文档视界 最新最全的文档下载
当前位置:文档视界 › 高考文科数学专题训练 专题二 第3讲

高考文科数学专题训练 专题二 第3讲

高考文科数学专题训练 专题二 第3讲
高考文科数学专题训练 专题二 第3讲

第3讲 平面向量

高考定位 1.以选择题、填空题的形式考查向量的线性运算,多以熟知的平面图形为背景,难度中低档;2.以选择题、填空题的形式考查平面向量的数量积,多考查角、模等问题,难度中低档;3.向量作为工具常与三角函数、解三角形、不等式、解析几何等结合,以解答题形式出现.

真 题 感 悟

1.(2017·全国Ⅱ卷)设非零向量a ,b 满足|a +b |=|a -b |,则( ) A.a ⊥b B.|a |=|b | C.a ∥b

D.|a |>|b |

解析 由|a +b |=|a -b |两边平方,得a 2+2a·b +b 2=a 2-2a·b +b 2,即a·b =0,故a ⊥b . 答案 A

2.(2017·全国Ⅰ卷)已知向量a =(-1,2),b =(m ,1).若向量a +b 与a 垂直,则m =________.

解析 由题意得a +b =(m -1,3),

因为a +b 与a 垂直,所以(a +b )·a =0,所以-(m -1)+2×3=0,解得m =7. 答案 7

3.(2017·天津卷)在△ABC 中,∠A =60°,AB =3,AC =2,若BD → =2DC → ,AE → =λAC

-AB → (λ∈R ),且AD → ·AE →

=-4,则λ的值为________. 解析 AB → ·AC → =3×2×cos 60°=3,AD → =13AB → +23AC → ,则AD → ·AE → =? ????13AB → +23AC → ·(λAC

-AB → )=λ-23AB → ·AC → -13AB → 2+2λ3AC →

2=λ-23×3-13×32+2λ3×22=113λ-5=-4,解得λ=311.

答案 3

11

4.(2017·江苏卷)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π].

(1)若a ∥b ,求x 的值;

(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. 解 (1)∵a ∥b ,∴3sin x =-3cos x , ∴3sin x +3cos x =0,即sin ? ??

??

x +π6=0.

∵0≤x ≤π,∴π6≤x +π6≤7

6π,

∴x +π6=π,∴x =5π6.

(2)f (x )=a·b =3cos x -3sin x =-23sin ? ??

??

x -π3.

∵x ∈[0,π],∴x -π3∈????

??

-π3,2π3,

∴-32≤sin ? ????

x -π3≤1,

∴-23≤f (x )≤3,

当x -π3=-π

3,即x =0时,f (x )取得最大值3; 当x -π3=π2,即x =5π

6时,f (x )取得最小值-2 3.

考 点 整 合

1.平面向量的两个重要定理

(1)向量共线定理:向量a (a ≠0)与b 共线当且仅当存在唯一一个实数λ,使b =λa . (2)平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中e 1,e 2是一组基底.

2.平面向量的两个充要条件

若两个非零向量a =(x 1,y 1),b =(x 2,y 2),则 (1)a ∥b ?a =λb ?x 1y 2-x 2y 1=0. (2)a ⊥b ?a ·b =0?x 1x 2+y 1y 2=0. 3.平面向量的三个性质

(1)若a =(x ,y ),则|a |=a ·a =x 2+y 2.

(2)若A (x 1,y 1),B (x 2,y 2),则|A B →

|=(x 2-x 1)2+(y 2-y 1)2.

(3)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角, 则cos θ=a ·b

|a ||b |=

x 1x 2+y 1y 2

x 21+y 21x 22+y 2

2

. 4.平面向量的三个锦囊

(1)向量共线的充要条件:O 为平面上一点,则A ,B ,P 三点共线的充要条件是OP

=λ1OA → +λ2OB →

(其中λ1+λ2=1).

(2)三角形中线向量公式:若P 为△OAB 的边AB 的中点,则向量OP → 与向量OA → ,OB

的关系是OP → =12(OA → +OB →

).

(3)三角形重心坐标的求法:G 为△ABC 的重心?GA → +GB → +GC →

0?G ? ??

??

x A +x B +x C 3,

y A +y B +y C 3.

热点一 平面向量的有关运算

【例1】 (1)(2016·全国Ⅰ卷)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________.

(2)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =2

3BC .若DE → =λ1AB

+λ2AC →

(λ1,λ2为实数),则λ1+λ2的值为________.

解析 (1)由|a +b |2=|a |2+|b |2,得a ⊥b , 所以a ·b =m ×1+1×2=0,得m =-2. (2)DE → =DB → +BE → =12AB → +23BC → =12AB → +23(AC → -AB → )=-16AB → +23AC → ,

∵DE → =λ1AB → +λ2AC →

, ∴λ1=-16,λ2=2

3,

因此λ1+λ2=1

2.

答案 (1)-2 (2)1

2

探究提高 对于平面向量的线性运算,首先要选择一组基底,同时注意共线向量定理的灵活运用.其次运算过程中重视数形结合,结合图形分析向量间的关系. 【训练1】 (2017·衡阳二模)如图,正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC → =λAM → +μBN →

,则λ+μ=( )

A.2

B.83

C.6

5

D.85

解析 法一 如图以AB ,AD 为坐标轴建立平面直角坐标系,设正方形边长为1,AM → =?

