文档视界 最新最全的文档下载
当前位置:文档视界 › 高中数学新课程创新教学设计案例三角形边和角关系的探索

高中数学新课程创新教学设计案例三角形边和角关系的探索

高中数学新课程创新教学设计案例三角形边和角关系的探索
高中数学新课程创新教学设计案例三角形边和角关系的探索

高中数学新课程创新教学设计案例三角形边和

角关系的探索

Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

43 三角形边和角关系的探索

教材分析

初中已研究过解直角三角形,这节所研究的正、余弦定理是解直角三角形知识的延伸与推广,它们都反映了三角形边、角之间的等量关系,并且应用正、余弦定理和三角形内角和定理,可以解斜三角形.正弦定理的推证运用了从特殊到一般的方法,把直角三角形中得到的边角关系式推广到锐角三角形,再推广到钝角三角形,进而得出一般性的结论.余弦定理的推证采用向量的数量积做工具,将向量的长度与三角形的边长、向量的夹角与三角形的内角联系起来.对于正、余弦定理的推论,除了这节课的证法之外,还有其他的一些推证方法.教材中还要求,在证明了正、余弦定理之后,让学生尝试用文字语言叙述两个定理,以便理解其实质.当然,就知识而言,正弦定理有三个等式,可视为三个方程;余弦定理的三个式子也可看成三个方程,每个方程中均有四个量,知道其中任意三个量便可求第四个量.

这节课的重点是正、余弦定理的证明,以及用正、余弦定理解斜三角形,难点是发现定理、推证定理以及用定理解决实际问题.

任务分析

这节内容是在初中对三角形有了初步认识的基础上,进一步研究三角形的边、角之间的等量关系.对正弦定理的推导,教材中采用了从特殊到一般的方法,逐层递进,学生易于接受,而余弦定理的证明采用了向量的方法.应用两个定理解三角形时,要分清它们的使用条件.将正、余弦定理结合起来应用,经常能很好地解决三角形中的有关问题.

教学目标

1. 理解正、余弦定理的推证方法,并掌握两个定理.

2. 能运用正、余弦定理解斜三角形.

3. 理解并初步运用数学建模的思想,结合解三角形的知识,解决生产、生活中的简单问题.

教学设计

一、问题情景

1. A,B两地相距2558m,从A,B两处发出的两束探照灯光照射在上方一架飞机的机身上(如图43-1),问:飞机离两探照灯的距离分别是多少?

2. 如图43-2,自动卸货汽车的车厢采用液压机构,设计时应计算油泵顶杆BC的长度.已知车厢的最大仰角为60°,油泵顶点B与车厢支点A之间的距离为1.95m,AB与水平的夹角为6°20′,AC 长为1.40m,计算BC的长.(精确到0.01m)

问题:(1)图中涉及怎样的三角形?

(2)在三角形中已知什么?求什么?

二、建立模型

1. 教师引导学生分析讨论

在问题情景(1)中,已知在△ABC中,∠A=72.3°,∠B=76.5°,AB=2558m.求AC,BC的长.组织学生讨论如何利用已知条件求出AC,BC的长度.(让学生思考,允许有不同的解法)

结论:如图40-3,作AD⊥BC,垂足为D.由三角函数的定义,知AD=AC·sinC,AD=AB·sinB.由此可得AC·sinC=AB·sinB.

又由∠A,∠B的度数可求∠C的度数,代入上式即可求出AC的长度,同理可求BC的长度.

教师明晰:

(1)当△ABC为直角三角形时,由正弦函数的定义,得

(2)当△ABC为锐角三角形时,设AB边上的高为CD,根据三角函数的定义,得CD=asinB=

bsinA,所以,同理.

(3)当△ABC为钝角三角形时,结论是否仍然成立?引导学生自己推出.(详细给出解答过程)

事实上,当∠A为钝角时,由(2)易知.

设BC边上的高为CD,则由三角函数的定义,得

CD=asinB=bsin(180°-A).

根据诱导公式,知sin(180°-A)=sinA,

∴asinB=bsinA,即.

正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即.

正弦定理指出了任意三角形中三条边与它对应角的正弦之间的一个关系式,描述了任意三角形中边、角之间的一种数量关系.

思考:正弦定理可以解决有关三角形的哪些问题?

2. 组织学生讨论问题情景(2)

这一实际问题可化归为:已知△ABC的边AB=1.95,AC=1.4,夹角为6°20′,求BC的长.

组织学生讨论:能用什么方法求出BC?(学生有可能有多种不同的解法)

教师明晰:如果已知三角形的两边和夹角,这个三角形为确定的三角形,那么怎样去计算它的第三边呢?由于涉及边长及夹角的问题,故可以考虑用平面向量的数量积.(也可用两点间的距离公式)

如图,设=a,=b,=c,则c=a-b.

∵|c|2=c·c=(a-b)·(a-b)=a2+b2-2abcosC,

∴c2=a2+b2-2abcosC.

同理a2=b2+c2-2bccosA,b2=c2+a2-2accosB.

于是得到以下定理:

余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即

a2=b2+c2-2bccosA,

b2=c2+a2-2accosB,

c2=a2+b2-2abcosC.

思考:余弦定理可以解决一些怎样的解三角形问题?

3. 进一步的问题

勾股定理指出了直角三角形中三边之间的等量关系,余弦定理则指出了一般三角形三边之间的等量关系,那么这两个定理之间存在怎样的关系?如何利用余弦定理来判断三角形是锐角三角形还是钝角三角形?

三、解释应用

[例题]

1. (1)已知:在△ABC中,A=3

2.0°,B=81.8°,a=42.9cm,解三角形.

(2)已知:在△ABC中,a=20cm,b=28cm,A=40°,解三角形.(角精确到1°,边长精确到1cm)

分析:(1)本题为给出三角形的两角和一边解三角形问题,可由三角形内角和定理先求出第三个角,再两次利用正弦定理分别求出另两边.

