文档视界 最新最全的文档下载
当前位置:文档视界 › 放缩法在数列求和中的基本策略

放缩法在数列求和中的基本策略

放缩法在数列求和中的基本策略
放缩法在数列求和中的基本策略

“放缩法”在数列求和中的基本策略

放缩法:为放宽或缩小不等式的范围的方法。常用在多项式中“舍掉一些正(负)项”而使不等式各项之和变小(大),或“在分式中放大或缩小分式的分子分母”,或“在乘积式中用较大(较小)因式代替”等效法,而达到其证题目的。

所谓放缩的技巧:即欲证B A ≤,欲寻找一个(或多个)中间变量C ,使B C A ≤≤,由A 到C 叫做“放”,由B 到C 叫做“缩”。

常用的放缩技巧有:(1)若,A t A ,A t A ,0t <->+>

(2,n 1n <-n n 2>,1n 11n ,1n ->-+-+

),0n (n n )1n (n 2

>=>+<<+=+-2n 1)1n (n 11n 1n 1 ).

1n n (2n

1

n n 21n n 2)n 1n (2),1n (n 11n 1)1n (n 1--<=+<++=-+>--=-(3)若,R m b a +

∈、、则

.

b m

a b a ,m b a b a +<+>(4)+++<++++221211!n 1!31!211Λ.

211n -+Λ(5)

.

n 12)n 11n 1()3121()211(1n

131211222-=--++-+-+<++++ΛΛ(

6)11n n

1n 11n 11n 1n 212n 11n 1<+=++++++≤+++++ΛΛ或

≥+++++n 212n 11n 1Λ.2

1n 2n n 21n 21n 21==++Λ(7)

n

n n n 1n 1n 1n 131211==+++>++++ΛΛ等等。

注:1、放缩法的理论依据,是不等式的传递性,即若,D C ,C B ,B A >>>则D A >。2、使用放缩法时,“放”、“缩”都不要过头。3、放缩法是一种技巧性较强的不等变形,一般用于两边差别较大的不等式。常用的有“添舍放缩”和“分式放缩”,都是用于不等式证明中局部放缩。

1、添加或舍弃一些正项(或负项)

例1、已知*

21().n n a n N =-∈求证:

*12

231

1...().23n n a a a n n N a a a +-<+++∈ 证明: 111211111111

.,1,2,...,,2122(21)2 3.222232k k k k k k k

k a k n a +++-==-=-≥-=--+-Q

1222311111111

...(...)(1),2322223223

n n n n a a a n n n a a a +∴

+++≥-+++=-->-

*122311...().232

n n a a a n n

n N a a a +∴-<+++<∈ 若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的

值变小。由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。本题在放缩时就舍去了22k -,从而是使和式得到化简.

2、先放缩再求和(或先求和再放缩) 例2、函数f (x )=

x

x 414+,求证:f (1)+f (2)+…+f (n )>n +

)(2

1

21*1

N n n ∈-+. 证明:由f (n )=

n

n 414+=1-

11

11422n n

>-+? 得f (1)+f (2)+…+f (n )>n

2

2112

2112

2112

1

?-

++?-

+?-Λ

)(21

2

1)2141211(41*11N n n n n n ∈-+=++++-=+-Λ.

例3(1999年湖南省理16)求证:)N n (1n 21

2n 11n 121∈<+++++≤Λ

证明:因为,

21n n n n n 1n n 1n n 1n n 12

n 11n 1=+=+++++≥++++++ΛΛ又,1n n n 1n 1n 1n n 12n 11n 1==+++<++++++ΛΛ所以原不等式成立。

例4 求证:

.2n 3211

32112111

ΛΛ

证明:因为左边+

+-+-+-+=-++?+?+≤ΛΛ)4

131()3121()211(1n )1n (13212111,2n 1

2)n 11n 1(

<-=--证毕。

例5 求证)

N n (1!n 1

!41!31!21∈<++++Λ

证明:因为,

2122211k 3211!k 11k -=????

32212121.1)21

(1211n 1n <-=+--

此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和. 若分子, 分母如果同时存在变量时, 要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可。 3、先放缩,后裂项(或先裂项再放缩)

例6、已知a n =n ,求证:∑n

k=1 k

a 2k

<3.