????1,12,BN → =? ????-12,1,AC →

=(1,1).

∵AC → =λAM → +μBN →

=λ? ????1,12+μ? ????-12,1=? ????λ-μ2,λ2+μ,

∴?????λ-12μ=1,λ2+μ=1,解之得?????λ=65,μ=25,

故λ+μ=85.

法二 以AB → ,AD →

作为基底,

∵M ,N 分别为BC ,CD 的中点,

∴AM → =AB → +BM → =AB → +12AD → , BN → =BC → +CN → =AD → -12AB →

, 因此AC → =λAM → +μBN → =?

????λ-μ2AB → +? ????λ2+μAD → ,

又AC → =AB → +AD →

因此?????λ-μ2=1,λ2+μ=1,解得λ=65且μ=25.

所以λ+μ=85. 答案 D

热点二 平面向量的数量积 命题角度1 平面向量数量积的运算

【例2-1】 (1)(2017·浙江卷)如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记I 1=OA → ·OB → ,I 2=OB → ·OC → ,I 3=OC → ·OD → ,

则( )

A.I 1<I 2<I 3

B.I 1<I 3<I 2

C.I 3<I 1<I 2

D.I 2<I 1<I 3

(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE → ·CB →

的值为

________;DE → ·DC →

的最大值为________.

解析 (1)如图所示,四边形ABCE 是正方形,F 为正方形的对角线的交点,易得AO

|OB → ||CA →

|·cos ∠AOB <0,

∴I 1I 3,作AG ⊥BD 于G , 又AB =AD ,

∴OB

∴|OA → ||OB → |<|OC → ||OD →

|, 而cos ∠AOB =cos ∠COD <0,∴OA → ·OB → >OC → ·OD →

即I 1>I 3.∴I 3

(2)法一 如图,以AB ,AD 为坐标轴建立平面直角坐标系,

则A (0,0),B (1,0),C (1,1),D (0,1), 设E (t ,0),t ∈[0,1],

则DE → =(t ,-1),CB →

=(0,-1), 所以DE → ·CB → =(t ,-1)·(0,-1)=1.

因为DC → =(1,0),所以DE → ·DC → =(t ,-1)·(1,0)=t ≤1,

故DE → ·DC →

的最大值为1. 法二 如图,无论E 点在哪个位置,DE → 在CB → 方向上的投影都是CB =1,所以DE → ·CB

=|CB →

|·1=1,

当E 运动到B 点时,DE → 在DC →

方向上的投影最大,即为DC =1,

所以(DE → ·DC → )max =|DC → |·1=1.

答案 (1)C (2)1 1

探究提高 1.求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.

2.进行向量的数量积的运算,首先要有“基底”意识,关键用基向量表示题目中所求相关向量.其次注意向量夹角的大小,以及夹角θ=0°,90°,180°三种特殊情

形.

命题角度2 平面向量数量积的性质

【例2-2】 (1)(2016·山东卷)已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=1

3.若n ⊥(t m +n ),则实数t 的值为( ) A.4 B.-4 C.94

D.-94

(2)(2017·哈尔滨模拟)平面向量a ,b 满足|a |=4,|b |=2,a +b 在a 上的投影为5,则|a -2b |的模为( ) A.2 B.4 C.8

D.16

解析 (1)∵n ⊥(t m +n ),

∴n ·(t m +n )=0,即t ·m ·n +n 2=0, ∴t |m ||n |cos 〈m ,n 〉+|n |2=0,

由已知得t ×34|n |2×1

3+|n |2=0,解得t =-4.

(2)|a +b |cos 〈a +b ,a 〉=|a +b |·(a +b )·a |a +b ||a |=a 2+a ·b |a |=16+a ·b

4=5;

∴a ·b =4.

又(a -2b )2=a 2-4a ·b +4b 2=16-16+16=16. ∴|a -2b |=4. 答案 (1)B (2)B

探究提高 1.求两向量的夹角:cos θ=a ·b |a |·

|b |,要注意θ∈[0,π].

2.两向量垂直的应用:两非零向量垂直的充要条件是:a ⊥b ?a ·b =0?|a -b |= |a +b |.

3.求向量的模:利用数量积求解长度问题的处理方法有: (1)a 2=a ·a =|a |2或|a |=a ·a . (2)|a ±b |=(a ±b )2=a 2±2a ·b +b 2. (3)若a =(x ,y ),则|a |=x 2+y 2.

【训练2】 (1)(2015·福建卷)已知AB → ⊥AC → ,|AB → |=1t ,|AC →

|=t ,若点P 是△ABC 所

在平面内的一点,且AP → =AB → |AB → |+4AC →

|AC →

|,则PB → ·PC →

的最大值等于( )

A.13

B.15

C.19

D.21

(2)(2017·郴州二模)已知a ,b 均为单位向量,且(2a +b )·(a -2b )=-33

2,则向量a ,b 的夹角为________.

解析 (1)建立如图所示坐标系,则B ? ????

1t ,0,C (0,t ),AB → =?

????1t ,0,AC → =(0,t ),

则AP → =AB → |AB → |+4AC →

|AC →

| =t ? ????1t ,0+4

t (0,t )=(1,4). ∴点P (1,4),

则PB → ·PC → =?

????1t -1,-4·(-1,t -4)

=17-? ??

??