(2)本题给出了三角形的两边及其中一边的对角,于是可用正弦定理求出b边的对角B的正弦,sinB≈0.8999,但0<B<π,故B角有两个值(如图43-8),从而C角与c边的取值也有两种可能.学生在解题时容易丢掉一组解,应引导学生从图形上寻找漏掉的解.

2. (1)已知:在△ABC中,已知b=60cm,c=34cm,A=41°,解三角形.(角精确到1°,边长精确到1cm)

(2)已知:在△ABC中,a=134.6cm,b=87.8cm,c=161.7cm,解三角形.(角精确到1′).

分析:本例中的(1)题,给出了两边及其夹角,可先用余弦定理求出第三边,求其他两角时既可用余弦定理也可用正弦定理.(2)题给出了三边长,可先用余弦定理求出其中一角,然后同样既可用正弦定理,也可用余弦定理求出其他两角.

3. AB是底部B不可到达的建筑物,A为建筑物的最高点.设计一种测量建筑物高度AB的方法.

分析:由于建筑物的底部B是不可到达的,所以不能直接测量出建筑物的高.由解直角三角形的知识,只要能知道一点C到建筑物顶部A的距离CA,并能测出由点C观察A的仰角,就可以计算出建筑物的高.为了求出CA的长,可选择一条水平基线HG(如图43-9),使H,G,B三点在同一条直线上.在G,H两点用测角仪器测得A的仰角分别为α,β,设CD=a,测角仪器的高为h,则在

△ACD中,由正弦定理,得,sin(α-β),从而可求得AB=AE+h=ACsinα+h

=+h.

[练习]

1. 在△ABC中,已知下列条件,解三角形.(角精确到1°,边长精确到1cm)

(1)A=45°,C=30°,c=10cm.

(2)A=60°,B=45°,c=20cm.

(3)a=20cm,b=11cm,B=30°.

(4)c=54cm,b=39cm,c=115°.

2. 在△ABC中,已知下列条件,解三角形.(角精确到0.1°,边长精确到0.1cm)

(1)a=2.7cm,b=3.696cm,C=82.2°.

(2)b=12.9cm,c=15.4cm,A=42.3°.

(3)a=7cm,b=10cm,c=6cm.

四、拓展延伸

1. 在△ABC中,有正弦定理

这涉及比值的连等式.请探索并研究是一个什么样的量,并加以证明.

2. 在△ABC中,已知三边的长为a,b,c,如何判定△ABC的形状?

3. 已知:在△ABC中,a=60,b=50,A=38°,求B.(精确到1°)

分析:.

∵0°<B<180°,∴B≈31°或B≈149°,

但当B≈149°时,A+B=187°,这与A,B为三角形内角矛盾,故B角只能取31°.

由此题与例1中的(2)题的分析可以发现,在已知三角形两边及其一边对角解三角形时,在某些条件下会出现一解或两解的情形,那么会不会出现无解的情形呢?

(1)当A为钝角或直角,必须满足a>b才有解(a≤b无解),并且由sinB=计算B 时,只能取锐角,因此,只有一解,如图43-10.

(2)当A为锐角时,

①若a>b或a=b,则由sinB=计算B时,只能取锐角的值,因此,只有一解,如图40-11.

②若a<bsinA,则由sinB=,得sinB>1,因此,无解.如图43-12.

③若a=bsinA,则由sinB=,得sinB=1,即B为直角,故只有一解,如图43-13.

④若b>a>bsinA,则sinB<1,故B可取一个锐角和一个钝角的值,如图43-14.

思考:若已知三角形的两角和一边、三边、两边及其夹角来解三角形时,它们的解会是怎样的?点评

这篇案例设计,思路清晰,突出现实.首先通过恰当的问题情景阐述三角形边角关系产生的背景,使学生体会到了数学在解决实际问题中的作用.然后通过探究、推导活动,使学生体会到了数学知识的发现和发展的历程.例题与练习的配备由浅入深,注重了教学与自然界的关系.拓展延伸有深度,为提高学生的思维能力和创造力提供了良好平台.

总之,从现实出发建立正、余弦定理的模型,又在现实应用中升华有关正、余弦定理的理解,是这篇案例的突出特点.

高中数学新课程创新教学设计案例等比数列

高中数学新课程创新教学设计案例等比数列 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

47 等比数列 教学内容分析 这节课是在等差数列的基础上,运用同样的研究方法和研究步骤,研究另一种特殊数列———等比数列.重点是等比数列的定义和通项公式的发现过程及应用,难点是应用. 教学目标 1. 熟练掌握等比数列的定义、通项公式等基本知识,并熟练加以运用. 2. 进一步培养学生的类比、推理、抽象、概括、归纳、猜想能力. 3. 感受等比数列丰富的现实背景,进一步培养学生对数学学习的积极情感. 任务分析 这节内容由于是在等差数列的基础上,运用同样的方法和步骤,研究类似的问题,学生接受起来较为容易,所以应多放手让学生思考,并注意运用类比思想,这样不仅有利于学生分清等差和等比数列的区别,而且可以锻炼学生从多角度、多层次分析和解决问题的能力.另外,与等差数列相比等比数列须要注意的细节较多,如没有零项、q≠0等,在教学中应注意加以比较. 教学设计 一、问题情景 在前面我们学习了等差数列,在现实生活中,我们还会遇到下面的特殊数列: 1. 在现实生活中,经常会遇到下面一类特殊数列.下图是某种细胞分裂的模型. 细胞分裂个数可以组成下面的数列: 1,2,4,8,… 2. 一种计算机病毒可以查找计算机中的地址薄,通过电子函件进行传播.如果把病毒制造者发送病毒称为第一轮,函件接收者发送病毒称为第二轮,依此类推.假设每一轮每一台计算机都感染20台计算机,那么,在不重复的情况下,这种病毒每一轮感染的计算机数构成的数列是 1,20,202,203,…

