文档视界 最新最全的文档下载
当前位置:文档视界 › 扫描电镜的综述及发展

扫描电镜的综述及发展

扫描电镜的综述及发展
扫描电镜的综述及发展

扫描电镜的综述及发展

1 扫描电镜的原理

扫描电镜(Scanning Electron Microscope,简写为SEM)是一个复杂的系统,浓缩了电子光学技术、真空技术、精细机械结构以及现代计算机控制技术。成像是采用二次电子或背散射电子等工作方式,随着扫描电镜的发展和应用的拓展,相继发展了宏观断口学和显微断口学。

扫描电镜是在加速高压作用下将电子枪发射的电子经过多级电磁透镜汇集成细小(直径一般为1~5nm)的电子束(相应束流为10-11~10-12A)。在末级透镜上方扫描线圈的作用下,使电子束在试样表面做光栅扫描(行扫+帧扫)。入射电子与试样相互作用会产生二次电子、背散射电子、X射线等各种信息。这些信息的二维强度分布随着试样表面的特征而变(这些特征有表面形貌、成分、晶体取向、电磁特性等等),将各种探测器收集到的信息按顺序、成比率地转换成视频信号,再传送到同步扫描的显像管并调制其亮度,就可以得到一个反应试样表面状况的扫描图像[1]。如果将探测器接收到的信号进行数字化处理即转变成数字信号,就可以由计算机做进一步的处理和存储。

扫描电镜主要是针对具有高低差较大、粗糙不平的厚块试样进行观察,因而在设计上突出了景深效果,一般用来分析断口以及未经人工处理的自然表面。机构组成

扫描电子显微镜由三大部分组成:真空系统,电子束系统以及成像系统。

真空系统

真空系统主要包括真空泵和真空柱两部分。真空柱是一个密封的柱形容器。

真空泵用来在真空柱内产生真空。有机械泵、油扩散泵以及涡轮分子泵三大类,机械泵加油扩散泵的组合可以满足配置钨枪的SEM的真空要求,但对于装置了场致发射枪或六硼化镧枪的SEM,则需要机械泵加涡轮分子泵的组合。

成像系统和电子束系统均内置在真空柱中。真空柱底端即为右图所示的密封室,用于放置样品。

之所以要用真空,主要基于以下两点原因:

电子束系统中的灯丝在普通大气中会迅速氧化而失效,所以除了在使用SEM 时需要用真空以外,平时还需要以纯氮气或惰性气体充满整个真空柱。

为了增大电子的平均自由程,从而使得用于成像的电子更多。

电子束系统

电子束系统由电子枪和电磁透镜两部分组成,主要用于产生一束能量分布极窄的、电子能量确定的电子束用以扫描成像。

电子枪

电子枪用于产生电子,主要有两大类,共三种。

一类是利用场致发射效应产生电子,称为场致发射电子枪。这种电子枪极其昂贵,在十万美元以上,且需要小于10-10torr的极高真空。但它具有至少1000小时以上的寿命,且不需要电磁透镜系统。

另一类则是利用热发射效应产生电子,有钨枪和六硼化镧枪两种。钨枪寿命在30~100小时之间,价格便宜,但成像不如其他两种明亮,常作为廉价或标准SEM配置。六硼化镧枪寿命介于场致发射电子枪与钨枪之间,为200~1000小时,价格约为钨枪的十倍,图像比钨枪明亮5~10倍,需要略高于钨枪的真空,一般在10-7torr以上;但比钨枪容易产生过度饱和和热激发问题。

电磁透镜

热发射电子需要电磁透镜来成束,所以在用热发射电子枪的SEM上,电磁透镜必不可少。通常会装配两组:

汇聚透镜:顾名思义,汇聚透镜用汇聚电子束,装配在真空柱中,位于电子枪之下。通常不止一个,并有一组汇聚光圈与之相配。但汇聚透镜仅仅用于汇聚电子束,与成像会焦无关。

物镜:物镜为真空柱中最下方的一个电磁透镜,它负责将电子束的焦点汇聚到样品表面。

成像系统

电子经过一系列电磁透镜成束后,打到样品上与样品相互作用,会产生次级

电子、背散射电子、欧革电子以及X射线等一系列信号。所以需要不同的探测器譬如次级电子探测器、X射线能谱分析仪等来区分这些信号以获得所需要的信息。虽然X射线信号不能用于成像,但习惯上,仍然将X射线分析系统划分到成像系统中。

有些探测器造价昂贵,比如Robinsons式背散射电子探测器,这时,可以使用次级电子探测器代替,但需要设定一个偏压电场以筛除次级电子。

2 扫描电镜的特点

(1)能够直接观察样品表面的结构,样品的尺寸可大至120mm*80mm*50mm。

(2)样品的制备过程简单,不用切成薄片。

(3)样品可以在样品室中作三维空间的平移和旋转,因此可以从各种角度对样品进行观察。

(4)景深大,图像富有立体感,可直接观察各种试样凹凸不平表面的细微结构。扫描电镜的景深较光学显微镜大几百倍,比透射电镜大几十倍。

(5)图像的放大范围广,分辨率也比较高。可放大十几倍到几十万倍,它基本上包括了从放大镜、光学显微镜直到透射电镜的放大范围。分辨

率介于光学显微镜与透射电镜之间,可达3nm。

(6)电子束对样品的损伤与污染程度较小。

(7)能够进行动态观察(如动态拉伸、压缩、弯曲、升降温等)。

(8)在观察形貌的同时,还可利用从样品发出的其他信号做微区成分及晶体学分析。

图1 传统扫描电镜的主体结构

3 近代扫描显微镜的发展

扫描电子显微镜早在1935年便已经被提出来了。1942年,英国首先制成一台实验室用的扫描电镜,但由于成像的分辨率很差,照相时间太长,所以实用价值不大。经过各国科学工作者的努力,尤其是随着电子工业技术水平的不断发展,到1956年开始生产商品扫描电镜。现在扫描电镜已广泛用于材料科学(金属材料、非金属材料、纳米材料)、冶金、生物学、医学、半导体材料与器件、地质勘探、病虫害的防治、灾害(火灾、失效分析)鉴定、刑事侦察、宝石鉴定、工业生产中的产品质量鉴定及生产工艺控制等。

4 现代扫描电镜的发展

近代扫描电镜的发展主要是在二次电子像分辨率上取得了较大的进展。但对不导电或导电性能不太好的样品还需喷金后才能达到理想的图像分辨率。随着材料科学的发展特别是半导体产业的需求,要尽量保持试样的原始表面,在不做任何处理的条件下进行分析。早在20世纪80年代中期,便有厂家根据新材料(主要是半导体材料)发展的需要,提出了导电性不好的材料不经过任何处理也能够进行观察分析的设想,到90年代初期,这一设想就已有了实验雏形,90年代末期,已变成比较成熟的技术。其工作方式便是现在已为大家所接受的低真空和低电压,最近几年又出现了模拟环境工作方式的扫描电镜,这就是现代扫描电镜领域出现的新名词“环扫”,即环境扫描电镜。

4.1低电压扫描电镜

在扫描电镜中,低电压是指电子束流加速电压在1kV左右。此时,对未经导电处理的非导体试样其充电效应可以减小,电子对试样的辐照损伤小,且二次电子的信息产额高,成像信息对表面状态更加敏感,边沿效应更加明显,能够适应半导体和非导体分析工作的需要。但随着加速电压的降低,物镜的球像差效应增加,使得图像的分辨率不能达到很高,这就是低电压工作模式的局限性。

4.2低真空扫描电镜

低真空为是为了解决不导电试样分析的另一种工作模式。其关键技术是采用了一级压差光栏,实现了两级真空。发射电子束的电子室和使电子束聚焦的镜筒必须置于清洁的高真空状态,一般用1个机械泵和扩散泵来满足之。而样品室不一定要太高的真空,可用另一个机械泵来实现样品室的低真空状态。当聚焦的电子束进进低真空样品室后,与残余的空气分子碰撞并将其电离,这些离化带有正电的气体分子在一个附加电场的作用下向充电的样品表面运动,与样品表面充电的电子中和,这样就消除了非导体表面的充电现象,从而实现了对非导体样品自然状态的直接观察,在半导体、冶金、化工、矿产、陶瓷、生物等材料的分析工作方面有着比较突出的作用。

4.3环境扫描电镜(ESEM)

