文档视界 最新最全的文档下载
当前位置:文档视界 › 【磁场】洛伦兹力的应用8-霍尔效应

【磁场】洛伦兹力的应用8-霍尔效应

【磁场】洛伦兹力的应用8-霍尔效应
【磁场】洛伦兹力的应用8-霍尔效应

【磁场】洛伦兹力的应用8‐霍尔效应

(百度上面的标题↑,可以搜到所有题目的视频详解;或者,扫描下面二维码↓,直接看视频课)

知识讲解部分(A类) 巩固练习评讲(B类)

(A类视频链接)https://www.docsj.com/doc/c81899918.html,/v_show/id_XMTQxNjY1ODkzNg==.html

(B类视频链接)https://www.docsj.com/doc/c81899918.html,/v_show/id_XMTQxNjY2ODE5Mg==.html

巩固练习(对应网课视频B类)

B1、设电流I是由电子的定向运动形成的,电子的平均定向速度为v,电量为e,

回答下列问题:

(1)达到稳定状态时,导体板上侧面A的电势____________下侧面A’的电势(填“高

于”“低于”或“等于”);

(2)电子所受的洛伦兹力的大小为________________________;

(3)当导体板上下两侧面之间的电势差为U时,电子所受电场力的大小为_______。

B2、利用霍尔效应的原理可以制造磁强计,测量磁场的磁感应强度。磁强计的原理

如图所示,电路中有一段金属导体,它的横截面为边长等于a的正方形,放在沿x

正方向的匀强磁场中,导体中通有沿y方向、电流强度为I的电流,已知金属导体

单位体积中的自由电子数为n,电子电量为e,金属导体导电过程中,自由电子所

做的定向移动可以认为是匀速运动,测出导体上下两侧面间的电势差为U。求:(1)

导体上、下侧面那个电势较高?(2)磁场的磁感应强度是多少?

B3、利用如图所示的方法可以测得金属导体中单位体积内的自由电子数n,现测得一块横截面为矩形的金属导体的宽为b,厚为d,并加有与侧面垂直的匀强磁场B,当通以图示方向电流I时,在导体上、下表面间用电压表可测得电压为U。已知自由电子的电荷量为e,则下列判断正确的是( )

A.上表面电势高 B.下表面电势高

C.导体单位体积内的自由电子数为I

edb D.导体单位体积内的自由电子数为

BI

eUb

B4、如图所示,长方体玻璃水槽中盛有NaCl的水溶液,在水槽左、右侧壁内侧各装一导体片,使溶液中通入沿x轴正向的电流I,沿y轴正向加恒定的匀强磁场B。图中a、b是垂直于z轴方向上水槽的前后两内侧面,则( )

A.a处电势高于b处电势 B.a处离子浓度大于b处离子浓度

C.溶液的上表面电势高于下表面的电势

D.溶液的上表面处的离子浓度大于下表面处的离子浓度

B5、如图为电磁流量计的示意图。直径为d的非磁性材料制成的圆形导管内,有导电液体流动,磁感应强度为B的匀强磁场垂直于导电液体流动方向而穿过一段圆形管道。若测得管壁内a、b两点间的电势差为U,求管中导电液体的流量Q的表达式(已知流量Q=Sv,S为横截面积,v为流速)。

实验8 霍尔效应法测量磁场A4

实验八 霍尔效应法测量磁场 【实验目的】 1.了解霍尔器件的工作特性。 2.掌握霍尔器件测量磁场的工作原理。 3.用霍尔器件测量长直螺线管的磁场分布。 4.考查一对共轴线圈的磁耦合度。 【实验仪器】 长直螺线管、亥姆霍兹线圈、霍尔效应测磁仪、霍尔传感器等。 【实验原理】 1.霍尔器件测量磁场的原理 图1 霍尔效应原理 如图1所示,有-N 型半导体材料制成的霍尔传感器,长为L ,宽为b ,厚为d ,其四个侧面各焊有一个电极1、2、3、4。将其放在如图所示的垂直磁场中,沿3、4两个侧面通以电流I ,则电子将沿负I 方向以速度运动,此电子将受到垂直方向磁场B 的洛仑兹力m e F ev B =?作用,造成电子在半导体薄片的1测积累过量的负电荷,2侧积累过量的正电荷。因此在薄片中产生了由2侧指向1侧的电场H E ,该电场对电子的作用力H H F eE =,与m e F ev B =?反向,当两种力相平衡时,便出现稳定状态,1、2两侧面将建立起稳定的电压H U ,此种效应为霍尔效应,由此而产生的电压叫霍尔电压H U ,1、2端输出的霍尔电压可由数显电压表测量并显示出来。 I