(3)除了单利,银行还有一种支付利息的方式———复利,即把前一期的利息和本金加在一起算作本金,再计算下一期的利息,也就是通常说的“利滚利”.按照复利计算本利和的公式是 本利和=本金×(1+利率)存期 例如,现在存入银行10000元钱,年利率是%,那么按照复利,5年内各年末得到的本利和分别是(计算时精确到小数点后2位): 表47-1 时间年初本金(元)年末本利和(元) 第1年10000 10000× 第2年10000×10000× 第3年10000×10000× 第4年10000×10000× 第5年10000×10000× 各年末的本利和(单位:元)组成了下面的数列: 10000×10198,10000×101982,10000×101983,10000×101984,10000×101985. 问题:回忆等差数列的研究方法,我们对这些数列应作如何研究 二、建立模型 结合等差数列的研究方法,引导学生运用从特殊到一般的思想方法分析和探究,发现这些数列的共同特点,从而归纳出等比数列的定义及符号表示: 一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列 叫作等比数列,这个常数叫作等比数列的公比,公比通常用字母q表示(q≠0).即 [问题] 1. q可以为0吗有没有既是等差,又是等比的数列 2. 运用类比的思想可以发现,等比数列的定义是把等差数列的定义中的“差”换成了“比”,同样,你能类比得出等比数列的通项公式吗如果能得出,试用以上例子加以检验. 对于2,引导学生运用类比的方法:等差数列通项公式为an=a1+(n-1)d,即a1与(n-1)个d的和,等比数列的通项公式应为an等于a1与(n-1)个q的乘积,即an=a1qn-1.上面的几个例子都满足通项公式. 3. 你如何论证上述公式的正确性.

北师大版必修5高中数学第二章解三角形的实际应用举例word教案1

§3 解三角形的实际应用举例 教学目标 1、掌握正弦定理、余弦定理,并能运用它们解斜三角形。 2、能够运用正弦定理、余弦定理进行三角形边与角的互化。 3、培养和提高分析、解决问题的能力。 教学重点难点 1、正弦定理与余弦定理及其综合应用。 2、利用正弦定理、余弦定理进行三角形边与角的互化。 教学过程 一、复习引入 1、正弦定理: 2sin sin sin a b c R A B C === 2、余弦定理:,cos 22 2 2 A bc c b a -+=?bc a c b A 2cos 2 22-+= C ab b a c cos 22 2 2 -+=,?ab c b a C 2cos 2 22-+= 二、例题讲解 引例:我军有A 、B 两个小岛相距10海里,敌军在C 岛,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,为提高炮弹命中率,须计算B 岛和C 岛间的距离,请你算算看。 解:0 60=A 0 75=B ∴0 45=C 由正弦定理知 045 sin 10 60sin =BC 6545 sin 60sin 100 ==?BC 海里 例1.如图,自动卸货汽车采用液压机构,设 计时需要 计算油泵顶杆BC 的长度(如图).已知车厢的最大仰角为60°,油泵顶点B 与车厢支点A 之间的距离为1.95m ,AB 与水平线之间的夹角为 /02060,AC 长为1.40m ,计算BC 的长(保留三个有效数字). 分析:这个问题就是在ABC ?中,已知AB=1.95m ,AC=1.4m, 750 600 C B A

求BC 的长,由于已知的两边和它们的夹角,所以可 根据余弦定理求出BC 。 解:由余弦定理,得 答:顶杠BC 长约为1.89m. 解斜三角形理论应用于实际问题应注意: 1、认真分析题意,弄清已知元素和未知元素。 2、要明确题目中一些名词、术语的意义。如视角,仰角,俯角,方位角等等。 3、动手画出示意图,利用几何图形的性质,将已知和未知集中到一个三角形中解决。 练1.如图,一艘船以32海里/时的速度向正北航行,在A 处看灯塔S 在船的北偏东0 20, 30分钟后航行到B 处,在B 处看灯塔S 在船的北偏东0 65方向上,求灯塔S 和B 处的距离.(保留到0.1) 解:16=AB 由正弦定理知 020 sin 45sin BS AB = 7.745 sin 20 sin 100 ≈= BS 海里 答:灯塔S 和B 处的距离约为7.7海里 例2.测量高度问题 如图,要测底部不能到达的烟囱的高AB ,从与烟囱底部在同一水平直线上的C ,D 两处, 测得烟囱的仰角分别是0 45=α和0 60=β, C、D间的距离是12m.已知测角仪器高1.5m. 求烟囱的高。 图中给出了怎样的一个几何图形?已知什么,求什么? 分析:因为B A AA AB 11+=,又m AA 5.11= 所以只要求出B A 1即可 解:在11D BC ?中, 0001112060180=-=∠C BD ,00011154560=-=∠BD C D C B A 1.40m 1.95m 6020/ 600 ?S B A 1150 450 650200 A 1α β D 1C 1D C B A

高中数学教学设计模版及案例

联系已学知识,可以解决这个问题。 对应问题1. 第三边c 是确定的,如何利用条件求之? 首先用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。 由于涉及边长问题,从而可以考虑用向量来研究这个问题。 A 如图,设CB a =,CA b =,AB c =,那么c a b =-,则 b c ()() 222 2 2c c c a b a b a a b b a b a b a b =?=--=?+?-?=+-? C a 从而2222cos c a b ab C =+-,同理可证2222cos a b c bc A =+-,2222cos b a c ac B =+- 于是得到以下定理 余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即2222cos a b c bc A =+-;2222cos b a c ac B =+-;2222cos c a b ab C =+- 教学情境二 对余弦定理的理解、定理的推论 对应问题2 公式有什么特点?能够解决什么问题? 等式为二次齐次形式,左边的边对应右边的角。主要作用是已知三角形的两边及夹角求对边。 对应问题3 从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角? 从余弦定理,又可得到以下推论:(由学生推出)

