为远离ZH(HZ)点的缓和曲线长。 五、直角坐标法 1、缓和曲线参数方程: 520 2401a a a l l R l x -= 30 373033661l R l l Rl y a a a -= 2、圆曲线 m R x b b +=αsin ()P R y b b +-=αcos 1 式中,b α为圆心O 到切线的垂线方向和到B 的半径方向所形成的圆心角,按 下式计算:

缓和曲线要素及公式介绍

11.2.1 带缓和曲线的圆曲线的测设 为了保障车辆行驶安全,在直线和圆曲线之间加入一段半径由∞逐渐变化到R的曲线,这种曲线称为缓和曲线。 目前常用的缓和曲线多为螺旋线,它有一个特性,曲率半径ρ和曲线长度l成反比。数学表达为: ρ∝1/l 或ρ·l = k ( k为常数) 若缓和曲线长度为l0,和它相连的圆曲线半径为R,则有: ρ·l = R·l0 = k 目前我国公路采用k = 0.035V3(V为车速,单位为km/h),铁路采用k = 0.09808V3,则公路缓和曲线的长度为l0 = 0.035V3/R , 铁路缓和曲线的长度为:l0 = 0.09808V3/R 。 11.2.2 带缓和曲线的圆曲线的主点及主元素的计算 带缓和曲线的圆曲线的主点有直缓点ZH、缓圆点HY、曲中点QZ、圆缓点YH、缓直点HZ 。

带缓和曲线的圆曲线的主元素及计算公式: 切线长 T h = q+(R+p)·tan(α/2) 曲线长 L h = 2l0+R·(α-2β0)·π/180° 外矢距 E h = (R+p)·sec(α/2)-R 切线加长 q = l0/2-l03/(240R2) 圆曲线相对切线内移量 p = l02/(24R) 切曲差 D h = 2T h -L h 式中:α 为线路转向角;β0为缓和曲线角;其中q、p、β0缓和曲线参数。 11.2.3 缓和曲线参数推导 dβ = dl/ρ = l/k·dl 两边分别积分,得: β= l2/(2k) = l/(2ρ)

当ρ = R时,则β =β0 β0 = l0/(2R) 若选用点为ZH原点,切线方向为X轴,垂直切线的方向为Y轴,建立坐标系,则: dx = dl·cosβ = cos[l2/(2k)]·dl dy = dl·sinβ = sin[l2/(2k)]·dl 考虑β很小,sinβ和cosβ即sin(l2/(2k))和cos(l2/(2k))可以用级数展开,等式两边分别积分,并把k = R·l0代入,得以曲线 长度l为参数的缓和曲线方程式: X = l-l5/(40R2l02)+…… Y = l3/(6Rl0)+…… 通常使用上式时,只取前一、二项,即: X = l-l5/(40R2l02) Y = l3/(6Rl0) 另外,由图可知, q = X HY-R·sinβ0 p = Y HY-R(1-cosβ0) 以β0= l0/(2R)代入,并对sin[l0/(2R)]、cos[l0/(2R)]进行级数展开,取前一、二项整理可得:q = l0/2-l03/(240R2) p = l02/(24R) 若仍用上述坐标系,对于圆曲线上任意一点i,则i点的坐标X i、Y i可以表示为: Xi = R·sinψi+q Yi = R·(1-cosψi)+p 11.2.4 带缓和曲线的圆曲线的主点桩号计算及检核 ZH桩号 = JD桩号-T h

