文档视界 最新最全的文档下载
当前位置:文档视界 › 复合泊松过程模型的推广和在R语言环境下的随机模拟

复合泊松过程模型的推广和在R语言环境下的随机模拟

复合泊松过程模型的推广和在R语言环境下的随机模拟
复合泊松过程模型的推广和在R语言环境下的随机模拟

复合泊松过程模型的推广和在R语言环境下的随机模拟0 引言

对保险人而言,资产和负债是影响保险人稳定经营至关重要的因素。资产和负债的差额称为盈余,简记作:

U(t)=A(t)?L(t),t>0

其中A(t)表示时刻t的资产,L(t)表示时刻t的负债,t=0时刻的盈余被称为初始盈余,简记为u,即U(0)=u。对这个初步的理论模型进行简化并根据实际情况设置一些假定情况,会得出很多不同的盈余过程模型,最经典的有Sparre Andersen的古典盈余过程模型:

U(t)=u+ct?S(t);t≥0,u≥0,c>0

这是一个以u为初值,以时间t为指标集的随机过程。其中{S(t),t>0}称为总理赔过程,满足:

S(t)={X1+X2+…+XN(t)0,N(t)>0,N(t)=0

N(t)表示[0,t]内的总理赔次数,Xi表示[0,t]内第i次理赔的金额。

根据这个古典盈余过程模型可以引出破产模型,在这个盈余过程模型中,一方面有连续不断的保费收入并以速度c进行积累,另一方面则是不断会有理赔需要支付,因此这是一个不断跳跃变化的过程。从保险人的角度来看,当然希望ct?S(t)恒大于0,否则就有可能出现U(t)<0的情况,这种情况可以定义为理论意义上的破产,以示与实际中的破产相区分,本文中后面出现的“破产”在没有特殊说明的情况下都是指这种理论情况。从研究保险人破产角度出发,可以把这个盈余过程模型看做是一个特殊的破产模型。

1 第一个推广的破产模型

在以上经典模型中,假设了保费收入速度是均匀的,而在实际中,在控制保费c的条件下,保单到达的时刻应该是一个离散的随机过程。根据现实经验,考虑一段很短的时间间隔中,认为保单到达的概率较小,而时间间隔数量可以非常之多且不清楚具体是多少,在概率论中一般用泊松分布来刻画这种概率分布,所以初步认为一段时间内保单到达的数量服从泊松分布。

同样地,由于理赔发生的概率远比保单发生的概率低,因此可以认为理赔发生的次数服从另一个独立的泊松分布。选取泊松分布来刻画这两个时间间隔的另一个原因是泊松分布具有一些优良的数学性质,便于分析和计算。根据泊松分布的性质,保单到达和理赔到达的时刻是两个独立的泊松过程。

另外,一般一款保险产品,它的保费往往是固定的,所以用固定的c来表示符合现实情况,而理赔金额往往根据发生事故的严重程度而定,可以认为每次理赔的金额服从一个独立的取值为非负的分布,根据经验,这个分布大致的要求是较高的概率

对应较小的理赔额,较低的概率对应较大的理赔额,在常用的概率分布中,指数分布较好地满足这个特性,本文初步选用指数分布来刻画每次理赔额。

因此,第一个推广的破产模型可以表示为:

U(t)=u+cM(t)?∑N(t)i=1Xi;t≥0,u≥0,c>0

其中保单到达时刻M(t)服从参数为λ1的泊松过程,理赔发生时刻N(t)服从参数为λ2的泊松过程,每次支付的保险费Xi服从参数为v的相互独立的指数分布。

在这个模型中,保险人期望cM(t)?∑N(t)i=1Xi能恒大于0,因此至少

E(cM(t)?∑N(t)i=1Xi)>0即cλ1>λ2/v,另外从经验来看,保险事故发生的概率一般不高,一次理赔的的金额应该远大于收到的保费,所以保单到达的速率应该远比理赔发生的速率大,否则这种产品就没有经营价值,保险人也将面临破产,所以λ1?λ2。考虑以下一个具体的破产模型案例:

某一款保险产品,假设保单到达的速率为λ1=10张/天,理赔发生的速率为λ2=1次/天。假设每张保单价格c=120,理赔额服从参数为v=1/1000(以cλ1=1.2λ2/v设定)的指数分布。设定初始u=3000时,计算到第1000天为止发生破产的概率。

本文用R语言模拟了10000次,用时1625秒,大概不到半个小时的时间,时间还能接受。最终结果10000次中破产5293次,破产率大概53%。输出各阶段破产时刻频数和频率结果如下:

直方图为:

由直方图可以非常明显地看出绝大部分破产时刻都在前100天,或者说从0开始的一小段时间内,在这之后的很长时间里,破产的频率急剧减少,可以认为破产的概率同样非常小。这对保险人来说,说明3000的初始盈余不够用,保险人需要准备更多准备金,才能抵抗初期的破产风险。

2 第二个继续推广的破产模型

在上一个破产模型中考虑了一款保险产品和对应理赔的问题,但现实中保险人往往同时经营着多种不同的保险产品,同样会有多种对应的理赔问题。基于这个想法,考虑将上一个模型进一步推广,就得到了以下模型:

U(t)=u+∑i=1N(t)ciMi(t)–∑j=1Ni(t)∑i=1nXij,t≥0;u≥0;ci>0

将模型展开,可以表示为:

U(t)=u+∑i=1N(t)ciMi(t)–(∑j=1N1(t)X1j+∑j=1N2(t)X2j+…+∑j=1Nn(t)Xnj)

这个模型考虑有n款不同的保险产品,保费分别用ci表示,第i款产品的保单到达时刻为Mi(t)。这样需要对应n款产品的理赔,假设第i款产品的理赔到达时刻为Ni(t),对应的理赔额为Xij,表示第i款产品第j次的理赔额。根据上一个模型的情况,这里假设Mi(t)是服从参数为αi的泊松过程,Ni(t)是服从参数为βi的泊松过程,Xij是服从参数为vi 的指数分布。同样地,根据每个保单的对应情况,要求满足ciαi>βi/vi和αi>βi。

考虑以下一个具体的破产模型案例:

某保险人同时经营了三款不同的保险产品,假设保单到达的速率为αi=10每一单位时间(简化起见,不考虑实际单位,改用形式的一单位时间),αi=20,αi=30。理赔发生的速率为βi=1,βi=2,βi=3。X1j服从参数v1=1/1000的指数分布,假定v2=1/1500,v3=1/2000。以(20%预期收益率)的标准计算ci的值。c1=120,c2=180,c3=240。

鉴于上个模型的模拟经验,设置一个较大的初始盈余,初步设定u=10万。但是模拟结果发现破产率百分之一百,继续提高初始盈余,发现在把准备金提高到100万的情况下结果仍然全部破产,这充分说明破产概率主要不是由初始盈余决定的。在事故发生的概率,即理赔到达强度参数不可控的情况下,保险人可调整的参数剩下保费和理赔额服从指数分布的参数。首先通过同比例提高保费把预期收益率提高到40%,在设定初始盈余10万的情况下尝试模拟100次,发现仍然全部破产,直到把预期收益率提高到44%,破产率大概75%;把预期收益率提高到45%,破产概率大概70%;直到把预期收益率锁定在50%,100次模拟结果破产率大概33%,正好三分之一,这是一个比较理想的分界点。100次模拟时间76.49秒,时间稍长,如果模拟1万次,预计要花两个小时。暂时只模拟1000次来看下破产时刻的分布。1000次模拟花时845秒,模拟结果破产概率27.7%,破产时刻的分布如下:

破产时刻分布的直方图如下:

直方图显示大部分破产时刻都在前200时刻,直方图大致形状酷似“钟形”的右半边。由此可联想到如果提高初始盈余,可能在一定程度上降低破产概率的同时,会使破产时刻的直方图整体右移,左半边也可能呈钟形分布,使整体服从类似正态分布的形状。

这里选取了初始盈余万,把预期收益率降到45%,模拟100次结果破产概率26%,与之前的结果接近。再选取初始盈余万,把预期收益率降到40%,模拟100次结果破产概率54%,验证了初始盈余和保费收入参数对破产比例的共同影响。两次结果的直方图如下:

发现结果确实破产时刻整体右移,呈现钟形分布(第二幅图比较明显)。

对于另外一个角度,在保持原始保费额不变的情况下,还可以调整理赔额服从指数分布的参数,同样在初始盈余万,在保费收入不变的条件下,调整三个指数分布的参数,使预期收益率为30%,结果发现全未破产,说明调整指数分布的参数对破产率的影响效率跟保费不一样。把预期收益率调为20%,破产率立刻上升到81%,预期收益率为25%时,破产率又下降到18%,说明指数分布的参数对破产率波动的影响非常剧烈。

3 结论和建议

文中提出的推广模型由于其随机性和复杂性,想求解精确的解析解非常困难,所以通过随机模拟的方式来求渐近解是一种可行的好方法。从文中两个模型的模拟结果来看,首先,提高初始准备金的额度是很重要的,能大大降低保险人在初期破产的风险;其次,保险费对破产概率有显著的影响,保险人在制定保费的时候通过精确的计算和大量的模拟,能得到合适的保费额;最后,因为理赔额参数的变动对破产