上述低真空扫描电镜样品室最高低真空压力为400Pa,现在有厂家使用专利技术,可使样品室的低真空压力达到2600Pa,也就是样品室可容纳分子更多,在这种状态下,可配置水瓶向样品室输送水蒸气或输送混合气体,若跟高温或低温样品台联合使用则可模拟样品的四周环境,结合扫描电镜观察,可得到环境条件下试样的变化情况。环扫实现较高的低真空,其核心技术就是采用两级压差光栅和气体二次电子探测器,还有一些其它相关技术也相继得到完善。它是使用1个分子泵和2个机械泵,2个压差(压力限制)光栅将主体分成3个抽气区,镜筒处于高真空,样品四周为环境状态,样品室和镜筒之间存在一个缓冲过渡状态。使用时,高真空、低真空和环境3个模式可根据情况任意选择,并且在3种情况下都配有二次电子探测器,都能达到3.5nm的二次电子图像分辨率[3]。

ESEM的特点是:

(1)非导电材料不需喷镀导电膜,可直接观察,分析简便迅速,不破坏原始形貌;

(2)可保证样品在100%湿度下观察,即可进行含油含水样品的观察,能够观察液体在样品表面的蒸发和凝聚以及化学腐蚀行为;

(3)可进行样品热模拟及力学模拟的动态变化实验研究,也可以研究微注进液体与样品的相互作用等。由于这些过程中有大量气体开释,只能在环扫状态下进行观察。

环境扫描电镜技术拓展了电子显微学的研究领域,是扫描电子显微镜领域的

一次重大技术革命,是研究材料热模拟、力学模拟、氧化腐蚀等过程的有力工具,受到了国内广大科研工作者的广泛关注,具有广阔的应用远景。

5 高温样品台及动态拉伸装置的功能

5.1高温样品台的功能

利用高温台在环境模式下对样品进行加热并采集二次电子信号可进行适时动态观察。而在普通高真空扫描电镜和低真空扫描电镜中,只能对极少数特殊样品在高温状态下进行观察,并要求在加热过程中不能产生气体、不能发出可见光和红外辐射,否则,会破坏电镜的真空,并且二次电子图像噪音严重,乃至根本无法成像。高温台配有专用陶瓷GSED(气体二次电子探头),可在环境模式下,在高达1500℃温度下正常观察样品的二次电子像。加热温度范围从室温到1500℃,升温速度每分钟1~300℃。环境扫描电镜的专利探测器可保证在足够的成像电子采集时抑制热信号噪音,并对样品在高温加热时产生的光信号不敏感。而这些信号足以使其它型号扫描电镜中使用的普通二次电子探头和背散射电子探头无法正常工作。

5.2动态拉伸装置的功能

最新的动态拉伸装置配有内部马达驱动器、旋转译码器、线性位移传感器,由计算机进行控制和数据采集,配合视频数据采集系统,可实现动态观察和记录。可从材料表面观察在动态拉伸条件下材料的滑移、塑性形变、起裂、裂纹扩展(路径和方向)直至断裂的全过程等。该装置还可附带3点弯曲和4点弯曲装置,具有弯曲功能,从而可以研究板材在弯曲状态下的形变、开裂直至断裂的情况。最大拉伸力为2000N,3点弯曲最大压力为660N。动态拉伸装置可配合多种扫描电镜工作[4]。

6 扫描电镜的主要应用领域

6.1 扫描电镜在材料和冶金行业中的应用

场发射扫面电镜采用场致发射电子枪代替普通钨灯丝电子枪,可得到很高的

二次电子像分辨率。采用场发射电子枪需要很高的真空度,在高真空度下由于电子束的散射更小,其分辨率进一步得到提高。同时,采用磁悬浮技术,噪音振动大为降低,灯丝寿命也有增加。场发射扫描电镜的特点是二次电子像分辨率很高,如果采用低加速电压技术,在TV状态下背散射电子(BSE)成像良好,对于未喷涂非导电样品也可得到高倍像。所以,场发射扫描电镜对半导体器件、精密陶瓷材料、氧化物材料等的发展起到很大作用。

扫描电镜配备能谱仪,主要能分析材料表面微区的成分,分析方式有定点定性分析、定点定量分析、元素的线分布、元素的面分布。例如夹杂物的成分分析。两个相中元素的扩散深度、多相颗粒元素的分布情况。

扫描电镜配备EBSD附件,主要做单晶体的物相分析,同时提供花样质量、置信度指数、彩色晶粒图,可做单晶体的空间位向测定、两颗单晶体之间夹角的测定,可做特选取向图、共格晶界图、特殊晶界图,同时提供不同晶界类型的绝对数量和相对比例,还可做晶粒的尺寸分布图,将多颗单晶的空间取向投影到极图或反极图上,可做二维或三维织构分析[5]。

扫描电镜配备波谱仪(即X射线波长色散谱仪),用作成分分析。成分分析λ公式表示。λ是电子束激发试样时产生的X射线波长,的原理可用L

=

(

d)

/

R

跟元素有关;d是分光晶体的面间距,为已知数;R是波谱仪聚焦圆的半径,为已知数;L是X射线发射源与分光晶体之间的距离。对于不同的L则有不同的X 射线波长,根据X射线波长就可得知是什么元素。

扫描电子显微镜可以对浸出渣、铁的水解产物、转炉渣等物质进行成分分析、形貌观察,可以对连铸坯的带状偏析及夹杂物进行分析。同时,也可以用于冶金辅材的显微组织及形貌分析与测量。如:冶金高炉塔垢显微组织分析,冶金烧结矿显微组织分析,保护渣渣皮形貌及渣皮厚度测量等。

扫描电镜结合上述各种附件,其应用范围很广,包括断裂失效分析、产品缺陷原因分析、镀层结构和厚度分析、涂料层次与厚度分析、材料表面磨损和腐蚀分析、耐火材料的结构与蚀损分析等等。

6.2 扫描电镜在新型陶瓷材料显微分析中的应用

显微结构的分析:在陶瓷的制备过程中,原始材料及其制品的显微形貌、孔隙大小、晶界和团聚程度等将决定其最后的性能。扫描电子显微镜可以清楚地反映

和记录这些微观特征,是观察分析样品微观结构方便、易行的有效方法,样品无需制备,只需直接放入样品室内即可放大观察;同时扫描电子显微镜可以实现试样从低倍到高倍的定位分析,在样品室中的试样不仅可以沿三维空间移动,还能够根据观察需要进行空间转动,以利于使用者对感兴趣的部位进行连续、系统的观察分析。扫描电子显微镜拍出的图像真实、清晰,并富有立体感,在新型陶瓷材料的三维显微组织形态的观察研究方面获得了广泛地应用

纳米尺寸的研究:纳米材料是纳米科学技术最基本的组成部分,现在可以用物理、化学及生物学的方法制备出只有几个纳米的“颗粒”。纳米材料的应用非常广泛,比如通常陶瓷材料具有高硬度、耐磨、抗腐蚀等优点,纳米陶瓷在一定的程度上也可增加韧性、改善脆性等[6],新型陶瓷纳米材料如纳米称、纳米天平等亦是重要的应用领域。纳米材料的一切独特性主要源于它的纳米尺寸,因此必须首先确切地知道其尺寸,否则对纳米材料的研究及应用便失去了基础。纵观当今国内外的研究状况和最新成果,目前该领域的检测手段和表征方法可以使用透射电子显微镜、扫描隧道显微镜、原子力显微镜等技术,但高分辨率的扫描电子显微镜在纳米级别材料的形貌观察和尺寸检测方面因具有简便、可操作性强的优势被大量采用。

铁电畴的观测:扫描电子显微镜观测电畴是通过对样品表面预先进行化学腐蚀来实现的,由于不同极性的畴被腐蚀的程度不一样,利用腐蚀剂可在铁电体表面形成凹凸不平的区域从而可在显微镜中进行观察。因此,可以将样品表面预先进行化学腐蚀后,利用扫描电子显微镜图像中的黑白衬度来判断不同取向的电畴结构。对不同的铁电晶体选择合适的腐蚀剂种类、浓度、腐蚀时间和温度都能显示良好的畴图样。

6.3 扫描电子显徽镜在地质工作中的应用

扫描电子显微镜主要通过对微体古生物、岩石、矿物的形态和结构构造特征的研究,岩石、矿物的元素组成、变化规律及其赋存状态的研究,解决地质科研和生产中的各种问题。它直接或间接应用于古生物学(主要是微体古生物)、矿物学、岩石学、陨石学、矿床学、构造地质学、矿床综合评价和矿产综合利用等方面的研究[7]。

6.4扫描电镜在医学和生物学中的应用

随着扫描电镜分辨力沟不断提高和样品制备技术的逐步改善,它在医学生物学的研究中发挥了巨大乍用,具有重要约实用价值。特别是近年来,由于冷冻割断法、化学消化法以及树脂铸型法等新技术的创建,使人们在扫描电镜下可以直接观察组织细胞内部超微结构的立体图象,能够显示器官内微血管和其他管道系统在组织内的三维构筑,为医学生物学亚显微领域的深入探讨,提供了更为良好的条件[8]。

7 总结

目前,扫描电子显微镜的最主要组合分析功能有:X射线显微分析系统,主要用于元素的定性和定量分析,并可分析样品微区的化学成分等信息;电子背散射系统,主要用于晶体和矿物的研究[9]。随着现代技术的发展,其他一些扫描电子显微镜组合分析功能也相继出现,例如:显微热台和冷台系统,主要用于观察和分析在加热和冷冻过程中微观结构上的变化;拉伸系统,主要用于观察和分析材料在受力过程中所发生的微观结构变化。扫描电子显微镜与其他设备组合而具有的新型分析功能为新材料、新工艺的探索和研究起到了重要作用。

参考文献:

[1]陈世朴.金属电子显微分析[M].北京:机械工业出版社,1992.

