文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米材料粒度分析报告

纳米材料粒度分析报告

纳米材料粒度分析报告
纳米材料粒度分析报告

纳米材料粒度分析

一、实验原理

纳米颗粒材料(粒径<100nm )是纳米材料中最重要的一种,可广泛用于纳米复合材料制备中的填料、光催化颗粒、电池电极材料、功能性分散液等。粒径(或粒度)是纳米颗粒材料的一个非常重要的指标。测试颗粒粒径的方法有许多种,其中,电子显微镜法和激光光散射法均可用纳米材料粒度的测试,电子显微镜法表征纳米材料比较直观,可观察到纳米颗粒的形态,但需要通过统计计数(一般需统计1000个以上颗粒的粒径)方法来得到颗粒粒径,比较烦琐费时,尤其是在纳米颗粒的粒径分布较宽时,统计得到的粒径及粒径分布误差将增大。激光光散射法得到的纳米颗粒粒径具有较好的统计意义,制样简单,测试速度快,但激光光散射法无法观察到颗粒形态,在测试非球形颗粒时测试误差也较大。因此,上述两种纳米材料的测试方法各有优缺点。本实验选用激光光散射法测试纳米材料的粒径及粒径分布。所用仪器为Beckman-coulter N4 Plus 型激光粒度分析仪。

图1为N4 Plus 型激光粒度分析仪的测量单元组成图,主要由HeNe 激光光源、聚焦透镜、样品池、步进马达、光电倍增管(PMT)、脉冲放大器和鉴别器(PAD)、数字自相关器、6802微处理器和计算机组成。

图1 N4 Plus 型激光粒度测试仪的测量单元组成图

N4 Plus 型激光粒度分析仪的测量原理主要基于颗粒的布朗(Brownian)运动和光子相关光谱(Photon Correlation Spectroscopy, PCS)现象。在溶液中,粒子由热导致与溶剂分子发生随机碰撞所产生的运动称为布朗运动,由于布朗运动,粒子在溶液中可发生扩散移动。在恒定温度及某一浓度下,粒子的平移扩散系数与颗粒的粒径成反比,即符合Stokes-Einstein 方程:

d

3T

k D B πη=

(1)

式中k B 为玻尔兹曼常数(1.38×10-16

erg/?K),T 为温度(?K),η为分散介质(或稀释剂)粘度

(poise),d 为颗粒粒径(cm)。当激光束照射到溶液中的悬浮颗粒上时,由于颗粒的随机布朗运动,颗粒产生的散射光强也将不断起伏波动,这种现象称作光子相光光谱现象,如图2所示。布朗运动越强烈,散射光强随机涨落的速率也就越快,反之亦然。利用光子相光光谱法测量的粒径是下限大约是3~5nm 。

图2 散射光强随时间的起伏涨落

当入射光场为稳定的高斯光场时,散射光强的时间自相关函数(Autocorrelation Function, ACF )可以表示为

))(g 1(A )(G

2

)

1()

2(τβ+=τ

(2)

式中,A 为光强自相关函数G (2)

(τ)的基线,β为约束信噪比的实验常数,A 和β是依赖于样品、装置结构和光电子技术效率的常数,g (1)

(τ)为散射光场的电场强度自相关函数。通过数字相关仪测得的时间自相关函数G (2)

(τ),即可得到被测颗粒的粒径信息。

对于最简单的单分散颗粒系,其光强自相关函数服从洛仑兹分布,是一指数衰减函数,可表示为

)]2ex p(1[A )(G )2(τΓ-β+=τ

(3)

式中Γ为Rayleigh 线宽。光强自相关函数G (2)

(τ)如图3所示。

图3 自相关函数(ACF )

Γ与表征颗粒布朗运动的平移扩散系数D 存在如下关系:

2Dq =Γ

(4)

式中q 是散射矢量,由下式决定

)2

sin(n 4q 0θ

λπ=

(5)

式中λ0是入射光在真空中的波长,θ是散射角,n 为分散介质折射率。根据Γ值,可从式(4)求得颗粒平移扩散系数D ,最后由式(1)求得被测颗粒试样的粒径。需要注意的是,Stokes-Einstein 公式是在不存在其他作用里的条件下得到的。为此,在应用PCS 法测量时溶液中的颗粒浓度应充分稀释,颗粒表面也不应有静电荷,以避免颗粒间的相互作用。

对多分散颗粒系,电场自相关函数为单指数加权之和或者分布积分

?∞

ΓτΓ-Γ=τ0

)

1(d )ex p()(G )(g

(6)

式中,G(Γ)为依赖于光强的归一化线宽分布函数。

由式(6)求得G(Γ)后,光强随颗粒粒径的分布函数G(D)可由Stokes-Einstein 关系式从G(Γ)中换算获得。通常G 2

(τ)由数字相关仪测得,继而根据式(1)换算得到电场自相关系数g (1)

(τ),然后应用最小二乘法拟合优化求解式(6)中的G(Γ),以使目标函数极小,最后求得颗粒分布。

方程(6)称为第I 类Fredholm 积分方程,它的求解是一个病态问题,对同一个g (1)