证明:∑n

k=

1

k ∑n

k=1

<1+∑n

k=2

1

(k -1)k (k +1)

<1+∑n

k=2

2(k -1)(k

+1) ( k

+1 +k

-1 ) =2

1n

k =+

=1+ ∑n

k=2

(

1(k -1) -

1

(k +1)

)

=1+1+

2

-1(n +1) <2+2<3.

例7、求证

证明

本题观察数列的构成规律,采用

通项放缩的技巧把一般数列转化成特殊数列,从而达到简化证题的目的。

1

2

1

121

1

2

11

1!

122

2111112!3!

!11111

2

221112,(2)

11133

k n n n k n k ---???-

-<

=

>∴+++++<++

+

++

=+

=-

L L 1111

12!3!!13

n +++++

例8求证

证明

本题先采用减小分母的两次放缩,再裂项,最后又放缩,有的放矢,直达目标. 4、放大或缩小“因式”;

例8、已知数列{}n a 满足2

111

,0,2n n

a a a +=<≤求证:121

1().32n

k k k k a a a ++=-<∑ 证明 22112131110,,,.2416n n a a a a a a +<≤

=∴=≤≤Q L 2311,0,16k k a a +∴≥<≤≤当时 12

1111

1111()()().161632

n

n k k k k k n k k a a a a a a a ++++==∴-≤-=-<∑∑ 本题通过对因式2k a +放大,而得到一个容易求和的式子11

()n

k

k k a

a +=-∑,最终得出证明.

5、逐项放大或缩小

例9、设)1(433221+++?+?+?=n n a n Λ求证:2)1(2)1(2

+<<+n a n n n 证明:∵ n n n n =>+2

)1( 2

12)21()1(2+=+<+n n n n

∴ 2

1

2)1(+<+

∴ 2

)

12(31321++++<<++++n a n n ΛΛ, ∴2)1(2)1(2+<<+n a n n n 本题利用21

(1)2

n n n n +<+<,对n a 中每项都进行了放缩,从而得到可以求和的

数列,达到化简的目的。

2222221111

(1)1111231111111233412111

2247

1()1()()()

1()

K k k k

k n n n n ---<=-∴++++<++-+-++-=++-<

Q L L

6、固定一部分项,放缩另外的项; 例10、求证:2222111171234

n ++++

<=---Q

2222211111111151171()().1232231424

n n n n ∴

++++<++-++-=+-<-L L 此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。

以上介绍了用“放缩法”证明不等式的几种常用策略,解题的关键在于根据问题的特征选择恰当的方法,有时还需要几种方法融为一体。在证明过程中,适当地进行放缩,可以化繁为简、化难为易,达到事半功倍的效果。但放缩的范围较难把握,常常出现放缩后得不出结论或得到相反的现象。因此,使用放缩法时,如何确定放缩目标尤为重要。要想正确确定放缩目标,就必须根据欲证结论,抓住题目的特点。掌握放缩技巧,真正做到弄懂弄通,并且还要根据不同题目的类型,采用恰到好处的放缩方法,才能把题解活,从而培养和提高自己的思维和逻辑推理能力,分析问题和解决问题的能力。希望大家能够进一步的了解放缩法的作用,掌握基本的放缩方法和放缩调整手段.

高中数列放缩法技巧大全

高中数列放缩法技巧大全 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑ =-n k k 121 42的值; (2)求证:2 1153n k k =<∑ . 解析:(1)因为 1 21 121)12)(12(21422+- -=+-= -n n n n n ,所以1 2212111 42 1 2 += +- =-∑=n n n k n k (2)因为22211411214121214 n n n n n ??<==- ?--+??- , 所以35321121121513121112 =+

(完整版)放缩法典型例题

放缩法典型例题 数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和. 一.先求和后放缩 例1.正数数列的前项的和,满足,试求: (1)数列的通项公式; (2)设,数列的前项的和为,求证: 解:(1)由已知得,时,,作差得: ,所以,又因为为正数数列,所以,即是公差为2的等差数列,由,得,所以 (2),所以 注:一般先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这 里所谓的差比数列,即指数列满足条件)求和或者利用分组、裂项、倒序相加等方法来求和. 二.先放缩再求和 1.放缩后成等差数列,再求和 例2.已知各项均为正数的数列的前项和为,且. (1) 求证:; (2)求证:

解:(1)在条件中,令,得,,又由条件有,上述两式相减,注意到得 ∴ 所以,, 所以 (2)因为,所以,所以 ; 2.放缩后成等比数列,再求和 例3.(1)设a,n∈N*,a≥2,证明:; (2)等比数列{a n}中,,前n项的和为A n,且A7,A9,A8成等差数列.设,数列{b n}前n项的和为B n,证明:B n<. 解:(1)当n为奇数时,a n≥a,于是,. 当n为偶数时,a-1≥1,且a n≥a2,于是 .(2)∵,,,∴公比. ∴..

