文档视界 最新最全的文档下载
当前位置:文档视界 › 高数二公式大全

高数二公式大全

高数二公式大全
高数二公式大全

高等数学公式

导数公式:

基本积分表:

三角函数的有理式积分:

2

22212211cos 12sin u du

dx x tg u u u x u u x +==+-=+=, , , 

a

x x a

a a ctgx x x tgx x x x ctgx x tgx a x x ln 1

)(log ln )(csc )(csc sec )(sec csc )(sec )(22=

'='?-='?='-='='2

2

22

11

)(11

)(11

)(arccos 11

)(arcsin x arcctgx x arctgx x x x x +-

='+=

'--

='-=

'?

?????????+±+=±+=+=+=+-=?+=?+-==+==C

a x x a x dx C shx chxdx C chx shxdx C

a a dx a C

x ctgxdx x C x dx tgx x C

ctgx xdx x dx C tgx xdx x dx x

x

)ln(ln csc csc sec sec csc sin sec cos 222

22

22

2C a

x

x a dx C x a x

a a x a dx C a x a

x a a x dx C a x

arctg a x a dx C

ctgx x xdx C tgx x xdx C

x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2

2222222?

????++-=-+-+--=-+++++=+-=

==-C

a

x a x a x dx x a C

a x x a a x x dx a x C

a x x a a x x dx a x I n

n xdx xdx I n n n

n arcsin 22ln 22)ln(221

cos sin 22

2222222

2222222

22

2

22

2

π

π

一些初等函数: 两个重要极限:

三角函数公式: ·诱导公式:

·和差角公式: ·和差化积公式:

2

sin

2sin 2cos cos 2cos

2cos 2cos cos 2sin

2cos 2sin sin 2cos

2sin

2sin sin β

αβαβαβ

αβαβαβ

αβαβαβ

αβ

αβα-+=--+=+-+=--+=+α

ββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±?=

±?±=

±=±±=±1

)(1)(sin sin cos cos )cos(sin cos cos sin )sin( x

x

arthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x x

x x

x x

x -+=-+±=++=+-=

=+=

-=

----11ln

21)

1ln(1ln(:2

:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e x

x x x x x

·倍角公式:

·半角公式:

α

α

αααααααααααα

α

ααα

cos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 12

2

cos 12cos 2cos 12

sin -=

+=-+±=+=-=+-±

=+±=-±=ctg tg

·正弦定理:R C

c

B b A a 2sin sin sin === ·余弦定理:

C ab b a c cos 2222-+=

·反三角函数性质:arcctgx arctgx x x -=

-=

2

arccos 2

arcsin π

π

高阶导数公式——莱布尼兹(Leibniz )公式:

)

()

()()2()1()(0

)

()()

(!

)1()1(!2)1()

(n k k n n n n n

k k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+

'+==---=-∑

中值定理与导数应用:

拉格朗日中值定理。

时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=

---'=-)(F )

()

()()()()())(()()(ξξξ

曲率:

.

1

;0.)

1(lim M s M M :.,13202a

K a K y y ds d s K M M s

K tg y dx y ds s =='+''==??='?'???=

=''+=→?的圆:半径为直线:点的曲率:弧长。:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:α

ααα

α

α

ααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=

-=-=α

α

αααααααααα

αα22222212221

2sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=

-=

-=-=-==

定积分的近似计算:

???----+++++++++-≈

++++-≈

+++-≈

b

a

n n n b

a

n n b

a n y y y y y y y y n

a

b x f y y y y n a b x f y y y n

a

b x f )](4)(2)[(3)(])(2

1

[)()()(1312420110110 抛物线法:梯形法:矩形法:

定积分应用相关公式:

??--==?=?=b

a

b a dt t f a b dx x f a b y k r

m

m k F A

p F s

F W )(1)(1

,2221均方根:函数的平均值:为引力系数引力:水压力:功:

空间解析几何和向量代数:

代表平行六面体的体积为锐角时,

向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。

是向量在轴上的投影:点的距离:空间ααθθθ??,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(22

2

2

2

2

2

212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a k

j i

b a

c b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u j z z y y x x M M

d z

y

x z y x

z

y x

z

y

x

z y x

z

y x z y x z

z y y x x z z y y x x u u

??==??=?=?==?=++?++++=++=?=?+=+=-+-+-==

(马鞍面)双叶双曲面:单叶双曲面:、双曲面:

同号)

(、抛物面:、椭球面:二次曲面:

参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:

1

1

3,,2221

1};,,{,1

30

2),,(},,,{0)()()(122

222222

22222

222

22220000002

220000000000=+-=-+=+=++???

??+=+=+===-=-=-+++++=

=++=+++==-+-+-c

z b y a x c z b y a x q p z q y p x c z b y a x pt

z z nt

y y m t

x x p n m s t p z z n y y m x x C B A D

Cz By Ax d c z

b y a x D Cz By Ax z y x M C B A n z z C y y B x x A

多元函数微分法及应用

z

y z x y x y x y x y x F F y z

F F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y

v

dx x v dv dy y u dx x u du y x v v y x u u x

v

v z x u u z x z y x v y x u f z t

v

v z t u u z dt dz t v t u f z y y x f x y x f dz z dz z

u dy y u dx x u du dy y z dx x z dz -

=??-=??=?

