文档视界 最新最全的文档下载
当前位置:文档视界 › 电池组的串并联使用的优缺点

电池组的串并联使用的优缺点

电池组的串并联使用的优缺点
电池组的串并联使用的优缺点

电池组串并联使用分析报告

一.串联:

缺点:①电池组串联使用对保护板的要求更加的苛刻,不同的电池组使用的保护板的一致性更加严格。

②对于串联使用,每个保护板上的MOS的选择也有一定的要求,根据使用串联后的最大串数来确定MOS管选择的最大耐压值。不管充电还是放电过程中,如果其中一组发生保护不至于击穿MOS管。

③对于串联的每一个保护板都必须能承受相同的电流,与单独的总串数的保护板相比,使用的MOS管基本上一样,但是数量多了数倍,故大大增加了成本。

④电池组的串联必须选用同口。如果使用分口的,电池组是可以充放电的,但是存在很多的隐患,尤其是不关断。充电时,分口的保护板的放电口必须断开,否则很有可能无法关断。

优点:方便携带,方便安装。

二.并联:

缺点:①对电池的一致性要求更高。比如:两组电池组并联使用,其电压相同,内阻不同,两组提供的电流就不一致。同样,电压不同,内阻相同,也同样提供的电流不一致。如果都不一样,提供的电流相差更大。

②由于电池和保护板均有内阻,故对保护板内阻一致性的要求也高。

③在过流中,如果板子的过流保护点相同,但是提供的电流不同的话,就会有一组保护板,另一组能正常放电,但是过流瞬间结束后,所有的电流都由没保护的一组提供,这样长时间会导致此组电池衰减比较快。当然还有其他可以造成这种的情况的条件。

④在过放中,如果其中一组先达到保护点,还是所有的电流都加到了其他的上面,久而久之电池的衰减就会加快,导致一致性更差。

⑤如果还并起充电的话,充电电流不能超过单串保护板的电流。同口的可以直接充放,分口的的最好分开充电。充电时并联的放电口必须断开,否则过充保护失效。

⑥并联时,电池组之间已经形成回路,如果压差比较大,可能会产生内环电流,这样有可能会损坏保护板。

优点:基本上和串联一样,方便携带,方便不同情况下的使用。三.总结:

不管是串联还是并联,对电池还有保护板一致性的要求更高。一致性不好的坏,电池组的寿命会大大衰减。同时,都会增加MOS管的数量,从而增加成本。

当然,把电池组串并联使用,方便携带,方便安装,我认为更重要的一点是方便随机组合使用,根据自己的需要进行组合。但是现在的技术没有达到,没法做到这样的随机组合,所以这个也许是未来的一个发展方向。

最新电池组的串并联使用的优缺点

电池组串并联使用分析报告 一.串联: 缺点:①电池组串联使用对保护板的要求更加的苛刻,不同的电池组使用的保护板的一致性更加严格。 ②对于串联使用,每个保护板上的MOS的选择也有一定的要求,根据使用串联后的最大串数来确定MOS管选择的最大耐压值。不管充电还是放电过程中,如果其中一组发生保护不至于击穿MOS管。 ③对于串联的每一个保护板都必须能承受相同的电流,与单独的总串数的保护板相比,使用的MOS管基本上一样,但是数量多了数倍,故大大增加了成本。 ④电池组的串联必须选用同口。如果使用分口的,电池组是可以充放电的,但是存在很多的隐患,尤其是不关断。充电时,分口的保护板的放电口必须断开,否则很有可能无法关断。 优点:方便携带,方便安装。 二.并联: 缺点:①对电池的一致性要求更高。比如:两组电池组并联使用,其电压相同,内阻不同,两组提供的电流就不一致。同样,电压不同,内阻相同,也同样提供的电流不一致。如果都不一样,提供的电流相差更大。 ②由于电池和保护板均有内阻,故对保护板内阻一致性的要求也高。 ③在过流中,如果板子的过流保护点相同,但是提供的电流不同的话,就会有一组保护板,另一组能正常放电,但是过流瞬间结束后,所有的电流都由没保护的一组提供,这样长时间会导致此组电池衰减比较快。当然还有其他可以造成这种的情况的条件。 ④在过放中,如果其中一组先达到保护点,还是所有的电流都加到了其他的上面,久而久之电池的衰减就会加快,导致一致性更差。 ⑤如果还并起充电的话,充电电流不能超过单串保护板的电流。同口的可以直接充放,分口的的最好分开充电。充电时并联的放电口必须断开,否则过充保护失效。 ⑥并联时,电池组之间已经形成回路,如果压差比较大,可能会产生内环电流,这样有可能会损坏保护板。 优点:基本上和串联一样,方便携带,方便不同情况下的使用。三.总结: 不管是串联还是并联,对电池还有保护板一致性的要求更高。一致性不好的坏,电池组的寿命会大大衰减。同时,都会增加MOS管的数量,从而增加成本。 当然,把电池组串并联使用,方便携带,方便安装,我认为更重要的一点是方便随机组合使用,根据自己的需要进行组合。但是现在的技术没有达到,没法做到这样的随机组合,所以这个也许是未来的一个发展方向。