如果半导体中电流I 是稳定而均匀的,可以推导出H U 满足: H H H IB U R K IB d =? =?, 式中,H R 为霍耳系数,通常定义/H H K R d =,H K 称为灵敏度。 由H R 和H K 的定义可知,对于一给定的霍耳传感器,H R 和H K 有唯一确定的值,在电流I 不变的情况下,与B 有一一对应关系。 2.误差分析及改进措施 由于系统误差中影响最大的是不等势电势差,下面介绍一种方法可直接消除不等势电势差的影响,不用多次改变B 、I 方向。如图2所示,将图2中电极2引线处焊上两个电极引线5、6,并在5、6间连接一可变电阻,其滑动端作为另一引出线2,将线路完全接通后,可以调节滑动触头2,使数字电压表所测 电压为零,这样就消除了1、2两引线间的不等势电势差,而且还可以测出不等势电势差的大小。本霍尔效应测磁仪的霍尔电压测量部分就采用了这种电路,使得整个实验过程变得较为容易操作,不过实验前要首先进行霍尔输出电压的调零,以消除霍尔器件的“不等位电势”。 在测量过程中,如果操作不当,使霍尔元件与螺线管磁场不垂直,或霍尔元件中电流与磁场不垂直,也会引入系统误差。 3.载流长直螺线管中的磁场 从电磁学中我们知道,螺线管是绕在圆柱面上的螺旋型线圈。对于密绕的螺线管来说,可以近似地看成是一系列园线圈并排起来组成的。如果其半径为R 、总长度为L ,单位长度的匝数为n ,并取螺线管的轴线为x 轴,其中心点O 为坐标原点,则 (1)对于无限长螺线管L →∞或L R >>的有限长螺线管,其轴线上的磁场是一个均匀磁场,且等于: 00B NI μ= 图2

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验(FB510A 型霍尔效应组合实验仪) (亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?与洛仑兹力B v e ??相等,样品两侧电荷的积累就达到动态平衡,故有

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验 (FB510A型霍尔效应组合实验仪)(亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?

霍尔效应实验仪原理及其应用

一、实验名称: 霍尔效应原理及其应用 二、实验目的: 1、了解霍尔效应产生原理; 2、测量霍尔元件的H s V I -、H m V I -曲线,了解霍尔电压H V 与霍尔元件工作电流s I 、直 螺线管的励磁电流 m I 间的关系; 3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度B 及分布; 4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。 三、仪器用具:YX-04型霍尔效应实验仪(仪器资产编号) 四、实验原理: 1、霍尔效应现象及物理解释 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力 B f 作用而引起的偏转。 当带电 粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1所示。 半导体样品,若在x方向通以电流s I ,在z方向加磁场B ,则在y方向即样品A、A′电 极两侧就开始聚积异号电荷而产生相应的电场H E ,电场的指向取决于样品的导电类型。显然, 当载流子所受的横向电场力 E B f f <时电荷不断聚积,电场不断加强,直到 E B f f =样品两侧电 荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压) H V 。

设 H E 为霍尔电场,v 是载流子在电流方向上的平均漂移速度; 样品的宽度为b ,厚度为d , 载流子浓度为n ,则有: s I nevbd = (1-1) 因为 E H f eE =,B f evB =,又根据E B f f =,则 1s s H H H I B I B V E b R ne d d =?= ?= (1-2) 其中 1/()H R ne =称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出H V 、B 以及知道s I 和d ,可按下式计算3 (/)H R m c : H H s V d R I B = (1-3) B I U K S H H /= (1—4) H K 为霍尔元件灵敏度。根据RH 可进一步确定以下参数。 (1)由 H V 的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1所示的 s I 和B 的方向(即测量中的+ s I ,+B ),若测得的 H V <0(即A′的电位低于A的电位), 则样品属N型,反之为P型。 (2)由 H V 求载流子浓度n ,即 1/() H n K ed =。应该指出,这个关系式是假定所有载流 子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入3/8π的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。 (3)结合电导率的测量,求载流子的迁移率μ。电导率σ与载流子浓度n 以及迁移率μ之间有如下关系:

霍尔效应法测量磁场

霍尔效应测磁场 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。1879 年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象, 故称霍尔效应。后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属 的霍尔效应太弱而未能得到实际应用。随着半导体材料和制造工艺的发展,人 们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发 展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。在电 流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。 在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。 【实验目的】 1.霍尔效应原理及霍尔元件有关参数的含义和作用 2.测绘霍尔元件的V H—Is,了解霍尔电势差V H与霍尔元件工作电流Is、磁感应强度B之间的关系。 3.学习利用霍尔效应测量磁感应强度B及磁场分布。 4.学习用“对称交换测量法”消除负效应产生的系统误差。 【实验原理】 霍尔效应从本质上讲,是运动的带电粒子在 磁场中受洛仑兹力的作用而引起的偏转。当带电 粒子(电子或空穴)被约束在固体材料中,这种 偏转就导致在垂直电流和磁场的方向上产生正 负电荷在不同侧的聚积,从而形成附加的横向电 场。如图13-1所示,磁场B位于Z的正向,与 之垂直的半导体薄片上沿X正向通以电流Is(称 为工作电流),假设载流子为电子(N型半导体材 料),它沿着与电流Is相反的X负向运动。 由于洛仑兹力f L作用,电子即向图中虚线 箭头所指的位于y轴负方向的B侧偏转,并使B 侧形成电子积累,而相对的A侧形成正电荷积累。 与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力f E的作用。随着电荷积累的增加,f E增大,当两力大小相等(方向相反)时,f L=-f E,则电子积累便达到动态平衡。这时在A、B两端面之间建立的电场称为霍尔电场E H,相应的电势差称为霍尔电势V H。 设电子按均一速度v,向图示的X负方向运动,在磁场B作用下,所受洛仑兹力为:

霍尔效应法测量螺线管磁场

研胳wZprtf 霍尔效应法测量螺线管磁场实验报告 【实验目的】 1?了解霍尔器件的工作特性。 2?掌握霍尔器件测量磁场的工作原理。 3?用霍尔器件测量长直螺线管的磁场分布。 4.考查一对共轴线圈的磁耦合度。 【实验仪器】 长直螺线管、亥姆霍兹线圈、霍尔效应测磁仪、霍尔传感器等。 【实验原理】 1?霍尔器件测量磁场的原理 图1霍尔效应原理 如图1所示,有—N型半导体材料制成的霍尔传感器,长为L,宽为b,厚为d,其四个侧面各焊有一个电 极1、2、3、4。将其放在如图所示的垂直磁场中,沿3、4两个侧面通以电流I,则电子将沿负I方向以速 ur ir u 度运动,此电子将受到垂直方向磁场B的洛仑兹力F m ev e B作用,造成电子在半导体薄片的1测积累 urn 过量的负电荷,2侧积累过量的正电荷。因此在薄片中产生了由2侧指向1侧的电场E H,该电场对电子ur uuu uir n ir 的作用力F H eE H,与F m ev e B反向,当两种力相平衡时,便出现稳定状态,1、2两侧面将建立起 稳定的电压U H,此种效应为霍尔效应,由此而产生的电压叫霍尔电压U H , 1、2端输出的霍尔电压可由 数显电压表测量并显示出来。 如果半导体中电流I是稳定而均匀的,可以推导出 式中,R H为霍耳系数,通常定义K H R H /d , 由R H和K H的定义可知,对于一给定的霍耳传感器,R H和K H有唯一确定的值,在电流I不变的情况下, U H R H U H满足: 世K H IB , d K H称为灵敏度。

研 島加吋 与B有一一对应关系。 2?误差分析及改进措施 由于系统误差中影响最大的是不等势电势差,下面介绍一种 方法可直接消除不等势电势差的影响,不用多次改变B、丨方 向。如图2所示,将图2中电极2引线处焊上两个电极引线5、6,并在5、6间 连接一可变电阻,其滑动端作为另一引出线2, 将线路完全接通后,可以调节 滑动触头2,使数字电压表所测电压为零,这样就消除了1、2两引线间的不等 势电势差,而且还可以测出不等势电势差的大小。本霍尔效应测磁仪的霍尔电 压测量部分就采用了这种电路,使得整个实验过程变得较为容易操作,不过实 验前要首先进行霍尔输出电压的调零, 以消除霍尔器件的不等位电势”。 在测量过程中,如果操作不当,使霍尔元件与螺线管磁场不垂直,或霍尔元件中电流与磁场不垂直,也会引入系统误差3?载流长直螺线管中的磁场 从电磁学中我们知道,螺线管是绕在圆柱面上的螺旋型线圈。对于密绕的螺线管来说,可以近似地看成是 一系列园线圈并排起来组成的。如果其半径为R、总长度为L,单位长度的匝数为n,并取螺线管的轴线 为x轴,其中心点0为坐标原点,贝U (1)对于无限长螺线管L 或L R的有限长螺线管,其轴线上的磁场是一个均匀磁场,且等于: uu B o o NI 式中0――真空磁导率;N ――单位长度的线圈匝数;I ――线圈的励磁电流。 (2)对于半无限长螺线管的一端或有限长螺线管两端口的磁场为: uu 1 B! —oNI 2 即端口处磁感应强度为中部磁感应强度的一半,两者情况如图3所示。 图2 图3