(τ)存在无限多个的符合G(Γ)的方程。目前,学者们已经提出了多种不同的近似求解方法,如累积分析法、双指数法、直方图法、非负约束最小二乘法和CONTIN 法等。

N4 Plus 粒径分析仪数据处理方法[4]

N4 Plus 粒径分析仪提供了两种粒径分析模式,即unimodal 和SDP(Size Distribution Processor)。Unimodal 模式主要用于分析粒径分布较窄的颗粒,可得出强均粒径(mean intensity-weighted particle size)和标准偏差(standard deviation),其中标准偏差可在一定程度上反映粒径分布,但对于粒径分布较宽或存在多峰分布的颗粒误差较大。SDP 模式分析可得到粒径及粒径分布,但这种方法与unimodal 相比,需要更精确的ACF 数据,因而需要较长的测试时间。

Unimodal 分析模式

在N4 Plus 中有80个ACF 时间通道,这些通道中得到的ACF 减去基线(baseline)后,其值与时间存在幂律关系,见下:

2/c b a )baseline )(G ln(2i i i τ+τ+=-τ

(7)

系数b 和c 分别是ACF G 的第一和第二累积量,τi 表示迟滞时间(i=1,2,3…..80)。b 等于2Γ,b 的倒数与粒径平均值的倒数成比例关系,即:

><=>

<≈d const d /11

const b 1 (8)

T k 3.K 21const B

2

πη

=

(9)

式中角括号表示括号中的值为平均值,

多分散指数(polydispersity index)与粒径分布变量系数(CV)的关系如下:

4.

I .P 21

1CV +?=

(10)

则标准偏差(standard deviation)可按下式计算:

SD=d ×CV (11)

SDP 分析模式

Unimodal 分析模式对粒径分布较为复杂的颗粒精度不高,而SDP 分析可在无须任何假定条件下得到颗粒的粒径分布。N4 Plus 不能对单独的颗粒进行记数,仪器必须在数学上分离由不同粒径产生的衰减时间。这些衰减时间在不同时间的ACF 中是复合在一起的,数学分离比较困难。在SDP 分析中的运算法则是一个称作CONTIN 的FORTRAN 程序,这个程序在分析PCS 数据中已得到大量应用。

SDP 分析结果得到的是一张样品粒径分布的柱形图,可以用强均分布(intensity distribution)或重均分布(weight distribution)表示。强均向重均转换需要用到精确的Mie 方程,需要输入颗粒的折光指数,如果颗粒折光指数未知,则只能近似转换。强均粒径分布柱形图中的每个粒径下所显示的含量值与该粒径的颗粒光散射强度占整个光散射强度的百分数成正比。重均粒径分布反映的是样品中不同粒径颗粒所占的相对重量分率,通常比强均还有用。另外强均粒径与散射角度有关,而重均粒径与散射角度无关。对于球形粒子,强均粒径转换成重均粒径需要用到颗粒和分散介质的折光指数及Mie 理论。对于长径比小于3:1和粒径小于500nm 且长径比小于5:1的非球形粒子,Mie 理论仍可进行较好地近似转换。对于长柱形或高度不对称型的长形颗粒,目前还没有好的方法来进行强均和重均之间的转换。对于电解质或透明粒子,假定颗粒的折光指数为零,不需要输入折光指数。如果折光指数未知,N4 Plus 仪器会依据Mie 理论提供一种近似的强均与重均粒径之间的转换,这种转换在很宽的折光指数范围内都具有较好的准确性。

在柱形粒径分布图中,每个峰的粒径是相应粒径范围的颗粒粒径的平均值,即:

∑∑=

i

i

i

i a

a d d (12)

式中d 是峰的平均粒径,a i 是第i 级粒径柱的相对强度,d i 是相应i 级柱的粒径。

SD 定义为

2

1i

i

2

i i a )d d (a )d (SD ???

?

?

???

?

?-=∑∑ (13)

对于重均粒径分布图,与强均粒径分布计算类似。除了每个峰的平均粒径、SD 和相对强度以外,还给出了整个颗粒样品的平均粒径和变量系数。变量系数定义为:

d

)

d (SD CV =

(14)

二、实验方法

(1) 测试仪器及材料

美国Beckman-coulter 公司生产的N4 Plus 粒径分析仪,见下图。石英比色皿若干,无水乙醇和去离子水各500ml ,滴管3~4支,清洁纸若干,超声波清洗器一台。

图4 N4 Plus 粒径分析仪

(2) 测试步骤

① 制样:配制浓度为5%的气相白炭黑分散液,将其超声分散特定时间,制得预分散液,

再将少量分散液放入比色皿中,用大量去离子水稀释,将比色皿放入样品池中,用软件检测其光学浓度,如浓度过高,继续稀释,直至在仪器的测试浓度范围之内(即5×104

~1×106

);

② 启动:打开电脑及粒径分析仪的电源开关,平衡仪器10~20min ,启动粒径测试软件

(PCS Soft),检查电脑与粒径分析仪之间是否已经连接;