概率的影响最为剧烈,所以通过高额回报增加承保业务的行为对保险人是非常危险的,应谨慎对待。

4 模型的不足和其他有益探索

本文的模型建立在很大的理想化程度上,而在现实中,并不完全精确的服从指定的分布,所以将模型放到现实中应用的时候还需要进行改进和优化。另外本文只模拟了保单和理赔服从泊松过程的情况,还有可能是像带漂移的布朗运动那样更复杂的过程,理赔额也有可能服从对数正态分布、伽玛分布等情况,都没有做研究和讨论。还有一点,文中定义的破产跟现实的破产情况并不一致,现实情况要复杂的多,还受到其他更多因素的影响。

对于随机模拟来说,按照一般估计精度的理论,要达到较高精度,往往需要增加的模拟次数会呈指数增长,意味着模拟时间的成本会非常大。所以,设计一个既能现实模型要求,又能减少模拟次数与运行时间的算法非常重要。本文第二个模型的模拟设计正是从这个基本出发来实现的,不过在应对大容量的保单和高精度的要求时,还需要对设计思路进行优化,减少循环和判断次数,减少计算机搜索路径等。我觉得从泊松过程等常用分布的优良性质出发找到一个简化的等价刻画形式是一个可行的方向。

还有一点,随机模拟虽然都给出了定量的结果,但是都是离散的,而且中间间隔还很大。所以如果能通过大量模拟,取得破产概率关于保费收入和理赔支出的强度以及理赔支出额的多维样本数据,据此建立多元回归模型,可能会得到更多有益的结论,也能更好地应用于现实。

泊松过程

第二讲 泊松过程 1.随机过程和有限维分布族 现实世界中的随机过程例子: 液体中,花粉的不规则运动:布朗运动;股市的股票价格; 到某个时刻的电话呼叫次数; 到某个时刻服务器到达的数据流数量,等。 特征:都涉及无限多个随机变量,且依赖于时间。 定义(随机过程) 设有指标集T ,对T t ∈都有随机变量)(t X 与之对应,则称随机变量族 }),({T t t X ∈为随机过程。 注 一个随机过程是就是一个二元函数E T t X →?Ωω:),(。固定ω,即考虑某个事件相 应的随机变量的值,得到函数R T t X →:),(ω称为样本函数或轨道或一个实现。映射的值域空间E 称为状态空间。 例 随机游动(离散时间,离散状态) 质点在直线上每隔单位时间位置就发生变化,分别以概率p 或概率p -1向正或负向移动一个单位。如果以n S 记时刻n 质点所处的位置,那么就得到随机过程{,0}n S n ≥。这里指标集},1,0{ =T ,状态空间},1,0,1,{ -=E 。 如果记n X 为时刻n ,质点的移动,那么{,1}n X n ≥也是随机过程。 两个过程的区别:{}n S 不独立;{}n X 独立; 两个过程的关系:01 n n k k S S X ==+ ∑ 习题 计算n ES 和n DS (设00S =)。 提示 利用∑== n k k n X S 1 ,其中k X 是时刻k 的移动方式。 习题 设从原点出发,则()/2()/2()/2 ,2()0, 21n k n k n k n n C q p n k i P S k n k i +-+?+===?+=-?。 例 服务器到达的数据流(连续时间,离散状态) 在],0[t 内,到达服务器的数据包个数记为)(t N ,那么}0),({≥t t N 也是个随机过程, 其指标集}{+ ∈=R t T ,状态空间},1,0{ =E 。

Poisson过程教学目的了解计数过程的概念掌握泊松

第三章Poisson过程 教学目的:(1)了解计数过程的概念; (2)掌握泊松过程两种定义的等价性; (3)掌握泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布; (4)了解泊松过程的三种推广。 教学重点:(1)泊松过程两种定义的等价性; (2)泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布; (3)泊松过程的三种推广。 教学难点:(1)泊松过程两种定义的等价性的证明; (2)泊松过程来到时刻的条件分布; (3)泊松过程的推广。 3.1 Poisson过程 教学目的:掌握Poisson过程的定义及等价定义;会进行Poisson过程相关的概率的计算。 教学重点:Poisson过程的定义与其等价定义等价性的证明;Poisson过程相关的概率的计算。 教学难点:Poisson过程的定义与其等价定义等价性的证明。 Poisson过程是一类重要的计数过程,先给出计数过程的定义 定义3.1:{(),0} 表示从到时刻 N t t N t t≥ 随机过程称为计数过程,如果()0特定事件发生的次数,它具备以下两个特点: 某一A N t取值为整数; (1)() 内事件发生的次数。 (2)()()()-()(,] 时,且表示时间A s t N s N t N t N s s t <≤ 计数过程有着广泛的应用,如:某商店一段时间内购物的顾客数;某段时 间内电话转换台呼叫的次数;加油站一段时间内等候加油的人数等。 如果在不相交的时间区间中发生的事件个数是独立的,则称该计数过程

