文档视界 最新最全的文档下载
当前位置:文档视界 › 第十四章 糖酵解(重要)

第十四章 糖酵解(重要)

糖酵解途径

糖酵解途径(glycolytic pathway)是指细胞在胞浆中分解葡萄糖生成丙酮酸(pyruvate)的过程,此过程中伴有少量ATP的生成.在缺氧条件下丙酮酸被还原为乳酸(lactate)称为糖酵解.有氧条件下丙酮酸可进一步氧化分解生成乙酰CoA进入三羧酸循环,生成CO2和H2O. 葡萄糖不能直接扩散进入细胞内,其通过两种方式转运入细胞:一种是在前一节提到的与Na+共转运方式,它是一个耗能逆浓度梯度转运,主要发生在小肠粘膜细胞、肾小管上皮细胞等部位;另一种方式是通过细胞膜上特定转运载体将葡萄糖转运入细胞内(图4-1),它是一个不耗能顺浓度梯度的转运过程.目前已知转运载体有5种,其具有组织特异性如转运载体-1(GLUT-1)主要存在于红细胞,而转运载体-4(GLUT-4)主要存在于脂肪组织和肌肉组织. 糖酵解过程 糖酵解分为两个阶段共10个反应,每个分子葡萄糖经第一阶段共5个反应,消耗2个分子ATP为耗能过程,第二阶段5个反应生成4个分子ATP为释能过程. 1.第一阶段 (1)葡萄糖的磷酸化(phosphorylation of glucose) 进入细胞内的葡萄糖首先在第6位碳上被磷酸化生成6-磷酸葡萄糖(glucose 6 phophate,G-6-P),磷酸根由ATP供给,这一过程不仅活化了葡萄糖,有利于它进一步参与合成与分解代谢,同时还能使进入细胞的葡萄糖不再逸出细胞.催化此反应的酶是己糖激酶(hexokinase,HK).己糖激酶催化的反应不可逆,反应需要消耗能量

ATP,Mg2+是反应的激活剂,它能催化葡萄糖、甘露糖、氨基葡萄糖、果糖进行不可逆的磷酸化反应,生成相应的6-磷酸酯,6-磷酸葡萄糖是HK的反馈抑制物,此酶是糖氧化反应过程的限速酶(rate limiting enzyme)或称关键酶(key enzyme)它有同工酶Ⅰ-Ⅳ型,Ⅰ、Ⅱ、Ⅲ型主要存在于肝外组织,其对葡萄糖Km值为10-5~10-6M Ⅳ型主要存在于肝脏,特称葡萄糖激酶(glucokinase,GK),对葡萄糖的Km值1~10-2M,正常血糖浓度为5mmol/L,当血糖浓度升高时,GK 活性增加,葡萄糖和胰岛素能诱导肝脏合成GK,GK能催化葡萄糖、甘露糖生成其6-磷酸酯,6-磷酸葡萄糖对此酶无抑制作用. (2)6-磷酸葡萄糖的异构反应(isomerization of glucose-6-phosphate) 这是由磷酸己糖异构酶(phosphohexose isomerase)催化6-磷酸葡萄糖(醛糖aldose sugar)转变为6-磷酸果糖(fructose-6-phosphate,F-6-P)的过程,此反应是可逆的. (3)6-磷酸果糖的磷酸化(phosphorylation of fructose-6-phosphate) 此反应是6磷酸果糖第一位上的C进一步磷酸化生成1,6-二磷酸果糖,磷酸根由ATP供给,催化此反应的酶是磷酸果糖激酶1(phosphofructokinase l,PFK1). PFK1催化的反应是不可逆反应,它是糖的有氧氧化过程中最重要的限速酶,它也是变构酶,柠檬酸、ATP等是变构抑制剂,ADP、AMP、Pi、1,6-二磷酸果糖等是变构激活剂,胰岛素可诱导它的生成. (4)1.6 二磷酸果糖裂解反应(cleavage of fructose 1,6 di/bis phosphate)

最新药理学口诀

一、?-内酰胺类抗生素 青霉素【TANG 原创】 废草上面长葡萄, 溶血链球可治好。 下治淋病上流脑, 白炭破产放心瞧。 勾搭梅毒鼠咬热, 青霉素都能治疗! 1)G+球——溶链、肺链、草链、肺炎双球菌、不产青霉素酶的金葡菌和厌氧的阳性球菌。 2)G-球——脑膜炎奈瑟球菌、淋病,后者耐药普遍。 3)G+杆菌——白喉、炭疽、破伤风、产气荚膜梭菌、放线菌属。 4)螺旋体——梅毒、钩端及鼠咬热螺旋菌。 半合成青霉素口诀—TANG(原创) ·青V耐酸不耐酶,轻度感染口服爽; ·双氯耐酸又耐酶,可惜不能耐甲氧。 ·氨苄阿莫是广谱,肠球氨苄来帮忙; ·阿莫肺炎和变形,幽门螺杆也能抗。 ·最后三个抗铜绿,替卡哌拉美名扬! 1.头孢噻吩 1.头孢羟氨苄 2.头孢克洛 3.头孢噻肟 3.头孢哌酮 4.头孢匹罗 【口诀TANG】

一代分(噻吩)辨(氨苄)二代克(克洛), 三棵梧(噻肟)桐(哌酮)四匹(匹罗)马。 二、大环内酯类、林克霉素类、多肽类抗生素 大环内酯类与克林霉素和氯霉素作用靶位相同,当与这些药物合用时,可发生相互拮抗作用。 【原创口诀】30而立四环素,红绿林中50载! 2.军团菌——肺炎。 3.衣原体、支原体——呼吸道及泌尿生殖系统感染。 4.白喉杆菌感染——红霉素能根除。 【原创口诀TANG】百支空军首选红! 也用于四环素类禁忌证——婴儿期衣原体肺炎和新生儿眼炎。 【前后联系】第9章——四环素用于四体(衣原体、支原体、螺旋体、立克次体),但对 于新生儿而言,四环素有8大不良反应,不宜应用! 3.克拉霉素——最强。 抗菌活性为大环内酯类抗生素中最强者。 对酸稳定,但首过消除明显。 半合成大环内酯类口诀—TANG(原创) 【二代大环】 二代大环罗克阿, 耐酸稳定能口服。 不良减轻半衰长, 呼吸感染可用它。 包括:林可霉素和克林霉素。二者抗菌谱相同,但克林霉素更强,口服吸收好且毒性小。 常用克林霉素。 骨组织可达更高浓度——治疗金黄色葡萄球菌所致骨髓炎——首选! .抗菌谱: 特点是对G+菌或G-厌氧菌均有强大杀菌作用。 万古霉素 仅对G+球菌有强大杀菌作用。 适用于耐青霉素和头孢菌素的G+菌所致严重感染,尤其耐甲氧西林金葡球菌(MRSA)、