1t +4t ≤17-21t ·4t =13,

当且仅当4t =1t ,即t =1

2时取等号, 故PB → ·PC → 的最大值为13. (2)设单位向量a ,b 的夹角为θ, 则|a |=|b |=1,a ·b =cos θ. ∵(2a +b )·(a -2b )=-332,

∴2|a |2-2|b |2-3a ·b =-3cos θ=-332,∴cos θ=32,

∵0≤θ≤π,∴θ=π

6. 答案 (1)A (2)π

6

热点三 平面向量与三角的交汇综合

【例3】 (2017·郑州质检)已知向量m =(2sin ωx ,cos 2ωx -sin 2ωx ),n =(3cos ωx ,1),其中ω>0,x ∈R .若函数f (x )=m ·n 的最小正周期为π. (1)求ω的值;

(2)在△ABC 中,若f (B )=-2,BC =3,sin B =3sin A ,求BA → ·BC → 的值.

解 (1)f (x )=m ·n =23sin ωx cos ωx +cos 2ωx -sin 2ωx =3sin 2ωx +cos 2ωx =2sin ? ?

?

??2ωx +π6.

∵f (x )的最小正周期为π,∴T =2π

2|ω|=π. ∵ω>0,∴ω=1.

(2)设△ABC 中角A ,B ,C 所对的边分别是a ,b ,c . ∵f (B )=-2,∴2sin ? ?

?

??2B +π6=-2,

即sin ? ?

???2B +π6=-1,解得B =2π3(B ∈(0,π)).

∵BC =3,∴a =3,

∵sin B =3sin A ,∴b =3a ,∴b =3. 由正弦定理,有3sin A =3sin 2π3

,解得sin A =12.

∵0<A <π3,∴A =π

6.

∴C =π

6,∴c =a = 3. ∴BA → ·BC →

=ca cos B =3×3×cos 2π3=-32. 探究提高 1.破解平面向量与“三角”相交汇题的常用方法是“化简转化法”,即先活用诱导公式、同角三角函数的基本关系式、倍角公式、辅助角公式等对三角函数进行巧“化简”;然后把以向量共线、向量垂直形式出现的条件转化为“对应坐标乘积之间的关系”;再活用正、余弦定理,对三角形的边、角进行互化.

2.这种问题求解的关键是利用向量的知识将条件“脱去向量外衣”,转化为三角函数的相关知识进行求解.

【训练3】 (2017·山东卷)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,AB → ·AC → =-6,S △ABC =3,求A 和a .

解 因为AB → ·AC →

=-6,所以bc cos A =-6,

又因为S △ABC =3,所以bc sin A =6, 因此tan A =-1,又0

4. 又因为b =3,所以c =2 2. 由余弦定理a 2=b 2+c 2-2bc cos A , 得a 2=9+8-2×3×22×? ????

-22=29,

所以a =29.

1.平面向量的数量积的运算有两种形式:

(1)依据模和夹角计算,要注意确定这两个向量的夹角,如夹角不易求或者不可求,可通过选择易求夹角和模的基底进行转化;

(2)利用坐标来计算,向量的平行和垂直都可以转化为坐标满足的等式,从而应用方程思想解决问题,化形为数,使向量问题数量化.

2.根据平行四边形法则,对于非零向量a ,b ,当|a +b |=|a -b |时,平行四边形的两条对角线长度相等,此时平行四边形是矩形,条件|a +b |=|a -b |等价于向量a ,b 互相垂直.

3.两个向量夹角的范围是[0,π],在使用平面向量解决问题时要特别注意两个向量夹角可能是0或π的情况,如已知两个向量的夹角为钝角时,不单纯就是其数量积小于零,还要求不能反向共线.

一、选择题

1.(2016·全国Ⅲ卷)已知向量BA → =? ????12,32,BC → =? ????32,12,则∠ABC =( )

A.30°

B.45°

C.60°

D.120°

解析 |BA → |=1,|BC → |=1,cos ∠ABC =BA → ·BC

|BA → |·|BC →

|=3

2.∵0°≤∠ABC ≤180°,∴∠ABC

=30°. 答案 A

2.(2017·北京卷)设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m ·n <0”的( )

A.充分而不必要条件

B.必要而不充分条件

C.充分必要条件

D.既不充分也不必要条件

解析 存在负数λ,使得m =λn ,则m ·n =λn ·n =λ|n |2<0,因而是充分条件,反之m ·n <0,不能推出m ,n 方向相反,则不是必要条件.

答案 A

3.(2017·汉中模拟)已知向量a =(2,-4),b =(-3,x ),c =(1,-1),若(2a +b )⊥c ,则|b |=( ) A.9 B.3 C.109

D.310

解析 向量a =(2,-4),b =(-3,x ),c =(1,-1), ∴2a +b =(1,x -8),

由(2a +b )⊥c ,可得1+8-x =0,解得x =9. 则|b |=(-3)2+92=310. 答案 D

4.如图,BC ,DE 是半径为1的圆O 的两条直径,BF → =2FO → ,则FD → ·FE →

等于( )

A.-3

4 B.-89 C.-14

D.-49

解析 ∵BF → =2FO → ,圆O 的半径为1,∴|FO →

|=1

3,

∴FD → ·FE → =(FO → +OD → )·(FO → +OE → )=FO → 2+FO → ·(OE → +OD → )+OD → ·OE → =? ????132

+0-1=-89. 答案 B

5.(2017·安徽江淮十校联考)已知平面向量a ,b (a ≠0,a ≠b )满足|a |=3,且b 与b -a 的夹角为30°,则|b |的最大值为( ) A.2 B.4 C.6

D.8

解析 令OA → =a ,OB → =b ,则b -a =AB → -OA → =AB →

,如图.