③参数设置:按SOM快捷钮,输入测试温度、分散介质的粘度和折光指数,建立测试

方法文件;

④测试:在Run菜单中打开Set up run,设置数据输出文件名,操作者姓名,选取测

试方法文件,按Start Run钮开始测试;

⑤计算:分别用Unimodal distribution和SDP analysis or distribution分析模

式对数据进行处理。

⑥记录:记录测试得到的不同粒径实验结果。

(3)清理工作

将使用过的比色皿用无水乙醇清洗3次,再在清洁的无水乙醇中超声洗涤1分钟,将使用过的滴管也用无水乙醇洗涤干净,废液倒入废液瓶中,清理桌面,关闭粒径分析仪及计算机。

三、实验内容

测试气相白碳黑在水中的分散粒径,考察超声波(超声时间分别为5min和15min,分散液浓度5%)对粉体分散粒径的影响,每样测试2~3次,计算实验误差。

四、结果与讨论

⒈四种粒径分析方式得到的测试结果:

(1)Sample 1:浓度5%白炭黑,水介质,超声分散5min。

现代材料测试技术期末测试题汇总

《材料现代分析测试技术》思考题 1.电子束与固体物质作用可以产生哪些主要的检测信号?这些信号产生的原理是什么?它们有哪些特点和用途? (1)电子束与固体物质产生的检测信号有:特征X射线、阴极荧光、二次电子、背散射电子、俄歇电子、吸收电子等。 (2)信号产生的原理:电子束与物质电子和原子核形成的电场间相互作用。 (3)特征和用途: ①背散射电子:特点:电子能量较大,分辨率低。用途:确定晶体的取向,晶体间夹角,晶粒度及晶界类型,重位点阵晶界分布,织 构分析以及相鉴定等。 ②二次电子:特点:能量较低,分辨率高。用途:样品表面成像。 ③吸收电子:特点:被物质样品吸收,带负电。用途:样品吸收电子成像,定性微区成分分析。 ④透射电子:特点:穿透薄试样的入射电子。用途:微区成分分析和结构分析。 ⑤特征X射线:特点:实物性弱,具有特征能量和波长,并取决于被激发物质原子能及结构,是物质固有的特征。用途:微区元素定 性分析。 ⑥俄歇电子:特点:实物性强,具有特征能量。用途:表层化学成分分析。 ⑦阴极荧光:特点:能量小,可见光。用途:观察晶体内部缺陷。 ①电子散射:当高速运动的电子穿过固体物质时,会受到原子中的电子作用,或受到原子核及周围电子形成的库伦电场的作用,从而 改变了电子的运动方向的现象叫电子散射 ②相干弹性散射:一束单一波长的电子垂直穿透一晶体薄膜样品时,由于原子排列的规律性,入射电子波与各原子的弹性散射波不但 波长相同,而且有一定的相位关系,相互干涉。 ③不相干弹性散射:一束单一波长的电子垂直穿透一单一元素的非晶样品时,发生的相互无关的、随机的散射。 ④电子衍射的成像基础是弹性散射。 3.电子束与固体物质作用所产生的非弹性散射的作用机制有哪些? 非弹性散射作用机制有:单电子激发、等离子激发、声子发射、轫致辐射 ①单电子激发:样品内的核外电子在收到入射电子轰击时,有可能被激发到较高的空能级甚至被电离,这叫单电子激发。 ②等离子激发:高能电子入射晶体时,会瞬时地破坏入射区域的电中性,引起价电子云的集体振荡,这叫等离子激发。 ③声子发射:入射电子激发或吸收声子后,使入射电子发生大角度散射,这叫声子发射。 ④轫致辐射:带负电的电子在受到减速作用的同时,在其周围的电磁场将发生急剧的变化,将产生一个电磁波脉冲,这种现象叫做轫 致辐射。 1)二次电子产生:单电子激发过程中,被入射电子轰击出来并离开样品原子的核外电子。应用:样品表面成像,显微组织观察,断口形貌观察等 2)背散射电子:受到原子核弹性与非弹性散射或与核外电子发生非弹性散射后被反射回来的入射电子。应用:确定晶体的取向,晶体间夹角,晶粒度及晶界类型,重位点阵晶界分布,织构分析以及相鉴定等。 3)成像的相同点:都能用于材料形貌分析成像的不同点:二次电子成像特点:(1)分辨率高(2)景深大,立体感强(3)主要反应形貌衬度。背散射电子成像特点:(1)分辨率低(2)背散射电子检测效率低,衬度小(3)主要反应原子序数衬度。 5.特征X射线是如何产生的,其波长和能量有什么特点,有哪些主要的应用? 特征X-Ray产生:当入射电子激发试样原子的内层电子,使原子处于能量较高的不稳定的激发态状态,外层的电子会迅速填补到内层电子空位上,并辐射释放一种具有特征能量和波长的射线,使原子体系的能量降低、趋向较稳定状,这种射线即特征X射线。 波长的特点:不受管压、电流的影响,只决定于阳极靶材元素的原子序。 应用:物质样品微区元素定性分析