∴.3.放缩后为差比数列,再求和 例4.已知数列满足:,.求证: 证明:因为,所以与同号,又因为,所以,即,即.所以数列为递增数列,所以,即,累加得:. 令,所以,两式相减得: ,所以,所以, 故得. 4.放缩后为裂项相消,再求和 例5.在m(m≥2)个不同数的排列P1P2…P n中,若1≤i<j≤m时P i>P(即前面某数大于后面某数),则称P i与P j构成一个逆序.一个排列的全部逆序的总数称为该排列的逆序数. 记排列的逆序数为a n,如排列21的逆序数,排列321的逆序数.j (1)求a4、a5,并写出a n的表达式; (2)令,证明,n=1,2,…. (2)因为,

高中数学放缩法技巧全总结材料

2010高考数学备考之放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求 ∑=-n k k 1 2 142 的值; (2)求证: 3 51 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为??? ??+--=-=- <1211212144 4 11 1 222n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1)1(1 ≥--<+n n n n n (15) 11 1) 11)((1122222 222<++++= ++ +--= -+-+j i j i j i j i j i j i j i 例2.(1)求证:)2()12(2167) 12(1513112 22≥-->-++++n n n (2)求证:n n 412141361161412 -<++++ (3)求证:1122642)12(531642531423121-+< ????-????++????+??+n n n (4) 求证:)112(213 12 11)11(2-+<++++<-+n n n

数列放缩法

数列放缩法 1. 已知正项数列{}n a 的前n 项和为s n ,且1a =2,*1,4N n a a s n n n ∈?=+,(1)求数列{}n a 的 通项公式;(2)设数列? ?????21n a 的前n 项和为n T ,求证:21<<T 44n +n n 。 2. 已知数列{}n a 和{}n b 满足()()* 3212N n a a a a n b n ∈=Λ。若{}n a 为等比数列,且21 =a ,236b b +=。 (1)求数列n a 和n b 。

(2)设数列() *11N n b a c n n n ∈-=。记数列{}n c 的前n 项和n s 。 (1)求n s ;(2)求正整数k ,使得对任意实数*N n ∈均有n k s s ≥。 3. 已知正项数列{}n a 的前n 项和为s n ,满足:() *22N n n a s n n ∈-=。 (1)求数列{}n a 的通项公式; (2)若数列{}()n n n T a b ,2log 2+=为数列??????+2n n a b 的前n 项和,求证21≥n T 。

4.设各项均为正数的数列{}n a 的前n 项和为s n ,且n s 满足()() *222,033N n n n s n n s n n ∈=+--+-。(1)求1a 的值; (2)求数列{}n a 的通项公式;(3)证明:对一切正整数n ,有 ()()()3 1<1111112211++++++n n a a a a a a Λ。

练习:1.设数列{}()Λ,3,2,1=n a n 的前n 项和满足,21a a s n n -=且321,1,a a a +成等差数列。 (1)求数列{}n a 的通项公式; (2)记数列? ?????n a 1的前n 项和为n T ,求使得10001<1-n T 成立的n 的最小值。

高中数学数列放缩专题:用放缩法处理数列和不等问题

用放缩法处理数列和不等问题(教师版) 一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1

高考数学数列不等式证明题放缩法十种方法技巧总结(供参考)

1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n 求证.2 )1(2)1(2 +<<+n S n n n 例2 已知函数bx a x f 211 )(?+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121 )()2()1(1-+ >++++n n n f f f 例3 求证),1(2 21321 N n n n C C C C n n n n n n ∈>?>++++- . 例4 已知222121n a a a +++=,222121n x x x +++=,求证:n n x a x a x a +++ 2211≤1. 2.利用有用结论 例5 求证.12)1 211()511)(311)(11(+>-++++n n 例6 已知函数 .2,,10,)1(321lg )(≥∈≤x x f x f 对任意*∈N n 且2≥n 恒成立。 例7 已知1 12111,(1).2n n n a a a n n +==+++ )(I 用数学归纳法证明2(2)n a n ≥≥; )(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828 e ≈) 例8 已知不等式21111[log ],,2232 n n N n n *+++>∈>。2[log ]n 表示不超过n 2log 的最大整数。设正数数列}{n a 满足:.2,),0(111≥+≤ >=--n a n na a b b a n n n 求证.3,][log 222≥+