[2]谈育煦.材料研究方法[M].北京:机械工业出版社,2004,5.

[3]吴立新,陈方玉.现代扫描电镜的发展及其在材料科学中的应用[J],武钢技术,2005,43(6).

[4]曹鹏,孙黎波,邵月华.扫面电镜对金属材料失效及表面缺陷的研究[J],现代制造技术与装备,2010,1.

[5]宋敏华,激光扫描共焦显微镜在钢铁冶金行业中的应用[J].机械工程材料,2007,02.

[6]邓湘云,王晓慧,李龙土.扫描电子显微镜在新型陶瓷材料显微分析中的应用

[J].硅酸盐通报,2007,2:26-1.

[7]白忠勤,刘伟明,邵月华.扫描电镜对高分子材料脆性断裂的研究[J].Science& Technology Information,2010,13.

[8]朱衍勇,董毅,司红,徐荣军.用SEM分析中厚钢板表面裂纹的成因[J].电子显微学报,2000,19(4):543~544.

[9]张朝佑,王秀茹.扫描电镜在医学生物学中的应用[J].广州解剖学通报,1990,12(2).

扫描电子显微镜文献综述

扫描电子显微镜的应用及其发展 1前言 扫描电子显微镜SEM(Scanning Electron Microscopy)是应用最为广泛的微观 形貌观察工具。其观察结果真实可靠、变形性小、样品处理时的方便易行。其发展进步对材料的准确分析有着决定性作用。配备上X射线能量分辨装置EDS (Energy Dispersive Spectroscopy)后,就能在观察微观形貌的同时检测不同形貌特征处的元素成分差异,而背散射扫描电镜EBSD(Electron Backscattered Diffraction)也被广泛应用于物相鉴定等。 2扫描电镜的特点 形貌分析的各种技术中,扫描电镜的主要优势在于高的分辨率。现代先进的扫描电镜的分辨率已经达到1纳米左右;有较高的放大倍数,20-20万倍之间连续可调;有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构试样制备简单;配有X射线能谱仪装置,这样可以同时进行 显微组织性貌的观察和微区成分分析[1]。低加速电压、低真空、环境扫描电镜和电子背散射花样分析仪的使用,大大提高了扫描电子显微镜的综合、在线分析能力;试样制备简单。直接粘附在铜座上即可,必要时需蒸Au或是C。 扫描电镜也有其局限性,首先就是它的分辨率还不够高,也不能观察发光或高温样品。样品必须干净、干燥,有导电性。也不能用来显示样品的内部细节,最后它不能显示样品的颜色。 需要对扫描电镜进行技术改进,在提高分辨率方面主要采取降低透镜球像差系数, 以获得小束斑;增强照明源即提高电子枪亮度( 如采用LaB6 或场发射电子枪) ;提高真空度和检测系统的接收效率;尽可能减小外界振动干扰。 在扫描电镜成像过程中,影响图像质量的因素比较多,故需选择最佳条件。例如样品室内气氛控制、图像参数的选择、检测器的选择以及控制温度的选择,尽可能将样品原来的面貌保存下来得到高质量电镜照片[2]。

扫描电镜简述

J I A N G S U U N I V E R S I T Y 冶金工程专业硕士研究生结课论文论文题目:扫描电镜SEM分析技术综述 课程名称:Modern Material Analytic Technology 专业班级: 2015级硕士研究生 学生姓名 学号:2211505072 学院名称:材料科学与工程学院 学期: 2015-2016第一学期 完成时间: 2015年11月 30 日

扫描电镜SEM分析技术综述 摘要 扫描电子显微镜(如下图所示),简称为扫描电镜,英文缩写为SEM(Scanning Electron Microscope)。它是用细聚焦的电子束轰击样品表面,通过电子与样品相互作用产生的二次电子、背散射电子等对样品表面或断口形貌进行观察和分析。现在SEM都与能谱(EDS)组合,可以进行成分分析。所以,SEM也是显微结构分析的主要仪器,已广泛用于材料、冶金、矿物、生物学等领域。 本文主要对扫描电镜SEM进行简单介绍,分别从扫描电镜发展的历史沿革;工作原理;设备构造及功能;在冶金及金属材料分析中的应用情况;未来发展方向等几个方面来对扫描电镜分析技术进行综述。 关键词: 扫描电子显微镜二次电子背散射电子 EDS 成分分析 扫描电子显微镜

目录 一扫描电镜 (4) 1.1 近代扫描电镜的发展 (4) 1.1.1场发射扫描电镜 (4) 1.1.2 分析型扫描电镜及其附件 (5) 1.2 现代扫描电镜的发展 (6) 1.2.1低电压扫描电镜 (6) 1.2.2 低真空扫描电镜 (6) 1.2.3环境扫描电镜ESEM (7) 1.3 扫描电镜工作原理设备构造及其功能 (7) 1.3.1扫描电镜工作原理 (8) 1.3.2 扫描电镜的主要结构及功能 (9) 1.4 扫描电镜性能 (11) 1.5扫描电镜在冶金及金属材料分析中的应用 (12) 二结论 (14) 三参考文献 (14)

扫描电子显微镜的早期历史和发展趋势

扫描电子显微镜的早期历史和发展趋势 扫描电子显微镜(SEM)的基本原理在20世纪30年代到40年代初由Knoll, 德国的von Ardenne和美国的Zworykin,Hillier等人确立。扫描电镜的研究在英国剑桥大学电机工程学系Charles Oatley博士学位的一系列项目中复苏。在剑桥大学的McMullan和Smith的早期研究之后,SEM的第一次产业应用在加拿大纸浆和造纸研究所实现。不久之后,在美国的Westinghouse,SEM被应用于集成电路,并在英国和日本实现了扫描电镜的商业化。截至目前,SEM及其他显微和微分析技术在世界范围内发展,并被应用于越来越多的领域。 关键词:扫描电子显微镜(SEM),成像技术,表面形貌,成分衬度,电子通道花样(ECP),电子背散射花样(EBSP)。 Oatley描述了SEM早期历史和直至其第一次商业化的发展状况。第一台商业SEM在英国和日本制造。SEM的历史也被许多作者描述过。商用SEM性能的提高和操作的简便已经很出色并有望继续进步。 Knoll用仪器得到了四个非常重要的实验结果Fig.1:(i)他从固态多晶样品中得到了样品的吸收电流像Fig.2.(ii) 这张照片显示的晶粒间取向依赖衬度是由电子穿隧效应的对比差异引起的。(iii)他测量了不同材料的二次电子(SE)加背散射电子(BSE)系数是入射电子能量E0的函数,并且证明当SE+BSE系数为1时,有第二个交叉点,此时E0约为 1.5keV。样品的充电最小化并且保持稳定。(iv)根据一个早期关于定量电压衬度的译文,测量了束电子对非导电颗粒充电后颗粒的电势。 Figure 3 是由von Ardenne提出的产生二次电子的电子散射模型,模型表明初始束展宽;大角度散射;扩散;BSE逃逸以及每个阶段的二次电子激发。他提出了两种高分辨率SE图像。第一种(现在称为SE-I图像的详细讨论见Peters)E0等于数十电子伏,此时电子的穿透深度(几个微米)比二次电子的逃逸深度大很多倍(几个纳米)。SE-I激发是在束电子入射点的一个局部的区域内发散,这个范围比BSE小。他提出SE-I能提供一个高分辨率的SE图像(特殊情况除外)。他的第二个观点(现在称为低压SEM)是将E0减小到1keV,此时穿透深度达到束电子直径。 Zworykin给出了最早的二次电子图像。这些工作者也建立了一台密封的场发射(FE)SEM,并且为X射线微区分析和电子能量损失能谱仪(EELS)奠定了基础。当时人们热衷于似乎会更加成功的透射电镜(TEM),他们在SEM方面的工作没有继续。