2016年产品质量情况分析报告

2016年产品质量情况分析报告

2016年产品质量状况分析报告 质量管理部 质量是企业的生命。近年来,随着公司技改开发的大力投入,产业布局的系统优化和整合完善,形成了以202车间为代表的南方矿分离体系和以204车间焙烧工序为龙头、201车间萃取分离工序为承接、218车间沉淀煅烧为收尾的北方矿分离体系,形成了稀土加工分离、稀土金属、稀土研磨材料、稀土贮氢材料、稀土磁性材料、稀土发光材料、氯碱化工等七大产业链。公司严把质量关,从原材料的入厂、中间品的控制到产成品出厂都严格按内部标准执行,在各工序间制定了质量控制标准,细化了关键岗位控制标准,编制了质量岗位巡视路线图,强化质量巡视工作,从而使公司的产品质量有了较明显的提升,确保了公司在市场中的竞争力。下面就公司产品质量做如下具体分析: 一、原材料方面 目前公司所用稀土原料全部来自外购,南方矿多采购自江西和广东,稀土总量为92%左右,稀土配分、放射性大小由于产地不同存在一定的差异,202车间在萃取分离过程中及时调整萃取工艺指令同时做好镧产品中放射性的去除工作;北方矿主要为包头高矿,兼顾山东矿和四川矿,矿型差异较大,204车间联合研究所做好实验工作,研究焙烧工艺,做好各类矿型混合焙烧的技术策划;碳铵做为公司沉淀工序的重要原料,由于市场原因,采购自不同厂家,2016年合格率为89.69%,不合格原因除总量偏低外,不同厂家的产品对沉淀过程

液、镧铈液、镨钕液稀土组分不合格的主要原因受生产工艺影响,在萃取稀土过程中,温度、酸度、流量等条件稍微控制不当,容易使产品配分引起波动。产品中非稀土杂质超标的主要原因是201车间高纯线除杂不彻底,下游218车间需加强在沉淀环节和煅烧环节对稀土杂质的控制,及时调整生产工艺,关注外接稀土料液、生产用水、沉淀剂碳铵中Fe、CaO、Mg、Na、等非稀土杂质的含量以及生产设备、搅拌装置等腐蚀程度对产品质量的影响,车间生产技术人员在追求稀土产品相对纯度满足的前提下应足够重视对非稀土杂质的控制。三、产成品方面 202车间2016年产品一次合格率为99.82%,较2015年上升 0.65%,产品质量有明显提升;218车间2016年产品一次合格率为99.95%,较2015年上升0.05%,产品质量与2015年基本持平;205车间、磁材车间、贮氢车间、应用型产品质量一次合格率均为100%;金属车间2016年产品一次合格率为96.31%,较2015年降低1.5%,产品质量有所下降。其中202车间氧化钆松装比重不合格,主要原因是沉淀过程控制不当,在今后的生产过程中要把单纯控制产品化学指标转变为为产品晶形晶貌的控制;218车间氧化镨钕稀土杂质La2O3不合格,主要原因为为转产前未彻底清理炉膛导致煅烧过程污染使产品中组分La2O3超标,在今后的生产过程中车间技术人员应提高质量意识,做好生产前的质量策划;金属镧、金属铈、金属钕、镧铈金镨钕金属中稀土杂质AL、C、Si、Mo等超标,主要原因电解过程控制

现代材料测试技术试题答案

一、X射线物相分析的基本原理与思路 在对材料的分析中我们大家可能比较熟悉对它化学成分的分析,如某一材料为Fe96.5%,C 0.4%,Ni1.8%或SiO2 61%, Al2O3 21%,CaO 10% ,FeO 4%等。这是材料成分的化学分析。 一个物相是由化学成分和晶体结构两部分所决定的。X射线的分析正是基于材料的晶体结构来测定物相的。 X射线物相分析的基本原理是什么呢? 每一种结晶物质都有自己独特的晶体结构,即特定点阵类型、晶胞大小、原子的数目和原子在晶胞中的排列等。因此,从布拉格公式和强度公式知道,当X射线通过晶体时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个反射晶面的晶面间距值d和反射线的强度来表征。 其中晶面网间距值d与晶胞的形状和大小有关,相对强度I则与质点的种类及其在晶胞中的位置有关。 衍射花样有两个用途: 一是可以用来测定晶体的结构,这是比较复杂的; 二是用来测定物相。 所以,任何一种结晶物质的衍射数据d和I是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的物相,分析的思路将样品的衍射花样与已知标准物质的衍射花样进行比较从中找出与其相同者即可。 X射线物相分析方法有: 定性分析——只确定样品的物相是什么? 包括单相定性分析和多相定性分析定量分析——不仅确定物相的种类还要分析物相的含量。 二、单相定性分析 利用X射线进行物相定性分析的一般步骤为: ①用某一种实验方法获得待测试样的衍射花样; ②计算并列出衍射花样中各衍射线的d值和相应的相对强度I值; ③参考对比已知的资料鉴定出试样的物相。 1、标准物质的粉末衍射卡片 标准物质的X射线衍射数据是X射线物相鉴定的基础。为此,人们将世界上的成千上万种结晶物质进行衍射或照相,将它们的衍射花样收集起来。由于底片和衍射图都难以保存,并且由于各人的实验的条件不同(如所使用的X射线波长不同),衍射花样的形态也有所不同,难以进行比较。因此,通常国际上统一将这些衍射花样经过计算,换算成衍射线的面网间距d值和强度I,制成卡片进行保存。