用霍尔效应测量螺线管磁场 物理实验报告

华南师范大学实验报告 学生姓名 学 号 专 业 化学 年级、班级 课程名称 物理实验 实验项目 用霍尔效应测量螺线管磁场 实验类型 □验证 □设计 □综合 实验时间 2012 年 3 月 07 实验指导老师 实验评分 一、 实验目的: 1.了解霍尔效应现象,掌握其测量磁场的原理。 2.学会用霍尔效应测量长直通电螺线管轴向磁场分布的方法。 二、 实验原理: 根据电磁学毕奥-萨伐尔定律,通电长直螺线管线上中心点的磁感应强度为: 2 2 M D L I N B +??μ= 中心 (1) 理论计算可得,长直螺线管轴线上两个端面上的磁感应强度为内腔中部磁 感应强度的1/2: 2 2M D L I N 21B 21B +??μ? ==中心端面 (2) 式中,μ为磁介质的磁导率,真空中的磁导率μ0=4π×10-7 (T ·m/A),N 为螺线管的总匝数,I M 为螺线管的励磁电流,L 为螺线管的长度,D 为螺线管的平均直径。 三、 实验仪器: 1.FB510型霍尔效应实验仪 2.FB510型霍尔效应组合实验仪(螺线管) 四、 实验内容和步骤: 1. 把FB510型霍尔效应实验仪与FB510型霍尔效应组合实验仪(螺线管)正确连接。把励磁电流接到螺线 管I M 输入端。把测量探头调节到螺线管轴线中心,即刻度尺读数为13.0cm 处,调节恒流源2,使I s =4.00mA ,按下(V H /V s )(即测V H ),依次调节励磁电流为I M =0~±500mA ,每次改变±50mA, 依此测量相应的霍尔电压,并通过作图证明霍尔电势差与螺线管内磁感应强度成正比。 2. 放置测量探头于螺线管轴线中心,即1 3.0cm 刻度处,固定励磁电流±500mA ,调节霍尔工作电流为:I s =0~ ±4.00mA ,每次改变±0.50mA ,测量对应的霍尔电压V H ,通过作图证明霍尔电势差与霍尔电流成正比。 3. 调节励磁电流为500mA ,调节霍尔电流为 4.00mA ,测量螺线管轴线上刻度为X =0.0cm~13.0cm ,每次移动 1cm ,测各位置对应的霍尔电势差。(注意,根据仪器设计,这时候对应的二维尺水平移动刻度读数为:13.0cm 处为螺线管轴线中心,0.0cm 处为螺线管轴线的端面,找出霍尔电势差为螺线管中央一半的数值的刻度位置。与理论值比较,计算相对误差。按给出的霍尔灵敏度作磁场分布B ~X 图。) 五、 注意事项: 图1

霍尔效应测磁场实验报告(完整资料).doc

【最新整理,下载后即可编辑】 实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间: 一、实验室名称:霍尔效应实验室 二、 实验项目名称:霍尔效应法测磁场 三、实验学时: 四、实验原理: (一)霍耳效应现象 将一块半导体(或金属)薄片放在磁感应强度为B 的磁 场中,并让薄片平面与磁场方向(如Y 方向)垂直。如在薄片的横向(X 方向)加一电流强度为H I 的电流,那么在与磁场方向和电流方向垂直的Z 方向将产生一电动势H U 。 如图1所示,这种现象称为霍耳效应,H U 称为霍耳电压。霍耳发现,霍耳电压H U 与电流强度H I 和磁感应强度B 成正比,与磁场方向薄片的厚度d 反比,即 d B I R U H H = (1) 式中,比例系数R 称为霍耳系数,对同一材料R 为一常数。因成品霍耳元件(根据霍耳效应制成的器件)的d 也是一常数,故d R /常用另一常数K 来表示,有 B KI U H H = (2) 式中,K 称为霍耳元件的灵敏度,它是一个重要参数,表示该元件在单位磁感应强度和单位电流作用下霍耳电压的大小。如果霍

耳元件的灵敏度K 知道(一般由实验室给出),再测出电流H I 和霍耳电压H U ,就可根据式 H H KI U B = (3) 算出磁感应强度B 。 图 1 霍 耳 效 应 示 意 图 图2 霍耳效应解释 (二)霍耳效应的解释 现研究一个长度为l 、宽度为b 、厚度为d 的N 型半导体制成的霍耳元件。当沿X 方向通以电流H I 后,载流子(对N 型半导体是电子)e 将以平均速度v 沿与电流方向相反的方向运动,在磁感应强度为B 的磁场中,电子将受到洛仑兹力的作用,其大小为 evB f B = 方向沿Z 方向。在B f 的作用下,电荷将在元件沿Z 方向的两端面堆积形成电场H E (见图2),它会对载流子产生一静电力E f ,其大小为 H E eE f = 方向与洛仑兹力B f 相反,即它是阻止电荷继续堆积的。当B f 和E f 达到静态平衡后,有E B f f =,即b eU eE evB H H /==,于是电荷堆积的两端面(Z 方向)的电势差为 vbB U H = (4)