电池组串联和并联时容量计算

电池组串联和并联时容量计算 一般是不赞成电池并联的,但是在实际应用当中,很多厂商就推出了并联的电池组,两个2000mAH的电池,经过并联就成了4000mAH,同时,并联后的电池内阻,也就成了原来的一半,驱动力就比原来大了将近两倍。 在实际使用当中,最好不要自己并联电池,因为一般厂家推出的并联电池组,是根据电脑分析和配对的两个电池,没有经过配对的电池,因为特性不平衡,一个电池电压高点,就会向另一个电池放电充电,产生自行损耗。在实战中,并联电池的公式不能象书本上一样容量简单相加,比如两个2000mAH的电池,实际并联后,放电时间计算公式应该是: V高-V低 放电时间=(2000+2000)/(------------------ + I电机电流) R高+R低 式中,V高是电压高一点的电池,R高是这个电池的内阻,当两个电池的电压差得越多,损耗也就越大,所以自行并联出来的电池,一般容量都达不到两个电池相加的结果。 串联方面。 由于镍镉电池、镍氢电池的、还有锂电的单体电压不够,所以,在电狗当中,都是以串联的方式,连接成香肠的形式。香肠形式的优点是可以保证电狗需求的电压,7.2V 9.6V 10.8V等电压。但是缺点也是很明显的。 按照书本上的知识,电池串联!(电流 / 时) 容量不变,电压升高。 按照实际实战中的经验,应该是,电池串联!电池内阻相互迭加,形成内阻损耗!(电流 / 时) 容量下降,电压升高。 有比较有条件和细心的朋友问,为什么用万用表测量,好象我买来的2000mAH,用了1300 mAH就没电了??为什么一扣动扳机,电压立即从9.6V掉到7.8V,是不是被JS骗了??这就是原因。 纯理想状态下的电池和测试条件,内阻等于0,开关接触电阻等于0,电线损耗等于0,因此,电池所有能量给电狗电机做功,电压直接加到电机上,V电池=V 电机。 实际现实情况下,排开开关接触电阻和电线电阻不计,存在最大的电阻是电池内阻,因此得出以下公式: V电池-V内阻=V电机。 任何电池在电狗扣下扳机的情况下,电池两端电压都会明显下降,但是不同种类的电池,因内阻的不同,下降的程度就不同,电压的下降导致电机转速变慢。在使用相同电压相同容量的电池前提下,用镍镉电池的电狗射速比较快,老式的锂

如何正确地把电池串联和并联起来

如何正确地把电池串联和并联起来 在电池组中是把多个电池串联起来,得到所需要的工作电压。如果所需要的是更高的容量和更大的电流,那就应该把电池并联起来。另外还有一些电池组,把串联和并联这两种方法结合起来。一个膝上型电脑的电池有可能是把四节3.6V锂离子电池串联起来,总电压达到14.4V;然后,再把两组串联在一起的电池并联起来,这样,电池组的总电量就可以从2000毫安时提高到4000毫安时。这种接法称作“四串两并”,它的意思是:把两组由四节电池串联在一起的电池组并联起来。 在手表、备份用的存储器和蜂窝电话里一般使用一节电池。一节镍基电池的标称电压是1.2V,碱性电池是1.5V,氧化银电池是1.6V,铅酸性电池是2V,锂电池是3V,而锂离子电池的标称电压则是3.6V。使用锂离子聚合物和其他类型的锂电池,它的额定电压一般为3.7V。如果要想得到像11.1V这种不常见的电压,就得把三节这种电池串联在一起。随着现代微电子技术的发展,我们已经可以用一节3.6V的锂离子电池,为蜂窝电话和低功耗的便携通讯产品供电。在上世纪六十年代,在照度计中广泛使用的汞电池,出于环境保护方面的考虑,如今已经完全退出市场。 镍基电池的标称电压为1.2V或1.25V。它们之间,除了市场偏好之外,没有任何差别。大部分的商用电池,每节电池的电压为1.2V;工业电池、航空电池和军用电池,每节电池的电压仍是1.25V。 串联 需要高电量的便携设备,一般是由两节或更多节电池串联起来的电池组供电。如果使用高电压的电池,导体和开关的尺寸可以做得很小。中等价位的工业电动工具一般使用电压为12V至19.2V的电池供电;而高级电动工具使用电压为24V至36V的电池,以获得更大的电力。汽车工业最终把启动器的点火电池电压从12V(实际上是14V)提高到36V,甚至是42V。这些电池组是由18节串联起来铅酸性电池组成。在早期的混合型汽车中,用来供电的电池组,电压为148V。比较新的车型所使用的电池组,电压高达450V 至500V,大部分是镍基化学电池。一个电压为480V的镍金属氢电池组是由400节镍金属氢电池串联而成。有一些混合型汽车也用铅酸性电池做过试验。 42 V的汽车用电池价格昂贵,而且,比起12V电池,它在开关上会产生更多的电弧。使用高电压电池组所带来的另一个问题,就是有可能遇到电池组里的某一节电池失效的情况。这就像一个链条,串联在一起的电池越多,出现这种情况的几率就越高。只要一节电池有问题,它的电压就会降低。到最后,一节“断开”的电池可能会中断电流的输送。而要更换“坏”电池也绝非易事,因为新老电池是互不匹配的。一般说来,新电池的容量要比老电池的高得多。 我们来看一个电池组的实例,第三节电池仅产生0.6V的电压,而不是正常的1.2V(图1)。随着工作电压的下降,它比正常电池组更快地达到放电结束的临界点,同时,它的使用时间也急剧缩短。一旦设备因电压过低而切断电源,其余三节仍然完好的电池就不能把所存储的电量送出来了。这时,第三节电池还呈现很大的内阻,如果此时还带有负载,那么,将会导致整个电池链的输出电压将大幅度下降。在一组串行电池中,一节性能差的电池,就像是一个堵住水管的塞子,会产生巨大的阻力,阻止电流流过去。第三节电池也会短路,这将使终端的电压降低至3.6V,或者,使电池组链路断开并切断电流。一个电池组的性能是取决于电池组里最差的那块电池的性能。