二重积分的计算方法

重庆三峡学院数学分析课程论文 二重积分的计算方法 院系数学与统计学院 专业数学与应用数学(师范) 姓名 年级 2010级 学号 指导教师刘学飞 2014年5月

二重积分的计算方法 (重庆三峡学院数学与统计学院10级数本1班) 摘 要 :本文总结出了求二重积分的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算 引言 二重积分的概念和计算是多元函数微积分学的重要部分,在几何、物理、力学等方面有着重 要的应用.重积分是由一元函数积分推广而来的,但与一元函数相比,计算重积分的难度除了与被 积函数有关外,还与积分区域的特点有关,计算重积分的主要思想方法是化重积分为累次积分.求 二重积分的方法很多且非常灵活,本文归纳了二重积分计算的一些常见方法和技巧. 1. 预备知识 1.1二重积分的定义 设(),f x y 是定义在可求面积的有界区域D 上的函数. J 是一个确定的数,若对任给的正数 ε,总存在某个正数δ,使对于D 的任意分割T ,当它的细度T δ<时,属于T 的所有积分和都有 ()1 ,n i i i i f J ξησ ε=?-<∑, 则称(),f x y 在D 上可积,数J 称为函数(),f x y 在D 上的二重积分,记作(),D J f x y d σ= ??, 其中(),f x y 称为二重积分的被积函数, ,x y 称为积分变量, D 称为积分区域. 1.2二重积分的若干性质 1.21若(),f x y 在区域D 上可积, k 为常数,则(),kf x y 在D 上也可积,且 (),D kf x y d σ??(),D k f x y d σ=??. 1.22 若(),f x y ,(),g x y 在D 上都可积,则()(),,f x y g x y ±在D 上也可积,且 ()()[,,]D f x y g x y d σ±??()(),,D D f x y d g x y d σσ=±????.

圆曲线要素及计算公式

圆曲线要素及计算公式

前言 《礼记》有云:大学之道,在明德,在亲民。在提笔撰写我的毕业设计论文的时候,我也在向我的大学生活做最后的告别仪式。我不清楚过去的一切留给现在的我一些什么,也无从知晓未来将赋予我什么,但只要流泪流汗,拼过闯过,人生才会少些遗憾! 非常幸运能够加入水利工程这个古老而又新兴的行业,即将走向工作岗位的时刻,我仿佛感受到水利行业对我赋予新的历史使命,水利是一项以除害兴利、趋利避害,协调人与水、人与大自然关系的高尚事业。水利工作,既要防止水对人的侵害,更要防止人对水的侵害;既要化解自然灾害对人类生命财产的威胁,又要善待自然、善待江河、善待水,促进人水和谐,实现人与自然和谐相处。这种使命,更让我用课堂中的知识用于实际生产中来。特别是这两个月来的毕业设计,我越发感觉到学会学精测量基础知识对于我贡献水利是多么的重要。所以,我越发不愿放弃不多的大学时光,努力提高自己的实践动手能力,而本学期的毕业设计,为我提供了绝好的机会,我又怎能放弃?

刚刚从老师那里得到毕业设计的题目和任务时,我的心里真的没底。作为毕业设计的主体工作,我们主要运用电子水准仪对某幢建筑物进行变形观测与计算,布设控制点进行平面控制测量和高程控制测量;用全站仪进行了中心多边行角度和距离的测量,并用条件平差原理进行平差,通过控制点的放样来计算土的挖方量,还有圆曲线的计算与测设。而我研究的毕业课题是圆曲线测设。 大学的最后一个学期过得特别快,几乎每天扛着仪器,奔走在校园的每个角落,生活亦很有节奏。今天我提笔写毕业论文,我的毕业设计也接近尾声。不管成果如何,毕竟心里不再是没底了,挑着两个多月的辛苦换来的数据和成果,并不断的完善他们,心里感觉踏实多了。 在本次毕业设计论文的设计中要感谢水利系为我们的工作提供了测量仪器,还有各指导老师的教导和同学的帮助。 摘要:在公路、铁路的路线圆曲线测设中,一般是在测设出曲线各主点后,随之在直圆点或圆直点进行圆曲线详细测设。本文通过仪器安置