-??

-??=-==??+??=??+??=

==???

??+?????=??=?????+?????==?+?=≈???+??+??=??+??=

, , 隐函数+, , 隐函数隐函数的求导公式:

时,,当

多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22

)

,(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F v

G u

G v F

u

F

v u G F J v u y x G v u y x F v

u v u ???-=?????-=?????-=?????-=??=????????=??=?

??== 隐函数方程组:

微分法在几何上的应用:

)

,,(),,(),,(30

))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()

()()

(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x y

x y

x x z x z z y z y -=

-=-=-+-+-==??

??

?====-'+-'+-''-=

'-='-??

?

??===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:

上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线

ωψ?ωψ?ωψ?方向导数与梯度:

上的投影。在是单位向量。方向上的

,为,其中:它与方向导数的关系是的梯度:在一点函数的转角。

轴到方向为其中的方向导数为:沿任一方向在一点函数l y x f l f

l j i e e y x f l

f j y

f i x f y x f y x p y x f z l x y f

x f l f l y x p y x f z ),(grad sin cos ),(grad ),(grad ),(),(sin cos ),(),(??∴?+?=?=????+??=

=??+??=??=

????

?

多元函数的极值及其求法:

????

?????=-<-???><>-===== 不确定时值时, 无极为极小值为极大值时,

则: ,令:设,00),(,0),(,00),(,),(,),(0),(),(22

00002

0000000000B AC B AC y x A y x A B AC C y x f B y x f A y x f y x f y x f yy xy xx y x

重积分及其应用:

??????

??????????????

????++-=++=++==>===

=

==

???

? ????+??? ????+==='

D

z D

y D

x z y x D

y D

x D

D

y D

x D

D D

a y x xd y x fa F a y x yd y x f F a y x xd y x f F F F F F a a M z xoy d y x x I y d y x y I x d y x d y x y M

M y d y x d y x x M

M x dxdy y z x z A y x f z rdrd r r f dxdy y x f 2

3

22

2

2

3

22

2

2

3

22

2

22D

2

2

)

(),()

(),()

(),(},,{)0(),,0,0(),(,),(),(),(,),(),(1),()sin ,cos (),(σ

ρσ

ρσ

ρσρσρσ

ρσ

ρσ

ρσ

ρθ

θθ, , ,其中:的引力:轴上质点平面)对平面薄片(位于轴 对于轴对于平面薄片的转动惯量: 平面薄片的重心:的面积曲面

柱面坐标和球面坐标:

???????????????????????????

?????????Ω

Ω

Ω

Ω

Ω

Ω

Ω

Ω

Ω

ΩΩ+=+=+====

=

=

===???=??

???=====???

??===dv

y x I dv z x I dv z y I dv

x M dv z M

z dv y M

y dv x M

x dr r r F d d d drd r r F dxdydz z y x f d drd r dr d r rd dv r z r y r x z r r f z r F dz rdrd z r F dxdydz z y x f z

z r y r x z y x r ρρρρρρρ?θ??

θθ??θ?θ

??θ???θ?θ?θθθθθθθπ

πθ?)()()(1,1,1

sin ),,(sin ),,(),,(sin sin cos sin sin cos sin )

,sin ,cos (),,(,),,(),,(,sin cos 22222220

)

,(0

2

2

2

, , 转动惯量:, 其中 重心:, 球面坐标:其中: 柱面坐标:

曲线积分:

??

?==<'+'=≤≤??

?==?

?)()()()()](),([),(),(,)

()(),(2

2t y t x dt t t t t f ds y x f t t y t x L L y x f L

?βαψ?ψ?βαψ?β

α

特殊情况: 则: 的参数方程为:上连续,在设长的曲线积分):

第一类曲线积分(对弧

,通常设的全微分,其中:才是二元函数时,=在:二元函数的全微分求积注意方向相反!

减去对此奇点的积分,,应。注意奇点,如=,且内具有一阶连续偏导数在,、是一个单连通区域;

、无关的条件:平面上曲线积分与路径的面积:时,得到,即:当格林公式:格林公式:的方向角。上积分起止点处切向量分别为

和,其中系:两类曲线积分之间的关,则:的参数方程为设标的曲线积分):第二类曲线积分(对坐0),(),(),(),(·)0,0(),(),(21·212,)()()cos cos ()}()](),([)()](),([{),(),()()(00

)

,()

,(00==+=

+????????-===??-??=-=+=??-??+=??-??+=+'+'=+?

?