锂电池系统串并联优化成组

锂电池系统的串并联优化成组原理和方案 关键词:锂离子电池;串并联电池组;优化成组 在纯电动汽车、电网储能应用中,单体电池串联以满足电压需求,并联以满足容量需求,串并联连接方式往往同时存在。因此我们致力于研究纯电动汽车以及电网储能用串并联电池组的建模仿真方法,基于对串并联电池组的建模仿真分析,探究影响锂离子电池组性能的主要因素以及优化的电池成组方法。 .串并联电池组拓扑结构 电池组典型的连接方式有先并联后串联、先串联后并联,如图a b 所示,混联方式如图c 所示。其中北京奥运会、上海世博会纯电动公交车用电池即采用先并后串的连接方式,电网电池储能中往往采用先串后并的连接 方式。

从电池组连接的可靠性以及电池电压不一致性发展趋势和电池组性能影响的角度分析,先并联后串联连接方式优于先串联后并联连接方式,而先串后并的电池拓扑结构有利于对系统各个单体电池进行检测和管理。先并后串连接方式的建模仿真可用于电动汽车整车仿真的动力电池部分,计算整个电池组的功率输出;先串后并连接方式的建模仿真可用于电网储能中并联支路的投切后不均衡电流、电流均衡时间的仿真计算;再综合考虑这两种基本连接方式对混联方式的电池组建模。 串并联电池组在使用过程中出现的电池单体过充电、过放电、超温和过流问题,致使成组电池使用寿命大幅缩短甚至发生燃烧、爆炸等恶性事故,成组动力锂电池使用寿命缩短、安全性下降已经成为制约其推广应用和产业发展的关键。电池筛选成组与适应动力锂离子电池的有效电池管理是提高串并联电池组性能的两个重要方面。串联电池组中由于单体电池容量、初始SOC、内阻、极化的不一致性,在充

放电过程中需要电池管理系统检测单体电池电压与充放电设备通信以防部分单体电池的过充或过放,串联电池组在良好的电池管理条件下,使用过程中避免滥用如大电流倍率、环境温度过高等,串联电池组不会因为连接成组而造成快于单体电池的寿命衰退,但是部分电池性能的短板效应会减小串联电池组的容量利用率,可以通过带均衡功能的电池管理系统提高。 并联电池组中由于支路电流受到支路电池参数耦合影响,成组后支路电池容量、初始SOC、内阻和极化的差异会造成支路电流工况的差异,大多数单体并联的支路电池参数虽然较为一致,整个充放电过程的平均电流倍率与并联电池组的外施电流倍率差异不大,但是在充放电的电池电压平台的两端SOC区间形成的电流差异较大。例如,充电末端90%.100%SOC区间由于平台电流差异的累积导致末端支路电流的差异,极其容易出现没有充满的电池过流充电,已经充满的电池过充充电。另外一个显著的影响因素就是并联电池组由于实际工况中存在动态电流工况(加速、制动以及怠速过程)产生了电流的环流,环流同样是充放电也一定程度的损伤了电池组寿命。假设lOOWh的总充放能量会出现5Wh的环流,电池循环寿命将比单体实验寿命降低5%左右。先串后并的连接方式中并联支路的串联电池数目越多整条支路电池参数如内阻、极化更接近统一批次电池参数平均值的整数倍,并联支路的容量差异和初始SOC差异成为导致并联电流不平衡的主要因素。同一批次电池参数正态分布在先串后并的各个支路当中,显著降低了整个串并联电池组的电流不平衡程度。我们需要考虑的是在实际

2块锂电池并联充串联用的终极解决方案

2块锂电池并联充串联用的终极解决方案 (附电路图) 我有一个的对讲机,原来用的是6节的7号镍氢充电电池,我一直想改个锂电,由于电池必须放进电池仓内,最简单的方法是并联用()并联充(需要的锂电充电器,但是由于并联充存在缺陷,有时充不满,或两块电池的老化程度不一样会造成性能下降,最好的方法是串联用并联充。要想并联充串联用必须设计个电路,使其充电时两块电池是并联状态,用的时候是串联状态,看似简单,但是要想安全使用而又要两块电池不短路则非常难(在没看下文前,你们可以自己设计一下看看。)在三个月内我画了近60多张草图后,我一度认为这是不可能的,但是有一天我喝多了,躺在床上睡不着,脑海中突然出现了这个草图,于是我连夜画了这个电路图,画完后一看凌晨2点多了,媳妇骂我神经病(=^_^=)。当然这个电路图还可以再优化,由于时间匆忙,难免出现错误,请各位高手批评指正。 最后有有句题外话:我经常从百度学习,找答案,但是好多文章需要百度的财富币(我非常痛恨这一点),所以这篇文章我本来想免费发的,但是我也穷啊,财富币经常是0,最后我想了个周全的办法,有财富币的网友就花1个财富币下载吧(看在我半夜工作的