糖酵解反应过程

有氧氧化的步骤简介 有氧氧化包括三个大的阶段,分别为糖的酵解、乙酰COA的 形成和三羧酸循环。 糖酵解反应过程 步骤名称底物酶产物能量 1 葡萄糖磷 酸化葡萄糖己糖激酶 HK 6-磷酸 葡萄糖 消耗ATP 一个 2 6-磷酸葡 萄糖异构6-磷酸葡 萄糖 葡萄糖己 糖异构酶 6-磷酸果 糖 3 6-磷酸果 糖磷酸化6-磷酸果 糖 磷酸果糖 激酶1 (PFK1) 1,6-二磷 酸果糖 消耗ATP 一个 4 磷酸丙糖 的生成1,6-二磷 酸果糖 缩醛酶磷酸二羟 丙酮,3- 磷酸甘油 醛 5 丙糖的转 化磷酸二羟 丙酮 磷酸丙糖 异构酶 3-磷酸甘 油醛 6 3-磷酸甘 油醛氧化 脱氢3-磷酸甘 油醛 3-磷酸甘 油脱氢酶 1,3-二磷 酸甘油酸 7 底物水平1,3-二磷磷酸甘油3-磷酸甘产生两分

磷酸化酸甘油酸酸激酶油酸子ATP 8 3-磷酸甘 油酸异构3-磷酸甘 油醛 磷酸甘油 酸变位酶 2-磷酸甘 油酸 9 2-磷酸甘 油酸烯醇 化2-磷酸甘 油酸 烯醇化酶磷酸烯醇 式甘油酸 10 底物水平 磷酸化磷酸烯醇 式甘油酸 丙酮酸激 酶 丙酮酸产生两分 子ATP 糖酵解过程简述 糖酵解在胞浆内进行,分为两阶段,第一阶段为3-磷酸甘油醛的生成,第二阶段为丙酮酸的生成。 第一阶段包括五个步骤 第一步为葡萄糖的磷酸化,葡萄糖在己糖激酶的催化下,消耗一个ATP,在6号c原子上挂上一个磷酸基,生成6-磷酸葡萄糖。第二步为6-磷酸葡萄糖的异构,在葡糖糖异构酶的催化下,6-磷酸葡萄糖异构为6-磷酸果糖。 第三步为6-磷酸果糖的磷酸化,在6-磷酸果糖激酶1的催化下,消耗一分子ATP,生成1,6-二磷酸果糖。 第四步为磷酸丙糖的生成,1,6-二磷酸果糖在缩醛酶的催化下生成一分子磷酸二羟丙酮和一分子3-磷酸甘油醛。 第五步为磷酸二羟丙酮的异构,磷酸二羟丙酮在丙糖异构酶的作用下生成3-磷酸甘油醛。

药理学口诀顺口溜大全

药理学口诀顺口溜大全 拟胆碱药 拟胆碱药分两类,兴奋受体抑制酶; 匹罗卡品作用眼,外用治疗青光眼; 新斯的明抗酯酶,主治重症肌无力; 毒扁豆碱毒性大,作用眼科降眼压。 阿托品 莨菪碱类阿托品,抑制腺体平滑肌; 瞳孔扩大眼压升,调节麻痹心率快; 大量改善微循环,中枢兴奋须防范; 作用广泛有利弊,应用注意心血管。 临床用途有六点,胃肠绞痛立即缓; 抑制分泌麻醉前,散瞳配镜眼底检; 防止“虹晶粘”,能治心动缓; 感染休克解痉挛,有机磷中毒它首选。 东莨菪碱 镇静显著东莨菪碱,能抗晕动是特点; 可治哮喘和“震颤”,其余都像阿托品, 只是不用它点眼。 肾上腺素 α、β受体兴奋药,肾上腺素是代表; 血管收缩血压升,局麻用它延时间, 局部止血效明显,过敏休克当首选, 心脏兴奋气管扩,哮喘持续它能缓, 心跳骤停用"三联",应用注意心血管, α 受体被阻断,升压作用能翻转。 去甲肾上腺素 去甲强烈缩血管,升压作用不翻转, 只能静滴要缓慢,引起肾衰很常见, 用药期间看尿量,休克早用间羟胺。 异丙肾上腺素 异丙扩张支气管,哮喘急发它能缓, 扩张血管治“感染”,血容补足效才显。 兴奋心脏复心跳,加速传导律不乱, 哮喘耐受防猝死,甲亢冠心切莫选。 α受体阻断药 α受体阻断药,酚妥拉明酚苄明, 扩张血管治栓塞,血压下降诊治瘤, NA释放心力增,治疗休克及心衰。 β受体阻断药

β受体阻断药,普萘洛尔是代表, 临床治疗高血压,心律失常心绞痛。三条禁忌记心间,哮喘、心衰、心动缓。 传出N药在休克治疗中的应用 (一)药物的种类 抗休克药分二类,舒缩血管有区分; 正肾副肾间羟胺,收缩血管为一类;莨菪碱类异丙肾,加上α受体阻断剂; 还有一类多巴胺,扩张血管促循环。 (二)常见休克的药物选用: 过敏休克选副肾,配合激素疗效增; 感染用药分阶段,扩容纠酸抗感染, 早期需要扩血管,山莨菪碱为首选; 后期治疗缩血管,间羟胺替代正肾。心源休克须慎重,选用"二胺"方能行。 说明:"二胺"指多巴胺和间羟胺 局麻药 丁卡表麻毒性大,普卡安全不表麻; 利多全能腰慎选,室性律乱常用它 镇静催眠药 镇静催眠巴比妥,苯二氮卓类安定; 抗惊抗癫抗焦虑,中枢肌松地西泮。 剂量不同效有异,过量中毒快抢救, 洗胃补液又给氧,碱化尿液促排泄。 抗癫痫药 癫痫小发作,首选乙琥胺; 局限发作大发作,苯妥英钠鲁米那; 卡马西平精神性,持续状态用安定; 慢加剂量停药渐,坚持用药防骤停。 抗精神病药 精神病药氯丙嗪,阻断受体多巴胺, 镇静止吐兼降温,人工冬眠显奇效, 长期用药毒性大,震颤麻痹低血压。 镇痛药 吗啡杜冷丁,很强成瘾性; 呼吸抑制重,慎重选择用; 镇痛作用灵,心性哮喘停; 过量要中毒,拮抗纳络酮。 解热镇痛药 乙酰水杨酸,抑制PGE; 解热又镇痛,抗炎抗风湿; 抑制血小板,防治血栓塞; 不良反应多,"为您扬名先" 中枢兴奋药