粉末粒度分析方法

粉末粒度分析方法 0背景介绍 粉末粒度作为粉末性能一个最重要的方面,对粉末冶金材料性能及其制备有着密切的关系,粉末粒度的测定是粉末冶金生产中检验粉末质量以及调节和控制工艺过程的重要依据。粉末颗粒形状的复杂性和粒度范围的扩大,特别是超细粉末的应用使得准确而方便的的定粒度变得很困难。 1粉末粒度与粒度分布 1.1粒度和粒度组成 粉末粒度也称颗粒粒度,指颗粒占据空间的尺度,通常用mm或um表示。对于一个球形颗粒,粒度是单一的参数:直径D。然而,随之颗粒形状的复杂,近使用一个参数是不能表示粉末颗粒的尺寸,需要的粒度参数也增加。对于以个形状不规则的颗粒,粉末尺寸可以用投影高度H(任意)、最大长度M、水平宽度W、相等体积球的直径或具有相等表面积球的直径D来表达。这些表示颗粒粒径的方法称为等效粒径。表1为用不同等效粒径来表示某一不规则粉末颗粒的粒度。 由于组成粉末的无数颗粒一般粒径不同,故又用具有不同粒径的颗粒占全部粉末的百分含量表示粉末的粒度组成,又称粒度分布。但是通常所说的粉末粒度包含粉末平均粒度的意义,也就是粉末的某种统计性平均粒径。 1.2粒度基准 用长、宽、高三维尺寸的某种平均值来度量,称为几何学粒径。由于测量颗粒的几何尺寸非常麻烦,计算几何学平均径也较繁琐,因此又有通过测定粉末的沉降速度、比表面积、光波衍射或散射等性质,而用当量或名义直径表示粒度的

方法。可以采用下面四种粒径基准。 1)几何学粒径d g:用显微镜按投影几何学原理测得的粒径称投影径。 2)当量粒径d c:利用沉降法、离心法或水力学方法(风筛法、水簸法)测得的粉末粒度,称为当量粒径。当量粒径中有一种斯托克斯径,其物理意义是与被测粉末具有相同沉降速度且服从斯托克斯定律的同质球形粒子的直径。由于粉末的实际沉降速度还受颗粒形状和表面状态的影响,故形状复杂、表面粗糙的粉末,其斯托克斯径总是比按体积计算的几何学名义径小。 3)比表面积粒径d sP:利用吸附法、透过法和润湿热法测定粉末的比表面,再换算成具有相同比表面值的均匀球形颗粒的直径,称为比表面积径, d sP=6S v。 4)衍射粒径d sc:对于粒度接近电磁波波长的粉末,基于光与电磁波(如X光等)的衍射现象所测得的粒径称为衍射粒径。 1.3粒度分布基准 粉末粒度组成是指不同粒径的颗粒在粉末总量中所占的百分数,可以用某种统计分布曲线或统计分布函数描述。粒度的统计分布可以选择四种不同的基准,实际应用的是频度分布和质量基准分布。 1)个数基准分布:以每一粒径间隔内的颗粒数占全部颗粒总数∑n的百分数表示,又称频度分布。 2)长度基准分布:以每一粒径间隔内的颗粒总长度占全部颗粒的长度总和∑nD的百分数表示。 3)面积基准分布:以每一粒径间隔内的颗粒总表面积占全部颗粒的表面积总和∑nD2的百分数表示。 4)质量基准分布:以每一粒径间隔内的颗粒总质量占全部颗粒的质量总和∑nD3的百分数表示。 表2是某一种粉末的粒度的频度分布统计表,如果用各粒级的频度f i(%)除以该粒级的间隔Δu(表2中为1um),则得到相对相对频度,单位是%/um。以相对频度对平均粒径作图得到图2,为相对频度分布曲线。表2中累计百分数代表包括某一粒级在内的小于该粒级的颗粒的百分含量,对平均粒径作图得到图2负累计分布曲线。累计分布曲线上对应50%的粒径称中位径。该曲线斜率最大的

材料分析测试技术》试卷(答案)