霍尔效应及其应用

实验七、霍尔效应 1879年,霍尔在研究截流导体在磁场中的受力情况时,发现了一种现象:给处于匀强磁场中的板状金属导体,通以垂直于磁场方向的电流时,肝在金属板的上下两表面间产生一个横向电势差,这一现象称为霍尔效应。霍尔效应不只是在金属导体中产生,在半导体或导体中同样也能产生,且半导体中的霍尔效应更加显著。 霍尔效应是研究半导体材料性能的重要理论根据,利用半导体材料制成的霍尔元件,又称为霍尔传感器。 一、实验目的 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的VH-IS和VH-IM曲线。 3.确定试样的导电类型,载流了的浓度以及迁移率。 二、实验仪器 霍尔效应仪;霍尔效应测试仪、fx-3600p 计算器。 三、实验原理 霍尔效应从本质上 讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。 假定有如图所示的金属块中,通以水平向右的沿X轴正方向的电流I,外加沿Z轴正方向的磁感应强度为B的磁场。由于金属中形成电流的是电子,电子的定向移动方向与电流方向相反,即沿X轴负方向。此时电子在磁场中受洛仑兹力f H ,方向向下,则电子向金属块的下沿聚集,相应正电荷则在上板。这样形成由上向下的电场E H ,使后来的电子在受到向下洛仑兹力f H 的同时,还受到向上的电场力f E ,最终两个力平衡,上下板的电荷达到稳定状态。这时上下板之间的电压称之为霍尔电压,这种效应叫霍尔效应。 霍尔电压的计算公式的推导:设电子的电量为e ,单位体积中的自由移动的电荷数—即载流了浓度为n ,霍尔片的厚度为d,高度为b ,则由f H =qVB,f e =qE,I=neSv=nebdv;f e =f H.最后推出: B I K ned B I b E U S H S H H == = (1) 其中U H 为霍尔电压(A !、A 之间的电压),它与I S B 的积成正比。比例系数K H =1/ned 称为霍尔灵敏度,它反映材料的霍尔效应强弱的重要参数,表示该元

霍尔效应的应用实验报告

一、名称:霍尔效应的应用 二、目的: 1.霍尔效应原理及霍尔元件有关参数的含义和作用 2.测绘霍尔元件的V H —Is,V H —I M 曲线,了解霍尔电势差V H 与霍尔元件工作 电流Is,磁场应强度B及励磁电流IM之间的关系。 3.学习利用霍尔效应测量磁感应强度B及磁场分布。 4.学习用“对称交换测量法”消除负效应产生的系统误差。 三、器材: 1、实验仪: (1)电磁铁。 (2)样品和样品架。 (3)Is和I M 换向开关及V H 、V ó 切换开关。 2、测试仪: (1)两组恒流源。 (2)直流数字电压表。 四、原理: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电

流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图15-1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样 A-A / 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)()(N 0)(型型?>?

霍尔效应的原理及其应用

霍尔效应的原理及其应用 蒲紫微1320012 13级生物医学工程 【摘要】从霍尔效应的发现开始,系统阐述了霍尔效应的原理、可测量的物理量,并介绍了目前霍尔效应在实际中的应用,同时介绍了霍尔效应的新进展。 【关键词】霍尔效应;实际应用;测量;新进展 霍尔效应已有100多年的发展史,在此期间,对霍尔效应的研究,科学家们从没有停止过。霍尔效应是霍普斯金大学研究生霍尔1879年发现的,它属于电磁效应的一种,但又区别于传统的电磁效应。当电流通过导体且外加磁场方向与电流方向垂直时,在与磁场和电流均垂直的方向上便会产生一附加电场,于是,导体的两端便会产生电势差,这一现象就是霍尔效应,这个电势差一般也被称作霍尔电势差。[1] 1 霍尔效应原理 一个由半导体材料制成的霍尔元件薄片,设其长、宽、厚分别为l,b,d。将其放在如图1所示的垂直磁场中,沿3,4两个侧面方向通以电流,大小为I。由于洛伦兹力Fm的作用使电子运动轨迹发生偏转,造成电子在霍尔元件薄片的1侧聚集过量的负电荷,2侧聚集过量的正电荷。因此在薄片内部产生了由2侧指向1侧的电场E H,同时电子还受到与洛伦兹力反向的电场力F H的作用。当两力大小相等时,电子的累积和聚集便达到动态平衡。这时,在霍尔元件薄片1,2两侧之间将会产生稳定的电压U H。 如果半导体中电流I是均匀且稳定的,可以推导出:U H=R H?IB/ d =K H?IB 式中:R H为霍尔系数,K H称为霍尔元件灵敏度。它表示霍尔元件在单位磁感应强度作用和单位工作电流控制下,霍尔电极开路时,产生霍尔电势的大小,其单位为(伏特/安培·特斯拉). K H不仅与霍尔元件的材料电学性质有关,也与其几何尺寸有关.对于一个确定的霍尔元件,K H是一个常数。[2]-[3] 2测量误差及消除方法 2.1不等位电势和热能流引起的不等位电势 通过霍尔效应测量物理量,主要是通过测量霍尔电势差所达到。在霍尔效应产生的同时,会产生系统误差,其主要来源为伴随霍尔效应产生的各种其他效应,它们对测量的准确度影响很大。因此,系统误差的处理成了霍尔效应测量中的一个重要问题。热能流实质是载流子的热扩散运动。这种扩散运动是定向的,故热能流是一种热扩散电流。因此有热能流通过霍尔元件时与电流一样,也会产生不等位电势。通过霍尔片的电流方向的改变时,测得电压值会发生变化。电流在某个方向测得电压总比其反向时的电压大。这是因为测出的不等位电势实质上是电流和热能流引起的两种不等位电势的迭加。随着电流方向的改变,所测得的不等位电势的值会不同,并且总是电流在某个方向时测得的电压大于其反向时测得的电压。 2.2系统误差的处理方法[4] 2.2.1直流测量中系统误差的处理 在直流测量中,要消除各种伴随效应带来的系统误差,则根据各种效应所产生的电势的方向特点,分别改变电流和磁场的方