?==??????????????y x

dy y x Q dx y x P y x u y x u Qdy Pdx y

P

x Q y

P

x Q G y x Q y x P G ydx

xdy dxdy A D y P x Q x Q y P Qdy Pdx dxdy y P

x Q Qdy Pdx dxdy y P x Q L ds Q P Qdy Pdx dt

t t t Q t t t P dy y x Q dx y x P t y t x L y x y x D L

D L D L L

L

L

βαβαψψ??ψ?ψ?β

α

曲面积分:

??????????????????????

++=++±=±=±=++++=ds

R Q P Rdxdy Qdzdx Pdydz dzdx z x z y x Q dzdx z y x Q dydz z y z y x P dydz z y x P dxdy y x z y x R dxdy z y x R dxdy

z y x R dzdx z y x Q dydz z y x P dxdy y x z y x z y x z y x f ds z y x f zx

yz

xy

xy

D D D D y x )cos cos cos (]),,(,[),,(],),,([),,()],(,,[),,(),,(),,(),,(),(),(1)],(,,[),,(2

2γβα系:两类曲面积分之间的关号。,取曲面的右侧时取正

号;,取曲面的前侧时取正

号;,取曲面的上侧时取正

,其中:对坐标的曲面积分:对面积的曲面积分:

高斯公式:

??????????????????Ω

Ω

∑=++==?

A dv A ds R Q P ds A ds n A z R y Q x P ds R Q P Rdxdy Qdzdx Pdydz dv z R y Q x P n n

div )cos cos cos (...

,0div ,div )cos cos cos ()(

成:因此,高斯公式又可写,通量:则为消失的流体质量,若即:单位体积内所产生散度:—通量与散度:

—高斯公式的物理意义γβαννγβα斯托克斯公式——曲线积分与曲面积分的关系:

?????????Γ

Γ

∑∑

Γ

?=++Γ??

????=

??=

????=????=????????

=??????++=??-??+??-??+??-??ds

t A Rdz Qdy Pdx A R

Q P z y x A y P

x Q x R z P z Q y R R

Q

P

z y x R Q P z y x dxdy dzdx dydz Rdz Qdy Pdx dxdy y P

x Q dzdx x R z P dydz z Q y R

的环流量:沿有向闭曲线向量场旋度:, , 关的条件:空间曲线积分与路径无上式左端又可写成:k

j i rot cos cos cos )()()(

γβ

α

常数项级数:

是发散的

调和级数:等差数列:等比数列:n

n

n n q q q q q n n 1

312112

)1(3211111

2

+++++=++++--=

++++-

级数审敛法:

散。

存在,则收敛;否则发、定义法:

时,不确定

时,级数发散

时,级数收敛

,则设:、比值审敛法:

时,不确定时,级数发散

时,级数收敛

,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法n n n n n n n n n n s u u u s U U u ∞

→+∞→∞

→+++=???

??=><=???

??=><=lim ;3111lim 2111lim 1211 ρρρρρρρρ

。的绝对值其余项,那么级数收敛且其和

如果交错级数满足—莱布尼兹定理:—的审敛法或交错级数1113214321,0lim )0,(+∞→+≤≤?????=≥>+-+-+-+-n n n n

n n n n u r r u s u u u u u u u u u u u 绝对收敛与条件收敛:

∑∑∑∑>≤-+++++++++时收敛

1时发散p 级数: 收敛;

级数:收敛;

发散,而调和级数:为条件收敛级数。收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中11

1

)1(1)1()1()2()1()2()2()1(232121p n p n n n u u u u u u u u p n

n n n

幂级数:

01

0)3(lim

)3(111

1111

221032=+∞=+∞

===

≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x x x x x x x n n n

n n n n n 时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。

,其中时不定

时发散时收敛

,使在数轴上都收敛,则必存收敛,也不是在全

,如果它不是仅在原点 对于级数时,发散

时,收敛于

ρρρ

ρρ

函数展开成幂级数:

+++''+'+===-+=+-++-''+-=∞→++n

n n n n n n n n x n f x f x f f x f x R x f x x n f R x x n x f x x x f x x x f x f !

)0(!2)0()0()0()(00

lim )(,)()!1()

()(!

)()(!2)())(()()(2010)1(00)(2

0000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ 一些函数展开成幂级数:

)

()!12()1(!5!3sin )11(!

)1()1(!2)1(1)1(1

21532+∞<<-∞+--+-+-=<<-++--++-+

+=+--x n x

x x x x x x n n m m m x m m mx x n n n

m 欧拉公式:

???

????-=+=+=--2sin 2cos sin cos ix ix ix

ix ix e e x e e x x i x e 或 三角级数:

上的积分=在任意两个不同项的乘积正交性:。

,,,其中,0],[cos ,sin 2cos ,2sin ,cos ,sin ,1cos sin )

sin cos (2)sin()(00101

0ππω???ω-====++=++=∑∑∞

=∞

= nx nx x x x x x t A b A a aA a nx b nx a a t n A A t f n n n n n n n n n n n n

傅立叶级数:

是偶函数 ,余弦级数:是奇函数

,正弦级数:(相减)

(相加)

其中,周期∑?

∑???∑+=

==

======+-+-=++++=

+++=

+++???

?