222cos 2+-=b c a A bc ; 222cos 2+-=a c b B ac ; 222 cos 2+-=b a c C ba [理解定理]余弦定理及其推论的基本作用为: ①已知三角形的任意两边及它们的夹角求第三边; ②已知三角形的三条边求三个角。 思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系? (由学生总结)若?ABC 中,C=90,则cos 0=C ,这时222=+c a b 由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。 教学情境三 例题与课堂练习 例题.在?ABC 中,已知=a c 060=B ,求b 及A ⑴解:2222cos =+-b a c ac B =222+-?cos 045=2121)+-=8 ∴=b 求A 可以利用余弦定理,也可以利用正弦定理: ⑵解法一:∵cos 2221,22+-=b c a A bc ∴060.=A 解法二:∵0sin sin sin45a A B = 又 a <c ,即00<A <090, ∴060.=A 评述:解法二应注意确定A 的取值范围。 课堂练习 在?ABC 中,若222a b c bc =++,求角A (答案:A=120°) 教学情境四 课堂小结 (1)余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例; (2)余弦定理的应用范围:①.已知三边求三角;②.已知两边及它们的夹角,求第三边。 (3)正、余弦定理从数量关系的角度解释了三角形全等,已知边角求做三角形两类问题,使其化为可以计算的公式。 习题设计 1. 在?ABC 中,a=3,b=4,?=∠60C ,求c 边的长。 2. 在?ABC 中,a=3,b=5,c=7,求此三角形的最大角的度数。 3. 若sin :sin :sin 5:7:8A B C =,求此三角形的最大角与最小角的和的大小。 4. △ABC 中,若()222tan a c b B +-=,求角B 的大小。 5. ?ABC 的三内角,,A B C 所对边的长分别为,,a b c 设向量(,)p a c b =+,(,)q b a c a =--,若//p q ,求角C 的大小) (本案例由河北师大附中 刘建良设计,由汉沽五中 纪昌武 在目标设计和习题设计方面略作改动) 编写要求: 1、页面设置:A4,上、下、左、右边距都为2cm ;教学课题:小四宋体加粗;问题设计:课本上没有的有价值的情境、问题、例题、习题用五号黑体字,并简要说明设计意图。其他都用五号宋体。“目标设计、情境设计、问题设计、习题设计”要加粗。 2、目标设计主要写知识目标的设计。目标要具体明确、具有可操作性、可测性。

解三角形全章教案(整理)

数学5 第一章 解三角形 第1课时 课题: §1.1.1 正弦定理 ●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 ●教学重点 正弦定理的探索和证明及其基本应用。 ●教学难点 已知两边和其中一边的对角解三角形时判断解的个数。 ●教学过程 Ⅰ.课题导入 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。能否 用一个等式把这种关系精确地表示出来? B C Ⅱ.讲授新课 [探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的 定 义 , 有 sin a A =, sin b B =,又s i n 1c C == , A 则sin sin sin a b c c A B C = = = b c 从而在直角三角形ABC 中, sin sin sin a b c = = C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B = , C 同理可得sin sin c b C B = , b a 从而 sin sin a b A B = sin c C = A c B

高中数学优秀教学案例设计汇编(上册)

高中数学教学设计大赛获奖作品汇编 (上部)

目 录 1、集合与函数概念实习作业…………………………………… 2、指数函数的图象及其性质…………………………………… 3、对数的概念………………………………………………… 4、对数函数及其性质(1)…………………………………… 5、对数函数及其性质(2)…………………………………… 6、函数图象及其应用…………………………………… 7、方程的根与函数的零点…………………………………… 8、用二分法求方程的近似解…………………………………… 9、用二分法求方程的近似解…………………………………… 10、直线与平面平行的判定…………………………………… 11、循环结构 ………………………………………………… 12、任意角的三角函数(1)………………………………… 13、任意角的三角函数(2)…………………………………… 14、函数sin()y A x ω?=+的图象………………………… 15、向量的加法及其几何意义……………………………………… 16、平面向量数量积的物理背景及其含义(1)……………… 17、平面向量数量积的物理背景及其含义(2)…………………… 18、正弦定理(1)…………………………………………………… 19、正弦定理(2)…………………………………………………… 20、正弦定理(3)……………………………………………………

21、余弦定理……………………………………………… 22、等差数列……………………………………………… 23、等差数列的前n项和……………………………………… 24、等比数列的前n项和……………………………………… 25、简单的线性规划问题……………………………………… 26、拋物线及其标准方程……………………………………… 27、圆锥曲线定义的运用………………………………………

高中数学必修5第一章解三角形全章教案整理

课题: §1.1.1正弦定理 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中, 角与边的等式关系。 从而在直角三角形ABC 中,sin sin sin a b c A B C == 思考:那么对于任意的三角形,以上关系式是否仍然成立? 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则 sin sin a b A B =, C 同理可得 sin sin c b C B =, b a 从而sin sin a b A B =sin c C = A c B 从上面的研探过程,可得以下定理 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 sin sin a b A B =sin c C = [理解定理] (1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =; (2)sin sin a b A B =sin c C =等价于sin sin a b A B =,sin sin c b C B =,sin a A =sin c C 从而知正弦定理的基本作用为: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B =; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b =。 一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。 例1.在?ABC 中,已知045A =,075B =,40a =cm ,解三角形。 例2.在?ABC 中,已知20=a cm ,202b =cm ,045A =,解三角形。