最新高考数学数列放缩法技巧全总结

高考数学备考之 放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-n k k 1 2 142 的值; (2)求证: 351 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 42 2 +--=+-= -n n n n n ,所以122121114212 +=+-=-∑=n n n k n k (2)因为? ? ? ??+--=-= - <121121 2144 4 111 2 22 n n n n n ,所以 353211211215 1 31211 1 2 = +-?>-?>?-=?=+ (14) ! )2(1 !)1(1)!2()!1(!2+- +=+++++k k k k k k (15) ) 2(1) 1(1 ≥--<+n n n n n

数列难题放缩法的技巧

数列难题放缩法的技巧 一、基本方法 1.“添舍”放缩 通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。 例1. 设a ,b 为不相等的两正数,且a 3 -b 3 =a 2 -b 2 ,求证143 <+<a b 。 例2. 已知a 、b 、c 不全为零,求证: a a b b b b c c c ac a a b c 22222232 ++++++++++>() [变式训练]已知* 21().n n a n N =-∈求证: *12 231 1...().23n n a a a n n N a a a +-<+++∈ 2. 分式放缩 一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分 母同时加上同一个正数则分式值变大,利用这些性质,可达到证题目的。 例3. 已知a 、b 、c 为三角形的三边,求证:12<++<a b c b a c c a b +++。 3. 裂项放缩 若欲证不等式含有与自然数n 有关的n 项和,可采用数列中裂项求和等方法来解题。 例4. 已知n ∈N*,求n 2n 13 12 11<…+ ++ + 。 例5. 已知* N n ∈且)1n (n 3221a n +++?+?=Λ,求证:2 )1(2)1(2 +< <+n a n n n 对所有正整数n 都成立。 4. 公式放缩 利用已知的公式或恒不等式,把欲证不等式变形后再放缩,可获简解。 例6. 已知函数1212)(+-=x x x f ,证明:对于* N n ∈且3≥n 都有1 )(+>n n n f 。 例7. 已知2x 1)x (f +=,求证:当a b ≠时f a f b a b ()()-<-。 5. 换元放缩 对于不等式的某个部分进行换元,可显露问题的本质,然后随机进行放缩,可达解题目

高考数学_压轴题_放缩法技巧全总结(最强大)

放缩技巧 (高考数学备考资料) 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑ =-n k k 1 2142的值; (2)求证:3 511 2 <∑=n k k . 解析:(1)因为 121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为 ??? ??+--=-=- <1211212144 4 11 1222 n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1) 1(1 ≥--<+n n n n n (15) 112 22 2+-+-+j i j i j i

数列综合应用(放缩法)

数列综合应用(1) ————用放缩法证明与数列和有关的不等式 一、备考要点 数列与不等式的综合问题常常出现在高考的压轴题中, 是历年高考命题的热点,这类问题能有效地考查学生 综合运用数列与不等式知识解决问题的能力.解决 这类问题常常用到放缩法,而求解途径一般有两条: 一是先求和再放缩,二是先放缩再求和. 二、典例讲解 1.先求和后放缩 例1.正数数列{}n a 的前n 项的和n S ,满足 12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11 +=n n n a a b ,数列{}n b 的前n 项的和 为n B ,求证:2 1

③.放缩后为差比数列,再求和 例4.已知数列{}n a 满足:11=a , )3,2,1()21(1 =+=+n a n a n n n .求证: 1 1213-++-≥>n n n n a a ④.放缩后为裂项相消,再求和 例5.在m (m ≥2)个不同数的排列P 1P 2…P n 中, 若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数), 则称P i 与P j 构成一个逆序. 一个排列的全部逆序的 总数称为该排列的逆序数. 记排列321)1()1( -+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的 逆序数63=a . (1)求a 4、a 5,并写出a n 的表达式; (2)令n n n n n a a a a b 11+++=,证明: 32221+<++