缓和曲线计算公式

当前的位置】:工程测量→第十一章→ 第四节圆曲线加缓和曲线及其主点测设 第四节圆曲线加缓和曲线及其主点测设 §11—4 圆 曲线加缓 和曲线及 其主点测 设 一、缓和曲 线的概念 二、缓和曲线方程 三、缓和曲线常数 四、圆曲线加缓和曲线的综合要素及主点测设 一、缓和曲线的概念 1、为什麽要加入缓和曲线? (1)在曲线上高速运行的列车会产生离心力,为克服离心力的影响,铁路在曲线部分采用外轨超高的办法,即把外轨抬高一定数值.使车辆向曲线内倾斜,以平衡离心力的作用,从而保证列车安全运行。 图11-10(a).(b)为采用外轨超高前、后的情况。 外轨超高和内轨加宽都是逐渐完成,这就需要在直线与圆曲线之间加设一段过渡曲线——缓和曲线. 缓和曲线: 其曲率半径ρ 从∞逐渐变化到圆曲线的半径R 。 2、缓和曲线必要的前提条件(性质): 在此曲线上任一点P 的曲率半径ρ与曲线的长度l成反比,如图11-12所示,以公式表示为: ρ ∝1l 或ρ. l = C (11-4) 式中: C 为常数,称曲线半径变更率。 当l= l o时,ρ= R ,按(11-4)式,应有 C = ρ.l= R .l o (11-5) 符合这一前提条件的曲线为缓和曲线,常用的有辐射螺旋线及三次抛物线,我国采用辐射螺旋线。 3、加入缓和曲线后的铁路曲线示意图(见图11-J)

二、缓和曲线方程 1、加入缓和曲线后的切线坐标系 坐标原点:以直缓(ZH)点或缓直(HZ)点为原点; X坐标轴:直缓(ZH)点或缓直(HZ)点到交点(JD)的切线方向; Y坐标轴:过直缓(ZH)点或缓直(HZ)点与切线垂直的方向。 其中:x、y 为P点的坐标;x o、y o为HY点的坐标; ρ 为P 点上曲线的曲率半径;R 为圆曲线的曲率半径 l 为从ZH点到P 点的缓和曲线长;l o为从ZH点到HY点的缓和曲线总长; 2、缓和曲线方程式: 根据缓和曲线必要的前提条件推导出缓和曲线上任一点的坐标为 实际应用时, 舍去高次项, 代入C=R*l o,采用下列公式:

教程(圆曲线缓和曲线计算公式

[教程]第九章道路工程测量(圆曲线缓和曲线计算公 式) 未知2009-12-09 19:04:30 广州交通技术学院 第九章道路工程测量 (road engineering survey) 内容:理解线路勘测设计阶段的主要测量工作(初测控制测量、带状地形图测绘、中线测设和纵横断面测量);掌握路线交点、转点、转角、里程桩的概念和测设方法;掌握圆曲线的要素计算和主点测设方法;掌握圆曲线的切线支距法和偏角法的计算公式和测设方法;了解虚交的概念和处理方法;掌握缓和曲线的要素计算和主点测设方法;理解缓和曲线的切线支距法和偏角法的计算公式和测设方法;掌握路线纵断面的基平、中平测量和横断面测量方;了解全站仪中线测设和断面测量方法。 重点:圆曲线、缓和曲线的要素计算和主点测设方法;切线支距法和偏角法的计算公式和测设方法;路线纵断面的基平、中平测量和横断面测量方法 难点:缓和曲线的要素计算和主点测设方法;缓和曲线的切线支距法和偏角法的计算公式和测设方法。 § 9.1 交点转点转角及里程桩的测设 一、道路工程测量概述 分为:路线勘测设计测量 (route reconnaissance and design survey) 和道路施工测量 (road construction survey) 。 (一)勘测设计测量 (route reconnaissance and design survey) 分为:初测 (preliminary survey) 和定测 (location survey)