[复习]高中数学课题教学设计案例.docx

高中数学课程可选内容的资源 ——数学建模、数学课题学习的教学设计的案例 1.升旗中的数学问题 (一)问题情景和任务 问题情景:在不同地区,同一天的H出和H落吋间不尽相同;对一个地区而言,H岀日落时间又是随FI期的变化而变化的。北京的天安门广场上的国旗每天伴着太阳升起、伴着太阳降落,下表给出了是天安门广场2003年部分LI期的升、降旗时刻表: 任务1:试根据上表提供的数据,分析升、降旗时间变化的人致规律;建立坐标系,将以上数据描在坐标系中; 任务2:分别建立I」出时间和I」落时间关于I」期的近似函数模型;利用你建立的函数模型,计算“五一”国际劳动节、“十一”国庆节的升、降旗时间; 任务3:利用年鉴、互联网或其它资料,查阅北京天安门2003年升旗时间表,检验模型的准确度,分析误差原因,考虑如何改进口己的模型。 任务4:你所生活地区(城市、省、乡村等)某年不同的日期的“日出和FI落”的时间, 建立一个函数关系。 (二)实施建议与说明 通过对升旗中数学问题的求解和讨论,进一步了解相关数学知识的意义和作用,体验数学

建模的基木过程,增强数学知识的应用意识。理解用函数拟合数据的方法,捉高对数据的 观察、分析、处理、从中获取有益信息的能力。 在这个探求活动屮,要特别重视观察、分析、处理数据的一般方法、现代技术的合理使用、数学得到的结果与实际情况不同的原因分析。 1?组成学习探究小组,集体讨论,互相启发,形成可行的探究方案,独立思考,完成每个人的“成果报告”。 2.任务1的建议: 为了便于在坐标系中观察表中数据,选择适当的计最单位,如升旗时刻以10分之为一个单位,H期可以天为单位,即1月1 H为第0天,12月31日为第364天;可借助图形计算器或其它工具绘制各点, 3.任务2的建议: 利用自己的生活经验,或者访问家长、地理老师等,结合散点图,选择学过的适当函数, 作为刻画该关系的模型;要应注意关键数据(如最早升(降)旗时间和最迟升(降)旗时间等)在确定拟合函数参数小的作用; 4.任务3的建议: 根据观察坐标平而上所绘制点的走向趋势,对以考虑分段拟合函数。 5.“成果报告”的书写建议 成果报告可以下表形式呈现。 表1:探究学习成果报告表年级 ________ 班—完成时间_________

高中数学解三角形复习教案

模块一:解三角形复习 正弦定理 教学过程: 一、复习准备: 1. 讨论:在直角三角形中,边角关系有哪些(三角形内角和定理、勾股定理、锐角三角函数)如何解直角三角形那么斜三角形怎么办 2. 由已知的边和角求出未知的边和角,称为解三角形. 已学习过任意三角形的哪些边角关系(内角和、大边对大角) 是否可以把边、角关系准确量化 →引入课题:正弦定理 二、讲授新课: 1. 教学正弦定理的推导: [ ①特殊情况:直角三角形中的正弦定理:sin A = c a sin B =c b sin C =1 即 c =sin sin sin a b c A B C == . ② 能否推广到斜三角形 (先研究锐角三角形,再探究钝角三角形) 当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据三角函数的定义,有 sin sin CD a B b A ==,则 sin sin a b A B = . 同理,sin sin a c A C =(思考如何作高),从而sin sin sin a b c A B C == . ③*其它证法:证明一:(等积法)在任意斜△ABC 当中S △ABC = 111 sin sin sin 222 ab C ac B bc A ==. 两边同除以 12abc 即得: sin a A =sin b B =sin c C . 证明二:(外接圆法)如图所示,∠A =∠D ,∴2sin sin a a CD R A D ===, 同理 sin b B =2R ,sin c C =2R . 证明三:(向量法)过A 作单位向量j 垂直于AC ,由AC +CB =AB 边同乘以单位向量j 得….. , ④ 正弦定理的文字语言、符号语言,及基本应用:已知三角形的任意两角及其一边可以求其他边;已知三角形的任意两边与其中一边的对角可以求其他角的正弦值. 2. 教学例题: ① 出示例1:在?ABC 中,已知045A =,060B =,42a =cm ,解三角形.

高中数学创新课堂教学模式

高中数学创新课堂教学模式新探 教学活动是实现新课程理念的根本途径。新的数学课程教学活动具有开放性、创新性,同时也具有一定的确定性。在新形式下教师如何根据当前的教育背景,大力开发教育资源,准确预见教学活动发展方向,积极防范可能出现的干扰因素,以更好的实现课程目标,提高教学效果呢?这是一个值得各位教改一线的教师研究的问题。 传统的课堂教学是一种以教为本的教学观,教师依据教学大纲从考试要求来确定每节课的教学目标及要求,而忽视师生、生生间的交流,学生只能被动适应,使学生失去学习过程的自主性和主动性。为了完成教学目标教师一味地讲解、训练,学生听、记,缺乏独立思考,久而久之养成了学生依赖教师,形成了思维的懒惰,缺乏自主性和创造性,而在新的课程计划中要求改变学生的学习方式,倡导学生自主探究,把学习主动权交给学生。因此,教学要以教师的教为本位的教学观转向以学生学为本位的教学观,要突出认识和关注学生的主动性,有了主动性才能具有自主性,有了自主性才能形成创造性,教学的成功与否,关键是我们的教学活动是让少数人参与还是让全体学生参与,在同一层次参与还是不同层次上参与,是被动参与还是主动参与。我们的教学,必须克服教师满堂讲,学生被动听,少数学生学习,多数学生陪做的现象,引导全体学生积极主动的参与到学习的活动中去。而创新教学模式是在一定教学思想指导下所建立起来的。它是人们在长期教学实践中不断总结、改良教学而逐步形成的。它源于教学实践,又反过来指导教学实践,是影响教学的重要因素。要培养学生的创造思维,就应该有与之相适应的,能促进创思维培养的教学模式,当前数学课堂创新教学模式主要有以下几种形式。