虚拟现实技术-综述

浅谈虚拟现实技术在规划领域中的应用 作者:Why 摘要:随着信息时代的到来,越来越多的高新技术应用到社会的各个领域中来,而作为信息技术发展的首要驱动力的“虚拟现实”技术也越来越多地应用到规划领域中来。本文着重论述了虚拟现实技术在城市规划中的应用范围、应用的意义及其为我们带来的便利。 关键词:虚拟现实、范围、发展、迫切性、城市规划 虚拟现实(Virtual Reality,简称VR),又称灵境技术,是90年代为科学界和工程界所关注的技术。它的兴起,为人机交互界面的发展开创了新的研究领域;为智能工程的应用提供了新的界面工具;为各类工程的大规模的数据可视化提供了新的描述方法。它是一种基于可计算信息的沉浸式交互环境,具体的说,就是采用以计算机技术为核心的现代高科技生成逼真的视、听、触觉一体化的特定范围的虚拟环境,用户借助必要的设备以自然的方式与虚拟环境中的对象进行交互使用、相互影响,从而产正亲临其境的真实环境的感受和体验。这种技术的应用,改进了人们利用计算机进行多工程数据处理的方式,尤其在需要对大量抽象数据进行处理时;同时,它在许多不同领域的应用,可以带来巨大的经济效益。 1、虚拟现实技术的发展概述 1965年,Sutherland在篇名为《终极的显示》的论文中首次提出了包括具有交互图形显示、力反馈设备以及声音提示的虚拟现实系统的基本思想,从此,人们正式开始了对虚拟现实系统的研究探索历程。 随后的1966年,美国MIT的林肯实验室正式开始了头盔式显示器的研制工作。在这第一个HMD的样机完成不久,研制者又把能模拟力量和触觉的力反馈装置加入到这个系统中。1970年,出现了第一个功能较齐全的HMD系统。基于从60年代以来所取得的一系列成就,美国的JaronLanier在80年代初正式提出了“VirtualReality”一词。 80年代,美国宇航局(NASA)及美国国防部组织了一系列有关虚拟现实技术的研究,并取得了令人瞩目的研究成果,从而引起了人们对虚拟现实技术的广泛关注。1984年,NASAAmes研究中心虚拟行星探测实验室的M.McGreevy和J.Humphries博士组织开发了用于火星探测的虚拟环境视觉显示器,将火星探测器发回的数据输入计算机,为地面研究人员构造了火星表面的三维虚拟环境。在随后的虚拟交互环境工作站(VIEW)项目中,他们又开发了通用多传感个人仿真器和遥现设备。 进入90年代,迅速发展的计算机硬件技术与不断改进的计算机软件系统相匹配,使得基于大型数据集合的声音和图象的实时动画制作成为可能;人机交互系统的设计不断创新,新颖、实用的输入输出设备不断地进入市常而这些都为虚拟现实系统的发展打下了良好的基矗例如1993年的11月,宇航员利用虚拟现实系统成功地完成了从航天飞机的运输舱内取出新的望远镜面板的工作,而用虚拟现实技术设计波音777获得成功,是近年来引起科技界瞩目的又一件工作。可以看出,正是因为虚拟现实系统极其广泛的应用领域,如娱乐、军事、航天、设计、生产制造、信息管理、商贸、建筑、医疗保险、危险及恶劣环境下的遥操作、教育与培训、信息可视化以及远程通讯等,人们对迅速发展中的虚拟现实系统的广阔应用前景充满了憧憬与兴趣。 2、虚拟现实在规划领域的应用范围 虚拟现实在规划信息存储和查询系统中的应用 例如土质数据库系统,地域信息系统,地理信息系统,城市政策信息系统等。这一类系

电子显微镜的发展及现状

电子显微镜的发展及现状 20130125001 李智鹏 2014/10/8

电子显微镜的发展及现状 摘要:本文综述了电子显微镜的发展,电子显微镜的主要分类,它们在生活当中的应用以及国内显微镜的现状。 关键词:电子显微镜发展应用现状 1、引言 显微镜技术的发展,是其他科学技术发展的先导,在17世纪60年代出现的光学显微镜,引发了一场广泛的科技进步, 促进了细胞学和细菌学的发展。使人类的观测范围进入微观世界,导致了一大批新的领域进入人类的研究范围,促进了许多学科的创立和发展。 三百年来,光学显微镜巳经发展到了十分完善的地步。而我们知道,分辨率极限的量级为入/a带,对于光学显微镜,最短可见光波长约为400。人,最大数值孔径约1。4,故只能获得亚微米量极的分辨率。于是,人们开始寻找较短波长的光源,X射线波长为几个埃,Y射线波长更短,但它们都很难直接聚焦,所以不能直接用于显微镜。[1] 20世纪30年代出现的电子显微镜技术,更进一步拓宽了人类的观测领域,同样导致了大批新学科、新技术的出现.可以说,现代科学技术的研究工作,已很大程度依赖于电子显微镜技术的使用,尤其是在纳米技术、材料技术、生命科学技术等研究方面,没有电子显微镜技术的帮助,它们几乎是无法进行的.随着科学技术的不断进步,电子显微镜技术的应用越来越广泛,同时电子显微镜技术本身也在不断快速发展.从最初的电子显微镜开始,已经逐步发展出扫描电子显微镜、扫描隧道电子显微镜、原子力电子显微镜、扫描离子电导显微镜、扫描探针电子显微镜等.这些先进的仪器现已广泛地应用于物理学、化学、材料科学和生命科学领域的研究和检测工作中.在纺织科技研究工作和纺织材料及纺织品检测过程中也得到了广泛的应用[2]。本文仅对电子显微镜技术在出土古代纺织品检测方面的应用作一初步探讨。电子显微镜(简称电镜,EM)经过五十多年的发展已成为现代科学技术中不可缺少的重要工具。我国的电子显微学也有了长足的进展[3]。电子显微镜的创制者鲁斯卡(E.Ruska)教授因而获得了1986年诺贝尔奖的物理奖[4]。 2、电子显微镜的发展过程 20世纪30年代,德国科学家诺尔(M. knoll)和卢斯卡(E. Ruska)在电子光学的基础上,研制出了世界上第一台透射式电子显微镜(Transmission ElectronMicroscope,TEM,简称透射电镜),成功地得到了用电子束拍摄的铜网像,尽管放大倍数只有12倍,但它为以后电镜的发展和应用奠定了基础.此后经过科学家们半个多世纪的努力和改进,透射电镜的分辨本领现已达到了0. 1nm~0. 2nm,几乎能分辨所有的原子.此后又相继出现了能直接观察样品表面立体结构的扫描电子显微镜(Scanning ElectronMicroscope, SEM,简称扫描电镜),其分辨率为3nm~6nm和能进行活体观察的超高压电镜,实现了人们直接观察生物大分子结构和重金属原子图像的愿望[5]。 2.1扫描式电子显微镜扫描式电子显微镜中的电子束,在样品表面上动态地扫描,以 一定速度,逐点逐行地扫描样品的表面.样品逐点地发出带有形态、结构和化学组分信息的二次电子,这些电子由检测器接收处理,最后在屏幕上显示形态画面.图像为间接成像,其加速电压为1kV~30kV. 2.2扫描隧道显微镜(ScanningTunnelingMicroscope,STM)G.Binnig和H.Rohrer在 1981年研制成功扫描隧道显微镜,并因此获得1986年诺贝尔物理奖.扫描隧道显微镜(STM)是利用导体针尖与样品之间的隧道电流,并用精密压电晶体控制导体针尖沿样品表面扫描,从而能以原子尺度记录样品表面形貌的新型仪器.其分辨率已达到1nm~2nm,