关键酶

糖酵解的关键酶——己糖激酶Hexokinase ,磷酸果糖激酶-1 PFK-1,丙酮酸激酶regulative factor:Insulin promotes the synthesis of three key enzymes 磷酸果糖激酶-1 PFK-1: 1)6- 磷酸果糖、1,6-二磷酸果糖、2,6-二磷酸果糖、ADP、AMP是变构激活剂。 2)ATP、柠檬酸及长链脂肪酸是变构抑制剂。 丙酮酸激酶: 1)1,6-二磷酸果糖、ADP是变构激活剂 2)ATP,乙酰CoA及长链脂肪酸是变构抑制剂。 丙酮酸氧化脱酸的关键酶——丙酮酸脱氢酶复合体 E1 TPP VitaminB1 E2 硫辛酸硫辛酸 coenzyme A 泛酸 E3 FAD Vitamin B2 NAD+ Vitamin PP Regulation:受催化产物ATP、乙酰CoA的抑制。AMP 、CoA 、NAD+增加乙酰CoA减少,酶激活 三羧酸循环的关键酶—— 1)柠檬酸合酶 2)异柠檬酸脱氢酶(高能状态-ATP多-的情况下受抑制,and vice verse ), 3)α-酮戊二酸脱氢酶(类似丙酮酸脱氢酶复合体,3,5形式) 产物堆积抑制TCA,主要是ADP 、ATP 的变化。 Ca+ 可促进TCA 磷酸戊糖的关键酶——6-磷酸葡萄糖脱氢酶 受NADPH 的反馈抑制性调节 糖异生的关键酶——G-6-P酶,果糖二磷酸酶,磷酸烯醇式丙酮酸激酶(草酰乙酸磷酸烯醇丙酮酸)、丙酮酸羧化酶(丙酮酸草酰乙酸) 途径Ⅰ:果糖二磷酸酶(1,6二磷酸果糖G-6-P)G-6-P酶(G-6-P Glucose )2,6-二磷酸果糖和AMP激活G-6-P酶,而抑制果糖二磷酸酶的活性而抑制糖异生 途径Ⅱ:丙酮酸激酶(磷酸烯醇式丙酮酸丙酮酸) 1,6二磷酸果糖是丙酮酸激酶的变构激活剂 增强糖异生,必要抑制糖酵解。 原料增加可促进糖异生,乙酰CoA可加强糖异生 丙酮酸羧化酶,辅基:生物素。需要Mg2+ 和Mn2+ 磷酸烯醇式丙酮酸有能量最高的高能磷酸键 糖原合成的关键酶——糖原合酶

糖酵解 三羧酸循环最全总结

在高等植物中存在着多条呼吸代谢的生化途径,这是植物在长期进化过程中,对多变环境条件适应的体现。在缺氧条件下进行酒精发酵和乳酸发酵,在有氧条件下进行三羧酸循环和戊糖磷酸途径,还有脂肪酸氧化分解的乙醛酸循环以及乙醇酸氧化途径等(图5-2)。 图5-2 植物体内主要呼吸代谢途径相互关系示意图 一、糖酵解 己糖在细胞质中分解成丙酮酸的过程,称为糖酵解(glycolysis)。整个糖酵解化学过程于1940年得到阐明。为纪念在研究这一途径中有突出贡献的三位生物化学家:G.Embden,O.Meyerhof和J.K.Parnas,又把糖酵解途径称为EmbdenMeyerhofParnas途径,简称EMP途径(EMP pathway)。糖酵解普遍存在于动物、植物、微生物的细胞中。 (一)糖酵解的化学历程 糖酵解途径(图5-3)可分为下列几个阶段:

图5-3糖酵解途径 1.己糖的活化(1~9)是糖酵解的起始阶段。己糖在己糖激酶作用下,消耗两个ATP逐步转化成果糖-1,6二磷酸(F-1,6-BP)。 如以淀粉作为底物,首先淀粉被降解为葡萄糖。淀粉降解涉及到多种酶的催化作用,其中,除淀粉磷酸化酶(starch phosphorylase)是一种葡萄糖基转移酶外,其余都是水解酶类,如α-淀粉酶(α-amylase)、β-淀粉酶(β-amylase)、脱支酶(debranching enzyme)、麦芽糖酶(maltase)等。 2.己糖裂解(10~11)即F-1,6-BP在醛缩酶作用下形成甘油醛-3-磷酸和二羟丙酮磷酸,后者在异构酶(isomerase)作用下可变为甘油醛-3-磷酸。 3.丙糖氧化(12~16)甘油醛-3-磷酸氧化脱氢形成磷酸甘油酸,产生1个ATP和1个NADH,同时释放能量。然后,磷酸甘油酸经脱水、脱磷酸形成丙酮酸,并产生1个ATP,这一过程分步完成,有烯醇化酶和丙酮酸激酶参与反应。

糖酵解途径中的关键酶

糖酵解途径中的关键酶: 丙酮酸脱氢酶系: 三羧酸循环中的关键酶: ①三羧酸循环的概念:指乙酰CoA和草酰乙酸缩合生成含三个羧基的柠檬酸,反复的进行脱氢脱羧,又生成草酰乙酸,再重复循环反应的过程。 ②TAC过程的反应部位是线粒体。 TCA的生理意义: 1.为生物体提供大量的生物能,完成生物物质的完全降解 2.通过TCA可为蛋白质、核酸的合成提供重要的中间产物,如a-酮戊二酸、草酰乙酸 3.各类有机物质相互转变的枢纽 磷酸戊糖途径(HMP途径)的生理意义: 1.生成了大量核糖-5-P,为合成核苷酸衍生物(如辅酶等)、合成核酸准备了原料,修复再生组织中,次条途径比较旺盛。 2.提供了大量的NADPH,它在脂类、固醇类等物质的生物合成和羟化转化过程中是十分重要的电子供体;与解毒药物有关的肝脏约有30%的G走次途径;它还是GSH还原酶的辅酶。 3.光合作用的暗反应密切相关。 4.产生大量的能量 糖异生: 部位:肝脏 提问:哪些物质可以通过糖异生途径形成糖元? 凡能转变成糖代谢中间产物的物质。 脂质消化的主要部位:十二指肠 β-氧化: β-氧化发生在肝及其它细胞的线粒体内。 β-氧化包括四个步骤: 终止子:DNA分子上有终止转录的特殊信号,也是特定的核苷酸序列,称为终止子。 氨基酸:体内不能合成,必须由食物蛋白质供给的氨基酸称为必需氨基酸 必需氨基酸一共有八种或十种:Lys、Trp、Phe、Met、Thr、Leu、Ile、V al、(婴幼儿能合成部分His和Arg)。 体内氨的主要代谢去路是用于合成无毒的尿素。合成尿素的主要器官是肝脏 催化这些反应的酶存在于胞液和线粒体中。 高等植物,以谷氨酰胺或天冬酰胺形式储存氨,不排氨。 翻译:将DNA传递给mRNA的遗传信息,根据核酸链上每三个核苷酸决定一个氨基酸的三联体密码规则,合成出具有特定氨基酸顺序蛋白质肽链的过程,这一过程被称为翻译 遗传密码具有以下特点: ①连续性:密码子无标点符号 ②简并性:氨基酸可以有几组不同的密码子 ③通用性:高等和低等生物共用同一套密码; ④方向性:即解读方向为5′→ 3′; ⑤摆动性:密码子专一性由头两位碱基决定 ⑥起始密码: AUG;