∵b 与b -a 的夹角为30°, ∴∠OBA =30°. ∵|a |=|OA →

|=3,

∴由正弦定理得|OA → |sin ∠OBA =|OB → |sin ∠OAB ,|b |=|OB →

|=6·sin ∠OAB ≤6.

答案 C 二、填空题

6.(2017·全国Ⅲ卷)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =________. 解析 由题意,得-2×3+3m =0,∴m =2. 答案 2

7.(2017·德州模拟)已知平面向量a 和b 的夹角为60°,a =(2,0),|b |=1,则 |a +2b |=________.

解析 ∵〈a ,b 〉=60°,a =(2,0),|b |=1, ∴a ·b =|a ||b |·cos 60°=2×1×1

2=1, 又|a +2b |2=a 2+4b 2+4a ·b =12, 所以|a +2b |=12=2 3. 答案 2 3

8.若点M 是△ABC 所在平面内的一点,且满足5 AM → =AB → +3AC →

,则△ABM 与

△ABC 的面积比值为________.

解析 设AB 的中点为D ,

由5AM → =AB → +3AC → ,得3AM → -3AC → =2AD → -2AM → ,

即3CM → =2MD → .

如图所示,故C ,M ,D 三点共线, 且MD →

=35CD → ,

也就是△ABM 与△ABC 对于边AB 的两高之比为3∶5, 则△ABM 与△ABC 的面积比值为3

5. 答案 35

三、解答题

9.设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈???

???0,π2.

(1)若|a |=|b |,求x 的值;

(2)设函数f (x )=a ·b ,求f (x )的最大值. 解 (1)由|a |2=(3sin x )2+(sin x )2=4sin 2x , |b |2=(cos x )2+(sin x )2=1, 及|a |=|b |,得4sin 2x =1.

又x ∈???

???0,π2,从而sin x =12,所以x =π6. (2)f (x )=a ·b =3sin x ·cos x +sin 2x

=32sin 2x -12cos 2x +12=sin ? ?

?

??2x -π6+12,

当x =π3∈??????0,π2时,sin ? ?

?

??2x -π6取最大值1.

所以f (x )的最大值为3

2.

10.(2017·贵阳调研)已知向量a =? ?cos ? ????π2+x ,

???

sin ? ????π2+x ,b =(-sin x, 3sin x ),

f (x )=a ·b .

(1)求函数f (x )的最小正周期及f (x )的最大值;

(2)在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f ? ????

A 2=1,a =

23,求三角形ABC 面积的最大值.

解 (1)∵a =(-sin x ,cos x ),b =(-sin x ,3sin x ), 则f (x )=a ·b =sin 2x +3sin x cos x

=12(1-cos 2x )+32sin 2x =sin ? ?

???2x -π6+12,

∴f (x )的最小正周期T =2π

2=π,

当2x -π6=π2+2k π,k ∈Z 时,即x =π3+k π(k ∈Z ),f (x )取最大值是3

2.

(2)∵f ? ????A 2=sin ? ?

?

??A -π6+12=1,

∴sin ? ????A -π6=12,∴A =π3. ∵a 2=b 2+c 2-2bc cos A ,∴12=b 2+c 2-bc ,

∴b 2+c 2=12+bc ≥2bc ,∴bc ≤12(当且仅当b =c =23时等号成立). ∴S =12bc sin A =3

4bc ≤3 3.

∴当三角形ABC 为等边三角形时面积取最大值是3 3. 11.已知函数f (x )=2cos 2x +23sin x cos x (x ∈R ). (1)当x ∈???

?

??0,π2时,求函数f (x )的单调递增区间;

(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c =3,f (C )=2,若向量m =(1,sin A )与向量n =(2,sin B )共线,求a ,b 的值.

解 (1)f (x )=2cos 2x +3sin 2x =cos 2x +3sin 2x +1=2sin ? ?

?

??2x +π6+1,

令-π2+2k π≤2x +π6≤π

2+2k π,k ∈Z ,

解得k π-π3≤x ≤k π+π

6,k ∈Z ,

因为x ∈???

?

??0,π2,

所以f (x )的单调递增区间为???

???0,π6.

(2)由f (C )=2sin ?

?

???2C +π6+1=2,

得sin ? ?

?

??2C +π6=12,

而C ∈(0,π),所以2C +π6∈? ??

??

π6,13π6,

所以2C +π6=56π,解得C =π

3.

因为向量m =(1,sin A )与向量n =(2,sin B )共线, 所以sin A sin B =12.

由正弦定理得a b =1

2,①

由余弦定理得c 2=a 2+b 2-2ab cos π

3, 即a 2+b 2-ab =9.②

联立①②,解得a =3,b =2 3.

高考文科数学解答题专项训练(含解析)

20XX届高考文科数学---解答题专项训练 中档题满分练(一) 1.(2015·山东高考)在△ABC中,角A,B,C所对的边分别为a,b, c.已知cos B= 3 3,sin (A+B)= 6 9,ac=23,求sin A和c的值. 2.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c. (1)求“抽取的卡片上的数字满足a+b=c”的概率; (2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.