虚拟现实技术在军事训练中的应用及发展前景

虚拟现实技术在军事训练中的应用及 未来发展前景 一、综述 虚拟现实技术(Virtual Reality,简称VR)是一系列高新技术如计算机软件、硬件、图形学、多媒体、人工智能、智能人机接口、传感器、高性能计算技术以及人类行为学、心理学等多领域最新技术的汇集与融合。 它是建立在自动控制技术、计算机图形学、计算机仿真技术、人机接口技术、多媒体技术、传感器技术及人工智能技术基础之上,本质上是一种在系统仿真技术的基础之上发展起来的高级接口技术,但是它与仿真技术有明显的区别。虚拟现实的目的是为人与实际环境之间接的交互提供一种自然的、方便的界面,即所谓的虚拟环境。虚拟环境可以给人一种进入真实环境的效果,人可以与虚拟环境交互,通过改变虚拟环境,进而实现改变实际环境的目的。 像IT界其他高新技术一样,比如计算机、Internet等,这些新技术不仅是首先应用于军事领域,同时军事领域的应用需求与研究也是这些技术逐步发展成熟的决定性推动力量,VR技术也不例外,在军事训练准备中发挥着越来越重要的作用。下面就对虚拟现实技术在军事训练中的应用和发展前景做简要的分析。 二、虚拟现实技术特点 1.对于一个人造的环境,人需要有参与的感觉,不能只是此环境的

外部观察者,人要对虚拟现实技术中的武器装备进行自主操作,在虚拟技术中掌握武器装备的使用方法。 2.虚拟现实依赖于3维立体的、头跟踪的显示,以及手身体跟踪和双耳声音,虚拟现实是一种有临场感的多传感的体验,给人以身临战场的真实感觉。 3.虚拟现实技术中的场景与实际作战场景的地形和标志物相似,可以使作战人员提前适应战场环境。 4.虚拟现实技术中设计各种突发事件,增强士兵处理突发事件的能力,培养作战小分队的团结协作能力。 三、在军事训练中的应用 (一)在新式武器研究方面 在新式武器与装备的研制和应用上,军事模拟也可以得到很大的效益。 比如,在美国国防部测绘局在1995年8月到9月北约对波黑进行大规模空袭期间,曾在意大利的空军基地建立一个作战模拟设施,利用侦察卫星拍摄的高分辨率图像与测绘据提供的波黑地区的数字地图相结合,通过作战模拟所产生的灵境环境,模拟战斗机在波黑地区上空的飞行。 经过这个仿真环境的训练,极大地提高了实战的成功率和飞行员的适应性。 (二)作战训练与人才培养方面 这些方面的应用主要体现在以下几个方面:

(完整版)透射电子显微镜的现状与展望

透射电子显微镜的现状与展望 透射电子显微镜方面主要有:高分辨电子显微学及原子像的观察,像差校正电子显微镜,原子尺度电子全息学,表面的高分辨电子显微正面成像,超高压电子显微镜,中等电压电镜,120kV,100kV分析电镜,场发射枪扫描透射电镜及能量选择电镜等,透射电镜将又一次面 临新的重大突破;扫描电子显微镜方面主要有:分析扫描电镜和X射线能谱仪、X射线波谱仪和电子探针仪、场发射枪扫描电镜和低压扫描电镜、超大试样室扫描电镜、环境扫描电镜、扫描电声显微镜、测长/缺陷检测扫描电镜、晶体学取向成像扫描电子显微术和计算机控制扫描电镜等。扫描电镜的分辨本领可望达到0.2—0.3nm并观察到原子像。 电子显微镜(简称电镜,EM)经过五十多年的发展已成为现代科学技术中不可缺少的重要工具。我国的电子显微学也有了长足的进展。电子显微镜的创制者鲁斯卡(E.Ruska)教授因而获得了1986年诺贝尔奖的物理奖。电子与物质相互作用会产生透射电子,弹性散射电子,能量损失电子,二次电子,背反射电子,吸收电子,X射线,俄歇电子,阴极发光和电动力等等。电子显微镜就是利用这些信息来对试样进行形貌观察、成分分析和结构测定的。电子显微镜有很多类型,主要有透射电子显微镜(简称透射电镜,TEM)和扫描电子显微镜(简称扫描电镜,SEM)两大类。扫描透射电子显微镜(简称扫描透射电镜,STEM)则兼有两者的性能。 为了进一步表征仪器的特点,有以加速电压区分的,如:超高压(1MV)和中等电压(200— 500kV)透射电镜、低电压(~1kV)扫描电镜;有以电子枪类型区分的,如场发射枪电镜;有以用途区分的,如高分辨电镜,分析电镜、能量选择电镜、生物电镜、环境电镜、原位电镜、测长CD-扫描电镜;有以激发的信息命名的,如电子探针X射线微区分析仪(简称电子探针,EPMA)等。半个多世纪以来电子显微学的奋斗目标主要是力求观察更微小的物体结构、更细小的实体、甚至单个原子,并获得有关试样的更多的信息,如标征非晶和微晶,成分分布,晶粒形状和尺寸,晶体的相、晶体的取向、晶界和晶体缺陷等特征,以便对材料的显微结构进行综合分析及标征研究。近来,电子显微镜(电子显微学),包括扫描隧道显微镜等,又有 了长足的发展。下面见介绍部分透射电镜和扫描电镜的主要性能 1.高分辨电子显微学及原子像的观察 材料的宏观性能往往与其本身的成分、结构以及晶体缺陷中原子的位置等密切相关。观察试样中单个原子像是科学界长期追求的目标。一个原子的直径约为1千万分之2—3mm。 因此,要分辨出每个原子的位置需要0.1nm左右的分辨本领,并把它放大约1千万倍。70年

综述虚拟现实技术及其应用

浅谈虚拟现实技术及其应用 (计算机科学与技术专业2010级张有伟学号:201005131 ) 摘要:虚拟现实技术是才兴起的一门崭新的综合性信息技术,在最近几年发展迅速,其应用领域涉及到教育、军事、娱乐和医学等许多行业。它的出现为人们的生活和工作带来了很多的便利。本文概述了虚拟现实技术的概念、基本特征和技术分类,提出了虚拟现实技术发展的技术瓶颈,阐述了虚拟现实技术应用和优势。 关键词:虚拟现实;沉浸;交互;想象; Virtual Reality;Immersion;Interaction;Imagination 一、虚拟现实技术的概念 虚拟现实技术(Virtual Reality Technology)是一项综合集成技术,它的出现是计算机图形学、人机交互技术、传感器技术、人机接口技术以及人工智能技术等交叉与综合的结果。它利用计算机生成逼真的3维视觉、听觉、嗅觉等各种感觉,使用户通过适当装置,自然地对虚拟现实世界进行体验和交互作用。简单地说,虚拟现实技术就是用计算机创造现实世界。 二、虚拟现实技术特征 虚拟现实技术3个特征,即:沉浸感、交互性、想象性。 沉浸感是指用户可以沉浸于计算机生成的虚拟环境中和使用户投入到计算机生成的虚拟场景中的能力,用户在虚拟场景中有“身历其境”之感。它所看到的、听到的、嗅到的、触摸到的,完全与真实环境中感受的1样。它是虚拟现实系统的核心。 交互性是指用户与虚拟场景中各种对象相互作用的能力。它是人机和

谐的关键性因素。用户进入虚拟环境后,通过多种传感器与多维化信息的环境发生交互作用,用户可以进行必要的操作,虚拟环境中做出的相应响应,亦与真实的一样,如拿起虚拟环境中的1个篮球,你可以感受到球的重量,扔在地上还可以弹跳。交互性包含对象的可操作程度及用户从环境中得到反馈的自然程度、虚拟场景中对象依据物理学定律运动的程度等,例如,当物体受到力的作用时,物体会沿着力的方向移动、翻到或者从桌面落到地面等。 想象性是指通过用户沉浸在“真实的”虚拟环境中,与虚拟环境进行了各种交互作用,从定性和定量综合集成的环境中得到感性和理性的认识,从而可以深化概念,萌发新意,产生认识上的飞跃。因此,虚拟现实不仅仅是1个用户与终端的接口,而且可以使用户沉浸于此环境中获取新的知识,提高感性和理性认识,从而产生新的构思。这种构思结果输入到系统中去,系统会将处理后的状态实时显示或由传感装置反馈给用户。如此反复,这是1个学习——创造——再学习——再创造的过程,因而可以说,虚拟现实是启发人的创造性思维的活动。 三、虚拟现实技术的分类 虚拟现实是从英文Virtual Reality1词翻译过来的,Virtual就是虚假的意思,Reality就是真实的意思,合并起来就是虚拟现实,也就是说本来没有的事物和环境,通过各种技术虚拟出来,让你感觉到就如真实的一样。实际应用的虚拟现实系统可分为4类: 1、桌面虚拟现实系统,也称窗口中的虚拟现实。它可以通过桌上型机实现,所以成本较低,功能也最简单,主要用于CAD(计算机辅助设计)、CAM

(完整word版)扫描电镜的综述及发展..