???=====++=--∞

=nx a a x f n nxdx x f a b nx b x f n xdx x f b a n nxdx x f b n nxdx x f a nx b nx a a x f n n n n

n n n n n n n cos 2

)(2,1,0cos )(2

0sin )(3,2,1n sin )(2

012413121164

1312112461412185

1311)3,2,1(sin )(1)2,1,0(cos )(1

2)sin cos (2)(0

2

2222

2222

2

222

221

0 π

π

π

ππ

ππ

π

πππππππ

周期为l 2的周期函数的傅立叶级数:

???

?

???=====++=??∑--∞=l

l n l l n n n n n dx l x n x f l b n dx l x

n x f l a l

l

x n b l x n a a x f )3,2,1(sin )(1)2,1,0(cos

)(12)sin cos (2)(10 其中,周期ππππ

微分方程的相关概念:

即得齐次方程通解。

代替分离变量,积分后将,,,则设的函数,解法:,即写成程可以写成齐次方程:一阶微分方称为隐式通解。

得:的形式,解法:

为:一阶微分方程可以化可分离变量的微分方程 或 一阶微分方程:u x y u u du x dx u dx du u dx du x u dx dy x y u x

y

y x y x f dx dy C x F y G dx x f dy y g dx x f dy y g dy y x Q dx y x P y x f y -=∴=++====+====+='??)()(),(),()()()()()()(0

),(),(),(??? 一阶线性微分方程:

)

1,0()()(2))((0)(,0)()

()(1)()()(≠=+?

+?=≠?

===+?--n y x Q y x P dx

dy

e C dx e x Q y x Q Ce y x Q x Q y x P dx

dy

n dx x P dx x P dx

x P ,、贝努力方程:时,为非齐次方程,当为齐次方程,时当、一阶线性微分方程:

全微分方程:

通解。

应该是该全微分方程的,,其中:分方程,即:

中左端是某函数的全微如果C y x u y x Q y u

y x P x u dy y x Q dx y x P y x du dy y x Q dx y x P =∴=??=??=+==+),(),(),(0),(),(),(0),(),(

二阶微分方程:

时为非齐次

时为齐次,0)(0)()()()(2

2≠≡=++x f x f x f y x Q dx dy

x P dx y d 二阶常系数齐次线性微分方程及其解法:

2

122,)(2,,(*)0)(1,0(*)r r y y y r r q pr r q p qy y p y 式的两个根、求出的系数;式中的系数及常数项恰好是,,其中、写出特征方程:求解步骤:

为常数;,其中?'''=++?=+'+''

式的通解:

出的不同情况,按下表写、根据(*),321r r

为常数;

型,为常数,]sin )(cos )(

[)()()(,

)(x x P x x P e x f x P e x f q p x f qy y p y n l x m x ωωλλλ+===+'+''

一、原函数与不定积分概念

微积分学主要包含两大内容:微分学与积分学,主要工具是极限思想方法。单元二和单元三就是微分学及其应用。本单元是积分学中的不定积分,是求导数的逆过程。例如,如果已知运动的速度规律: v = v ( t ),要求运动的位移规律 s = s ( t );又如,已知函数的变化率为 y = f ( x ),要求原来的函数 y = F ( x ),这都是求不定积分问题。

定义 1 设函数 y = f ( x )在某个区间上有定义,如果存在函数 y = F ( x ),对于该区间上任一点 x ,使得 F' ( x ) = f ( x )或 d F ( x ) = f ( x ) dx 成立,则称 F ( x )是 f ( x )在该区间上的一个原函数( primitive function )。例如

( 1 ) 上的一个原函数

( 2 ) 上的一个原函数

( 3 ) 上的一个原函

( 4 )上的一个原函数

( 5 )上的一个原函数

一般地说,由于常数的导数为0 ,如果F (x )是 f (x )的一个原函数,那么 F (x )+ C 也都是 f (x )的原函数(其中C 是任意常数)。因此,如果f (x )有一个原函数F (x ),它就有原函数族:F (x )+C ,这个原函数族就称为 f (x )的不定积分。即

定义 2 如果F (x )是f (x )的一个原函数,则称原函数族 F (x )+C 为f (x )的不

定积分(indefinite integral ),记为,即

其中为积分号(integral sign ),为被积表达式(integrand expression ),被积函数(integrand ),x 为积分变量(variable of integration )。

求不定积的的问题:求出一个原函数,两加上一个任意常数。例如

不定积分的几何意义:由于中C 的取值不同,代表了不同的积曲线,且它们均可由

的图像在垂直方向平移而得,是一族“平行”的曲线。

二、不定积分的性质

性质 1 或;

本性质表明:如果先积分,后求导(或求微分),则两种运算互相抵消。反之,先求导(或求微分),后积分,则二者作用抵消后还需加上积分常数。即是说,积分运算是求导运算(或微分运算)的逆运算。

性质 2 函数的代数和的积分等于各自积分的代数和,即

性质 3 被积函数中的非零常数因子可以提到积号外,即

(其中常数K ≠ 0 )