霍尔效应测磁场实验报告

v1.0可编辑可修改 (3) 实验报告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间: 一、 实验室名称:霍尔效应实验室 二、 实验项目名称:霍尔效应法测磁场 三、 实验学时: 四、 实验原理: (一)霍耳效应现象 将一块半导体(或金属)薄片放在磁感应强度为 B 的磁场中,并让薄片平面与磁场 方向(如Y 方向)垂直。如在薄片的横向( X 方向)加一电流强度为|H 的电流,那么在与 磁场方向和电流方向垂直的 Z 方向将产生一电动势 U H 。 如图1所示,这种现象称为霍耳效应, U H 称为霍耳电压。霍耳发现,霍耳电压 U H 与 电流强度I H 和磁感应强度 B 成正比,与磁场方向薄片的厚度 d 反比,即 U H R-^^B ( 1 ) d 式中,比例系数R 称为霍耳系数,对同一材料 R 为一常数。因成品霍耳元件 (根据霍耳效应 制成的器件)的d 也是一常数,故 R/d 常用另一常数 K 来表示,有 U H KI H B 式中,K 称为霍耳元件的灵敏度,它是一个重要参数,表示该元件在单位磁感应强度和单位 电流I H 和霍耳电压U H ,就可根据式 U H KI H 电流作用下霍耳电压的大小。如果霍耳元件的灵敏度 K 知道(一般由实验室给出),再测出

算出磁感应强度Bo (5) v

(5) v (二)霍耳效应的解释 现研究一个长度为I 、宽度为b 、厚度为d 的N 型半导体制成的霍耳元件。当沿 X 方向 通以电流I H 后,载流子(对 N 型半导体是电子)e 将以平均速度v 沿与电流方向相反的方 向运动,在磁感应强度为 B 的磁场中,电子将受到洛仑兹力的作用,其大小为 f B evB 方向沿Z 方向。在f B 的作用下,电荷将在元件沿Z 方向的两端面堆积形成电场 E H (见图2), 它会对载流子产生一静电力 f E ,其大小为 f E eE H 方向与洛仑兹力 f B 相反,即它是阻止电荷继续堆积的。当 f B 和f E 达到静态平衡后,有 f B f E ,即evB eE H eU H /b ,于是电荷堆积的两端面(Z 方向)的电势差为 U H vbB 通过的电流I H 可表示为 I H nevbd 式中n 是电子浓度,得 n ebd 将式(5)代人式(4)可得 (4) 图1霍耳效应示意图 图2霍耳效应解释