生物化学原理- 糖酵解

第十五章糖酵解 本章主线: 糖酵解 丙酮酸代谢命运 (乙醇发酵乳酸发酵) 糖酵解调控 巴斯德效应 3种单糖代谢 (果糖、半乳糖、甘露糖) 一、糖酵解 糖酵解概述: ●位置:细胞质 ●生物种类:动物、植物以及微生物共有 ●作用:葡萄糖分解产生能量 ●总反应:葡萄糖+2ADP+2 NAD++2Pi →2 丙酮酸+2ATP+2NADH+2H++2H2O 具体过程: 第一阶段(投入A TP阶段): 1分子葡萄糖转换为2分子甘油醛-3-磷酸;投入2分子ATP。 ○1 反应式:葡萄糖+ ATP→葡萄糖-6-磷酸+ADP 酶:己糖激酶(需Mg2+参与) 是否可逆:否 说明: ●保糖机制——磷酸化的葡萄糖被限制在细胞内,磷酸化的糖带有负电荷的磷酰基,可防 止糖分子再次通过质膜。(应用:解释输液时不直接输葡萄糖-6-磷酸的原因) ●己糖激酶以六碳糖为底物,专一性不强。 ●同功酶——葡萄糖激酶,是诱导酶。葡萄糖浓度高时才起作用。 ○2 反应式:葡萄糖-6-磷酸→果糖-6-磷酸 酶:葡萄糖-6-磷酸异构酶 是否可逆:是 说明:

●是一个醛糖-酮糖转换的同分异构化反应(开链?异构?环化) ●葡萄糖-6-磷酸异构酶表现出绝对的立体专一性 ●产物为α-D-呋喃果糖-6-磷酸 ○3 反应式:果糖-6-磷酸+ATP→果糖-1,6-二磷酸+ADP 酶:磷酸果糖激酶-I 是否可逆:否 说明: ●磷酸果糖激酶-I的底物是β-D-果糖-6-磷酸与其α异头物在水溶液中处于非酶催化的快 速平衡中。 ●是大多数细胞糖酵解中的主要调节步骤。 ○4 反应式:果糖-1,6-二磷酸→磷酸二羟丙酮+甘油醛-3-磷酸 酶:醛缩酶 是否可逆:是 说明: ●平衡有利于逆反应方向,但在生理条件下,甘油醛-3-磷酸不断地转化成丙酮酸,大大 地降低了甘油醛-3-磷酸的浓度,从而驱动反应向裂解方向进行。 ●注意断键位置:C3-C4 ○5 反应式:磷酸二羟丙酮→甘油醛-3-磷酸 酶:丙糖磷酸异构酶 是否可逆:是 说明: ●葡萄糖分子中的C-4和C-3 →甘油醛-3-磷酸的C-1; 葡萄糖分子中的C-5和C-2 →甘油醛-3-磷酸的C-2; 葡萄糖分子中的C-6和C-1 →甘油醛-3-磷酸的C-3。 ●缺少丙糖磷酸异构酶,将只有一半丙糖磷酸酵解,磷酸二羟丙酮堆积。 第二阶段(产出A TP阶段):此阶段各物质的量均加倍 2分子甘油醛-3-磷酸转换为2分子丙酮酸;产出4分子ATP ○6 反应式:甘油醛-3-磷酸+NAD++Pi→1,3-二磷酸甘油酸+NADH+H+ 酶:甘油醛-3-磷酸脱氢酶 是否可逆:是 说明: ●酵解中唯一一步氧化反应。是一步吸能反应,与第7步反应耦联有利于反应进行。 ●NAD+是甘油醛-3-磷酸脱氢酶的辅酶 ●1,3-二磷酸甘油酸中形成一个高能酸酐键。 ●无机砷酸(AsO43-)可取代无机磷酸作为甘油酸- 3-磷酸脱氢酶的底物,生成一个不稳

糖酵解的过程

糖酵解的過程EMP途徑分為兩個階段,第一 個階段是磷酸丙糖的生成過 程(耗能過程),第二和階段是丙酮酸生成過程(產能過程)。 下面讓我們來慢慢分解反應過程 第一階段第一步 △磷酸化:G→G6P Extracellular fluid:胞外液 Cytoplasm:細胞質 Glucose:葡萄糖 Phosphorylation:磷酸化作用 Plasma:等離子;血漿 Membrane:膜;薄膜第一階段 第二階段 己糖激酶 EMP 途 徑 中 第 一 個 限 速 酶激酶:一类从高能供体分子(如ATP)转移磷酸基团到特定靶分子(底物)的酶;这一过程谓之磷酸化。 已糖激酶:催化从ATP转移磷酸基团至各种六碳糖上去的酶。 激酶都需要Mg2+作为辅助因子。 首先我們來看一下糖酵解的第一階段

第一階段第二步△G6P F6P 第一階段第三步 ③磷酸化:F6P → FDP 磷酸葡萄糖异构酶 PFK是第二个限速酶,也是 EMP途径的关键酶,其活性 大小控制着整个途径的进 程。 磷酸果糖激酶是一种别构 酶,是糖酵解三个限速酶中 催化效率最低的酶,因此被 认为是糖酵解作用最重要 的限速酶。

第一階段第四步 ④裂解 (FBP → DHAP + G3P) 第一階段第⑤步 ⑤异构化(DHAP → G3P) 1,6-二磷酸果糖 2×3-磷酸甘油醛

第二階段第六步 ⑥氧化(G3P → 1,3-BPG) 第二階段第七步 ⑦转化(1,3-BPG → 3PG) 再來,我們來看糖 酵解的第二階段。 高能磷酸鍵 3-磷酸甘 ◎EMP第一次产生高能磷酸键; ◎EMP中唯一的脱氢反应,并产生了还原剂NADH。 ◎该酶是巯基酶,所以它可被碘乙酸不可逆地抑制,所以碘乙酸能抑制糖酵解。 ◎底物水平磷酸化:直接利用代谢 中间物氧化释放的能量产生ATP的 磷酸化类型。