三、基本积分公式(公式中 C 为积分常数)

(1) (K是常数)

(2) (常数a≠1)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12) 或=

(13) 或=

不定积分简单方法

例 1 利用基本公式求不定积分:

(1) (2) (3) (4) 解:(1) 利用公式( 2 ),这里a=3 ,

(2) 利用基本公式(5 )

(3) 利用基本公式(6 )

(4) 利用基本公式(3 )

例 2 求

解:利用基本公式和不定积分性质:

注:当积分被子分成代数和来计算时,只在最后求出积分再加上一个任意常数即可。例 3 求下列不定积分

( 1 )( 2 )( 3 )

解:不能直接利用公式时,可考虑作适当变化,朝可用公式的方向进行

( 1 )

高数公式大全(全)

高数公式大全 1.基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x += =+-=+=, , ,  一些初等函数: 两个重要极限: ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππx x arthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x x x x x x x -+=-+±=++=+-==+= -=----11ln 21)1ln(1ln(:2 :2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e x x x x x x

高等数学常用公式大全

高数常用公式 平方立方: 22222222 332233223223332233222(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()(8)222(a b a b a b a ab b a b a ab b a b a b a b a ab b a b a b a ab b a a b ab b a b a a b ab b a b a b c ab bc ca -=+-++=+-+=-+=+-+-=-+++++=+-+-=-+++++= 21221)(9)()(),(2) n n n n n n a b c a b a b a a b ab b n ----++-=-++++≥ 三角函数公式大全 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π -a) 半角公式 sin( 2A )=2cos 1A - cos( 2A )=2cos 1A + tan( 2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan( 2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a -

高等数学公式汇总(大全)

高等数学公式汇总(大全) 一 导数公式: 二 基本积分表: 三 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , , a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

大学高数常用公式大全

高等数学公式 导数公式: 基本积分表: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '

三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x += =+-=+=, , ,  一些初等函数: 两个重要极限: ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππx x arshx e e e e chx shx thx e e chx e e shx x x x x x x x x ++=+-==+= -= ----1ln(:2 :2:22) 双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e x x x x x x

关于高等数学常用公式大全

高数常用公式 平方立方: 三角函数公式大全 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π -a) 半角公式 sin( 2 A )=2cos 1A - cos( 2 A )=2cos 1A + tan( 2 A )=A A cos 1cos 1+- cot(2 A )=A A cos 1cos 1-+ tan( 2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2 b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos ) sin(+ 积化和差 sinasinb = -21 [cos(a+b)-cos(a-b)] cosacosb = 21 [cos(a+b)+cos(a-b)] sinacosb = 21 [sin(a+b)+sin(a-b)] cosasinb = 2 1 [sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π -a) = cosa cos(2π -a) = sina sin(2π +a) = cosa cos(2 π +a) = -sina sin(π-a) = sina c os(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA = a a cos sin 万能公式

大一高数公式

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 一些初等函数: 两个重要极限: 三角函数公式: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

高数公式大全全

高数公式大全 1.基本积分表: 三角函数的有理式积分: 一些初等函数:两个重要极限: 三角函数公式: ·诱导公式: ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππ

·和差角公式:·和差化积公式: 2 sin 2sin 2cos cos 2cos 2cos 2cos cos 2sin 2cos 2sin sin 2cos 2sin 2sin sin β αβαβαβ αβαβαβ αβαβαβ αβαβα-+=--+=+-+=--+=+α ββαβαβαβ αβαβ αβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±?= ±?±= ±=±±=±1 )(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμ

必修二公式大全

高中数学必修2知识点总结 第一章 空间几何体 1.1柱、锥、台、球的结构特征 1.2空间几何体的三视图和直观图 1 三视图: 正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则: 长对齐、高对齐、宽相等 3直观图:斜二测画法 4斜二测画法的步骤: (1).平行于坐标轴的线依然平行于坐标轴; (2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变;(3).画法要写好。 5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图 1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积 1棱柱、棱锥的表面积: 各个面面积之和 2 圆柱的表面积 3 圆锥的表面积2r rl S ππ+= 4 圆台的表面积2 2R Rl r rl S ππππ+++= 5 球的表面积2 4R S π= (二)空间几何体的体积 1柱体的体积 h S V ?=底 2锥体的体积 h S V ?=底3 1 3台体的体积h S S S S V ?++=)3 1下下上上( 4球体的体积 334 R V π= 第二章《空间中点、直线、平面之间的位置关系》知识点总结 1.内容归纳总结 (1)四个公理 公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。 符号语言:,,,A l B l A B l ααα∈∈∈∈ ? ∈且。 公理2:过不在一条直线上的三点,有且只有一个平面。 三个推论:① 经过一条直线和这条直线外一点,有且只有一个平面 ② 经过两条相交直线,有且只有一个平面 2 22r rl S ππ+=