霍尔效应法测量螺线管磁场分布

霍尔效应法测量螺线管磁场分布 1879年美国霍普金斯大学研究生霍尔在研究载流导体在磁场中受力性质时发现了一种电磁现象,此现象称为霍尔效应,半个多世纪以后,人们发现半导体也有霍尔效应,而且半导体霍尔效应比金属强得多。近30多年来,由高电子迁移率的半导体制成的霍尔传感器已广泛用于磁场测量和半导体材料的研究。用于制作霍尔传感器的材料有多种:单晶半导体材料有锗,硅;化合物半导体有锑化铟,砷化铟和砷化镓等。在科学技术发展中,磁的应用越来越被人们重视。目前霍尔传感器典型的应用有:磁感应强度测量仪(又称特斯拉计),霍尔位置检测器,无接点开关,霍尔转速测定仪,100A-2000A 大电流测量仪,电功率测量仪等。在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年德国·克利青教授在低温和强磁场下发现了量子霍尔效应,这是近年来凝聚态物理领域最重要发现之一。目前对量子霍尔效应正在进行更深入研究,并取得了重要应用。例如用于确定电阻的自然基准,可以极为精确地测定光谱精细结构常数等。 通过本实验学会消除霍尔元件副效应的实验测量方法,用霍尔传感器测量通电螺线管激励电流与霍尔输出电压之间关系,证明霍尔电势差与螺线管磁感应强度成正比;了解和熟悉霍尔效应重要物理规律,证明霍尔电势差与霍尔电流成正比;用通电长直通电螺线管轴线上磁感应强度的理论计算值作为标准值来校准或测定霍尔传感器的灵敏度,熟悉霍尔传感器的特性和应用;用该霍尔传感器测量通电螺线管的磁感应强度与螺线管轴线位置刻度之间的关系,作磁感应强度与位置刻线的关系图,学会用霍尔元件测量磁感应强度的方法. 实验原理 1.霍尔效应 霍尔元件的作用如图1所示.若电流I 流过厚度为d 的半导体薄片,且磁场B 垂直作用于该半导体,则电子流方向由于洛伦茨力作用而发生改变,该现象称为霍尔效应,在薄片两个横向面a 、b 之间与电流I ,磁场B 垂直方向产生的电势差称为霍尔电势差. 霍尔电势差是这样产生的:当电流I H 通过霍尔元件(假设为P 型)时,空穴有一定的漂移速度v ,垂直磁场对运动电荷产生一个洛仑兹力 )(B v q F B ?= (1) 式中q 为电子电荷,洛仑兹力使电荷产生横向的偏转,由于样品有边界,所以偏转的载流 子将在边界积累起来,产生一个横向电场E ,直到电场对载流子的作用力F E =qE 与磁场作用的洛仑兹力相抵消为止,即 qE B v q =?)( (2) 这时电荷在样品中流动时不再偏转,霍尔电势差就是由这个电场建立起来的。 如果是N 型样品,则横向电场与前者相反,所以N 型样品和P 型样品的霍尔电势差有不同的符号,据此可以判断霍尔元件的导电类型。 设P 型样品的载流子浓度为Р,宽度为ω,厚度为d ,通过样品电流I H =Рqv ωd ,则空穴的速度v= I H /Рq ωd 代入(2)式有 d pq B I B v E H ω= ?= (3) 上式两边各乘以ω,便得到 d B I R pqd B I E U H H H H == =ω (4) 其中pq R H 1 = 称为霍尔系数,在应用中一般写成

霍尔效应及其应用实验报告

霍尔效应及其应用实验报告 一、实验名称: 霍尔效应原理及其应用 二、实验目的: 1、了解霍尔效应产生原理; 2、测量霍尔元件的 H s V I -、H m V I -曲线,了解霍尔电压H V 与霍尔元件工作电流s I 、直螺线管的励磁电流m I 间的关系; 3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度B 及分布; 4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。 三、仪器用具:YX-04型霍尔效应实验仪(仪器资产编号) 四、实验原理: 1、霍尔效应现象及物理解释 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力B f 作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1所示。 半导体样品,若在x方向通以电流s I ,在z方向加磁场B ,则在y方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场H E ,电场的指向取决于样品的导电类型。显然,

当载流子所受的横向电场力E B f f <时电荷不断聚积,电场不断加强,直到E B f f =样品两侧电 荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压) H V 。 设H E 为霍尔电场,v 是载流子在电流方向上的平均漂移速度;样品的宽度为b ,厚度为d ,载流子浓度为n ,则有: s I nevbd = (1-1) 因为E H f eE =,B f evB =,又根据E B f f =,则 1s s H H H I B I B V E b R ne d d =?=?= (1-2) 其中1/()H R ne =称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出H V 、B 以及知道s I 和d ,可按下式计算 3(/)H R m c : H H s V d R I B = (1-3) B I U K S H H /= (1—4) H K 为霍尔元件灵敏度。根据RH 可进一步确定以下参数。 (1)由H V 的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1所示的s I 和B 的方向(即测量中的+s I ,+B ),若测得的H V <0(即A′的电位低于A的电位),则样品属N型,反之为P型。 (2)由H V 求载流子浓度n ,即1/()H n K ed =。应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入3/8π的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。

大学物理实验讲义实验 用霍尔效应法测量磁场

实验16用霍尔效应法测量磁场 在工业生产和科学研究中,经常需要对一些磁性系统或磁性材料进行测量,被测磁场的范 围可从~10 15-3 10T (特斯拉),测量所用的原理涉及到电磁感应、磁光效应、热磁效应等。常用的磁场测量方法有核磁共振法、电磁感应法、霍尔效应法、磁光效应法、超导量子干涉器件法等近十种。 一般地,霍尔效应法用于测量10~104 -T 的磁场。此法结构较简单,灵敏度高,探头体积小、测量方便、在霍尔器件的温度范围内有较好的稳定性。但霍尔电压和内阻存在一定的温度系数,并受输入电流的影响,所以测量精度较低。 用半导体材料制成的霍尔器件,在磁场作用下会出现显着的霍尔效应,可用来测量磁场、霍尔系数、判断半导体材料的导电类型(N 型或P 型)、确定载流子(作定向运动的带电粒子)浓度和迁移率等参数。如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量电测、自动控制和信息处理等方面,如测量强电流、压力、转速等,在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更为广阔的应用前景。了解这一富有实用性的实验,对于日后的工作将有益处。 【实验目的】 1. 了解霍尔效应产生的机理。 2. 掌握用霍尔器件测量磁场的原理和基本方法。 3. 学习消除伴随霍尔效应的几种副效应对测量结果影响的方法。 4. 研究通电长直螺线管内轴向磁场的分布。 【仪器用具】 TH-H/S 型霍尔效应/螺线管磁场测试仪、TH-S 型螺线管磁场实验仪。 【实验原理】 1. 霍尔效应产生的机理 置于磁场中的载流体,如果电流方向与磁场方向垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,载流体的两侧会产生一电位差,这个现象是美国霍普斯金大学二年级研究生霍尔于1879年发现的,后被称为霍尔效应,所产生的电位差称为霍尔电压。特别是在半导体样品中,霍尔效应更加明显。 霍尔电压从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子和空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的积累,从而形成附加的横向电场,即霍尔电场。对于图1-1(a )所示的N 型半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,试样中载流子(电子)将受到洛仑兹力大小为: evB F g =(1-1) 则在Y 方向,在试样A 、A '电极两侧就开始聚积异号电荷而产生相应的附加电场——霍尔电场。电场的指向取决于试样的导电类型,对N 型半导体试样,霍尔电场逆Y 方向,P 型半导体试样,霍尔电场则沿Y 方向,即有: 当S I 沿X 轴正向、B 沿Z 轴正向、H E 逆Y 正方向的试样是N 型半导体。