各种物质代谢关键酶及其调节

各种物质代谢关键酶及其调节 代谢途径关键酶抑制剂激活剂 糖酵解 己糖激酶G6P、长链脂酰CoA 胰岛素 磷酸果糖激酶-1ATP、柠檬酸ADP、AMP F-1,6-2P、F-2,6-2P 丙酮酸激酶ATP、丙氨酸、胰高血糖素F-1,6-2P 糖的有氧氧化(除糖酵解) 丙酮酸脱氢酶复合体ATP、乙酰CoA NADH、脂肪酸 AMP、CoA NAD+、Ca2+异柠檬酸脱氢酶ATP ADP、Ca2+α-酮戊二酸脱氢酶ATP、NADPH、琥珀酰CoA Ca2+ 磷酸戊糖途径葡糖-6-磷酸脱氢酶NADPH/NADP+比例↑NADPH/NADP+比例↓糖原合成糖原合酶糖原合酶b(无活性、磷酸化) 糖原合酶a(有活性、去磷酸化) 糖原分解糖原磷酸化酶糖原磷酸化酶b(去磷酸化) 糖原磷酸化酶a(磷酸化) 糖异生 葡糖-6-磷酸酶 果糖二磷酸酶-1 果糖-2,6-二磷酸ATP/AMP 丙酮酸羧化酶乙酰CoA 磷酸烯醇式丙酮酸羧激酶 胆固醇的合成羟甲基戊二单酰CoA还原酶 (HMG CoA还原酶) 甲羟戊酸、胆固醇、7β-羟胆固 醇、25β-羟胆固醇、胰高血糖素、 皮质醇 胰岛素、甲状腺素 甘油三酯的合成脂酰CoA转移酶 脂肪酸的合成乙酰CoA羧化酶脂酰CoA 胰高血糖素、肾上腺素、生长素柠檬酸、异柠檬酸、乙酰CoA 胰岛素 脂肪动员激素敏感性甘油三酯脂肪酶 (HSL) 胰岛素、前列腺素E2 Adr、NA、胰高血糖素、ACTH、 TRH

代谢途径关键酶抑制剂激活剂脂肪酸分解(β-氧化) 肉碱脂酰转移酶I 尿素的合成氨基甲酰磷酸合成酶I N-乙酰谷氨酸 精氨酸代琥珀酸合成酶 嘌呤核苷酸的从头合成磷酸核糖焦磷酸(PRPP)合成酶 PRPP酰胺转移酶 嘧啶核苷酸的从头合成氨基甲酰磷酸合成酶II(人类) 天冬氨酸氨基甲酰转移酶(细菌) 胆汁酸的合成胆固醇7α-羟化酶 DNA的合成DNA-pol(DNA聚合酶) RNA的合成RNA-pol(RNA聚合酶) 蛋白质的合成氨基酰tRNA合成酶 冈崎片段的处理是复制过程中的切除修复,所需的酶——RNA酶、DNA-pol I、DNA连接酶 由糖基化酶起始作用的损伤切除修复所需的酶——内切酶、外切酶、连接酶、聚合酶 紫外线所致损伤修复所需的酶——蛋白质UvrA、B、C,解螺旋酶、DNA-pol I、连接酶

糖酵解过程详解

葡萄糖糖酵解详解 作者为了大家的方便,在网上搜集了资料,请交流,请提意见! 1,名称解析:在供氧不足时,体内组织细胞中的葡萄糖或糖元,分解为乳酸的过程称为无氧分解,由于此过程与与酵母菌使糖生醇发酵的过程基本相似,故称为糖酵解。 2,代谢位置:糖酵解是在细胞液中进行的。 3,过程可以分为两个阶段来理解: 第一阶段叫活化裂解阶段:由葡萄糖或糖元变成两分子磷酸丙糖(3-磷酸甘油醛和磷酸二羟丙酮),下面分别叙述: ○1如下图所示,为第一阶段的第○1小段。这一小段分两种情况:一个是从葡萄糖开始,一个是从糖元开始。 上图就表示从葡萄糖开始,葡萄糖首先在磷酸化酶催化下进行磷酸解,由ATP提供磷酸基生成6-磷酸葡萄糖,ATP本身变成ADP。大家注意代谢反应方程式的写法就是上面这个简化的表示式,相当于我们通常使用的下面的意思: 葡萄糖已糖激酶磷酸葡萄糖+ADP+H2O, 在这一阶段请注意: ▲从能量的角度来看,就消耗了一个ATP。但如果是从糖元开始,则因糖元在磷酸化酶催化下进行磷酸解是已变成了1-磷酸葡萄糖,下一步在变化酶作用下变成6-磷酸葡萄糖时就不消耗能量了,所以从糖元开始的糖酵解就少消耗这个ATP了。或者说因为糖原缩合时已经挂上了一分子磷酸,糖原一水解就是6磷酸葡萄糖,所以葡萄糖就不用再磷酸化了,就少消耗了一个atp。 ▲这阶段的已糖激酶是限速酶,决定反应的速度。 下面这图表示催化剂已糖酶的催化过程是把已糖酶把葡萄糖结合在一起形成1-磷酸葡萄糖(和6-磷酸葡萄糖是异构体)。 ○2第二小阶段是6-磷酸葡萄糖在已糖异构化酶催化下生成6-磷酸果糖,下面是这个反应的开链式和哈沃斯式的反应式:

最新药理学口诀记忆

药理学口诀 肾上腺素一一过敏性休克的首选药物。利多卡因一一心律失常的首选药。 苯妥英钠一一强心苷中毒所致室性心律失常的首选药物。 苯妥英钠——癫痫大发作的首选药物。安定- 癫痫持续状态的首选药物。乙琥胺——癫痫小发作的首选药物。 米帕明一一抑郁症的首选药物。 维拉帕米一一房室结折返所致的阵发性心动过速的首选药物。 呋塞米(速尿)——急性肺水肿的首选药物。甘露醇——脑水肿的首选药物。 青霉素一一螺旋体感染的首选药物。林可霉素一一急慢性骨髓炎的首选药物。 氯霉素一一伤寒、副伤寒的首选药物。 异烟肼INH(雷米封)一一各种类型结核病的首选药物。两性霉素B深部真菌感染的首选药物。 氯喹--是控制疟疾症状的首选药物。 伯氨喹-一对良性疟的红细胞外期及各型疟原虫的配子体均有较强的杀灭作用,是控制复发及传播的首选药物。 乙胺嘧啶一一属人工合成的非喹啉类抗疟药,是目前用于病因性预防的首选药物。甲硝唑(灭滴灵)一一是阿米巴病的首选药物。 其他首选记得整理补充 拟胆碱药 拟胆碱药分两类,兴奋受体抑制酶;匹罗卡品作用眼,外用治疗青光眼;新斯的明抗酯酶,主治重症肌无力;毒扁豆碱毒性大,作用眼科降眼压。 阿托品 莨菪碱类阿托品,抑制腺体平滑肌;瞳孔扩大眼压升,调节麻痹心率快;大量改善微循环,中枢兴奋须防范;作用广泛有利弊,应用注意心血管。临床用途有六点,胃肠绞痛立即缓;抑制分泌麻醉前,散瞳配镜眼底检;防止“虹晶粘”,能治心动缓;感染休克解痉挛,有机磷中毒它首选。 东莨菪碱 镇静显著东莨菪碱,能抗晕动是特点;可治哮喘和“震颤”,其余都像阿托品,只是不用它点眼。 肾上腺素 a、3受体兴奋药,肾上腺素是代表,血管收缩血压升,局麻用它延时间,局部止血效明显,过敏休克当首选,心脏兴奋气管扩,哮喘持续它能缓,心跳骤停用“三联”,应用注意心血管, a受体被阻断,升压作用能翻转。 去甲肾上腺素 去甲强烈缩血管,升压作用不翻转,只能静滴要缓慢,引起肾衰很常见,用药期间看尿量,休克早用间羟胺。