扫描电镜的综述及发展 1 扫描电镜的原理 扫描电镜(Scanning Electron Microscope,简写为SEM)是一个复杂的系统,浓缩了电子光学技术、真空技术、精细机械结构以及现代计算机控制技术。成像是采用二次电子或背散射电子等工作方式,随着扫描电镜的发展和应用的拓展,相继发展了宏观断口学和显微断口学。 扫描电镜是在加速高压作用下将电子枪发射的电子经过多级电磁透镜汇集成细小(直径一般为1~5nm)的电子束(相应束流为10-11~10-12A)。在末级透镜上方扫描线圈的作用下,使电子束在试样表面做光栅扫描(行扫+帧扫)。入射电子与试样相互作用会产生二次电子、背散射电子、X射线等各种信息。这些信息的二维强度分布随着试样表面的特征而变(这些特征有表面形貌、成分、晶体取向、电磁特性等等),将各种探测器收集到的信息按顺序、成比率地转换成视频信号,再传送到同步扫描的显像管并调制其亮度,就可以得到一个反应试样表面状况的扫描图像[1]。如果将探测器接收到的信号进行数字化处理即转变成数字信号,就可以由计算机做进一步的处理和存储。 扫描电镜主要是针对具有高低差较大、粗糙不平的厚块试样进行观察,因而在设计上突出了景深效果,一般用来分析断口以及未经人工处理的自然表面。机构组成 扫描电子显微镜由三大部分组成:真空系统,电子束系统以及成像系统。 真空系统 真空系统主要包括真空泵和真空柱两部分。真空柱是一个密封的柱形容器。 真空泵用来在真空柱内产生真空。有机械泵、油扩散泵以及涡轮分子泵三大类,机械泵加油扩散泵的组合可以满足配置钨枪的SEM的真空要求,但对于装置了场致发射枪或六硼化镧枪的SEM,则需要机械泵加涡轮分子泵的组合。

虚拟现实技术的历史与发展

虚拟现实技术的历史与发展 摘要:虚拟现实技术作为一种综合多种科学技术的计算机领域新技术,已经涉及众多研究和应用领域,被认为是21世纪重要的发展学科以及影响人们生活的重要技术之一。本文介绍了虚拟现实技术的概念、特性以及发展历史和发展趋势,并对虚拟现实技术的应用前景进行展望。 关键词:虚拟现实技术发展历史发展趋势 一、虚拟现实的概念和特性 虚拟现实(Virtual Reality,又译作灵境、幻真)是近年来出现的高新技术,也称灵境技术或人工环境。虚拟现实是利用电脑模拟产生一个三维空间的虚拟世界,提供使用者关于视觉、听觉、触觉等感官的模拟,让使用者如同身历其境一般,可以及时、没有限制地观察三度空间内的事物[1]。虚拟现实技术作为一种新的技术,主要有三个特性,分别是沉浸性、交互性和构想性。 1.沉浸性,是指利用计算机产生的三维立体图像,让人置身于一种虚拟环境中,就像在真实的客观世界中一样,能给人一种身临其境的感觉。 2.交互性,在计算机生成的这种虚拟环境中,人们可以利用一些传感设备进行交互,感觉就像是在真实客观世界中一样,比如:当用户用手去抓取虚拟环境中的物体时,手就有握东西的感觉,而且可感觉到物体的重量。 3.构想性,虚拟环境可使用户沉浸其中并且获取新的知识,提高感性和理性认识,从而使用户深化概念和萌发新的联想,因而可以说,虚拟现实可以启发人的创造性思维。 二、虚拟现实技术的发展历程 虚拟现实技术演变发展史大体上可以分为四个阶段:1963 年以前,蕴涵虚拟现实技术思想的第一阶段;1963年~1972 年,虚拟现实技术的萌芽阶段;1973 年~1989 年,虚拟现实技术概念和理论产生的初步阶段;1990 年至今,虚拟现实技术理论的完善和应用阶段。 第一阶段:虚拟现实技术的前身。虚拟现实技术是对生物在自然环境中的感官和动作等行为的一种模拟交互技术,它与仿真技术的发展是息息相关的。中国古代战国时期的风筝,就是模拟飞行动物和人之间互动的大自然场景,风筝的拟声、拟真、互动的行为是仿真技术在中国的早期应用,它也是中国古代人试验飞行器模型的最早发明。西方人利用中国古代风筝原理发明了飞机,发明家Edwin A. Link 发明了飞行模拟器,让操作者能有乘坐真正飞机的感觉。1962 年,Morton Heilig的“全传感仿真器”的发明,就蕴涵了虚拟现实技术的思想理论。这三个较典型的发明,都蕴涵了虚拟现实技术的思想,是虚拟现实技术的前身。 第二阶段:虚拟现实技术的萌芽阶段。1968 年美国计算机图形学之父Ivan Sutherlan 开发了第一个计算机图形驱动的头盔显示器HMD 及头部位置跟踪系统,是虚拟现实技术发展史上一个重要的里程碑。此阶段也是虚拟现实技术的探索阶段,为虚拟现实技术的基本思想产生和理论发展奠定了基础。 第三阶段:虚拟现实技术概念和理论产生的初步阶段。这一时期出现了VIDEOPLACE 与VIEW两个比较典型的虚拟现实系统。由M.W.Krueger 设计的VIDEOPLACE系统,将产生一个虚拟图形环境,使参与者的图像投影能实时地响应参与者的活动。由M.MGreevy 领导完成的VIEW 系统,在装备了数据手套和头部跟踪器后,通过语言、手势等交互方式,形成虚拟现实系统。 第四阶段:虚拟现实技术理论的完善和应用阶段。在这一阶段虚拟现实技术从研究型阶段转向为应用型阶段,广泛运用到了科研、航空、医学、军事等人类生活的各个领域中,如美军开发的空军任务支援系统和海军特种作战部队计划和演习系统,对虚拟的军事演习也能达到

虚拟现实文献综述

《VRML虚拟现实技术在数字校园系统中应用研究》文献综述 摘要:教育部在一系列相关的文件中,多次涉及到了数字校园,阐明了数字校园的地位和作用。虚拟数字校园模拟真实世界,提供了一个生动的校园空间。将虚拟现实技术应用在数字校园系统的开发,有助于大学自身的宣传和信息的高度集中、配置和互动。它在数字校园的应用,可以大大提高校园展示效果,也能够体现校园个性方面的优势,对校园今后的推广及展示带来非常大的帮助 关键词:虚拟现实;数字校园;基本概况 前言 教育部在一系列相关的文件中,多次涉及到了虚拟校园,阐明了虚拟校园的地位和作用。建设虚拟三维数字校园可以比较直观的了解校园的各个区域,在这个三维的校园里,空间次序的视觉理解和感知变得非常容易,使浏览者对校园环境产生身临其境的感觉[1],其中的教学楼、实验楼、图书馆、宿舍楼、食堂、道路及绿化地带和种植的植物,都栩栩如生的呈现在我们的眼前,三维虚拟校园模拟真实世界,提供了一个生动的校园空间。三维虚拟校园可直接嵌入到大学的网站,直接通过网络浏览器察看,其丰富的、人性化的信息查询等功能,有效提高大学的美誉度,有助于大学自身的宣传和信息的高度集中、配置和互动。三维虚拟校园的直观特性,可以优化领导管理,对于校园信息管理、校园规划、建设等能够全局掌控。 一、虚拟现实技术的发展状况的研究 虚拟现实(Virtual Reality)技术是20世纪90年代初崛起的一种实用技术,它由计算机硬件、软件以及各种传感器构成三维信息的虚拟环境,可以真实地模拟现实中能实现的物理上的、功能上的事物和环境[2]。在虚拟现实环境中可以直接与虚拟现实场景中的事物交互,产生身临其境的感受,从而使人在虚拟空间中得到与自然世界同样的感受。该技术的兴起,为科学及工程领域大规模的数据及信息提供了新的描述方法。虚拟现实技术大量应用于建筑设计及其相关领域,该技术提供了“虚拟建筑”这种新型的设计、研究及交流的工具手段[3]。 在虚拟现实的发展过程中总结出虚拟现实系统应具有以下四个特征:(1)多感知性。指除一般计算机所具有的视觉感知外,还有听觉感知、触觉感知、运动感知、甚至还包括味觉、嗅觉、感知等。理想的虚拟现实应该具有一切人所具有的感知功能。(2)存在感。指用户感动作为主角存在于模拟环境中的真实程度。理想的模拟环境应该达到使用户难辨真假的程度。(3)交互性。指用户对模拟环境内物体的可操作程度和从环境得到反馈的自然程度。(4)自主性。指虚拟环境中物体依据现实世界物理运动定律动作的程度[4]。 虚拟现实技术自诞生以来,其应用一直受到科学界、工程界的重视,并不断取得进展,虚拟现实蕴藏的技术内涵与艺术魅力不断地激发着人们丰富的想象思维和创造的热情。从本质上讲,虚拟现实技术就是一种先进的人机交互技术[5],其追求的技术目标就是尽量使用户与电脑虚拟环境进行自然式的交互。因此,虚拟现实技术为我们架起了一座人与数字世界沟通的桥梁。 二、虚拟现实技术在数字校园系统的应用解析 目前,数字校园存在有2个定义,并分别带来不同的研究与实践。一种定义是从信息、网络和媒体技术发展角度,数字校园被理解为一个以计算机和网络为平台的、远程教学为主的信息主体;另一个事从因特网、虚拟现实技术、网络虚