一、探究式教学 探究式课堂教学是以探究为主的教学。具体说,它是指“教学过程中,在教师的诱导启发下,以学生独立自主学习和合作讨论为前提,以现行教材为基本探究内容,以学生周围世界和生活实际为参照对象,为学生提供充分自由表达,质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑尝试活动,将自己所学知识应用于解决实际问题的一种教学形式”。(1)探究式课堂教学特别重视开发学生的智力,发展学生的创造性思维,培养自学能力,力图通过自主探究,引导学生学会学习和掌握科学方法,为终身学习和工作奠定基础。尽管进行数学课堂教学改革有多种方法和渠道,但是以探究为主的课堂教学改革仍然是理想的选择。这是因为:⑴.数学学课堂教学选用探究式符合数学学科特点及教学改革的实际,并能满足师生双方的心理需要;⑵.数学课堂教学选用探究式能使课堂焕发出生机勃勃的活力和效力;⑶.数学课堂教学选用探究式能破除“自我中心”,促进教师在探究中“自我发展”。.例如,教学大纲对两个正数的算术平均数不小于它们的几何平均数的定理,要求“不扩展到三个正数的算术平均数不少于它们的几何平均数定理”.于是,对《几个正数的算术平均数与集合平均数》一文可指导学有余力的同学阅读,并可适当补充一些习题,使学生了解均值不等式在证明不等式及解决有关最大值、最小值的实际问题中的重要作用,这样既能满足学生对知识的渴求,也能开阔学生的思路,有助于提高学生的解题能力. 二、启发式教学 我们开展数学的“启发式教学”,就是在老师的点拨下让学生自主地去发现、去研究自己感兴趣的问题,亲身体验问题。数学中的各种各样的问题为我们研究性学习提供了许多研究的方向,数学教学中的各种问题都是渗透研究性学习

高中数学新课程创新教学设计案例 角的概念的推广

31 角的概念的推广 教材分析 这节课主要是把学生学习的角从不大于周角的非负角扩充到任意角,使角有正角、负角和零角.首先通过生产、生活的实际例子阐明了推广角的必要性和实际意义,然后又以“动”的观点给出了正、负、零角的概念,最后引入了几个与之相关的概念:象限角、终边相同的角等.在这节课中,重点是理解任意角、象限角、终边相同的角等概念,难点是把终边相同的角用集合和符号语言正确地表示出来.理解任意角的概念,会在平面内建立适当的坐标系,通过数形结合来认识角的几何表示和终边相同的角的表示,是学好这节的关键. 教学目标 1. 通过实例,体会推广角的必要性和实际意义,理解正角、负角和零角的定义. 2. 理解象限角的概念、意义及表示方法,掌握终边相同的角的表示方法. 3. 通过对“由一点出发的两条射线形成的图形”到“射线绕着其端点旋转而形成角”的认识过程,使学生感受“动”与“静”的对立与统一.培养学生用运动变化的观点审视事物,用对立统一规律揭示生活中的空间形式和数量关系. 任务分析 这节课概念很多,应尽可能让学生通过生活中的例子(如钟表上指针的转动、体操运动员的转体、自行车轮子上的某点的运动等)了解引入任意角的必要性及实际意义,变抽象为具体.另外,可借助于多媒体进行动态演示,加深学生对知识的理解和掌握. 教学设计 一、问题情境 [演示] 1. 观览车的运动. 2. 体操运动员、跳台跳板运动员的前、后转体动作. 3. 钟表秒针的转动. 4. 自行车轮子的滚动.

[问题] 1. 如果观览车两边各站一人,当观览车转了两周时,他们观察到的观览车上的某个座位上的游客进行了怎样的旋转,旋转了多大的角 2. 在运动员“转体一周半动作”中,运动员是按什么方向旋转的,转了多大角 3. 钟表上的秒针(当时间过了时)是按什么方向转动的,转动了多大角 4. 当自行车的轮子转了两周时,自行车轮子上的某一点,转了多大角 显然,这些角超出了我们已有的认识范围.本节课将在已掌握的0°~360°角的范围的基础上,把角的概念加以推广,为进一步研究三角函数作好准备. 二、建立模型 1. 正角、负角、零角的概念 在平面内,一条射线绕它的端点旋转有两个方向:顺时针方向和逆时针方向.习惯上规定,按逆时针旋转而成的角叫作正角;按顺时针方向旋转而成的角叫作负角;当射线没有旋转时,我们也把它看成一个角,叫作零角. 2. 象限角 当角的顶点与坐标原点重合、角的始边与x轴正半轴重合时,角的终边在第几象限,就把这个角叫作第几象限的角.如果角的终边在坐标轴上,就认为这个角不属于任何象限. 3. 终边相同的角 在坐标系中作出390°,-330°角的终边,不难发现,它们都与30°角的终边相同,并且这两个角都可以表示成0°~360°角与k个(k∈Z)周角的和,即 390°=30°+360°,(k=1); -330°=30°-360°,(k=-1). 设S={β|β=30°+k·360°,k∈Z},则390°,-330°角都是S中的元素,30°角也是S中的元素(此时k=0).容易看出,所有与30°角终边相同的角,连同30°角在内,都是S中的元素;反过来,集合S中的任一元素均与30°角终边相同.一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+k·360°,k∈Z},即任一与α终边相同的角,都可以表求成角α与整数个周角的和. 三、解释应用 [例题] 1. 在0°~360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角.