药理学记忆口诀(很好记的)知识分享

药理学记忆口诀(很好 记的)

药理学记忆口诀 M样作用 血管扩,心率慢,血压降,身出汗,肠胃痉,气管挛,瞳孔小,口流涎。注:痉挛表示收缩。N样作用 N1受体神经节, N2受体骨骼肌。 N2兴奋剂收缩, N1兴奋促分泌。 节后神经分两类,同是兴奋现象异,为主导谁显力。 N1阻断血压降, N2阻断肌松弛。 心率减慢气管缩,

呼吸麻痹要警惕。 阿托品 阻断M受体抗胆碱, 阿托品作用算样板, 一快、二抑、眼有三, 四弛缓, 特殊的是“扩血管”, 用途有六点: 肠胃绞痛立即缓, 制分泌麻醉前, 散瞳配镜眼底检, 防止“虹晶粘”, 能治心动缓。 感染休克解痉挛良循环, 有机磷中毒它首选, 千万莫用青光眼、高热、心速及肥大的前列腺。东莨菪碱 镇静显著东莨菪碱, 能抗晕动是特点,

可治哮喘和“震颤”,其余都像阿托品,只是不用它点眼。拟胆碱药 拟胆碱药分两类,兴奋受体抑制酶,匹鲁卡品作用眼,外用治疗青光眼,新斯的明抗酯酶,主治重症肌无力;毒扁豆碱毒性大,仅用眼科降眼压。去钾肾上腺素 去钾强烈缩血管,升压作用不翻转,只能静滴要缓慢,引起肾衰很常见,休克早用间羟胺。异丙肾上腺素

异丙扩张支气管,哮喘急发它能缓,扩张血管治感染,血容补量效才显。兴奋心脏复心跳,加速传导率不乱,哮喘而授防猝死,甲亢冠心切莫选。拟肾上腺素 心脏兴奋气管扩,脂肪分解升血糖,血压变化有三种,是升是降看情况:收升舒降小剂量,两者都升治疗量,不升反降为翻转,α受体被阻断。 局麻用它延时间,局部止血效明显,

哮喘持续它能缓,过敏休克当首选,心跳骤停用“三联”。局麻药: 丁卡表麻毒性大,普卡安全不表麻。利多全能要慎选。室性律乱常用它。镇静催眠药: 镇静催眠用安定,生理睡眠成瘾轻,能抗癫痫有镇惊。静注过快呼吸停。抗癫痫药 癫痫选药要记清,小发没用苯妥英,心甙中毒它能稳,外用神经痛能停。持续状态滴安全。

药理学记忆口诀很好记的

药理学记忆口诀 M样作用 血管扩,心率慢, 血压降,身出汗, 肠胃痉,气管挛, 瞳孔小,口流涎。 注:痉挛表示收缩。 N样作用 N1受体神经节, N2受体骨骼肌。 N2兴奋剂收缩, N1兴奋促分泌。 节后神经分两类, 同是兴奋现象异, 为主导谁显力。 N1阻断血压降, N2阻断肌松弛。 心率减慢气管缩, 呼吸麻痹要警惕。 阿托品 阻断M受体抗胆碱, 阿托品作用算样板, 一快、二抑、眼有三, 四弛缓, 特殊的是“扩血管”, 用途有六点: 肠胃绞痛立即缓, 制分泌麻醉前, 散瞳配镜眼底检, 防止“虹晶粘”, 能治心动缓。 感染休克解痉挛良循环, 有机磷中毒它首选, 千万莫用青光眼、高热、心速及肥大的前列腺。东莨菪碱 镇静显著东莨菪碱, 能抗晕动是特点, 可治哮喘和“震颤”, 其余都像阿托品, 只是不用它点眼。 拟胆碱药 拟胆碱药分两类,

兴奋受体抑制酶, 匹鲁卡品作用眼, 外用治疗青光眼, 新斯的明抗酯酶, 主治重症肌无力; 毒扁豆碱毒性大, 仅用眼科降眼压。 去钾肾上腺素 去钾强烈缩血管, 升压作用不翻转, 只能静滴要缓慢, 引起肾衰很常见, 休克早用间羟胺。 异丙肾上腺素 异丙扩张支气管, 哮喘急发它能缓, 扩张血管治感染, 血容补量效才显。 兴奋心脏复心跳, 加速传导率不乱, 哮喘而授防猝死, 甲亢冠心切莫选。 拟肾上腺素 心脏兴奋气管扩, 脂肪分解升血糖, 血压变化有三种, 是升是降看情况: 收升舒降小剂量, 两者都升治疗量, 不升反降为翻转, α受体被阻断。 局麻用它延时间, 局部止血效明显, 哮喘持续它能缓, 过敏休克当首选, 心跳骤停用“三联”。局麻药: 丁卡表麻毒性大, 普卡安全不表麻。 利多全能要慎选。 室性律乱常用它。 镇静催眠药: 镇静催眠用安定, 生理睡眠成瘾轻,

药理学口诀:医学生必备

药理学口诀拟胆碱药 拟胆碱药分两类,兴奋受体抑制酶; 匹罗卡品作用眼,外用治疗青光眼; 新斯的明抗酯酶,主治重症肌无力; 毒扁豆碱毒性大,作用眼科降眼压。 阿托品 莨菪碱类阿托品,抑制腺体平滑肌; 瞳孔扩大眼压升,调节麻痹心率快; 大量改善微循环,中枢兴奋须防范; 作用广泛有利弊,应用注意心血管。 临床用途有六点,胃肠绞痛立即缓; 抑制分泌麻醉前,散瞳配镜眼底检; 防止?虹晶粘?,能治心动缓; 感染休克解痉挛,有机磷中毒它首选。 东莨菪碱 镇静显著东莨菪碱,能抗晕动是特点; 可治哮喘和?震颤?,其余都像阿托品, 只是不用它点眼。肾上腺素 α、β受体兴奋药,肾上腺素是代表; 血管收缩血压升,局麻用它延时间,