3.在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形. (1)若AC⊥BC,证明:直线BC⊥平面ACC1A1; (2)设D,E分别是线段BC,CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论. 4.(2015·湖北高考)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100. (1) 求数列{a n},{b n}的通项公式; (2) 当d>1时,记c n=a n b n,求数列{ c n}的前n项和T n.

中档题满分练(二) 1.已知函数f (x )=2a sin ωx cos ωx +23cos 2ωx -3(a >0,ω>0)的最大值为2,且最小正周期为π. (1)求函数f (x )的解析式及其对称轴方程; (2)若f (α)=4 3,求sin ? ????4α+π6的值. 2.(2015·西安调研)对于给定数列{a n },如果存在实常数p ,q ,使得a n +1=pa n +q 对于任意n ∈N *都成立,我们称数列{a n }是“M 类数列”. (1)已知数列{b n }是“M 类数列”且b n =3n ,求它对应的实常数p ,q 的值; (2)若数列{c n }满足c 1=-1,c n -c n +1=2n (n ∈N *),求数列{c n }的通项公式,判断{c n }是否为“M 类数列”并说明理由.

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

高中数学集合历届高考题及答案解析

(A) {1,2} (B) {0,1,2} (C){x|0 ≤x<3} (D) {x|0 ≤x ≤3} (C) { x -1≤ x ≤1} (D) { x -1≤ x < 1} 3. ( 2010辽宁文)(1)已知集合 U 1,3,5,7,9 , A 1,5,7 ,则C U A 7. ( 2010山东文)(1)已知全集 U R ,集合 M x x 2 4 0 ,则 C U M = A. x 2 x 2 B. x 2 x 2 C . x x 2或 x 2 D. x x 2或 x 2 2 8. ( 2010北京理)(1) 集合 P {x Z 0 x 3},M {x Z x 2 9},则 PI M = 第一章 集合与常用逻辑用 语 一、选择题 1. ( 2010浙江理)(1)设 P={x ︱x <4},Q={x ︱ x 2 <4},则 A ) p Q B )Q P ( C ) p CR Q (D ) Q CR P 2. (2010 陕西文) 1. 集合 A ={x -1≤ x ≤2}, B ={ x x<1},则 A ∩B =( (A){ x x< 1} B ){x -1≤ x≤2} A ) 1,3 B ) 3,7,9 C ) 3,5,9 D ) 3,9 4. ( 2010辽宁理) 1.已知 A ,B 均为集合 U={1,3,5,7,9} 的子集,且 A ∩B={3}, eu (A ){1,3} (B){3,7,9} (C){3,5,9} (D){3,9} 5. ( 2010 江 西 理 ) 2. 若 集 合 A= x| x 1, x R , A. x| 1 x 1 B. x|x 0 C. x|0 x 1 D. 6. ( 2010浙江文)(1)设 P {x|x 1}, Q {x|x 2 4},则 P Q (A) {x| 1 x 2} (B) {x| 3 x 1} (C) { x|1 x 4} (D) {x| 2 x 1}

(完整版)高三文科数学数列专题.doc

高三文科数学数列专题 高三文科数学复习资料 ——《数列》专题 1. 等差数列{ a n}的前n项和记为S n,已知a1030, a2050 . ( 1)求通项a n; ( 2)若S n242 ,求 n ; ( 3)若b n a n20 ,求数列 { b n } 的前 n 项和 T n的最小值. 2. 等差数列{ a n}中,S n为前n项和,已知S77, S1575 . ( 1)求数列{ a n}的通项公式; ( 2)若b n S n,求数列 {b n } 的前 n 项和 T n. n 3. 已知数列{ a n}满足a1 1 a n 1 ( n 1) ,记 b n 1 , a n . 1 2a n 1 a n (1)求证 : 数列{ b n}为等差数列; (2)求数列{ a n}的通项公式 . 4. 在数列a n 中, a n 0 , a1 1 ,且当 n 2 时,a n 2S n S n 1 0 . 2 ( 1)求证数列1 为等差数列;S n ( 2)求数列a n的通项 a n; ( 3)当n 2时,设b n n 1 a n,求证: 1 2 (b2 b3 b n ) 1 . n 2(n 1) n 1 n 5. 等差数列{ a n}中,a18, a4 2 . ( 1)求数列{ a n}的通项公式; ( 2)设S n| a1 | | a2 || a n |,求 S n;

1 (n N *) , T n b1 b2 b n (n N *) ,是否存在最大的整数m 使得对任( 3)设b n n(12 a n ) 意 n N * ,均有T n m m 的值,若不存在,请说明理由. 成立,若存在,求出 32 6. 已知数列{log2(a n1)} 为等差数列,且a13, a39 . ( 1)求{ a n}的通项公式; ( 2)证明: 1 1 ... 1 1. a2 a1 a3 a2 a n 1 a n 7. 数列{ a n}满足a129, a n a n 12n 1(n 2, n N * ) . ( 1)求数列{ a n}的通项公式; ( 2)设b n a n,则 n 为何值时, { b n } 的项取得最小值,最小值为多少?n 8. 已知等差数列{ a n}的公差d大于0 , 且a2,a5是方程x2 12 x 27 0 的两根,数列 { b n } 的前 n 项和 为 T n,且 T n 1 1 b n. 2 ( 1)求数列{ a n} , { b n}的通项公式; ( 2)记c n a n b n,求证:对一切 n N 2 , 有c n. 3 9. 数列{ a n}的前n项和S n满足S n2a n 3n . (1)求数列{ a n}的通项公式a n; (2)数列{ a n}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由 . 10. 已知数列{ a n}的前n项和为S n,设a n是S n与 2 的等差中项,数列{ b n} 中, b1 1,点 P(b n , b n 1 ) 在 直线 y x 2 上. ( 1)求数列{ a n} , { b n}的通项公式