扫描电镜的应用及发展

扫描电镜的新发展 陈散兴 扫描电镜的原理 扫描电镜( Scanning Electron Microscope, 简写为SEM) 是一个复杂的系统, 浓缩了电子光学技术、真空技术、精细机械结构以及现代计算机控制技术。成像是采用二次电子或背散射电子等工作方式, 随着扫描电镜的发展和应用的 拓展, 相继发展了宏观断口学和显微断口学。 扫描电镜是在加速高压作用下将电子枪发射的电子经过多级电磁透镜汇集 成细小( 直径一般为1-5 nm)的电子束(相应束流为10- 11-10- 12A)。在末级透镜上方扫描线圈的作用下, 使电子束在试样表面做光栅扫描( 行扫+ 帧扫)。入射电子与试样相互作用会产生二次电子、背散射电子、X 射线等各种信息。这些信息的二维强度分布随试样表面的特征而变( 这些特征有表面形貌、成分、晶体取向、电磁特性等等) , 将各种探测器收集到的信息按顺序、成比率地转换成视频信号, 再传送到同步扫描的显像管并调制其亮度, 就可以得到一个反应试样表面状况 的扫描图像。如果将探测器接收到的信号进行数字化处理即转变成数字信号, 就可以由计算机做进一步的处理和存储。 扫描电镜主要是针对具有高低差较大、粗糙不平的厚块试样进行观察, 因而在设计上突出了景深效果, 一般用来分析断口以及未经人工处理的自然表面。扫描电镜的主要特征如下: ( 1) 能够直接观察大尺寸试样的原始表面;( 2) 试样在样品室中的自由度非 常大;( 3) 观察的视场大;( 4) 图像景深大, 立体感强;( 5) 对厚块试样可得到高分 辨率图像;( 6) 辐照对试样表面的污染小;( 7) 能够进行动态观察( 如动态拉伸、压缩、弯曲、升降温等) ;( 8) 能获得与形貌相对应的多方面信息;(9) 在不牺牲扫描电镜特性的情况下扩充附加功能, 如微区成分及晶体学分析。 近代扫描电镜的发展主要是在二次电子像分辨率上取得了较大的进展。但对不导电或导电性能不太好的样品还需喷金后才能达到理想的图像分辨率。随着材料科学的发展特别是半导体工业的需求, 要尽量保持试样的原始表面, 在不做 任何处理的条件下进行分析。早在20 世纪80 年代中期, 便有厂家根据新材料( 主要是半导体材料) 发展的需要, 提出了导电性不好的材料不经过任何处理 也能够进行观察分析的设想, 到90 年代初期, 这一设想就已有了实验雏形, 90 年代末期, 已变成比较成熟的技术。其工作方式便是现在已为大家所接受的低真空和低电压, 最近几年又出现了模拟环境工作方式的扫描电镜, 这就是现代扫 描电镜领域出现的新名词/ 环扫0, 即环境扫描电镜。

新一代电子显微镜的发展趋势及应用

新一代电子显微镜的发展趋势及应用 特点 微观结构专业组 新一代电子显微镜的发展趋势及应用特点 一、高性能场发射枪电子显微镜日趋普及和应用。 场发射枪透射电镜能够提供高亮度、高相干性的电子光源。因而能在原子--纳米尺度上对材料的原子排列和种类进行综合分析。九十年代中期,全世界只有几十台;现在已猛增至上千台。我国目前也有上百台以上场发射枪透射电子显微镜。 常规的热钨灯丝(电子)枪扫描电子显微镜,分辨率最高只能达到 3.0nm;新一代的场发射枪扫描电子显微镜,分辨率可以优于 1.0nm;超高分辨率的扫描电镜,其分辨率高达0.5nm-0.4nm。其中环境描电子显微镜可以做到:真正的“环境”条件,样品可在100%的湿度条件下观察;生物样品和非导电样品不要镀膜,可以直接上机进行动态的观察和分析;可以“一机三用”。高真空、低真空和“环境”三种工作模式。 二、努力发展新一代单色器、球差校正器,以进一步提高电子显微镜的分辨率。 球差系数:常规的透射电镜的球差系数Cs约为mm级;现在的透射电镜的球差系数已降低到Cs<0.05mm.色差系数:常规的透射电镜的色差系数约为0.7;现在的透射电镜的色差系数已减小到0.1。 场发射透射电镜、STEM技术、能量过滤电镜已经成为材料科学研究,甚至生物医学必不可少的分析手段和工具. 物镜球差校正器把场发射透射电镜分辨率提高到信息分辨率.即从0.19nm 提高到0.12nm甚至于小于0.1nm.

利用单色器,能量分辨率将小于0.1eV.但单色器的束流只有不加单色器时的十分之一左右.因此利用单色器的同时,也要同时考虑单色器的束流的减少问题。 聚光镜球差校正器把STEM的分辨率提高到小于0.1nm的同时,聚光镜球差校正器把束流提高了至少10倍,非常有利于提高空间分辨率。 在球差校正的同时,色差大约增大了30%左右.因此,校正球差的同时,也要同时考虑校正色差. 三、电子显微镜分析工作迈向计算机化和网络化。 在仪器设备方面,目前扫描电镜的操作系统已经使用了全新的操作界面。用户只须按动鼠标,就可以实现电镜镜筒和电气部分的控制以及各类参数的自动记忆和调节。 不同地区之间,可以通过网络系统,演示如样品的移动,成像模式的改变,电镜参数的调整等。以实现对电镜的遥控作用. 四、电子显微镜在纳米材料研究中的重要应用。由于电子显微镜的分析精度逼近原子尺度,所以利用场发射枪透射电镜,用直径为0.13nm的电子束,不仅可以采集到单个原子的Z-衬度像,而且还可采集到单个原子的电子能量损失谱。即电子显微镜可以在原子尺度上可同时获得材料的原子和电子结构信息。观察样品中的单个原子像,始终是科学界长期追求的目标。一个原子的直径约为1千万分之 2-3mm。所以,要分辩出每个原子的位置,需要0.1nm左右的分辨率的电镜,并把它放大约1千万倍才行。人们预测,当材料的尺度减少到纳米尺度时,其材料的光、电等物理性质和力学性质可能具有独特性。因此,纳米颗粒、纳米管、纳米丝等纳米材料的制备,以 及其结构与性能之间关系的研究成为人们十分关注的研究热点。 利用电子显微镜,一般要在200KV

浅述虚拟现实技术的现状及发展前景

浅述虚拟现实技术的现状及发展前景 虚拟现实技术是一门新兴的边缘技术,它的研究内容涉及多个专业,应用空间也十分广泛,作为3D技术的一项重要应用,其在指控显示方面也有着重要的发展应用前景,下面就从以下几个方面对虚拟现实技术的发展状况进行简单的概述。 首先,从虚拟现实技术的定义入手,了解其基本内容。虚拟现实,又译为临境,灵境等,从应用上看它是一种综合计算机图形技术、多媒体技术、人机交互技术、网络技术、立体显示技术及仿真技术等多种科学技术综合发展起来的计算机领域的最新技术,也是力学、数学、光学、机构运动学等各种学科的综合应用。这种计算机领域最新技术的特点在于以模仿的方式为用户创造一种虚拟的环境,通过视、听、触等感知行为使得用户产生一种沉浸于虚拟环境的感觉,并与虚拟环境相互作用从而引起虚拟环境的实时变化。虚拟现实的主要特征是:多感知性、浸没感、交互性、构想性。这些使操作者能够真正进入一个由计算机生成的交互式三维虚拟环境中,与之产生互动,进行交流。通过参与者与仿真环境的相互作用,并借助人本身对所接触事物的感知和认知能力,帮助启发参与者的思维,以全方位的获取环境所蕴含的各种空间信息和逻辑信息。身临其境的沉浸感和人机互动的趣味性是虚拟现实的实质特征,对时空环境的现实构想是虚拟现实的最终目的。 其次,对国内外虚拟现实技术的发展历史及现状进行简单的总