份上),没有财富币的请把你们的邮箱给我,我有时间一定发给你们。我的邮箱:。 2块锂电池并联充串联用的方法 充电时K处是断开的,当拔掉充电器插头时,K处是闭合短路的,D、E两处是普通的整流二极管,为防止二极管失效短路,最好是在这两处各加一个自恢复保险,电流根据自己需要,我的对讲机工作最大电流是1.2A,所以加个1.5A 或2A的比较合适。

2块锂电池平衡充的连接方法 这个电路图比较简单,但是费用较高,需要2个同型号的充电器串联使用,也可以用网上卖的平衡充电路板改一个。注意给锂电池充电的电压不要超过,充电器可用座充接出来的电压。(网上有一款座充,我也不知道什么型号,可以直接充电池,也有USB,可以给普通手机充电,价格才3元一个,质量还不错,我一次买了15个。)

电池的并联与串联

电池的并联与串联 一、并联 在实际应用当中,并联的电池组,两个60A·h的电池,经过并联就成了120A·h,同时,并联后的电池内阻,也就成了原来的1/2,驱动力就比原来大了将近2倍。 在实际使用当中,一般推出的并联电池组,是根据电脑分析和配对的两个电池,没有经过配对的电池,因为特性不平衡,一个电池电压高点,就会向另一个电池放电充电,产生自行损耗。在实战中,并联电池的公式不能象书本上一样容量简单相加,比如两个60mA·h的电池,实际并联后,放电时间计算公式应该是: 放电时间=(60+60)/((V高-V低)/(R高+R低)+I电机电流) 式中,V高是电压高一点的电池,R高是这个电池的内阻,当两个电池的电压差得越多,损耗也就越大,所以并联出来的电池,一般容量都达不到两个电池相加的结果。 二、串联 由于镍镉电池、镍氢电池、还有锂电的单体电压不够,所以,在电动汽车中,都是以串联的方式,连接成香肠的形式。香肠形式的优点是可以保证电动汽车需求的电压。但是缺点也是很明显的。按照书本上的知识,电池串联时,容量不变,电压升高。按照实际实战中的经验,应该是,电池串联!电池内阻相互迭加,形成内阻损耗!容量下降,电压升高。 为什么用万用表测量,新充满电60mA·h的电池,用了没多久就没电了?为什么一使用,电压立即从84V掉到80V?这就是原因。 纯理想状态下的电池和测试条件,内阻等于0,开关接触电阻等于0,电线损耗等于0,因此,电池所有能量给电动汽车电机做功,电压直接加到驱动电机上,V电池=V电机。实际现实情况下,存在最大的电阻是电池内阻,因此得出以下公式:V 电池-V内阻=V电机。 电池在电动汽车踩下加速踏板的情况下,电池两端电压都会明显下降,但是不同种类的电池,因内阻的不同,下降的程度就不同,电压的下降导致电机转速变慢。 串联电压升高,并联来提高电池容量。 串联后电压增加, 容量不变,电流不变; 并联后电压不变, 容量增加,电流增加。 这些数字的变化与电阻的大小变化有关。

电池的串联和并联

正确地把电池串联和并联起来 把电池串联和并联起来使用,这听起来好象很简单,但是,遵循一些简单的规则,就可以避免不必要的问题。 在电池组中是把多个电池串联起来,得到所需要的工作电压。如果所需要的是更高的容量和更大的电流,那就应该把电池并联起来。另外还有一些电池组,把串联和并联这两种方法结合起来。一个膝上型电脑的电池有可能是把四节3.6V锂离子电池串联起来,总电压达到14.4V;然后,再把两组串联在一起的电池并联起来,这样,电池组的总电量就可以从2000毫安时提高到4000毫安时。这种接法称作“四串两并”,它的意思是:把两组由四节电池串联在一起的电池组并联起来。 在手表、备份用的存储器和蜂窝电话里一般使用一节电池。一节镍基电池的标称电压是1.2V,碱性电池是1.5V,氧化银电池是1.6V,铅酸性电池是2V,锂电池是3V,而锂离子电池的标称电压则是3.6V。使用锂离子聚合物和其他类型的锂电池,它的额定电压一般为3.7V。如果要想得到像11.1V这种不常见的电压,就得把三节这种电池串联在一起。随着现代微电子技术的发展,我们已经可以用一节3.6V的锂离子电池,为蜂窝电话和低功耗的便携通讯产品供电。在上世纪六十年代,在照度计中广泛使用的汞电池,出于环境保护方面的考虑,如今已经完全退出市场。 镍基电池的标称电压为1.2V或1.25V。它们之间,除了市场偏好之外,没有任何差别。大部分的商用电池,每节电池的电压为1.2V;工业电池、航空电池和军用电池,每节电池的电压仍是1.25V。 串联 需要高电量的便携设备,一般是由两节或更多节电池串联起来的电池组供电。如果使用高电压的电池,导体和开关的尺寸可以做得很小。中等价位的工业电动工具一般使用电压为12V至19.2V的电池供电;而高级电动工具使用电压为24V至36V的电池,以获得更大的电力。汽车工业最终把启动器的点火电池电压从12V(实际上是14V)提高到36V,甚至是42V。这些电池组是由18节串联起来铅酸性电池组成。在早期的混合型汽车中,用来供电的电池组,电压为148V。比较新的车型所使用的电池组,电压高达450V至50 0V,大部分是镍基化学电池。一个电压为480V的镍金属氢电池组是由400节镍金属氢电池串联而成。有一些混合型汽车也用铅酸性电池做过试验。 42 V的汽车用电池价格昂贵,而且,比起12V电池,它在开关上会产生更多的电弧。使用高电压电池组所带来的另一个问题,就是有可能遇到电池组里的某一节电池失效的情况。这就像一个链条,串联在一起的电池越多,出现这种情况的几率就越高。只要一节电池有问题,它的电压就会降低。到最后,一节“断开”的电池可能会中断电流的输送。而要更换“坏”电池也绝非易事,因为新老电池是互不匹配的。一般说来,新电池的容量要比老电池的高得多。 我们来看一个电池组的实例,第三节电池仅产生0.6V的电压,而不是正常的1.2V(图1)。随着工作电压的下降,它比正常电池组更快地达到放电结束的临界点,同时,它的使用时间也急剧缩短。一旦设备因电压过低而切断电源,其余三节仍然完好的电池就不能把所存储的电量送出来了。这时,第三节电池还呈现很大的内阻,如果此时还带有负载,那么,将会导致整个电