《材料分析测试技术》试卷(答案) 一、填空题:(20分,每空一分) 1. X射线管主要由阳极、阴极、和窗口构成。 2. X射线透过物质时产生的物理效应有:散射、光电效应、透射X射线、和热。 3. 德拜照相法中的底片安装方法有:正装、反装和偏装三种。 4. X射线物相分析方法分:定性分析和定量分析两种;测钢中残余奥氏体的直接比较法就属于其中的定量分析方法。 5. 透射电子显微镜的分辨率主要受衍射效应和像差两因素影响。 6. 今天复型技术主要应用于萃取复型来揭取第二相微小颗粒进行分析。 7. 电子探针包括波谱仪和能谱仪成分分析仪器。 8. 扫描电子显微镜常用的信号是二次电子和背散射电子。 二、选择题:(8分,每题一分) 1. X射线衍射方法中最常用的方法是( b )。 a.劳厄法;b.粉末多晶法;c.周转晶体法。 2. 已知X光管是铜靶,应选择的滤波片材料是(b)。 a.Co ;b. Ni ;c. Fe。 3. X射线物相定性分析方法中有三种索引,如果已知物质名时可以采用(c )。 a.哈氏无机数值索引;b. 芬克无机数值索引;c. 戴维无机字母索引。4. 能提高透射电镜成像衬度的可动光阑是(b)。 a.第二聚光镜光阑;b. 物镜光阑;c. 选区光阑。 5. 透射电子显微镜中可以消除的像差是( b )。 a.球差;b. 像散;c. 色差。 6. 可以帮助我们估计样品厚度的复杂衍射花样是(a)。 a.高阶劳厄斑点;b. 超结构斑点;c. 二次衍射斑点。 7. 电子束与固体样品相互作用产生的物理信号中可用于分析1nm厚表层成分的信号是(b)。 a.背散射电子;b.俄歇电子;c. 特征X射线。 8. 中心暗场像的成像操作方法是(c)。 a.以物镜光栏套住透射斑;b.以物镜光栏套住衍射斑;c.将衍射斑移至中心并以物镜光栏套住透射斑。 三、问答题:(24分,每题8分) 1.X射线衍射仪法中对粉末多晶样品的要求是什么 答:X射线衍射仪法中样品是块状粉末样品,首先要求粉末粒度要大小 适中,在1um-5um之间;其次粉末不能有应力和织构;最后是样品有一 个最佳厚度(t =

材料分析测试技术复习题 附答案

材料分析测试技术复习题 【第一至第六章】 1.X射线的波粒二象性 波动性表现为: -以波动的形式传播,具有一定的频率和波长 -波动性特征反映在物质运动的连续性和在传播过程中发生的干涉、衍射现象 粒子性突出表现为: -在与物质相互作用和交换能量的时候 -X射线由大量的粒子流(能量E、动量P、质量m)构成,粒子流称为光子-当X射线与物质相互作用时,光子只能整个被原子或电子吸收或散射 2.连续x射线谱的特点,连续谱的短波限 定义:波长在一定范围连续分布的X射线,I和λ构成连续X射线谱 λ∞,波?当管压很低(小于20KV 时),由某一短波限λ 0开始直到波长无穷大长连续分布 ?随管压增高,X射线强度增高,连续谱峰值所对应的波长(1.5 λ 0处)向短波端移动 ?λ 0 正比于1/V, 与靶元素无关 ?强度I:由单位时间内通过与X射线传播方向垂直的单位面积上的光量子数的能量总和决定(粒子性观点描述)

?单位时间通过垂直于传播方向的单位截面上的能量大小,与A2成正比(波动性观点描述) 短波限:对X射线管施加不同电压时,在X射线的强度I 随波长λ变化的关系曲线中,在各种管压下的连续谱都存在一个最短的波长值λ0,称为短波限。 3.连续x射线谱产生机理 【a】.经典电动力学概念解释: 一个高速运动电子到达靶面时,因突然减速产生很大的负加速度,负加速度引起周围电磁场的急剧变化,产生电磁波,且具有不同波长,形成连续X射线谱。 【b】.量子理论解释: * 电子与靶经过多次碰撞,逐步把能量释放到零,同时产生一系列能量为hυi的光子序列,形成连续谱 * 存在ev=hυmax,υmax=hc/ λ0, λ0为短波限,从而推出λ0=1.24/ V (nm) (V为电子通过两极时的电压降,与管压有关)。 * 一般ev≥h υ,在极限情况下,极少数电子在一次碰撞中将全部能量一次性转化为一个光量子 4.特征x射线谱的特点 对于一定元素的靶,当管压小于某一限度时,只激发连续谱,管压增高,射线谱曲线只向短波方向移动,总强度增高,本质上无变化。 当管压超过某一临界值后,在连续谱某几个特定波长的地方,强度突然显著

usp 36 786 分析筛分法评估粒度分布

786分析筛分法评估粒度分布 筛分法是按粒子大小分布将粉末和颗粒分类的最古老的方法之一。通过使用编织筛布基本将颗粒按中等大小尺寸(如广度或宽度)进行排序。当大部分颗粒大于75 μm时,机械筛分则最合适。对更小的颗粒,筛分时由于重量轻不足以克服颗粒表面间的凝聚力和粘附力,导致颗粒间互相粘结留在筛上,因而导致颗粒可能通过筛子得到保留。对这样的材料,其它搅动方式如喷气筛分或声波筛分可能更合适。然而筛分法有时也用于一些平均颗粒尺寸小于75μm的粉末或颗粒此时方法需进行验证。在制药学上筛分法通常是作为将更粗糙的单粉或颗粒分类的选择。对于仅以粒子大小为基础进行分类的粉末来说筛分法是绝好的方法而且在大多数情况下分析能在干燥状态下进行。 筛分法的局限性是它需要一定重量的样粉(通常为至少25g,取决于粉末或颗粒的密度,和试验筛的直径),以及它对筛分容易堵塞滤网小孔的油性或其它粘性粉末存在困难。筛分法本质上是一种两维大小估计因为能否通过滤网小孔更多地取决于最大宽度与厚度而非长度。 此方法用来估计单一物料的总体粒子大小分布。它并不是用来测定粒子通过或未通过一个或两个滤网的比例。 除非在单独的专论里另有说明估计粒子大小分布在干燥筛分法里作了描述。它的困难在于难以到达终点比(如物料不容易通过滤网)或者有时需要使用筛分范围更细的粉末(小于75μm)使用备选颗粒大小方法时应慎重考虑。