霍尔效应及其应用

霍尔效应及其应用 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。1879年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象,故称霍尔效应。后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属的霍尔效应太弱而未能得到实际应用。随着半导体材料和制造工艺的发展,人们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著、结构简单、形小体轻、无触点、频带宽、动态特性好、寿命长,因而被广泛应用于自动化技术、检测技术、传感器技术及信息处理等方面。在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。 在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。霍尔效应也是研究半导体性能的基本方法,通过霍尔效应实验所测定的霍尔系数,能够判断半导体材料的导电类型,载流子浓度及载流子迁移率等重要参数。 【实验目的】 (1) 了解霍尔效应产生的机理及霍尔元件有关参数的含义和作用。 (2) 学习利用霍尔效应研究半导体材料性能的方法及消除副效应影响的方法。 (3) 学习利用霍尔效应测量磁感应强度B 及磁场分布。 (4) 学习用最小二乘法和作图法处理数据。 【实验原理】 (1) 霍尔效应 霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。这个现象叫做霍尔效应。 如图1.1所示,把一块半导体薄片放在垂直于它的磁感应强度为B 的磁场中(B 的方向沿Z 轴方向),若沿X 方向通以电流S I 时,薄片内定向移动的载流子受到的洛伦兹力B F 为: quB F B = ,其中q ,u 分别是载流子的电量和移动速度。载流子受力偏转的结果使电荷在'AA 两侧积聚而形成电场,电场的取向取决于试样的导电类型。设载流子为电子,则B F 沿着负Y 轴负方向,这个电场又给载流子一个与B F 反方向的电场力E F 。设H E 为电场强度,H V 为A 、 'A 间的电位差,b 为薄片宽度,则 b V q qE F H H E == (1.1)

利用霍尔效应测磁场实验的误差分析解读

2012大学生物理实验研究论文 利用霍尔效应测磁场实验的误差分析 张晓春(02A11622) (东南大学机械工程学院,江苏南京, 211189) 摘要:通过对利用霍尔效应测磁场实验的原理、过程、及实验数据的处理进行分析,得出本实验误差的主要来源,并对减小误差提出切实可行的方法及注意事项,其中重点介绍利用对称测量法处理数据以减小误差的方法。关键词:霍尔效应误差分析对称测量法 Experimental Error Analysis of Hall Effect Measurements in Magnetic Field Zhang Xiao Chun(02A11622) (School of Mechanical Engineering of Southeast University,Nanjing,Jiangsu,211189) Abstract: Through analyzing the principle process and experimental data processing of using Hall effect to measure magnetic field, draw the main source of experimental error, and put forward practical methods and precautions to reduce the error, which focuses on Symmetrical measurement to process data to reduce experimental error. Key words: Hall Effect Experimental error analysis Symmetrical measurement 自1879年霍尔效应被发现以来,它在测量方向 得到了广泛的应用,其中测螺线管轴线上的磁场是十 分重要的一个方面。但是在测量中,总会产生各种各 样的副效应,这些副效应带来了一定的测量误差,有 些副效应的影响可与实测值在同一数量级,甚至更大。 因此在实验中如何消除这些副效应成为很重要的问题。 本文分析了霍尔效应测磁场的误差来源,并提出了减 小误差应采取的措施及一些注意事项。 作者简介:张晓春(1992-),山东诸城人,本科在读 邮箱:zhangxiaochun12@https://www.docsj.com/doc/c81899918.html, 1、霍尔效应测磁场的实验原理霍尔效应中霍尔电压UH与所加磁场和霍尔元件的工作电流I的关系为: UH=KHIB (1) 用已对KH定标的霍尔元件支撑探头,分别测出I和UH,即可得:

相关文档
相关文档 最新文档