1、初测内容:控制测量 (control survey) 、测带状地形图 (topographical map of a zone) 和纵断面图 (profile) 、收集沿线地质水文资料、作纸上定线或现场定线,编制比较方案,为初步设计提供依据。 2、定测内容:在选定设计方案的路线上进行路线中线测量 (center line survey) 、测纵断面图 (profile) 、横断面图 (cross-section profile) 及桥涵、路线交叉、沿线设施、环境保护等测量和资料调查,为施工图设计提供资料。 (二)道路施工测量 (road construction survey) 按照设计图纸恢复道路中线、测设路基边桩和竖曲线、工程竣工验收测量。 本章主要论述中线测量和纵、横断面测量。 二、中线测量 (center line survey) 1、平面线型:由直线和曲线(基本形式有:圆曲线、缓和曲线)组成。 2、概念:通过直线和曲线的测设,将道路中心线的平面位置测设到地面上,并测出其里程。即测设直线上、圆曲线上或缓和曲线上中桩。 三、交点 JD(intersecting point) 的测设 (一)定义:路线的转折点,即两个方向直线的交点,用 JD 来表示。 (二)方法: 1、等级较低公路:现场标定 2、高等级公路:图上定线——实地放线。

二重积分的计算方法

第二节 二重积分的计算法 教学目的:熟练掌握二重积分的计算方法 教学重点:利用直角坐标和极坐标计算二重积分 教学难点:化二重积分为二次积分的定限问题 教学内容: 利用二重积分的定义来计算二重积分显然是不实际的,二重积分的计算是通过两个定积分的计算(即二次积分)来实现的. 一、利用直角坐标计算二重积分 我们用几何观点来讨论二重积分的计算问题. 讨论中,我们假定 ; 假定积分区域可用不等式 表示, 其中, 在上连续. 据二重积分的几何意义可知,的值等于以为底,以曲面为顶的曲顶柱体的体积. 在区间上任意取定一个点,作平行于面的平面,这平面截曲顶柱体所得截面是一个以区间为底,曲线为曲边的曲边梯形,其面积为

一般地,过区间上任一点且平行于面的平面截曲顶柱体所得截面的面积为 利用计算平行截面面积为已知的立体之体积的方法,该曲顶柱体的体积为 从而有 (1) 上述积分叫做先对Y,后对X的二次积分,即先把看作常数,只看作的函数,对 计算从到的定积分,然后把所得的结果( 它是的函数 )再对从到计算定积分. 这个先对, 后对的二次积分也常记作 在上述讨论中,假定了,利用二重积分的几何意义,导出了二重积分的计算公式(1).但实际上,公式(1)并不受此条件限制,对一般的(在上连续),公式(1)总是成立的. 例如:计算 解: 类似地,如果积分区域可以用下述不等式 表示,且函数,在上连续,在上连续,则 (2)

显然,(2)式是先对,后对的二次积分. 二重积分化二次积分时应注意的问题 1、积分区域的形状 前面所画的两类积分区域的形状具有一个共同点: 对于I型(或II型)区域, 用平行于轴(轴 )的直线穿过区域内部,直线与区域的边界相交不多于两点. 如果积分区域不满足这一条件时,可对区域进行剖分,化归为I型(或II型)区域的并集. 2、积分限的确定 二重积分化二次积分, 确定两个定积分的限是关键.这里,我们介绍配置二 次积分限的方法 -- 几何法.画出积分区域的图形(假设的图形如下 ) 在上任取一点,过作平行于轴的直线,该直线穿过区域,与区域的边界有两个交 点与,这里的、就是将,看作常数而对积分时的下限和上限; 又因是在区间上任意取的,所以再将看作变量而对积分时,积分的下限为、上限为 . 例1计算,其中是由轴,轴和抛物线在第一象限内所围成的区域.