③ 经过两条平行直线,有且只有一个平面 它给出了确定一个平面的依据。 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线(两个平面的交线)。 符号语言:,,P P l P l αβαβ∈∈?=∈I 且。 公理4:(平行线的传递性)平行与同一直线的两条直线互相平行。 符号语言://,////a l b l a b ?且。 (2)空间中直线与直线之间的位置关系 1.概念 异面直线及夹角:把不在任何一个平面内的两条直线叫做异面直线。 已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所 成的角(或直角)叫异面直线,a b 所成的夹角。(易知:夹角范围 090θ<≤?) 定理:空间中如果一个角的两边分别与另一个角的两边分别平行,那么这两个角相等或互补。(注意:会画两个角互补的图形) 2.位置关系:???? ??? ?相交直线:同一平面内,有且只有一个公共点; 共面直线平行直线:同一平面内,没有公共点; 异面直线:不同在任何一个平面内,没有公共点 (3)空间中直线与平面之间的位置关系 直线与平面的位 置 关 系 有 三 种 : //l l A l ααα??? =?? ???? I 直线在平面内()有无数个公共点直线与平面相交()有且只有一个公共点直线在平面外直线与平面平行()没有公共点 (4)空间中平面与平面之间的位置关系 平面与平面之间的位置关系有两种://l αβαβ?? =?I 两个平面平行()没有公共点两个平面相交()有一条公共直线 直线、平面平行的判定及其性质 1.内容归纳总结

高数知识点公式大全

高等数学公式 平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) 积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα 倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, 两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) 辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

高数积分公式大全

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1. d x ax b +?=1 ln ax b C a ++ 2.()d ax b x μ +? = 11 ()(1) ax b C a μμ++++(1μ≠-) 3. d x x ax b +?=21 (ln )ax b b ax b C a +-++ 4.2d x x ax b +? =22311()2()ln 2ax b b ax b b ax b C a ?? +-++++???? 5. d ()x x ax b +?=1ln ax b C b x +-+ 6. 2 d () x x ax b +? =21ln a ax b C bx b x +-++ 7. 2 d ()x x ax b +?=21(ln )b ax b C a ax b ++++ 8.22 d ()x x ax b +?=2 31(2ln )b ax b b ax b C a ax b +-+-++ 9. 2d ()x x ax b +? = 2 11ln ()ax b C b ax b b x +-++ 的积分 10. x C + 11.x ?=2 2(3215ax b C a - 12.x x ?=2223 2(15128105a x abx b C a -+ 13. x ? =22 (23ax b C a -

14 . 2x ? =2223 2 (34815a x abx b C a -+ 15 .? (0) (0) C b C b ?+>< 16 . ? 2a b - 17. d x x ? =b ?18. 2d x x ? =2a + (三)含有2 2 x a ±的积分 19. 22d x x a +?=1arctan x C a a + 20. 22d ()n x x a +?=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+? 21. 22d x x a -?=1ln 2x a C a x a -++ (四)含有2 (0)ax b a +>的积分 22.2d x ax b +? =(0) (0) C b C b ?+>+< 23. 2d x x ax b +?=2 1ln 2ax b C a ++

高数积分公式大全(2)

12. (一)含有ax b 的积分(a 1 . dx 1 ax b a =-In ax b 2. 3. 4. 5. 6. 7. 9. 10. 11. 13. 常用积分公式 0) 1 (ax b) dx = a( 1) x 1 dx = -^(ax b ax b a 丄dx =丄 ax b a 3 (ax bln b)2 b) ax b) C 2b(ax b) b 2ln ax b dx x( ax b) dx x 2(ax b) x 2dx (ax b) 2 (^dx 1ln b 1 bx ax ax b 1 = -r(ln a ax b ax b ) 2bln ax b b 2 ax b ) C dx 2 x(ax b) b(ax b) 含有.ax b 的积分 1 2 In b 2 ax b Tax~ dx = — T(ax~b)3 3a x 、、ax bdx = -^(3ax 2b 15a x 2 . ax bdx = ^^(15a 2x 2 12abx 8b 2) ., (ax b)3 C 105a ).(ax b)3 C x 2 - d x = -- 2 (ax 2b)、ax b C ,ax b 3a 2

2 15a 3 dx x ¥ ax b dx x 21 ax b ax b. dx = (3a 2x 2 4abx 8b 2)、、ax b ■, ax b 、. ; b .ax b .b A C (b (b 0) 0) bx 2b x 丫 ax b 2 ax b dx x, ax b ax b , 2 dx = x a dx 2 x 、ax b 14. 15. 16. 17. 18. (三) 19. 20. 21 . (四) 22. 23.