高考数学数列放缩法技巧全汇总

高考数学数列放缩法技巧全汇总

————————————————————————————————作者:————————————————————————————————日期:

高考数学备考之 放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-n k k 1 2 142 的值; (2)求证: 351 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 42 2 +--=+-= -n n n n n ,所以122121114212 +=+-=-∑=n n n k n k (2)因为? ? ? ??+--=-= - <121121 2144 4 111 2 22 n n n n n ,所以 353211211215 1 31211 1 2 = + -?>-?>?-=?=+ (14) ! )2(1 !)1(1)!2()!1(!2+- +=+++++k k k k k k (15) ) 2(1) 1(1 ≥--<+n n n n n

放缩法证明数列不等式经典例题

放缩法证明数列不等式 主要放缩技能: 1.211111111(1)(n 1)1n n n n n n n n -=<<=-++-- 2221144112()141(21)(21)21214 n n n n n n n <===--+--+- ==>= ==<= =<= == =< = = 5. 121122211(21)(21)(22)(21)(21)2121 n n n n n n n n n n ---<==-------- 6. 111 22(1)11(1)2(1)22(1)2n n n n n n n n n n n n n +++++-==-+?+??+?

例1.设函数2*2()1x x n y n N x -+=∈+的最小值为n a ,最大值为n b , 且n c =(1)求n c ;(2)证明: 4444123111174n c c c c ++++ < 例2.证明:1611780<+ ++< 例3.已知正项数列{}n a 的前n 项的和为n s ,且12n n n a s a + =,*n N ∈; (1)求证:数列{} 2n s 是等差数列; (2)解关于数列n 的不等式:11()48n n n a s s n ++?+>- (3)记312311112,n n n n b s T b b b b = = ++++,证明:312n T <<

例4. 已知数列{}n a 满足:n a n ?????? 是公差为1的等差数列,且121n n n a a n ++=+; (1) 求n a ;(2 12n na +++< 例5.在数列{}n a 中,已知1112,2n n n n a a a a a ++==-; (1)求n a ;(2)证明:112233(1)(1)(1)(1)3n n a a a a a a a a -+-+-++-< 例6. 数列{}n a 满足:11122,1()22 n n n n n a a a n a ++==++; (1)设2n n n b a =,求n b ;(2)记11(1)n n c n n a +=+,求证:12351162 n c c c c ≤++++<

高三数学数列放缩法

数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和. 一.先求和后放缩 例1.正数数列的前项的和,满足,试求: (1)数列的通项公式; (2)设,数列的前项的和为,求证: 解:(1)由已知得,时,,作差得: ,所以,又因为为正数数列,所以,即是公差为2的等差数列,由,得,所以 (2),所以 注:一般先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这 里所谓的差比数列,即指数列满足条件)求和或者利用分组、裂项、倒序相加等方法来求和. 二.先放缩再求和 1.放缩后成等差数列,再求和 例2.已知各项均为正数的数列的前项和为,且. (1) 求证:; (2)求证:

解:(1)在条件中,令,得,,又由条件有,上述两式相减,注意到得 ∴ 所以,, 所以 (2)因为,所以,所以 ; 2.放缩后成等比数列,再求和 例3.(1)设a,n∈N*,a≥2,证明:; (2)等比数列{a n}中,,前n项的和为A n,且A7,A9,A8成等差数列.设 ,数列{b n}前n项的和为B n,证明:B n<. 解:(1)当n为奇数时,a n≥a,于是,. 当n为偶数时,a-1≥1,且a n≥a2,于是 .(2)∵,,,∴公比. ∴..

∴. 3.放缩后为差比数列,再求和 例4.已知数列满足:,.求证: 证明:因为,所以与同号,又因为,所以,即,即.所以数列为递增数列,所以,即,累加得:. 令,所以,两式相减得: ,所以,所以, 故得. 4.放缩后为裂项相消,再求和 例5.在m(m≥2)个不同数的排列P1P2…P n中,若1≤i<j≤m时P i>P(即前面某数大于后面某数),则称P i与P j构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列的逆序数为a n,如排列21的逆序数,排列321的逆序数 .j (1)求a4、a5,并写出a n的表达式; (2)令,证明,n=1,2,…. (2)因为,