Excell软件绘制ELISA标准曲线

怎么用Excell软件绘制ELISA标准曲线 许多试剂检测都涉及到标准曲线的问题,究竟如何绘制或制作标准曲线呢? 用Excell和SPSS的软件能做出来吗?,怎么操作?能一起求出计算公式吗? 有没有专门的软件来处理呢?介绍几种? 希望有这方面经验的介绍自己的经历,与大家分享,“与众同乐才是真的快了” 的确,标准曲线做的好与坏会直接影响到实验的结果,甚至是关系到实验的成败。 首先,做标准曲线样品检测时有几个问题需要注意: 1、样品的浓度等指标是根据标准曲线计算出来的,所以首先要把做标准曲线看作是比做正式实验还要重要的一件事,否则后面的实验结果无从谈起。 2、设置标准曲线样品的标准浓度范围要有一个比较大的跨度,并且要能涵盖你所要检测实验样品的浓度,即样品的浓度要在标准曲线浓度范围之内,包括上限和下限。而对于呈S型的标准曲线,尽量要使实验样品的浓度在中间坡度最陡段,即曲线几乎成直线的范围内。 3、最好采用倍比稀释法配制标准曲线中的标准样品浓度,这样就能够保证标准样品的浓度不会出现较大的偏离。 4、检测标准样品时,应按浓度递增顺序进行,以减少高浓度对低浓度的影响,提高准确性。 5、标准曲线的样品数一般为7个点,但至少要保证有5个点。 6、做出的标准曲线相关系数因实验要求不同而有所变动,但一般来说,相关系数R至少要大于0.98,对于有些实验,至少要0.99甚至是0.999.

怎样绘制标准曲线? 标准曲线浓度得到后,可通过计算器、Excell或SPSS统计软件进行绘制,并得到相关的回归方程(即计算公式和相关系数(回归系数,个人认为,Excell 软件比较好用一些;SPSS也行,不过是英文的,初学者不是很容易掌握;计算器嘛太麻烦了,所以现在一般不用。 双抗夹心法ELISA拟和曲线: 拟和曲线: 打开EXCEL软件;在工作表中 输入第一行:浓度值,如0 10 50 100 400 输入第二行:该浓度下的调整后的od值,如0 0.586 1.397 1.997 3.42 选择这些输入的数据,用插入里的图表按钮,进入图表向导,在“标准类型”中选择“xy散点图”;在“子图表类型”中选择“折线散点图”,按“下一步”;选择“系列产生在行”,按“下一步”;数据标志,可以填写:如数据y 轴,OD值;数据x轴,浓度;按下一步,点击完成。可得曲线图。 单击曲线,按右键,选择“添加趋势线”,在类型中,选择多项式;在选项中,选择显示公式,选择显示R平方值。得到公式和R平方值。 也可以用上面说的方法,在公司已经提供的图表上,双击图表,把它输入到图表的数据中,就可以拟和新的曲线。 计算浓度: 举例:第一次实验: 标准曲线为:

圆曲线缓和曲线计算公式

圆曲线缓和曲线计算公式

圆曲线缓和曲线计算公式 2011-09-13 15:19:36| 分类:默认分类|字号订阅 第九章道路工程测量(圆曲线缓和曲线计算公式) 学习园地2010-07-29 13:10:53阅读706评论0 字号:大中小订阅 [教程]第九章道路工程测量(圆曲线缓和曲线计算公式)未知2009-12-09 19:04:30 广州交通技术学院第九章道路工程测量(road engineering survey) 内容:理解线路勘测设计阶段的主要测量工作(初测控制测量、带状地形图测绘、中线测设和纵横断面测量);掌握路线交点、转点、转角、里程桩的概念和测设方法;掌握圆曲线的要素计算和主点测设方法;掌握圆曲线的切线支距法和偏角法的计算公式和测设方法;了解虚交的概念和处理方法;掌握缓和曲线的要素计算和主点测设方法;理解缓和曲线的切线支距法和偏角法的

计算公式和测设方法;掌握路线纵断面的基平、中平测量和横断面测量方;了解全站仪中线测设和断面测量方法。 重点:圆曲线、缓和曲线的要素计算和主点测设方法;切线支距法和偏角法的计算公式和测设方法;路线纵断面的基平、中平测量和横断面测量方法 难点:缓和曲线的要素计算和主点测设方法;缓和曲线的切线支距法和偏角法的计算公式和测设方法。 § 9.1 交点转点转角及里程桩的测设一、道路工程测量概述 分为:路线勘测设计测量(route reconnaissance and design survey) 和道路施工测量(road construction survey) 。(一)勘测设计测量(route reconnaissance and design survey) 分为:初测(preliminary survey) 和定测(location survey) 1、初测内容:控制测量(control survey) 、测带状地形图(topographical map of a zone) 和纵断面图(profile) 、收集沿线地质水文资