在不会导致测试样品获得或失去水分的情况下应该实施筛分法测试。其中,筛分时环境的相对湿度应进行控制,以防止样品水分的吸收或损失。在没有对立证据情况下,筛分试验通常在环境湿度下执行。适用于某一特定材料的任何特殊条件在专论中应加以详尽描述。 分析筛分法原理——分析测试滤网由一个金属筛网构成编织简单上有方形小孔并被封入一个无盖圆柱形容器底部。基本分析法要求滤网按越来越粗糙的程度逐个叠加然后将测试粉末置于最上层滤网上。 这套滤网受一个标准搅拌周期控制留在每个滤网上的物料重量被准确测定。测试给出了每个滤网粒度范围的粉末重量百分比。 此估计制药单粉粒子大小分布的筛分过程通常用来筛分至少80%颗粒大于75μm的粉末。分析筛分法中测定粒子大小分布的粒度参数为通过粒子的最小方形小孔的边长。 测试滤网 适宜药用测试的测试滤网应符合最新版国际标准规范组织ISO3310-1的要求测试滤网——技术要求与测试(见表1)。除非在专论里另有说明,使用那些在表1中列出主要大小的ISO筛子。除非在专论里另有说明,使用那些在表1中特定区域推荐的ISO筛子。 表1 影响范围内系列标准滤网大小

纳米材料粒度分析(可编辑修改word版)

纳米材料粒度分析 一、实验原理 纳米颗粒材料(粒径<100nm)是纳米材料中最重要的一种,可广泛用于纳米复合材料 制备中的填料、光催化颗粒、电池电极材料、功能性分散液等。粒径(或粒度)是纳米颗粒材 料的一个非常重要的指标。测试颗粒粒径的方法有许多种,其中,电子显微镜法和激光光散射 法均可用纳米材料粒度的测试,电子显微镜法表征纳米材料比较直观,可观察到纳米颗粒的形态,但需要通过统计计数(一般需统计1000 个以上颗粒的粒径)方法来得到颗粒粒径,比较烦 琐费时,尤其是在纳米颗粒的粒径分布较宽时,统计得到的粒径及粒径分布误差将增大。激光 光散射法得到的纳米颗粒粒径具有较好的统计意义,制样简单,测试速度快,但激光光散射法 无法观察到颗粒形态,在测试非球形颗粒时测试误差也较大。因此,上述两种纳米材料的测试方 法各有优缺点。本实验选用激光光散射法测试纳米材料的粒径及粒径分布。所用仪器为Beckman-coulter N4 Plus 型激光粒度分析仪。 图1 为N4 Plus 型激光粒度分析仪的测量单元组成图,主要由HeNe 激光光源、聚焦透镜、 样品池、步进马达、光电倍增管(PMT)、脉冲放大器和鉴别器(PAD)、数字自相关器、6802 微处理器和计算机组成。 图1 N4 Plus 型激光粒度测试仪的测量单元组成图 N4 Plus 型激光粒度分析仪的测量原理主要基于颗粒的布朗(Brownian)运动和光子相关光 谱(Photon Correlation Spectroscopy, PCS)现象。在溶液中,粒子由热导致与溶剂分子发生随机碰 撞所产生的运动称为布朗运动,由于布朗运动,粒子在溶液中可发生扩散移动。在恒定温度及某 一浓度下,粒子的平移扩散系数与颗粒的粒径成反比,即符合Stokes-Einstein 方程: D =k B T 3πηd (1) 式中k B为玻尔兹曼常数(1.38×10-16erg/?K),T 为温度(?K),η为分散介质(或稀释剂)粘度(poise),d 为颗粒粒径(cm)。当激光束照射到溶液中的悬浮颗粒上时,由于颗粒的随机布朗运动,颗