高三数学精品教案:专题1:函数专题(理科)

专题1 函数(理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制.对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关

高考文科数学函数专题讲解及高考真题精选含答案

函 数 【1.2.1】函数的概念 (1)函数的概念 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数 x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <. (3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2 x k k Z π π≠+ ∈. ⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集. ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出. ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是

高考数学文科集合习题大全完美

第一章集合与函数的概念 一、选择题 1 .设全集U={1,2,3,4,5,6} ,设集合P={1,2,3,4} ,Q{3,4,5},则P∩(C U Q)= ( ) A .{1,2,3,4,6} B .{1,2,3,4,5} C .{1,2,5} D .{1,2} 2 .设集合A ={x |1

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

高考文科数学双向细目表

模块 知识点考查内容了解理解集合的含义、元素与集合的属于关系√列举法、描述法√包含于相等的含义√识别给定集合子集√全集于空集√并集于交集的含义与运算√补集的含义与运算√韦恩图表达集合的关系与运算√简单函数定义域和值域,了解映射√图像法、列表法、解析法表示函数√分段函数√函数单调性、最值及几何意义√函数奇偶性√函数图像研究函数性质指数函数模型背景√有理、实数指数幂、幂的运算指数函数概念、单调性√指数函数图像√对数的概念与运算√换底公式、自然对数、常用对数√对数函数的概念、单调性√对数函数的图像指数函数与对数函数互为反函数√幂函数的概念√幂函数的图像√二次函数、零点与方程的根√一元二次方程根的存在性及跟的个数√集合图像,用二分法求近似解指、对、幂函数的增长特征√函数模型的应用√柱、锥、台的结构特征√三视图√斜二测画法和直观图√平行、中心投影√三视图和直观图√球、柱、锥、台的表面积和体积公式√线面的位置关系定义√线面平行的判定 √面面平行的判定 √线面垂直的判定 √面面垂直的判定 √线面平行的性质 √面面平行的性质 √线面垂直的性质 √面面垂直的性质 √ 用已获结论证明空间几何体中的位置关系点、线、面位置关系集合的含义与表示集合间的基本关系集合的基本运算函数指数函数对数函数知识要求集合 函数概念 与基本初 等函数1 立体几何初步幂函数函数与方程函数模型及应用空间几何体

结合图形,确定直线位置关系的几何要素√直线倾斜角和斜率的概念√过两点的直线斜率计算公式√判定直线平行或垂直√点斜式、两点式、一般式√斜截式与一次函数的关系√两条相交直线的交点坐标√两点间的距离公式√ 点到直线的距离公式两条平行线间的距离公式√圆的几何要素,标准方程和一般方程判断直线与圆的位置关系应用直线与圆的方程√代数方法处理几何问题的思想√空间直角坐标表示点的位置√空间两点间的距离公式√算法的含义与思想√顺序、条件分支、循环逻辑结构√基本算法语句输入、输出、赋值、条件、循环语句√简单随机抽样√分层抽样和系统抽样√样本频率分布表、频率分布直方图、折线图√茎叶图√标准差的意义和作用√平均数和标准差√用样本估计总体的思想√会画散点图,认识变量间的相关关系√最小二乘法,线性回归方程√频率和概率的意义√互斥事件的概率加法公式√古典概型古典概型及其计算公式√随机事件所含的基本事件数及发生的概率√随机数的意义,运用模拟方法估计概率√几何概型的意义√任意角的概念√弧度制的概念、弧度与角度的互化√正弦、余弦、正切的定义√单位圆的三角函数线√诱导公式√三角函数的图像√ 三角函数的周期性√ 正余弦函数的单调性、最值、对称 中心 √正切函数性质 √同角三角函数的基本关系式 √正弦型函数的参数对图像变化的影响√向量的实际背景√ 平面向量的概念√ 向量的实际背景用样本估计总体变量的相关性事件与概率几何概型任意角的概念、弧度制三角函数直线与方程 圆的方程空间直角坐标系算法的含义、程序框图随机抽样统计 基本初等函数2平面解析几何初步算法初步

高考文科数学专题复习导数训练题(文)

高考文科数学专题复习导数训练题(文) 一、考点回顾 1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义。 2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用。 3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213f x x x =++的导函数,则(1)f '-的值是 。 解析: ()2'2+=x x f ,所以()3211'=+=-f 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 例2. 已知函数()y f x =的图象在点(1 (1))M f ,处的切线方程是1 22y x = +,则 (1)(1)f f '+= 。 解析:因为 21= k ,所以()211'= f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25 ,所 以 ()25 1= f ,所以()()31'1=+f f 答案:3