缓和曲线要素及计算公式

缓和曲线要素及计算公式 缓和曲线:在直线与圆曲线之间加入一段半径由无穷大逐渐变化到圆曲线半径的曲线,这种曲线称为缓和曲线。 缓和曲线的主要曲线元素 缓和曲线主要有ZH 、HY 、QZ 、YH 、HZ 5个主点。 由此可得: q P R q T T h ++=+=2 tan )(α R P R E h -+=2 sec )(α s h L R L 2180)2(0+-=πβα 180 )2(0R L y πβα-= 式中:h T -缓和曲线切线长 h E -缓和曲线外矢距 h L -缓和曲线中曲线总长 y L -缓和曲线中圆曲线长度

缓和曲线与圆曲线区别: 1. 因为缓和曲线起始端分别和直线与圆曲线顺滑的相接,因此必须将原来的圆曲线向内移动一段距离才能够接顺,故曲线发生了内移(即设置缓和曲线后有内移值P 产生) 2. 缓和曲线的一部分在直线段,另一部分插入了圆曲线,因此有切线增长值q; 3. 由于有缓和曲线的存在,因此有缓和曲线角0β。 缓和曲线角 0β的计算: R L S 2/0=β(弧度)= R L S π90 (度) 内移值P 的计算: ()m R L P S 242 = 切线增长值q 的计算: )(240223 m R L L q S S -= P -缓和曲线内移值 q -缓和曲线切线增长值 0β-缓和曲线首或尾所采用的缓和曲线段分别的总缓和曲线角。 S L -缓和曲线两端各自的缓和曲线长。 R -缓和曲线中的主圆曲线半径 α-偏转角

缓和曲线主点桩号: ZH 桩号=JD 桩号-h T HY 桩号=ZH 桩号+S L QZ 桩号=HY 桩号+2y L YH 桩号=QZ 桩号+ 2 y L HZ 桩号=ZH 桩号+h L 另外、QZ 桩号、YH 桩号、HZ 桩号还可以用以下方式推导: QZ 桩号=ZH 桩号+ 2 h L YH 桩号=HZ 桩号-S L HZ 桩号=YH 桩号+S L 切线支距法计算坐标: 缓和曲线段内坐标计算如式: 2 2540S P p L R L L -=X s P RL L Y 63 = 进入净圆曲线段内坐标计算如式: ?? ??????- ?? ???+=R L L R q X s p π1802 sin ? ??????????- ?? ? ?? -???+=R L L R P Y s p π1802cos 1

公路缓和曲线段原理及缓和曲线计算公式

程序使用说明 Fx9750、9860系列 程序包含内容介绍:程序共有24个,分别是: 1、0XZJSCX 2、1QXJSFY 3、2GCJSFY 4、3ZDJSFY 5、4ZDGCJS 6、5SPJSFY 7、5ZDSPFY 8、5ZXSPFY 9、6ZPJSFY 10、7ZBZFS 11、8JLHFJH 12、9DBXMJJS 13、9DXPCJS 14、9SZPCJS 15、GC-PQX 16、GC-SQX 17、PQX-FS 18、PQX-ZS 19、 ZD-FS 20、ZD-PQX 21、ZD-SQX 22、ZD-ZS 23、ZDSP-SJK 24、ZXSP-SJK 其中,程序2-14为主程序,程序15-24为子程序。每个主程序都可以单独运算并得到结果,子程序不能单独运行,它是配合主程序运行所必需的程序。刷坡数据库未采用串列,因为知道了窍门,数据库看起很多,其实很少。 程序1为调度2-8程序; 程序2为交点法主线路(含不对称曲线)中边桩坐标正反计算及极坐标放样程序; 程序3为主线路中边桩高程计算及路基抄平程序; 程序4为线元法匝道中边桩坐标正反计算及极坐标放样程序; 程序5为匝道线路中边桩高程计算及路基抄平程序; 程序6为任意线型开口线及填筑边线计算放样程序; 程序7专为主线路开口线及填筑边线计算放样程序,只需测量任意一点三维数据,即可马上计算出该点相对于中桩法线上的偏移量; 程序8专为匝道线路开口线及填筑边线计算放样程序,只需测量任意一点三维数据,即可马上计算出该点相对于中桩法线上的偏移量; 程序9为桥台锥坡计算放样程序; 程序10为计算两点间的坐标正反算程序; 程序11为距离后方交会计算测站坐标程序;