高数公式大全

大学数学公式 常用导数公式: 常用积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1 )(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

小学到大学所有数学公式

小学到大学所有数学公式.txt真正的好朋友并不是在一起有说不完的话题,而是在一起就算不说话也不会觉得尴尬。你在看别人的同时,你也是别人眼中的风景。要走好明天的路,必须记住昨天走过的路,思索今天正在走着的路。1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数 2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程路程÷速度=时间路程÷时间=速度 4、单价×数量=总价总价÷单价=数量总价÷数量=单价 5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率 6、加数+加数=和和-一个加数=另一个加数 7、被减数-减数=差被减数-差=减数差+减数=被减数 8、因数×因数=积积÷一个因数=另一个因数 9、被除数÷除数=商被除数÷商=除数商×除数=被除数 小学数学图形计算公式 1 、正方形 C周长 S面积 a边长周长=边长×4 C=4a 面积=边长×边长 S=a×a 2 、正方体 V:体积 a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a 3 、长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4 、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5 三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底 三角形底=面积×2÷高 6 平行四边形 s面积 a底 h高 面积=底×高 s=ah 7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圆形

大学高数公式大全

高 等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 一些初等函数: 两个重要极限: 三角函数公式: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππ

(完整版)高等数学常用公式汇总————

高数常用公式 平方立方: 22222222 332233223223332233222(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()(8)222(a b a b a b a ab b a b a ab b a b a b a b a ab b a b a b a ab b a a b ab b a b a a b ab b a b a b c ab bc ca -=+-++=+-+=-+=+-+-=-+++++=+-+-=-+++++= 21221)(9)()(),(2) n n n n n n a b c a b a b a a b ab b n ----++-=-++++≥L 倒数关系:sinx·cscx=1 tanx·cotx=1 cosx·secx=1 商的关系:tanx=sinx/cosx cotx=cosx/sinx 平方关系:sin^2(x)+cos^2(x)=1 tan^2(x)+1=sec^2(x) cot^2(x)+1=csc^2(x) 倍角公式: sin(2α)=2sinα·cosα cos(2α)=cos^2(α)-s in^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] 降幂公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα 两角和差: sin(α±β)=sinα·cosβ±cosα·sinβ cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 积化和差: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

高数公式大全

高等数学公式汇总 第一章 一元函数的极限与连续 1、一些初等函数公式: sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1 cot()cot cot ()()sh sh ch ch sh ch ch ch sh sh αβαβαβαβαβαβ αβ αβαβαβαββα αβαβαβαβαβαβ ±=±±=±±= ??±= ±±=±±=±m m m 和差角公式: sin sin 2sin cos 22sin sin 2cos sin 22cos cos 2cos cos 22cos cos 2sin sin 22 αβ αβ αβαβαβ αβαβαβ αβαβαβ αβ+-+=+--=+-+=+--=和差化积公式: 1 sin cos [sin()sin()] 21 cos sin [sin()sin()]21 cos cos [cos()cos()] 21 sin sin [cos()cos()] 2 αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=+--积化和差公式: 2222222 222sin 22sin cos cos 22cos 1 12sin cos sin 2tan tan 21tan cot 1 cot 22cot 22212 21sh sh ch ch sh ch ch sh αααααααααααααα αααααααα ==-=-=-= --= ==+= =-=+ 倍角公式:22222222sin cos 1;tan 1sec ;cot 1csc ;1 sin 2 cos 2 1cos sin tan 2 sin 1cos 1cos sin cot 2 sin 1cos x x x x ch x sh x ααααααα ααααα αα +=+=+=-===-===++=== -半角公式:

(完整版)大学高数公式大全

精心整理 高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 一些初等函数:两个重要极限: 三角函数公式: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='=' 22 1 11 )(arccos 11 )(arcsin x x x x -- ='-= '? ?+±+=±+=C a x x a x dx C shx chxdx )ln(222 2C a x arctg a x a dx ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=++-=++=+=+-=?????1csc ln csc sec ln sec sin ln cos ln 22?????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 2 2)ln(221 cos sin 22 2222 2222222 22222 2 22 2 ππ

βαβααβαctg tg ±±±±((cos(sin(

·半角公式: ·正弦定理: R C c B b A a 2sin sin sin ===·余弦定理: C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -= -= 2 arccos 2 arcsin π π 高阶导数公式——莱布尼兹(Leibniz )公式: 中值定理与导数应用: 曲率: 定积分的近似计算: 定积分应用相关公式: 30 21),,(z y x F M z y x =?? ? ??=曲面在点空间曲线方向 曲线积分: 曲面积分: 高斯公式:

大学高数公式大全

高等数学公式导数公式: (tgx)’ =sec x (ctgx)' = -CSC x (secx) '=secx tgx (cscx) ‘ = -cscx ctgx (a v vi vii viii ix x r = a x l na (log a xr — xl na (arcsin x),= . 1 2 J1-X2 1 (arccos x)'= —一’ V1—x2 1 (arctgx)'= __2 1 +x (arcctgx),= -— 1 + x 基本积分表: Jtanxdx = -In cos^C Jcotxdx=ln sinx +C Jsecxdx= In secx+tgx +C Jcscxdx = In |cscx -ctg* +C dx J _2 a +x 「dx J 巴 =fsec xdx =tgx +C ' cos x 、 dx 2 J ——=fcsc xdx = -ctgx + C 'sin X ‘ fsecx tgxdx = secx + C J cscx ctgxdx =-cscx+C x fa x d^-^ +C In a f shxdx = chx + C 2 2 x -a dx —2 2 a -x dx I n 2 =Jsin n xdx = Jcos n xdx = jJ x2 +a2dx f J x2 -a2dx jV a2-x2dx 1 x =— arctg — a 丄In 2a 丄In 2a a g +( X +a 匕 +C a -x x = arcsi n- +C a Jchxdx = shx + C