(新)高中数学教学设计

等比数列的前n项和 (第一课时) 一.教材分析。 (1)教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学(5),是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。 (2)从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫。 二.学情分析。 (1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。 (2)教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强, 逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。 (3)从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。 三.教学目标。 根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为: (1)知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。

高中数学必修五解三角形教案

高中数学必修五解三角形教案 高中数学必修五解三角形教案篇一:高中数学必修5解三角形知识总结及练习 解三角形 一、知识点: 1、正弦定理:在???C中,a、b、c分别为角?、?、C的对边,R 为???C的外接圆的半径,则有abc???2R.(两类正弦定理解三角形的问题:1、已知sin?sin?sinC 两角和任意一边,求其他的两边及一角. 2、已知两角和其中一边的对角,求其他边角.) 2、正弦定理的变形公式:①a?2Rsin?,b?2Rsin?,c?2RsinC;②sin??等式中) ③a:b:c?sin?:sin?:sinC;abc,sin??,sinC?;(正弦定理的变形经常用在有三角函数的2R2R2R a?b?cabc???.sin??sin??sinCsin?sin?sinC 1113、三角形面积公式:S???C?bcsin??absinC?acsin? 222④ ?a2?b2?c2?2bccosA?2224.余弦定理:?b?a?c?2accos(本文来自:https://www.docsj.com/doc/cf5377712.html, 教师联盟网:高中数学必修五解三角形教案)B 或 ?c2?b2?a2?2bacosC??b2?c2?a2?cosA?2bc?a2?c2?b2? ?cosB?2ac?? b2?a2?c2

?cosC?2ab? (两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角.) 2225、设a、b、c是???C的角?、?、C的对边,则:①若a?b?c,则C?90?为 222222直角三角形;②若a?b?c,则C?90?为锐角三角形;③若a?b?c,则C?90?为 钝角三角形. 6.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式. 7.解题中利用?ABC中A?B?C??,以及由此推得的一些基本关系式进行三角变换的运算,如:sin(A?B)?sinC,cos(A?B)??cosC,tan(A?B)??tanC, sin A?BCA?BCA?BC?cos,cos?sin,tan?cot 222222 二、知识演练 1、ΔABC中,a=1,b=3, ∠A=30°,则∠B等于() A.60°B.60°或120°C.30°或150°D.120° 2、若(a+b+c)(b+c-a)=3bc,且sinA=2sinBcosC, 那么ΔABC是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形 3.己知三角形三边之比为5∶7∶8,则最大角与最小角的和为( ).

高中数学创新教学的探讨

高中数学创新教学的探讨 数学尽管是一门自然科学,它源于生活,但又服务于社会。高中数学创新性教学的意义在于:教学在引导学生创造性地“学”的同时,克服平常定势思维的局限,找出新的规律及方法,激发学生探讨问题,加强学生学习的灵活性,开拓性及创造性。 标签:高中数学;创新教学 建构主义认知学习理论是指导中学课堂创新教育、培养学生创新能力的理论依据。特别是建构主义的学习观。对于指导课堂教学改革,培养学生创新能力,有着十分重要的意义。学习不是让教师把知识简单的传递给学生.而是让学生自己建构的过程。学习不是被动接收信息,而是主动地提取、贮存、转换、运用的过程.这种建构是无法让他人代替的。这一现代认知学习理论是我们当前鼎力倡导的创新教育的基石。如果在课堂教学中充分体现“学生是主体,教师是主导”的教育思想。让学生亲身体验、感悟知识的产生、形成、发展、迁移的过程。以《曲线与方程》教学设计为例。依据建构主义的学习观,通过创设认识冲突、问题探究与问题讨论、概念创新、创新练习教学模式。使学生主动吸收信息,从而达到培养学生创新能力和创造性思维的目的。 一、创设知识背景,促使学生进成概念 对概念的传授,旧的教学模式是先将概念直接和盘托出,然后一次又一次练习巩固反复说明要点。这种旧的教学方法虽然也会使学生较好地掌握概念,但这是“少、慢、差、费”,后果是掩盖概念的合理性,扼杀了学生的创造思维。合理的做法应是向学生提出问题:“以上四种情形中,你认为哪一种最有研究价值?”因为有了前文所述的一系列铺垫,学生已经具备了对信息的批判能力,一致认为:(1)最具有研究价值,让学生给(2)情形的曲线与方程给出确切的定义已是水到渠成了,这样处理使学生完成了对外界信息的吸收、研究、整理、归纳、理解,即对知识的自主建构的过程。学生不仅理解了新的知识,而且对新知识进行了分析、检验和批判,其创造力又一次得到提升,也获得了一次成功的体验。 二、创设认知冲突,激发学生学习欲望 教师在教学中能恰当设置认知冲突,运用认知矛盾.就能有效地提高学生的认知水平和激发学生的学习欲望。如在《曲线与方程》这堂课的情境引入过程中先提出了一个与我们的生活密切相关问题:“地球绕太阳作周期性的运动.它的运行轨迹是什么?应如何描述这一轨迹?”悬念设置。同学们对此立即产生了浓厚的兴趣和强烈的求知欲。接着用“几何画板”演示了地球绕太阳运行的轨迹。同学们从演示中目睹了地球绕太阳运动形成的轨迹这一曲线(椭圆)。即动点按一定的规律运行就形成了曲线。产生了第一次认知冲突,感悟了知识形成的背景。接着应用多媒体的技术,提示平而上的点按一定规律运动形成曲线。点在平面上对应唯一坐标及其变化的内在本质。两坐标的约束关系即为方程。在此再次创设认