有独立增量。即当123,t t t <<2132()-()()-()X t X t X t X t 有与是独立的。 若在任一时间区间中的事件个数的分布只依赖于,时间区间的长度则计数 过程有平稳增量。即对一切12120(,]t t s t s t s <>++及,在中事件个数 21()()N t s N t s +-+12(,]t t 与区间中事件的个数21()()N t N t -有相同的分布。 Poission 过程是计数过程,而且是一类最重要、应用广泛的计数过程,它最早于1837年由法国数学家Poission 引入。 .独立增量和平稳增量是某些级数过程的主要性质Poisson 过程是具有独立 增量.和平稳增量的计数过程 定义3.2:{(),0}(0)N t t λλ≥>计数过程称为参数为Poisson 过程,如果 (1)(0)0N =; (2)过程具有独立增量; (3),0,s t ≥对任意的 (()-())P N t s N s n +=! n t t e n λλ-=() 例3.1:3/h 设顾客到达商店依次人的平均速度到达,Poisson 且服从分布, 9:00,已知商店上午开门试求 (1)9:0010:005从到这一小时内最多有名顾客的概率? (2)9:3011:30到时仅到一位顾客,而到时总计已达到5位顾客的概率? (解:见板书。) 注:(1)Poisson 过程具有平稳增量。 (2)随机变量()N t 服从参数为t λ的Poisson 分布,故[()]E N t t λ=(显然,可以认为λ是单位时间内事件发生的平均次数,称λ是Poisson 过程的强度或速率或发生率。)

泊松过程的应用

应用随机过程课程论文 题目:浅谈泊松过程及其应用 姓名: 学院:理学院 学号: 2013年7月1 日

浅谈泊松过程及其应用 摘要: 本文论述了泊松过程的有关定义,并对其进行相应的推广,阐述了时齐泊松过程、非时齐泊松过程、复合泊松过程以及条件泊松过程,从中很容易看出它们之间的联系。同时,本文也在排队论、数控机床可靠性、保险、航空备件需求上简单描述了泊松过程的应用。另外,泊松过程在物理学、地质学、生物学、金融和可靠性理论等领域中也有着广泛的应用。 关键词:泊松过程;复合泊松过程;排队论 一、泊松过程 1.时齐泊松过程 定义:一随机过程{}(),0N t t ≥,若满足如下条件: (1) 它是一个计数过程,且(0)0N =; (2) 它是独立增量过程; (3) 0,0,,()()s t k N s t N s ?≥∈+-是参数为t λ的泊松分布,即 {}()()().! k t t P N t s N t k e k λλ-+-== 则称此随机过程为时齐泊松过程。 2.非时齐泊松过程 定义:一随机过程{}(),0N t t ≥,若满足如下条件: (1) 它是一个计数过程,且(0)0N =; (2) 它是独立增量过程; (3) 0,0,,s t k ?≥∈满足{}()()[()()]()().! k m s m s t m s t m s P N t s N t k e k -++-+-==其中 0()()t m t s ds λ=?,则称此随机过程为具有强度函数为{}(t)>0λ的非时齐泊松过程。 3.复合泊松过程 定义:设{},1i Y i ≥是独立同分布的随机变量序列,{}(),0N t t ≥为泊松过程, 且{}(),0N t t ≥与{},1i Y i ≥独立,记() 1()N t i i X t Y ==∑,则称{}(),0X t t ≥为复合泊松过程。 4.条件泊松过程 定义:设Λ为一正的随机变量,分布函数为(),0G x x ≥,当给定λΛ=的条件下,{}(),0N t t ≥是一个为泊松过程,即0,0,,0s t k λ?≥∈≥, 有{}()()().! k t t P N t s N t k e k λλλ-+-=Λ== 则称{}(),0N t t ≥是条件泊松过程。 注:这里{}(),0N t t ≥不再是增量独立的过程,由全概率公式,可得 {}0()()()().! k t t P N t s N t k e dG k λλλ∞ -+-==?

相关文档