局部止血效明显,过敏休克当首选, 心脏兴奋气管扩,哮喘持续它能缓, 心跳骤停用?三联?,应用注意心血管, α受体被阻断,升压作用能翻转。 去甲肾上腺素 去甲强烈缩血管,升压作用不翻转, 只能静滴要缓慢,引起肾衰很常见, 用药期间看尿量,休克早用间羟胺。 异丙肾上腺素 异丙扩张支气管,哮喘急发它能缓, 扩张血管治?感染?,血容补足效才显。 兴奋心脏复心跳,加速传导律不乱, 哮喘耐受防猝死,甲亢冠心切莫选。 α受体阻断药 α受体阻断药,酚妥拉明酚苄明, 扩张血管治栓塞,血压下降诊治瘤, NA释放心力增,治疗休克及心衰。 β受体阻断药 β受体阻断药,普萘洛尔是代表, 临床治疗高血压,心律失常心绞痛。 三条禁忌记心间,哮喘、心衰、心动缓。

传出N药在休克治疗中的应用 (一)药物的种类 抗休克药分二类,舒缩血管有区分;正肾副肾间羟胺,收缩血管为一类;莨菪碱类异丙肾,加上α受体阻断剂;还有一类多巴胺,扩张血管促循环。(二)常见休克的药物选用: 过敏休克选副肾,配合激素疗效增;感染用药分阶段,扩容纠酸抗感染,早期需要扩血管,山莨菪碱为首选;后期治疗缩血管,间羟胺替代正肾。心源休克须慎重,选用?二胺?方能行。说明:?二胺?指多巴胺和间羟胺 局** 丁卡表麻毒性大,普卡安全不表麻;利多全能腰慎选,室性律乱常用它 镇静催眠药 镇静催眠巴比妥,苯二氮卓类安定;抗惊抗癫抗焦虑,中枢肌松地西泮。剂量不同效有异,过量中毒快抢救,洗胃补液又给氧,碱化尿液促排泄。

生物化学 第22章 糖酵解

第22章糖酵解

?能源和碳源 1一 1.切生物都有使糖类化合物在体内分解为二氧化碳(或有机小分子)和水,放出能量的共同的代谢的化学途径,即无氧代谢和有氧代谢氧化分解糖类,糖作为生物的能源物质。 2.糖类代谢的中间产物可转化或合成其它化合物(提供碳源和碳链骨架),以构成组织细胞。 )

、吸 糖的消化、吸收 糖的消化 ?糖类的消化 1.淀粉在口腔和小肠内转变为葡萄糖 2.双糖的水解-----膜消化 33.纤维素的水解 4.淀粉和糖原的磷酸解:1-p-G 糖类的吸收 ?糖类的吸收 1. 2. 主动转运被动转运

主动转运 小肠中葡萄糖 的吸收示意图 返回

被动转运 载体蛋白运 转的方向总 是从糖浓度 高处向低处 高处向低处, 因此不需耗 能 返回

糖酵解途径发现历史 ?1875年法国科学家巴斯得(L.Pasteur)就发现葡萄糖在无氧条件下被酵母菌分解生成乙醇的现象。 糖在无氧条件下被酵母菌分解生成乙醇的现象?1897年德国的汉斯·巴克纳兄弟(Hans buchner和Edward buchner)发现发酵作用可以在不含细胞的酵母抽提液中进行。 1905年哈登,A.(Arthur Harden)和扬,?A(Arthur W.(William Young)实验中证明了无机磷酸的作用。 恩,( ?1940年前德国的生物化学家恩伯顿,G(Gustar Embden)和迈耶霍夫,O(Otto Meyerhof)等人的努力完全阐明了糖酵解的整个途径,揭示了生物化学的普遍性。因此糖酵解途径又称Embden-Meyerhof途径(简称EMP)。

糖酵解的过程

糖酵解的過程 EMP 途徑分為兩個階段,第一個階段是磷酸丙糖的生成過程(耗能過程),第二和階段是丙酮酸生成過程(產能過程)。 下面讓我們來慢慢分解反應過程 第一階段 第一步 △一 磷酸化:G →G6P Extracellular fluid :胞外液 Cytoplasm :細胞質 Glucose :葡萄糖 Phosphorylation :磷酸化作用 Plasma :等離子;血漿 Membrane :膜;薄膜 第一階段 第二階段 己糖激酶 EMP 途 徑中第一個限速酶 激酶:一类从高能供体分子(如ATP )转移磷酸基团到特定靶分子(底物)的酶;这一过程谓之磷酸化。 已糖激酶:催化从ATP 转移磷酸基团至各种六碳糖上去的酶。 激酶都需要Mg2+作为辅助因子。 首先我們來看一下糖酵解的第一階段

第一階段第二步△二 G6P F6P 磷酸葡萄糖异构酶 第一階段第三步 ③磷酸化:F6P → FDP PFK是第二个限速酶,也是 EMP途径的关键酶,其活 性大小控制着整个途径的 进程。 磷酸果糖激酶是一种别构 酶,是糖酵解三个限速酶中 催化效率最低的酶,因此被 认为是糖酵解作用最重要 的限速酶。

第一階段 第四步 ④ 裂解 (FBP → DHAP + G3P ) 第一階段 第⑤步 ⑤ 异构化(DHAP → G3P ) 1,6-二磷酸果糖 2×3-磷酸甘油醛 ◎上述5步反应完成了糖酵解的准备阶段。 ◎包括两个磷酸化步骤,由六碳糖裂解为两分子三碳糖,最后都转变为3-磷酸甘油醛。 ◎在准备阶段中,并没有从中获得任何能量,与此相反,却消耗了两个ATP 分子。 ◎以下的5步反应包括氧化-还原反应、磷酸化反应。这些反应正是从3-磷酸甘油醛提取能量形成ATP 分子。