结,全面认识虚拟现实技术的产生背景和现在的发展状况。国内外虚拟现实技术主要涉及到三个研究领域:通过计算图形方式建立实时的三维视觉效果;建立对虚拟世界的观察界面;使用虚拟现实技术加强诸如科学计算技术等方面的应用。 美国是虚拟现实技术研究的发源地,虚拟现实技术可以追溯到上世纪40年代。最初的研究应用主要集中在美国军方对飞行驾驶员与宇航员的模拟训练。然而,随着冷战后美国军费的削减,这些技术逐步转为民用,目前美国在该领域的基础研究主要集中在感知、用户界面、后台软件和硬件四个方面。上世纪80年代,美国宇航局及美国国防部组织了一系列有关虚拟现实技术的研究,并取得了令人瞩目的研究成果,美国宇航局Ames实验室致力于一个叫“虚拟行星探索”的实验计划。现NASA已经建立了航空、卫星维护虚拟现实训练系统,空间站虚拟现实训练系统,并已经建立了可供全国使用的虚拟现实教育系统。北卡罗来纳大学的计算机系是进行虚拟现实研究最早最著名的大学。他们主要研究分子建模、航空驾驶、外科手术仿真、建筑仿真等。乔治梅森大学研制出一套在动态虚拟环境中的流体实时仿真系统。施乐公司研究中心在虚拟现实领域主要从事利用虚拟现实T建立未来办公室的研究,并努力设计一项基于虚拟现实使得数据存取更容易的窗口系统。图形图像处理技术和传感器技术是以上虚拟现实项目的主要技术。就目前看,空间的动态性和时间的实时性是这项技术的最主要焦点。 欧洲各国在虚拟现实技术上也有诸多成果和应用。英国在虚拟现

国内外虚拟现实技术发展现状和发展趋势的技术报告

国内外虚拟现实技术发展现状和发展趋势的技术报告 一. 国内外虚拟现实几种主流技术的介绍 VRML技术 虚拟现实技术与多媒体、网络技术并称为三大前景最好的计算机技术。自1962年,美国青年(Morton Heilig),发明了实感全景仿真机开始。虚拟现实技术越来越受到大众的关注。以三个I,即Immersion沉浸感,Interaction交互性,Imagination思维构想性,作为虚拟现实技术最本质的特点,并融合了其它先进技术。在国际互联网发展迅猛的今天,具有广泛的应用前景。重大的发展过程如下: VRML开始于20世纪90年代初期。1994年3月在日内瓦召开的第一届WWW大会上,首次正式提出了VRML这个名字。1994年10月在芝加哥召开的第二届WWW大会上公布了规范的VRML1.0标准。VRML1.0可以创建静态的3D景物,但没有声音和动画,你可以在它们之间移动,但不允许用户使用交互功能来浏览三维世界。它只有一个可以探索的静态世界。 1996年8月在新奥尔良召开的优秀3D图形技术会议-Siggraph'96上公布通过了规范的VRML2.0标准。它在 VRML1.0的基础上进行了很大的补充和完善。它是以SGI公司的动态境界Moving Worlds提案为基础的。比 VRML1.0增加了近 30个节点,增强了静态世界,使3D场景更加逼真,并增加了交互性、动画功能、编程功能、原形定义功能。 1997年12月VRML作为国际标准正式发布,1998年1月正式获得国际标准化组织ISO批准(国际标准号ISO/IEC14772-1:1997)。简称VRML97。VRML97只是在VRML2.0基础进行上进行了少量的修正。但它这意味着VRML已经成为虚拟现实行业的国际标准。 1999年底,VRML的又一种编码方案X3D草案发布。X3D整合正在发展的XML、JAVA、流技术等先进技术,包括了更强大、更高效的3D计算能力、渲染质量和传输速度。以及对数据流强有力的控制,多种多样的交互形式。 2000年6月世界web3D协会发布了VRML2000国际标准(草案),2000年9月又发布了VRML2000国际标准(草案修订版)。预计将在2002年,正式发表X3D标准。及相关3D浏览器。由此,虚拟现实技术进入了一个崭新的发展时代。 Wed3D协会其组织包括各种97家会员公司。主要公司如下: Sun、Sony、Hp、Oracle 、Philips 、3Dlabs 、ATI 、3Dfx 、Autodesk /Discreet、ELSA、Division、MultiGen、Elsa、NASA、Nvidia、France Telecom等等。 其中以Blaxxun和ParallelGraphics公司为代表,它们都有各自的VR浏览器插件。并各自开发基于VRML标准的扩展节点功能。使3D的效果,交互性能更加完美。支持MPEG,Mov、Avi等视频文件, Rm等流媒体文件,Wav、Midi、Mp3、Aiff等多种音频文件,Flash动画文件,多种材质效果,支持Nurbs曲线,粒子效果,雾化效果。支持多人的交互环境,VR眼镜等硬件设备。在娱乐、电子商务等领域都有成功的应用。并各自为适应X3D的发展,以X3D为核心,有Blaxxun3D 等相关产品。在虚拟场景,尤其是大场景的应用方面,以VRML标准为核心的技术具有独特的优势。相关网址如下:https://www.docsj.com/doc/d16595724.html, , https://www.docsj.com/doc/d16595724.html,

虚拟现实技术研究论文

《多媒体技术》期末论文题目: 虚拟现实技术的应用研究

关键字:虚拟现实虚拟环境虚拟现实系统 一虚拟现实技术综述与发展方向 虚拟现实是从英文Virtual Reality翻译而来,是一项融合了计算机图形学、人机接口技术、传感技术、心理学、人类工程学及人工智能的综合技术。它们带给人们的共同感受是:虚拟和现实间已没有明显界限。虚拟现实的广泛应用前景使之成为目前最具影响力的技术之一。 虚拟现实技术综合了计算机图形技术、计算机仿真技术、传感器技术、显示技术等多种科学技术,它在多维信息空间上创建一个虚拟信息环境,能使用户具有身临其境的沉浸感,具有与环境完善的交互作用能力,并有助于启发构思,它已成为构造虚拟样机,支持虚拟样机技术的重要工具。虚拟样机是一个复杂的系统,主要表现在组成关系复杂、与外界环境的交互关系复杂、开发过程复杂、涉及的仿真类型和学科领域众多、应用范围广泛等。虚拟样机可以理解为利用虚拟现实技术将产品数据变为取代物理样机的数字模型,强调仿真数据的可视化,在虚拟环境中逼真地显示产品的全部特征。虚拟样机是由分布的、不同工具开发的、甚至异构的子模型组成的模型联合体,主要包括产品的CAD模型、产品的外观模型、产品的功能和性能仿真模型、产品的各种分析模型(可制造性、可装配行等)、产品的使用和维护模型和环境模型等。借助虚拟样机,设计人员可以通过成熟的三维计算机图形学,模拟在真实环境下产品的各种运动和动力特性,并能根据仿真结果优化产品的设计方案。 二虚拟现实技术的接口 2.1 输入设备的接口 三维位置跟踪器:虚拟现实技术中用于测量三维对象位置和方向的实时变化的专门硬件设备为跟踪器,在虚拟现实应用中,为控制观察方向和操纵对象,需测量用户头部、手、四肢的运动,还有一种需要跟踪的信息是三位声音信息。三位跟踪器的性能参数包括:精度、抖动、偏差、和延迟。现常用的跟踪器有:机械跟踪器、电磁跟踪器、交流电磁跟踪器、直流电磁跟踪器、超声波跟踪器、光学跟踪器、混合惯性跟踪器。 (1)漫游和操纵接口 该接口是一种设备,它允许通过选择和操纵感兴趣的虚拟对象,交互式的改变虚拟环境和探索过程中的视图。 (2)手势接口 是测量用户手指实时位置的设备,其目的是为了实现虚拟环境下的基于手势识别的自然交互。 2.2输出设备的接口 输出设备作为一类专门的硬件设备,他们为用户提供仿真过程对这些输入的反馈,通过这些接口给用户产生反馈的感觉通道,包括视觉(通过图形显示设备)、听觉(通过三维声音显示设备)和触觉(通过触觉显示设备)。 (1)图形显示设备 是一种计算机接口设备,它把合成出的世界图像展现给与虚拟世界进行交互

相关文档
相关文档 最新文档