电池的并联与串联

电池的并联与串联 一、并联在实际应用当中,并联的电池组,两个60Ah的电池,经过并联就成了120Ah,同时,并联后的电池内阻,也就成了原来的1/2,驱动力就比原来大了将近2倍。在实际使用当中,一般推出的并联电池组,是根据电脑分析和配对的两个电池,没有经过配对的电池,因为特性不平衡,一个电池电压高点,就会向另一个电池放电充电,产生自行损耗。在实战中,并联电池的公式不能象书本上一样容量简单相加,比如两个60mAh的电池,实际并联后,放电时间计算公式应该是:放电时间=(60+60)/((V高-V低)/(R高+R低)+I电机电流)式中,V高是电压高一点的电池,R高是这个电池的内阻,当两个电池的电压差得越多,损耗也就越大,所以并联出来的电池,一般容量都达不到两个电池相加的结果。 二、串联由于镍镉电池、镍氢电池、还有锂电的单体电压不够,所以,在电动汽车中,都是以串联的方式,连接成香肠的形式。香肠形式的优点是可以保证电动汽车需求的电压。但是缺点也是很明显的。按照书本上的知识,电池串联时,容量不变,电压升高。按照实际实战中的经验,应该是,电池串联!电池内阻相互迭加,形成内阻损耗!容量下降,电压升高。为什么用万用表测量,新充满电60mAh的电池,用了没多久就没电了?为什么一使用,电压立即从84V掉到80V?这就是原因。纯理想状态下的

电池和测试条件,内阻等于0,开关接触电阻等于0,电线损耗等于0,因此,电池所有能量给电动汽车电机做功,电压直接加到驱动电机上,V电池=V电机。实际现实情况下,存在最大的电阻是电池内阻,因此得出以下公式:V电池-V内阻=V电机。 电池在电动汽车踩下加速踏板的情况下,电池两端电压都会明显下降,但是不同种类的电池,因内阻的不同,下降的程度就不同,电压的下降导致电机转速变慢。串联电压升高,并联来提高电池容量。串联后电压增加, 容量不变,电流不变;并联后电压不变, 容量增加,电流增加。这些数字的变化与电阻的大小变化有关。

蓄电池串并联

蓄电池是在串联和并联的条件下使用,串联使用是最常见的一种方法。但在许多条件下,电池组常常需要用并联的方法扩展容量和可靠性。电池在并联使用时,有许多串联状态下不存在的特殊问题,这些问题往往被忽视了,造成一些非使用性损坏的情况发生。 1电池并联使用故障多 在一些场合下,经常可以看到将电池组并联使用的情况。这主要是由于设计和使用人员 不了解铅电池性能所采用的错误做法,有时也是由于特殊工作条件的要求,不得已而采取的 方法。 现在分析并联电池在使用中的特殊问题。 图1蓄电池的并联工作分析 在图1中,两组电池在并联状态下工作。在放电时: i=iA+iB 在充电时:I=IA+IB I=IA+IB 如能保障:iA=iB、IA=IB,这个非联电池组工作状态是正常的。但这只是理想状态,在 实际工作中:iA≠iB、IA≠IB A、B两个电池组串联的单节数越多,A、B之间充放电的电流差值就越大。 假设两个汽车电池,都是6个单格,虽然标称电压都是12V,实际电压值却不一样。这是由于电池中电液密度不一致和连接的电阻不一致造成的。即使新电池启用时注入的酸是同密度的,在后来的使用中因种种原因也会造成差异。当把两节电池并联之后,电压高的电池会向另一个电池“充电”。其电流大小可用电流表测得。这种充电有时竟长达24小时之久。在电压相差较多时,并联瞬间会看到明显的火花。这样的电池配合使用,起动发动机时看不出有什么问题,转入充电工况时,两个电池各自得到的充电电流是不一样的。由于铅电池内阻很小,所以两组电池内部性能略有差异,会使整个电池组的充电结果表现出明显不同。电压较高的电池得到的充电电流小,电压较低的电池得到的电流大;得到电流大的电池温升高,