高考数学专题复习放缩法技巧全总结

高考数学备考之放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求 ∑=-n k k 1 2 1 42 的值; (2)求证: 3 51 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k 技巧积累:(1)??? ??+--=-< =1211212144 4412 2 2n n n n n (2)) 1(1) 1(1)1()1(212 11+--=-+=+n n n n n n n C C n n (5) n n n n 2 1121)12(21--=- (8) n n n n n n n 2)32(12)12(12 13211221?+-?+=???? ??+-+- (9) ? ? ? ??++-+=+++??? ??+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1 (10) !)1(1!1!)1(+- =+n n n n >算数平均数可 证) 122a b +?>≥

(3)2n n ≥=> 易知恒成立,当 2)> ≥恒成立。 例2.(1)求证:)2()12(2167) 12(1513112 22≥-->-++++n n n Λ (2)求证:n n 412141361161412 -<++++Λ (3)求证:1122642)12(531642531423121-+< ????-????++????+??+n n n ΛΛΛ (4) 求证:)112(213 12 11)11(2-+<++++<-+n n n Λ (3)再结合 n n n -+<+22 1进行裂项,最后就可以得到答案 例3.求证: 3 5 191411)12)(1(62<++++≤++n n n n Λ 解析:一方面: 353211211215 1 31211 1 2 = +

放缩法技巧全总结.doc

.. 2011 高考数学备考之 放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例 1.(1) n 2 的值 ; (2) 求证 : n 1 5 . 求 k 1 4k 2 1 k 1 k 2 3 解析 :(1) 因为 2 2 1 1 , 所以 n 2 1 1 2n 4n 2 1 (2n 1)(2n 1) 2n 1 2n 1 k 1 4k 2 1 2n 1 2 n 1 (2) 因为 1 1 4 1 1 , 所以 1 1 2 1 1 1 1 5 2 n 1 2 2 1 4 n 2 2n 1 2n 1 k 1 k 2 3 5 2n 1 2n 1 3 3 2 1 n n 4 奇巧积累 :(1) 1 4 4 2 1 1 (2) 1 2 1 1 n 2 4n 2 4n 2 2n 1 C n 1 1 C n 2 ( n 1)n( n 1) n( n 1) n(n 1) 1 2n 1 (3) T r 1 r 1 n! 1 1 1 1 1 (r 2) C n r!( n r )! n r r! r ( r 1) r 1 r n r (4) (1 1 ) n 1 1 1 1 1 1 5 n 2 3 2 n(n 1) 2 (5) 1 1 1 (6) 1 n 2 n 2 n (2 n 1) 2n 1 2 n n 2 (7) 2( n 1 n ) 1 2( n n 1) (8) 2 1 1 1 1 n 2 n 1 2n 3 2n (2 n 1) 2 n 1 (2n 3) 2n (9) 1 1 1 1 , 1 1 1 1 k (n 1 k) n 1 k k n 1 1 k ) k 1 n n 1 k n(n (10) n 1 1 (11) 1 2 2 2 (n 1) ! n ! (n 1) ! 2( 2n 1 2n 1) n 2n 1 2n 1 1 1 n n 2 2 (11) 2 n 2n 2 n 2n 1 1 1 (n 2 ) (2n 1)2 (2n 1)( 2n 1) (2 n 1)( 2 n 2) (2 n 1)(2n 1 1) 2n 1 1 2 n 1 (12) 1 1 1 1 1 1 n 3 n n 2 n (n 1)(n 1) n( n 1) n (n 1) n 1 n 1 1 1 n 1 n 1 1 1 n 1 n 1 2 n n 1 n 1 (13) (14) 2 n 1 2 2n (3 1) 2n 3 3(2 n 1) 2n 2n 1 2n 1 2 n 3 2n 1 3 k 2 1 1 (15) 1 n n 1(n 2) k! (k 1)! (k 2)! (k 1) ! (k 2) ! n( n 1) (15) i 2 1 j 2 1 i 2 j 2 i j 1 i j (i j)( i 2 1 j 2 1) i 2 1 j 2 1 . .下载可编辑 . .

放缩法技巧全总结

放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑ =-n k k 121 42的值; (2)求证:3511 2 <∑ =n k k . 解析:(1)因为121121)12)(12(2142 2+--=+-=-n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为 ??? ??+--=-=- <1211212144 4 111 222 n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1) 1(1 ≥--<+n n n n n

相关文档
相关文档 最新文档