例3.曲线 32 242y x x x =--+在点(13)-,处的切线方程是 。 解析: 443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-, 带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3+-=,直线kx y l =:,且直线l 与曲线C 相切于点()00,y x 00 ≠x ,求直线l 的方程及切点坐标。 解析: 直线过原点,则 ()000 ≠= x x y k 。由点 () 00,y x 在曲线C 上,则 02 30023x x x y +-=,∴?2302 00 0+-=x x x y 。又263'2 +-=x x y ,∴ 在 ()00,y x 处 曲线C 的切线斜率为 ()263'02 00+-==x x x f k ,∴?2632302 002 0+-=+-x x x x ,整理 得:0 3200=-x x ,解得: 230= x 或00=x (舍),此时,830-=y ,41 - =k 。所以,直线l 的方程为 x y 41 -=,切点坐标是??? ??-83,23。 答案:直线l 的方程为 x y 41 -=,切点坐标是??? ??-83,23 点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 解析:函数()x f 的导数为 ()163'2 -+=x ax x f 。对于R x ∈都有()0'

2020高考文科数学各类大题专题汇总

2020高考文科数学各类大题专题汇总 一、三角函数 二、数列 三、立体几何 四、概率与统计 五、函数与导数 六、解析几何 七、选做题 大题专项练(一)三角函数 A组基础通关 1.已知在△ABC中,角A,B,C的对边分别是a,b,c,且c cos B+(b-2a)cos C=0. (1)求角C的大小; (2)若c=2,求△ABC的面积S的最大值. 因为c cos B+(b-2a)cos C=0, 所以sin C cos B+(sin B-2sin A)cos C=0, 所以sin C cos B+sin B cos C=2sin A cos C, 所以sin(B+C)=2sin A cos C. 又因为A+B+C=π, 所以sin A=2sin A cos C. 又因为A∈(0,π),所以sin A≠0, 所以cos C=. 又C∈(0,π),所以C=. (2)由(1)知,C=,

所以c2=a2+b2-2ab cos C=a2+b2-ab. 又c=2,所以4=a2+b2-ab. 又a2+b2≥2ab,当且仅当a=b时等号成立, 所以ab≤4.所以△ABC面积的最大值(S△ABC)max=×4×sin. 2.如图,在梯形ABCD中,∠A=∠D=90°,M为AD上一点,AM=2MD=2,∠BMC=60°. (1)若∠AMB=60°,求BC; (2)设∠DCM=θ,若MB=4MC,求tan θ. 由∠BMC=60°,∠AMB=60°,得∠CMD=60°. 在Rt△ABM中,MB=2AM=4;在Rt△CDM中,MC=2MD=2. 在△MBC中,由余弦定理,得BC2=BM2+MC2-2BM·MC·cos∠BMC=12,BC=2. (2)因为∠DCM=θ, 所以∠ABM=60°-θ,0°<θ<60°. 在Rt△MCD中,MC=; , 在Rt△MAB中,MB= °- 由MB=4MC,得2sin(60°-θ)=sin θ, 所以cos θ-sin θ=sin θ, 即2sin θ=cos θ, 整理可得tan θ=.

高考文科数学专题训练 专题二 第2讲

第2讲 三角恒等变换与解三角形 高考定位 1.三角函数的化简与求值是高考的命题热点,其中同角三角函数的基本关系、诱导公式是解决计算问题的工具,三角恒等变换是利用三角恒等式(两角和与差、二倍角的正弦、余弦、正切公式)进行变换,“角”的变换是三角恒等变换的核心;2.正弦定理与余弦定理以及解三角形问题是高考的必考内容,主要考查边、角、面积的计算及有关的范围问题. 真 题 感 悟 1.(2017·全国Ⅲ卷)已知sin α-cos α=43,则sin 2α=( ) A.-79 B.-29 C.29 D.79 解析 sin 2α=2sin αcos α=(sin α-cos α)2-1-1=-7 9. 答案 A 2.(2016·山东卷)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sin A ),则A =( ) A.34π B.π 3 C.π4 D.π6 解析 因为b =c ,a 2=2b 2(1-sin A ), 所以cos A =b 2+c 2-a 22bc =2b 2-2b 2(1-sin A ) 2b 2 ,则cos A =sin A . 在△ABC 中,A =π 4. 答案 C 3.(2017·全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B + sin A (sin C -cos C )=0,a =2,c =2,则C =( )

A.π12 B.π6 C.π4 D.π3 解析 由题意得sin(A +C )+sin A (sin C -cos C )=0, ∴sin A cos C +cos A sin C +sin A sin C -sin A cos C =0, 则sin C (sin A +cos A )=2sin C sin ? ? ???A +π4=0, 因为sin C ≠0,所以sin ? ? ? ??A +π4=0, 又因为A ∈(0,π),所以A +π4=π,所以A =3π 4. 由正弦定理a sin A =c sin C ,得2sin 3π4 =2 sin C , 则sin C =12,得C =π 6. 答案 B 4.(2017·全国Ⅰ卷)已知α∈? ????0,π2,tan α=2,则cos ? ? ???α-π4=________. 解析 由tan α=2得sin α=2 cos α, 又sin 2α+cos 2α=1,所以cos 2α=1 5. 因为α∈? ? ? ??0,π2,所以cos α=55,sin α=255. 因为cos ? ? ???α-π4=cos αcos π4+sin αsin π4 =55×22+255×22=31010. 答案 31010 考 点 整 合 1.三角函数公式 (1)同角关系:sin 2α+cos 2α=1,sin α cos α=tan α. (2)诱导公式:对于“k π 2±α,k ∈Z 的三角函数值”与“α角的三角函数值”的关系可按下面口诀记忆:奇变偶不变,符号看象限. (3)两角和与差的正弦、余弦、正切公式: sin(α±β)=sin αcos β±cos αsin β;