光伏系统串并联计算

5.2光伏电池组件的串、并联设计 考虑太阳电池组件的温度系数影响,随着太阳电池组件温度的增加,开路电压减小;相反,组件温度的降低,开路电压增大。为了保证逆变器在当地极限低温条件下能够正常连续运行,所以在计算电池板串联电压时应考虑当地的最低环温进行计算,并得出串联的电池个数和直流串联电压(保证逆变器对太阳电池最大功率点MPPT跟踪范围)。本项目所选500kW逆变器的最高允许输入电压Vdcmax为900V,输入电压MPPT工作范围为450V~820V。250Wp晶体硅太阳电池组件的开路电压Voc为37.8V,最佳工作点电压Vmp为30.5V,开路电压温度系数为-0.34%/K。 1)每个方阵的串联组件个数计算: 计算公式: INT(Vdcmin/Vmp)≤N≤INT (Vdcmax /Voc)............式中:Vdcmax一逆变器输入直流侧最大电压; Vdcmin-逆变器输入直流侧最小电压; Vo一电池组件开路电压; Vmp—电池组件最佳工作电压; N-电池组件串联数。 经计算得出: 串联多晶硅太阳能电池数量N为:15

考虑了太阳电池组件工作温度修正系数影响的情况下,该方阵太阳电池组串的最高输出电压(Vmax)及最低输出电压(Vmin)计算结果如下: Vmax=15~24×(37.8+37.8×0.0034×(25+10.1))=625~999V (条件:辐照强度1000W/m2、组件工作温度-10.1℃) Vmin=15~24×(30.5+29.5×0.0034×(25-40.2))=420~671V (条件:辐照强度1000W/m2、组件工作温度40.2℃) 考虑到组件串联数越大,所需汇流箱数量越少,组串间并联所需电缆长度相应减少,因此设计中在满足逆变器最高输入电压的前提下,应尽量选择最大的组件串联数。初选组件串联数:20 根据计算,组件的串联数在20块时的计算数据如下: Vmax=20×(37.8+37.8×0.0034×(25+5)=833V (条件:辐照强度1000W/m2、组件工作温度-50C) 在并网逆变器最高电压900V以内,负荷要求。 Vmax=20×(30.5+30.5×0.0034×(25+5)=613V (条件:辐照强度1000W/m2、组件工作温度-50C) Vmin=20×(30.5+30.5×0.0034×(25-38))=583V (条件:辐照强度1000W/m2、组件工作温度380C) 可以看出,组件在极端温度下,电压范围在并网逆变器的MPPT工作范围内。所以,20个组件一串是合适的。

电池串联和并联的性能影响

电池串联和并联 把电池串联和并联起来使用,这听起来好象很简单,但是,遵循一些简单的规则,就可以避免不必要的问题。 在电池组中是把多个电池串联起来,得到所需要的工作电压。如果所需要的是更高的容量和更大的电流,那就应该把电池并联起来。另外还有一些电池组,把串联和并联这两种方法结合起来。一个膝上型电脑的电池有可能是把四节3.6V锂离子电池串联起来,总电压达到14.4V;然后,再把两组串联在一起的电池并联起来,这样,电池组的总电量就可以从2 000毫安时提高到4000毫安时。这种接法称作“四串两并”,它的意思是:把两组由四节电池串联在一起的电池组并联起来。 在手表、备份用的存储器和蜂窝里一般使用一节电池。一节镍基电池的标称电压是1.2 V,碱性电池是1.5V,氧化银电池是1.6V,铅酸性电池是2V,锂电池是3V,而锂离子电池的标称电压则是3.6V。使用锂离子聚合物和其他类型的锂电池,它的额定电压一般为3.7V。如果要想得到像11.1V这种不常见的电压,就得把三节这种电池串联在一起。随着现代微电子技术的发展,我们已经可以用一节3.6V的锂离子电池,为蜂窝和低功耗的便携通讯产品供电。在上世纪六十年代,在照度计中广泛使用的汞电池,出于环境保护方面的考虑,如今已经完全退出市场。 镍基电池的标称电压为1.2V或1.25V。它们之间,除了市场偏好之外,没有任何差别。大部分的商用电池,每节电池的电压为1.2V;工业电池、航空电池和军用电池,每节电池的电压仍是1.25V。 串联 需要高电量的便携设备,一般是由两节或更多节电池串联起来的电池组供电。如果使用高电压的电池,导体和开关的尺寸可以做得很小。中等价位的工业电动工具一般使用电压为12V至19.2V的电池供电;而高级电动工具使用电压为24V至36V的电池,以获得更大的电力。汽车工业最终把启动器的点火电池电压从12V(实际上是14V)提高到36V,甚至是42

电池组的串并联使用的优缺点

电池组的串并联使用的优 缺点 The Standardization Office was revised on the afternoon of December 13, 2020

电池组串并联使用分析报告 一.串联: 缺点:①电池组串联使用对保护板的要求更加的苛刻,不同的电池组使用的保护板的一致性更加严格。 ②对于串联使用,每个保护板上的MOS的选择也有一定的要求,根据使用串联后的最大串数来确定MOS管选择的最大耐压值。不管充电还是放电过程中,如果其中一组发生保护不至于击穿MOS管。 ③对于串联的每一个保护板都必须能承受相同的电流,与单独的总串数的保护板相比,使用的MOS管基本上一样,但是数量多了数倍,故大大增加了成本。 ④电池组的串联必须选用同口。如果使用分口的,电池组是可以充放电的,但是存在很多的隐患,尤其是不关断。充电时,分口的保护板的放电口必须断开,否则很有可能无法关断。 优点:方便携带,方便安装。 二.并联: 缺点:①对电池的一致性要求更高。比如:两组电池组并联使用,其电压相同,内阻不同,两组提供的电流就不一致。同样,电压不同,内阻相同,也同样提供的电流不一致。如果都不一样,提供的电流相差更大。 ②由于电池和保护板均有内阻,故对保护板内阻一致性的要求也高。 ③在过流中,如果板子的过流保护点相同,但是提供的电流不同的话,就会有一组保护板,另一组能正常放电,但是过流瞬间结束后,所有的电流都