三角函数的有理式积分: □1 I nd n __________ 2 , _________ =—V x^a^ — In(x + V x2+ a2) +C 2 2 __________ 2 L X I 2 2 a.『 =—v x -a ........... 2 2 ________ 2 2 -x2+ "^arcsin- + C 2 -一In X + V x2 -a2+C 2u sin X = ---------- 7c os x=Wy, dx 2du = 2 1 +u

二年级数学公式大全

二年级数学公式大全 1、乘法的两种意义:⑴、表示:几个几相加是多少。⑵、表示:几个几相加是多少。 2、除法的三种含义:⑴表示:把一个数平均分成几份,每份是几。(平均除法的意义)⑵表示:一个数里面有几个几。(包含除法的意义)⑶表示:一个数是另一个数的几倍。(倍数除法的意义) 3、求一个数是另一个数的几倍用除法。 4、已知一个数是另一数的几倍,求一个数用乘法。 5、已知一个数是另一数的几倍,求另一个数用除法。 6、求一个数的几倍是多少用乘法。 7、平均除法的公式:总数÷份数=每份数 8、包含除法的公式:总数÷每份数=份数 9、熟练掌握乘除法各部分的名称和怎样读算式 3 × 4 =12 12 ÷ 4 = 3 乘数乘号乘数积被除数除号除数商 读作:3乘4等于12。读作:12除以4等于3。 11、如果你面向东后面就是西,左边是北右边是南。如果你面向西后面就是东,左边是南右边是北。如果你面向南后面就是北,左边是东右边是西。 12、1时=60分、1分=60秒。 13、经过时间=结束时间-开始时间开始时间=结束时间-经过时间结束时间=开始时间+经过时间 14、常用的时间单位有时、分、秒。 15、在钟表上有12个大格、60个小格,时针走一个大格是1小时,分针走一个小格是1分钟,分针走一个大格是5分钟。 16、在有余数的除法算式里,余数一定要比除数小。 17、根据除法各部分之间的关系可以导出这样几种公式: 被除数=除数×商+余数除数=(被除数—余数)÷商商=(被除数—余数)÷除数 余数=被除数—除数×商 18、在一道没有括号的算式,有加减法,又有乘除法,先算乘除法,再算加减法。如果只有加减法或只有乘除法时,要从左到右计算。再有括号的算式里,要先算括号里面的。 20、10个一千是一万;10个一百是一千;10个十是一百。 21、从右边起,第一位是个位,第二位是十位,第三位是百位,第四位是千位,第五位是万位。 22、读数时要注意:末尾不管有几个零都不读,中间有一个零或两个以上的零只读一个零。写数时要注意:哪一个数位上一个也没有,就在那个数位上填零占位。 23、比较数的大小应注意:1、数位多的数比数位少的数大;2、当数位相同时,从最高位比起,最高位大的数就大;当最高位也相同时,就依次向下,一个数位一个数位的比,哪个数位大就说明那个数比较大。 24、在读数时,从(最高)位读起,按照(从高位到低位)的顺序读。 25、长度单位:千米、米、分米、厘米、毫米。用字母表示是: km、 m、 dm、 cm、 mm 。 26、常用的“相邻”的长度单位之间的进率是“10”,“相隔”1个长度单位之间的进率是“100”,“相隔”2个长度单位之间的进率是“1000”。我们又从中导出了7个单位转换的公式分别是: 1米=10分米 1m=10dm 1分米=10厘米 1dm=10cm 1厘米=10毫米 1cm=10mm 1米=100厘米 1m=100cm 1分米=100毫米 1dm=100mm 1米=1000毫米 1m=1000mm 1千米=1000米 1km=1000m 27、我们还学习了1厘米中有(10)个小格,每小格的长是1毫米。 1分米大约有手掌这么长。1分硬币大约有1毫米厚。在表示较远的距离时,用“千米”作单位。 28、三位数加法(进位加)的笔算方法:⑴相同数位对齐;⑵从个位位,第五位是万位。 22、读数时要注意:末尾不管有几个零都不读,中间有一个零或两个以上的零只读一个零。写数时要注意:哪一个数位上一个也没有,就在那个数位上填零占位。 23、比较数的大小应注意:1、数位多的数比数位少的数大;2、当数位相同时,从最高位比起,最高位大的数就大;当最高位也相同时,就依次向下,一个数位一个数位的比,哪个数位大就说明那个数比较大。 24、在读数时,从(最高)位读起,按照(从高位到低位)的顺序读。 25、长度单位:千米、米、分米、厘米、毫米。用字母表示是: km、 m、 dm、 cm、 mm 。

相关文档