高考文科数学重要考点大全

高考文科数学重要考点大全 一 考点一:集合与简易逻辑 集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的 试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这 些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查 有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用 逻辑用语表达数学解题过程和逻辑推理。 考点二:函数与导数 函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数一次和二次函数、指数、对数、幂函数的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的 运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最 值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和 函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数 的取值范围问题、方程根的个数问题、不等式的证明等问题。 考点三:三角函数与平面向量 一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一 道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道 和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向 量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概 念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、 共线等问题是“新热点”题型. 考点四:数列与不等式 不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基 本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解 析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、 性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合 运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目. 考点五:立体几何与空间向量

(完整版)高三文科数学导数专题复习

高三文科数学导数专题复习 1.已知函数)(,3 ,sin )(x f x x b ax x f 时当π =+=取得极小值 33 -π . (Ⅰ)求a ,b 的值; (Ⅱ)设直线)(:),(:x F y S x g y l ==曲线. 若直线l 与曲线S 同时满足下列两个条件: (1)直线l 与曲线S 相切且至少有两个切点; (2)对任意x ∈R 都有)()(x F x g ≥. 则称直线l 为曲线S 的“上夹线”. 试证明:直线2:+=x y l 是曲线x b ax y S sin :+=的“上夹线”. 2. 设函数3 221()231,0 1.3 f x x ax a x a =- +-+<< (1)求函数)(x f 的极大值; (2)若[]1,1x a a ∈-+时,恒有()a f x a '-≤≤成立(其中()f x '是函数()f x 的导函数),试确定实数a 的取值范围. 3.如图所示,A 、B 为函数)11(32 ≤≤-=x x y 图象上两点,且AB//x 轴,点M (1,m )(m>3)是△ABC 边AC 的中点. (1)设点B 的横坐标为t ,△ABC 的面积为S ,求S 关于t 的函数关系式)(t f S =; (2)求函数)(t f S =的最大值,并求出相应的点C 的坐标.

4. 已知函数x a x x f ln )(2-=在]2,1(是增函数,x a x x g -=)(在(0,1)为减函数. (I )求)(x f 、)(x g 的表达式; (II )求证:当0>x 时,方程2)()(+=x g x f 有唯一解; (III )当1->b 时,若21 2)(x bx x f -≥在x ∈]1,0(内恒成立,求b 的取值范围 5. 已知函数3 2 ()f x x ax bx c =+++在2x =处有极值,曲线()y f x =在1x =处的切线平行于直线32y x =--,试求函数()f x 的极大值与极小值的差。 6.函数x a x x f - =2)(的定义域为]1,0((a 为实数). (1)当1-=a 时,求函数)(x f y =的值域; (2)若函数)(x f y =在定义域上是减函数,求a 的取值范围; (3)求函数)(x f y =在∈x ]1,0(上的最大值及最小值,并求出函数取最值时x 的值. 7.设x=0是函数2()()()x f x x ax b e x R =++∈的一个极值点. (Ⅰ)求a 与b 的关系式(用a 表示b ),并求)(x f 的单调区间; (Ⅱ)设]2,2[,,)1()(,0212 2-∈++-=>+ξξ问是否存在x e a a x g a ,使得|1|)()(21≤-ξξg f 成立?若存在,求a 的取值范围;若不存在,说明理由. 8. 设函数()2ln q f x px x x =- -,且()2p f e qe e =--,其中e 是自然对数的底数. (1)求p 与q 的关系;

高考文科数学专题复习导数训练题(汇编)

高考文科数学专题复习导数训练题(文) 一、考点回顾和基础知识 1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容.考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义. 2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题.选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用. 3.应用导数解决实际问题,关键是建立适当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极值,而此时不用和端点值进行比较,也可以得知这就是最值. 2.导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即 )(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 3.求导数的四则运算法则: ''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=?+++=? ''''''')()(cv cv v c cv u v vu uv =+=?+=(c 为常数)

高考文科数学函数专题讲解及高考真题精选(含答案)

函 数 【1.2.1】函数的概念 (1)函数的概念 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数 x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <. (3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2 x k k Z π π≠+ ∈. ⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集. ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出. ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度

2019高考文科数学考试大纲(最新整理)

文科数学 Ⅰ.考核目标与要求 根据普通高等学校对新生思想道德素质和科学文化素质的要求,依据中华人民共和国教 育部2003 年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修 课程、选修课程系列1 和系列4 的内容,确定文史类高考数学科考试内容. 一、知识要求 知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课 程、选修课程系列1 和系列4 中的数学概念、性质、法则、公式、公理、定理以及由其内容反 映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能. 各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明. 对知识的要求依次是了解、理解、掌握三个层次. 1.了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照 一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它. 这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等. 2.理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列 知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、 判别、讨论,具备利用所学知识解决简单问题的能力. 这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等. 3.掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、 研究、讨论,并且加以解决. 这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、 解决问题等. 二、能力要求 能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识. 1.空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出 图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地 揭示问题的本质. 空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图 形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语 言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想 象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志. 2.抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属 于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能 有概括,而概括必须在抽象的基础上得出某种观点或某个结论. 抽象概括能力是对具体的、生动的实例,经过分析提炼,发现研究对象的本质;从给定的 大量信息材料中概括出一些结论,并能将其应用于解决问题或做出新的判断.

相关文档 最新文档