由没保护的一组提供,这样长时间会导致此组电池衰减比较快。当然还有其他可以造成这种的情况的条件。 ④在过放中,如果其中一组先达到保护点,还是所有的电流都加到了其他的上面,久而久之电池的衰减就会加快,导致一致性更差。 ⑤如果还并起充电的话,充电电流不能超过单串保护板的电流。同口的可以直接充放,分口的的最好分开充电。充电时并联的放电口必须断开,否则过充保护失效。 ⑥并联时,电池组之间已经形成回路,如果压差比较大,可能会产生内环电流,这样有可能会损坏保护板。 优点:基本上和串联一样,方便携带,方便不同情况下的使用。三.总结: 不管是串联还是并联,对电池还有保护板一致性的要求更高。一致性不好的坏,电池组的寿命会大大衰减。同时,都会增加MOS管的数量,从而增加成本。 当然,把电池组串并联使用,方便携带,方便安装,我认为更重要的一点是方便随机组合使用,根据自己的需要进行组合。但是现在的技术没有达到,没法做到这样的随机组合,所以这个也许是未来的一个发展方向。

电池组的串并联使用的优缺点复习过程

电池组的串并联使用 的优缺点

电池组串并联使用分析报告 一.串联: 缺点:①电池组串联使用对保护板的要求更加的苛刻,不同的电池组使用的保护板的一致性更加严格。 ②对于串联使用,每个保护板上的MOS的选择也有一定的要求,根据使用串联后的最大串数来确定MOS管选择的最大耐压值。不管充电还是放电过程中,如果其中一组发生保护不至于击穿MOS管。 ③对于串联的每一个保护板都必须能承受相同的电流,与单独的总串数的保护板相比,使用的MOS管基本上一样,但是数量多了数倍,故大大增加了成本。 ④电池组的串联必须选用同口。如果使用分口的,电池组是可以充放电的,但是存在很多的隐患,尤其是不关断。充电时,分口的保护板的放电口必须断开,否则很有可能无法关断。 优点:方便携带,方便安装。 二.并联: 缺点:①对电池的一致性要求更高。比如:两组电池组并联使用,其电压相同,内阻不同,两组提供的电流就不一致。同样,电压不同,内阻相同,也同样提供的电流不一致。如果都不一样,提供的电流相差更大。 ②由于电池和保护板均有内阻,故对保护板内阻一致性的要求也高。 ③在过流中,如果板子的过流保护点相同,但是提供的电流不同的话,就会有一组保护板,另一组能正常放电,但是过流瞬间结束后,所有的电流都

由没保护的一组提供,这样长时间会导致此组电池衰减比较快。当然还有其他可以造成这种的情况的条件。 ④在过放中,如果其中一组先达到保护点,还是所有的电流都加到了其他的上面,久而久之电池的衰减就会加快,导致一致性更差。 ⑤如果还并起充电的话,充电电流不能超过单串保护板的电流。同口的可以直接充放,分口的的最好分开充电。充电时并联的放电口必须断开,否则过充保护失效。 ⑥并联时,电池组之间已经形成回路,如果压差比较大,可能会产生内环电流,这样有可能会损坏保护板。 优点:基本上和串联一样,方便携带,方便不同情况下的使用。三.总结: 不管是串联还是并联,对电池还有保护板一致性的要求更高。一致性不好的坏,电池组的寿命会大大衰减。同时,都会增加MOS管的数量,从而增加成本。 当然,把电池组串并联使用,方便携带,方便安装,我认为更重要的一点是方便随机组合使用,根据自己的需要进行组合。但是现在的技术没有达到,没法做到这样的随机组合,所以这个也许是未来的一个发展方向。

锂电池串联和并联的注意事项

把动力锂电池串联和并联起来使用,这听起来好象很简单,但是,遵循一些简单的规则,就可以避免不必要的问题。锂电池组包含两部分:锂电池和锂电池保护线路。 在锂电池组中是把多个锂电池串联起来,得到所需要的工作电压。如果所需要的是更高的容量和更大的电流,那就应该把锂电池并联起来。另外还有一些电池组,把串联和并联这两种方法结合起来。一个笔记本电脑的电池有可能是把四节3.6V锂离子电池串联起来,总电压达到14.4V;然后,再把两组串联在一起的电池并联起来,这样,电池组的总电量就可以从2000毫安时提高到4000毫安时。这种接法称作“四串两并”,它的意思是:把两组由四节电池串联在一起的电池组并联起来。锂离子电池的标称电压则是3.6V。使用锂离子聚合物和其他类型的锂电池,它的额定电压一般为3.7V。如果要想得到像11.1V这种不常见的电压,就得把三节这种电池串联在一起。串联需要高电量的便携设备,一般是由两节或更多节电池串联起来的电池组供电。使用高电压电池组所带来的另一个问题,就是有可能遇到电池组里的某一节电池失效的情况。这就像一个链条,串联在一起的电池越多,出现这种情况的几率就越高。只要一节电池有问题,它的电压就会降低。到最后,一节“断开”的电池可能会中断电流的输送。而要更换“坏”电池也绝非易事,因为新老电池是互不匹配的。一般说来,新电池的容量要比老电池的高得多。随着工作电压的下降,它比正常电池组更快地达到放电结束的临界点,同时,它的使用时间也急剧缩短。一旦设备因电压过低而切断电源,其余单体电池仍然完好的电池就不能把所存储的电量送出来了。这时,坏的那节电池电池还呈现很大的内阻,如果此时还带有负载,那么,将会导致整个电池链的输出电压将大幅度下降。在一组串联电池中,一节性能差的