高中数学教学设计模版及案例

教学情境一:(问题引入)在ABC中,已知两边a,b和夹角C,作出三角形。 联系已学知识,可以解决这个问题。

对应问题1. 第三边c 是确定的,如何利用条件求之 首先用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。 由于涉及边长问题,从而可以考虑用向量来研究这个问题。 A 如图,设CB a =,CA b =,AB c =,那么c a b =-,则 b c ()() 222 2 2c c c a b a b a a b b a b a b a b =?=--=?+?-?=+-? C a 从而2222cos c a b ab C =+-,同理可证2222cos a b c bc A =+-,2222cos b a c ac B =+- 于是得到以下定理 余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即2222cos a b c bc A =+-;2222cos b a c ac B =+-;2222cos c a b ab C =+- 教学情境二 对余弦定理的理解、定理的推论 对应问题2 公式有什么特点能够解决什么问题 等式为二次齐次形式,左边的边对应右边的角。主要作用是已知三角形的两边及夹角求对边。 对应问题3 从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角 从余弦定理,又可得到以下推论:(由学生推出) 222cos 2+-=b c a A bc ; 222cos 2+-=a c b B ac ; 222 cos 2+-=b a c C ba [理解定理]余弦定理及其推论的基本作用为: ①已知三角形的任意两边及它们的夹角求第三边; ②已知三角形的三条边求三个角。 思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系 (由学生总结)若?ABC 中,C=90,则cos 0=C ,这时222=+c a b 由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。 教学情境三 例题与课堂练习 例题.在?ABC 中,已知=a c 060=B ,求b 及A ⑴解:2222cos =+-b a c ac B =222+-?cos 045=2121)+-=8 ∴=b 求A 可以利用余弦定理,也可以利用正弦定理: ⑵解法一:∵cos 2221,22+-==b c a A bc ∴060.=A 解法二:∵0sin sin sin45a A B b = 又 a <c ,即00<A <090, ∴060.=A 评述:解法二应注意确定A 的取值范围。

人教版高中数学必修5《解三角形》教案

高中数学必修5 《解三角形》 知识点: 1、 正弦定理:在ABC ?中,a 、b 、c 分别为角A 、B 、C 的对边,R 为ABC ?的外接圆的半径,则有2sin sin sin C a b c R ===A B . 2、 正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sinC c R =; ②sin 2a R A =,sin 2b R B =,sin C 2c R =; ③::sin :sin :sinC a b c =A B ; ④ sin sin sin C sin sin sin C a b c a b c ++===A +B +A B . 3、 三角形面积公式:111sin sin C sin 222ABC S bc ab ac ?=A ==B . 4、 余弦定理:在C ?AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cosC c a b ab =+-. 5、 余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222 cos C 2a b c ab +-=. 6、 设a 、b 、c 是C ?AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222 a b c +>,则90C <; ③若222a b c +<,则90C >. 正弦定理和余弦定理是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系.主要有以下五大命题热点: 一、求解斜三角形中的基本元素 是指已知两边一角(或二角一边或三边),求其它三个元素问题,进而求出三角形的三线(高、角平分线、中线)及周长等基本问题. 例1 ABC ?中,3π= A ,BC =3,则ABC ?的周长为( ) A .33sin 34+??? ?? +πB B .36sin 34+??? ? ?+πB

高中数学的案例式教学创新

高中数学的案例式教学创新 作者:李亨连 来源:《现代教育科学·中学教师》2010年第03期 案例式教学是一种新型的教学模式,近年来在高中数学教学中被广泛采用,改变了以往传统的简单的灌输式教学模式。通过教学互动激发了学生的学习热情,使学生成为教学活动的主角,培养了学生运用知识解决实际问题的能力。在新课标出台的背景下,高中数学案例教学如何能顺应时代的发展,与时俱进,不断地进行自我创新就成为一个非常现实的问题。 一、数学案例式教学的内容 近年来随着新课标的出台,新的教学理念的深入,越来越多的学校在高中数学教学中开展案例式教学,并且结合新课标的要求不断调整创新。所谓的案例式教学,简单说就是教师结合教学内容,结合教材,联系实际,选取身边的实际具体案例,向学生展示后,在教师的引导下,学生结合掌握的知识,对这一案例进行分析讨论,最后得出解决方案或新型结论,即达到教学目的,最后教师根据学生的发言进行总结。 尽量要选取身边的例子,学生比较熟悉的例子,或者听到或者看到过的活生生的例子。例如根据当前如火如荼的房地产市场,可以设立一个题目,让学生虚拟买房,根据条件,根据自己首付和贷款年限,结合利率计算每月还款的金额。这样的题目贴近生活,而且这种形式学生们会感到新颖,而且通过这种方式让学生更深刻的体会到数学在日常生活中解决实际问题的能力,了解数学的实用性。 在案例式教学中,教师从始至终都是一个组织设计者,而学生是整个教学活动的主角,整个教学活动都是围绕着学生来进行。带着问题进行学习,可以有效地激发学生的探索精神,怀疑精神,培养其独立思考的能力,这符合新课标的中心思想,对培养创新型人才具有非常重要的作用,值得在教学过程中推广。但是结合新课标,这种教学模式也需要不断地尽享创新以适应时代发展的需要。没有什么东西可以一劳永逸,只有与时俱进才能经久不衰。 二、案例式教学是一种创新型的教学模式 数学课程是一个逻辑性很强、实用性很强的学科,然而长期以来,在各个高中教学中一直存在偏科现象。很多学生根本对学习数学没有兴趣,根本学不进去,课堂教学有效性很低。新的问题的出现,必然要求有新的解决方法的诞生,一种创新型的教学模式在近年来被广泛推广,这就是案例式教学模式。 案例式教学模式,由传统教学活动的一言堂转变成互动的教学交流模式,学生的学习不再是被动的接受,而是主动的出击、主动的思考,同时锻炼了学生利用知识解决问题的能力,培养了学习独立自主的能力,为培养创新意识提供了基础。案例式教学模式改变了以往数学教学给人脱

高中数学教学设计及课件

篇一:高中数学教学设计与教学反思 高中数学教学设计与教学反思 第一章第三节三角函数的诱导公式(一) 一、指导思想与理论依据 数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。 二.教材分析 三角函数的诱导公式是普通高中课程标准实验教科书(人教a版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位. 三.学情分析 本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容. 四.教学目标 (1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式; (2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简; (3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力; (4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观. 五.教学重点和难点 1.教学重点 理解并掌握诱导公式. 2.教学难点 正确运用诱导公式,求三角函数值,化简三角函数式. 六.教法学法以及预期效果分析 “授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法, 如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析. 1.教法 数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质. 在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形

相关文档
相关文档 最新文档