归纳二重积分的计算方法

归纳二重积分的计算方法 摘 要 :本文总结出了求二重积分的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算 前言 二重积分的概念和计算是多元函数微积分学的重要部分,在几何\物理\力学等方面有着重要的应用.重积分是由一元函数积分推广而来的,但与一元函数相比,计算重积分的难度除了与被积函数有关外,还与积分区域的特点有关,计算重积分的主要思想方法是化重积分为累次积分.求二重积分的方法很多且非常灵活,本文归纳了二重积分计算的一些常见方法和技巧. 1. 预备知识 1.1二重积分的定义]1[ 设(),f x y 是定义在可求面积的有界区域D 上的函数. J 是一个确定的数,若对任给的正数 ε ,总存在某个正数δ,使对于D 的任意分割T ,当它的细度T δ<时,属于T 的所有积分和 都有 ()1 ,n i i i i f J ξησ ε=?-<∑, 则称(),f x y 在D 上可积,数J 称为函数(),f x y 在D 上的二重积分,记作 (),D J f x y d σ=??, 其中(),f x y 称为二重积分的被积函数, ,x y 称为积分变量, D 称为积分区域. 1.2二重积分的若干性质 1.21若(),f x y 在区域D 上可积, k 为常数,则(),kf x y 在D 上也可积,且 (),D kf x y d σ??(),D k f x y d σ=??.

1.22 若(),f x y ,(),g x y 在D 上都可积,则()(),,f x y g x y ±在D 上也可积,且 ()()[,,]D f x y g x y d σ±??()(),,D D f x y d g x y d σσ=±????. 1.23 若(),f x y 在1D 和2D 上都可积,且1D 与2D 无公共内点,则(),f x y 在12D D 上也可积,且 ()12 ,D D f x y d σ?? ()()1 2 ,,D D f x y d f x y d σσ=±???? 1.3在矩形区域上二重积分的计算定理 设(),f x y 在矩形区域D [][],,a b c d =?上可积,且对每个[],x a b ∈,积分(),d c f x y dy ?存 在,则累次积分(),b d a c dx f x y dy ??也存在,且 (),D f x y d σ?? (),b d a c dx f x y dy =??. 同理若对每个[],y c d ∈,积分(),b a f x y dx ?存在,在上述条件上可得 (),D f x y d σ?? (),d b c a dy f x y dx =?? 2.求的二重积分的几类理论依据 二重积分类似定积分,可看成一个函数在有界区域内的积分,它计算的主要思路是把重积分化为我们学过的累次积分的计算,在这思想下如何化为更容易求的累次积分成为问题关键,下文介绍了把区域化为简单的X -型\Y -型区域及把复杂的函数通过变量变换化为简单函数的几种计算技巧,另外还列举几类特殊二重积分的简单求法. 2.1在直角坐标系下,对一般区域二重积分的计算 X -型区域: ()()(){}12 ,,D x y y x y y x a x b =≤≤≤≤ Y -型区域: ()()(){}1 2 ,,D x y x y x x y c y d = ≤≤≤≤ 定理:若(),f x y 在X -区域D 上连续,其中()1y x ,()2y x 在[],a b 上连续,则 (),D f x y d σ??()()() 21,b y x a y x dx f x y dy =?? 即二重积分可化为先对y ,后对x 的累次积分. 同理在上述条件下,若区域为Y -型,有

相关文档