糖酵解途径

第六章糖代谢 第一节糖酵解途径** 糖酵解途径中,葡萄糖在一系列酶的催化下,经10步反应降解为2分子丙酮酸,同时产生2分子NADH+H+和2分子ATP。 主要步骤为(1)葡萄糖磷酸化形成二磷酸果糖;(2)二磷酸果糖分解成为磷酸甘油醛和磷酸二羟丙酮,二者可以互变;(3)磷酸甘油醛脱去2H及磷酸变成丙酮酸,脱去的2H被NAD+所接受,形成NADH+H+。 丙酮酸的去路: (1)有氧条件下,丙酮酸进入线粒体氧化脱羧转变为乙酰辅酶A,同时产生1分子NADH+H+。乙酰辅酶A进入三羧酸循环,最后氧化为CO2和H2O。 (2)在厌氧条件下,可生成乳酸和乙醇。同时NAD+得到再生,使酵解过程持续进行。 第二节三羧酸循环*** 在线粒体基质中,丙酮酸氧化脱羧生成的乙酰辅酶A,再与草酰乙酸缩合成柠檬酸,进入三羧酸循环。柠檬酸经脱水加水转变成异柠檬酸,异柠檬酸经连续两次脱羧和脱羧生成琥珀酰CoA;琥珀酰CoA发生底物水平磷酸化产生1分子GTP和琥珀酸;琥珀酸再脱氢,加水及再脱氢作用依次变成延胡索酸,苹果酸及循环开始的草酰乙酸。三羧酸循环每循环一次放出2分子CO2,产生3分子NADH+H+,和一分子FADH2。 第三节磷酸戊糖途径** 在胞质中,在磷酸戊糖途径中磷酸葡萄糖经氧化阶段和非氧化阶段被氧化分解为CO2,同时产生NADPH + H+。 其主要过程是G-6-P脱氧生成6-磷酸葡萄糖酸,再脱氢,脱羧生成核酮糖-5-磷酸。6分子核酮糖-5-磷酸经转酮反应和转醛反应生成5分子6-磷酸葡萄糖。中间产物甘油醛-3-磷酸,果糖-6-磷酸与糖酵解相衔接;核糖-5-磷酸是合成核酸的原料,4-磷酸赤藓糖参与芳香族氨基酸的合成;NADPH+H+提供各种合成代谢所需要的还原力。 第四节糖异生作用** 非糖物质如丙酮酸,草酰乙酸和乳酸等在一系列酶的作用下合成糖的过程,

药理学记忆口诀(吐血推荐!!)

药理学记忆口诀 M样作用血管扩,心率慢,血压降,身出汗,肠胃痉,气管挛,瞳孔小,口流涎。注:痉挛表示收缩。 N样作用N1受体神经节,N2受体骨骼肌。N2兴奋剂收缩,N1兴奋促分泌。节后神经分两类,同是兴奋现象异,为主导谁显力。N1阻断血压降,N2阻断肌松弛。心率减慢气管缩,呼吸麻痹要警惕。 阿托品阻断M受体抗胆碱,阿托品作用算样板,一快、二抑、眼有三,四弛缓,特殊的是“扩血管”, 用途有六点:肠胃绞痛立即缓,制分泌麻醉前,散瞳配镜眼底检,防止“虹晶粘”,能治心动缓。感染休克解痉挛良循环,有机磷中毒它首选,千万莫用青光眼、高热、心速及肥大的前列腺。 东莨菪碱镇静显著东莨菪碱,能抗晕动是特点,可治哮喘和“震颤”,其余都像阿托品,只是不用它点眼。 拟胆碱药拟胆碱药分两类,兴奋受体抑制酶,匹鲁卡品作用眼,外用治疗青光眼, 新斯的明抗酯酶,主治重症肌无力;毒扁豆碱毒性大,仅用眼科降眼压。 去钾肾上腺素去钾强烈缩血管,升压作用不翻转,只能静滴要缓慢,引起肾衰很常见,休克早用间羟胺。 异丙肾上腺素异丙扩张支气管,哮喘急发它能缓,扩张血管治感染,血容补量效才显。 兴奋心脏复心跳,加速传导率不乱,哮喘而授防猝死,甲亢冠心切莫选。 拟肾上腺素心脏兴奋气管扩,脂肪分解升血糖,血压变化有三种,是升是降看情况:收升舒降小剂量,两者都升治疗量,不升反降为翻转,α受体被阻断。局麻用它延时间,局部止血效明显,哮喘持续它能缓,过敏休克当首选,心跳骤停用“三联”。 局麻药:丁卡表麻毒性大,普卡安全不表麻。利多全能要慎选。室性律乱常用它。 镇静催眠药:镇静催眠用安定,生理睡眠成瘾轻,能抗癫痫有镇惊。静注过快呼吸停。 抗癫痫药癫痫选药要记清,小发没用苯妥英,心甙中毒它能稳,外用神经痛能停。 持续状态滴安全。丙戊酸钠乙琥胺,小发作时可当先。慢加剂量停药渐, 常按齿龈求平安。抗癫痫药的选用癫痫发作有四型,防治药物有不同。 苯苯*首用大发作,局限发作也适用;持续状态选安宝,小发作选乙琥胺, 卡马西平精神性。坚持用药防骤停,*指苯妥英钠,本巴比妥。 抗精神失常药精神分裂氯丙嗪,各种呕吐“车”不行,人工冬眠降体温, 外界环境要相称,剧痛合用它增效,翻转升压应当心。震颤锥体系症, 迟发障碍药慎停。三种受体都阻断,核心还是多巴胺。

糖酵解、TCA途径

糖酵解途径(EMP途径) 定义:葡萄糖经过一系列步骤降解成丙酮酸并生成ATP过程,被认为是微生物最古老原始的获能方式。指在O2不足情况下,葡萄糖或糖原分解为丙酮酸或乳酸,并伴随少量ATP生成。在细胞质中进行。 两个阶段: 一:活化阶段 a:葡萄糖磷酸化:活化葡萄糖,消耗1ATP,使葡萄糖和磷酸结合成葡萄糖-6-磷酸(己糖激酶) b:葡萄糖-6-磷酸重排成果糖-6-磷酸(葡萄糖磷酸异构酶) c:生成果糖-1、6-二磷酸(6-磷酸果糖激酶-1),消耗1ATP d:果糖-1、6-二磷酸断裂为3-磷酸甘油醛和磷酸二羟丙酮(醛缩酶)e:磷酸二羟丙酮很快转变为3-磷酸甘油醛。(丙糖磷酸异构酶)二:放能阶段 a:3-磷酸甘油醛氧化生成1、3-二磷酸甘油酸,释出2电子和1H+,生成NADH+ H+,且将能量转移至高能磷酸键中。 b:不稳定的1、3-二磷酸甘油酸失去高能磷酸键,生成3-磷酸甘油酸,能量转移至ATP中,生成1ATP(发生第一次底物水平磷酸化)c:3-磷酸甘油酸重排生成2-磷酸甘油酸 d:2-磷酸甘油酸脱水生成磷酸烯醇式丙酮酸 e:磷酸烯醇式丙酮酸将磷酸基团转移给ADP生成ATP,同时形成丙酮酸(发生第一次底物水平磷酸化)

附图:

总反应式: 一.糖无氧氧化反应(分为糖酵解途径和乳酸生成两个阶段)(一)糖酵解的反应过程(不是限速酶的反应均是可逆的) 1.葡萄糖磷酸化为6-磷酸葡萄糖 [1] 己糖激酶(hexokinase)催化,I-IV型,肝细胞中为IV型,又称葡萄糖激酶 区别:前者Km值小、特异性差。 意义:浓度较低时,肝细胞不能利用Glc。 [2]需要Mg++参与,消耗1分子ATP [3] 关键酶(限速酶):己糖激酶。 [4]反应不可逆,受激素调控。 [5]磷酸化后的葡萄糖不能透过细胞膜而逸出细胞。

相关文档