电池串联和并联的区别

电池串联和并联的区别 如何正确地把电池串联和并联起来使用,这听起来好象很简单,但是,遵循一些简单的规则,就可以避免不必要的问题。 在电池组中是把多个电池串联起来,得到所需要的工作电压。如果所需要的是更高的容量和更大的电流,那就应该把电池并联起来。另外还有一些电池组,把串联和并联这两种方法结合起来。一个膝上型电脑的电池有可能是把四节3.6V锂离子电池串联起来,总电压达到14.4V;然后,再把两组串联在一起的电池并联起来,这样,电池组的总电量就可以从2000毫安时提高到4000毫安时。这种接法称作“四串两并”,它的意思是:把两组由四节电池串联在一起的电池组并联起来。 在手表、备份用的存储器和蜂窝电话里一般使用一节电池。一节镍基电池的标称电压是1.2V,碱性电池是1.5V,氧化银电池是1.6V,铅酸性电池是2V,锂电池是3V,而锂离子电池的标称电压则是3.6V.使用锂离子聚合物和其他类型的锂电池,它的额定电压一般为3.7V.如果要想得到像11.1V这种不常见的电压,就得把三节这种电池串联在一起。随着现代微电子技术的发展,我们已经可以用一节3.6V的锂离子电池,为蜂窝电话和低功耗的便携通讯产品供电。在上世纪六十年代,在照度计中广泛使用的汞电池,出于环境保护方面的考虑,如今已经完全退出市场。 镍基电池的标称电压为1.2V或1.25V.它们之间,除了市场偏好之外,没有任何差别。大部分的商用电池,每节电池的电压为1.2V;工业电池、航空电池和军用电池,每节电池的电压仍是1.25V. 并联 为了得到更多的电量,可以把两个或者更多个电池并联起来。除了把电池并联起来,另一个办法是使用尺寸更大的电池。由于受到可以选用的电池的限制,这个办法并不适用于所有情况。此外,大尺寸的电池也不适合做成专用电池所需要的外形规格。大部分的化学电池都可以并联使用,而锂离子电池最适合并联使用。由四节电池并联而成的电池组,电压保持为1.2V,而电流和运行时间则增大到四倍。 电池组的实例与电池串联相比,在电池并联电路中,高阻抗或“开路”电池的影响较小,但是,并联电池组会减少负载能力,并缩短运行时间。这就好比一个发动机只启动了三个汽缸。电路短路所造成的破坏会更大,这是因为,在短路时,出现故障的电池会迅速地耗尽其他电池里的电量,并引起火灾。 串联 需要高电量的便携设备,一般是由两节或更多节电池串联起来的电池组供电。如果使用高电压的电池,导体和开关的尺寸可以做得很小。中等价位的工业电动工具一般使用电压为12V 至19.2V的电池供电;而高级电动工具使用电压为24V至36V的电池,以获得更大的电力。汽车工业最终把启动器的点火电池电压从12V(实际上是14V)提高到36V,甚至是42V.这些电池组是由18节串联起来铅酸性电池组成。在早期的混合型汽车中,用来供电的电池组,

太阳能电池串并联输出功率比较

太阳能电池串并联输出功率比较 一,实验目的 (1)比较太阳能电池不同接法下的输出功率 (2)找出哪种接法适合电阻大的用电器哪种接法适合电阻小的用电器 二,实验器材 太阳能电池特性测试试验仪(THQTN-1) 三,实验原理 1.太阳电池的结构 以晶体硅太阳电池为例,其结构示意图如图1 所示.晶体硅太阳电池以硅半导体材料制成大面积pn结进行工作.一般采用n+/p 同质结的结构,即在约10 cm×10 cm 面积的p 型硅片(厚度约500 μm)上用扩散法制作出一层很薄(厚度~0.3 μm)的经过重掺杂的n 型层.然后在n 型层上面制作金属栅线,作为正面接触电极.在整个背面也制作金属膜,作为背面欧姆接触电极.这样就形成了晶体硅太阳电池.为了减少光的反射损失,一般在整个表面上再覆盖一层减反射膜.

2.光伏效应 当光照射在距太阳电池表面很近的pn结时,只要入射光子的能量大于半导体材料的禁带宽度Eg,则在p 区、n 区和结区光子被吸收会产生电子–空穴对.那些在结附近n 区中产生的少数载流子由于存在浓度梯度而要扩散.只要少数载流子离pn结的距离小于它的扩散长度,总有一定几率扩散到结界面处.在p 区与n 区交界面的两侧即结区,存在一空间电荷区,也称为耗尽区.在耗尽区中,正负电荷间形成一电场,电场方向由n区指向p 区,这个电场称为内建电场.这些扩散到结界面处的少数载流子(空穴)在内建电场的作用下被拉向p 区.同样,如果在结附近p 区中产生的少数载流子(电子)扩散到结界面处,也会被内建电场迅速被拉向n 区.结区内产生的电子–空穴对在内建电场的作用下分别移向n 区和p 区.如果外电路处于开

相关文档
相关文档 最新文档