粉末材料粒度测定

粉末材料粒度测定是一个很复杂的问题,因为粒度的定义本身就不确定,没有那一本书能给出粒度的权威概念,这是因为对于一个球形的颗粒,我们可以用其直径来表示其大小,对一个立方体,我们可以用其棱长来表示其大小,对一个圆锥体,我们可以用其底面直径和其高两个尺寸来表示其大小,对长方体,就得用其长、宽、高三个尺寸来表示其大小。对一个任意形状的颗粒就很难表征其大小。一般都采用一个与该颗粒具有某种等效效应的颗粒的直径来表示该不规则颗粒的粒径大小。ISO国际标准化组织也是以下标表示粒度划分的基准,比如下标是1表示以长度为基准(或者是为权重)来划分例,如以机械力为驱动力的筛分析,以2来表示以面积为基准来划分,比如各种沉降的方法,BET法等等,以3来表示以等效体积球或者是等效质量的球为基准来划分,ISO国际组织还有一个在几种方法之间进行转化的讨论,但是这种划分本身就是无奈之举,因为不同的划分依据本身就是混乱的,现实中的颗粒基本都是不规则的,对于一个外形不规则颗粒的描述最详尽的办法就是三维尺度的描述,但是对于一个颗粒体系来说三维尺度的描述是不可能办到的,而且颗粒外形一般都不是有规律的。 对于同一样品不同次数的取样,结果也不一样,这就造成了各种测试方法之间的结果不能彼此很好的一一对应,经常听见颗粒测试仪器厂家之间为此的彼此攻击和谩骂,甚至于同一测试方法的不同厂家之间也是如此互相攻击。所以颗粒体系的测量应该是基于统计学理论,以样本为依据,对真实情况进行逼近,目前以各种手段想得到一个粉末体系的真实粒度分布是不可能的。 纳米粉末的粒度分布的测定来说,有很多种方法。举例来说, 1结合图像分析仪的扫描电镜或者是透射电镜, 2光子相关谱法(动态激光散射法), 3X射线小角散射法(文中包括同步辐射为光源的SA XS和中子小角散射法) 4离心沉降法,X射线离心沉降法, 5比表面积法(BET), 6拉曼(Raman)散射法, 7 探针扫描显微镜, 8X射线衍射峰宽化法(谢乐公式)。 这里先要澄清一个概念,对于金属材料或者是陶瓷材料来说,颗粒度是一个比晶粒度大的概念,一般来说,一个颗粒里面可能包含几个晶粒,而一个晶粒一般要小于等于所在颗粒的尺寸。由于X射线衍射线线宽化法(谢乐公式)是晶粒度的测量,不是本文要讨论的颗粒度,所以不与详细讨论。目前只有磁流体的是一个晶粒基本就是一个颗粒,磁流体依据谢乐公式的晶粒度测量可以是说明了其颗粒度的大小的,目前未听说其它材料也是这种情况。 https://www.docsj.com/doc/c718913931.html,/A-sdjcxy200503006.html http://w https://www.docsj.com/doc/c718913931.html,/article/a rticle.php/10589 https://www.docsj.com/doc/c718913931.html,/v iew/950063.html http://w https://www.docsj.com/doc/c718913931.html,/?v iew thread-21070.html 1. 透射电镜和扫描电镜是一种很经典,很传统的做法,具有直观、可靠的绝对尺度测定,原先一般认为透射电镜的分辨率高于扫描电镜,但现在好的扫描电镜分辨率也是很高,也可以达到10nm以下的。对于纳米颗粒,透射电镜可以观察其大小、形状,还可以根据像的衬度来估计颗粒的厚度,透射电子显微镜或者是扫描电子显微镜结合图像分析法还可以选择地进行观测和统计,分门别类给出粒度分布。如果将颗粒进行包埋、镶嵌和切片减薄制样,还可以对颗粒内部的微观结构作进一步地分析。比如北科大的方克明老师就发现一些碳纳米管的内部其实是碳纳米棒,但是这与操作人员的制样水平很有关系。当对于所检测的样品清晰成像后,还有一个测量和统计的问题。一种作法是选取足够多的视场进行照相,获得数百乃至数千个颗粒的电镜照片,再将每张照片经扫描进入图象分析仪进行分析统计。按标准刻度计算颗粒的等效投影面积直径,同时统计落在各个粒度区间的颗粒个数。然后计算出以个数为基准的粒度组成、平均粒度、分布方差等,并可输出相应的直方分布图。在应用软件中还包括个数分布向体积分布转换的功能,往往将这两种分布及相关的直方图和统计平均值等都出来。该方法的优点是直观,而且可以得到颗粒形状信息,缺点是要求颗粒要处于良好的分散状态,另外,由于用显微镜观测时所需试样量非常少,所以对试样的代表性要求严格。因此取样和制样的方法必须规范;而且要对大量的颗粒的粒径进行统计才能得到粒度分布值或平均粒径。 http://w ww.bjy https://www.docsj.com/doc/c718913931.html,/jcxx/dx/200244.shtml http://w ww.hbh-ky https://www.docsj.com/doc/c718913931.html,/instrume ... rumentID=0000000898 http://comm.dangda https://www.docsj.com/doc/c718913931.html,/rev iew/782180.html 2光子相关谱法(动态激光散射法)是目前最为主要的纳米材料体系粒度分析方法,主要测量微粒在液体中的扩散系数来测定颗粒尺

砂岩粒度分析报告模板 筛分法

检测报告Analysis Report 检测项目 Item 砂岩粒度分析——————————————————————— 送样单位Company *** ——————————————————————— 送样人Liaison with *** ——————————————————————— 地区/井号Location / Well *** ——————————————————————— 样品块数Sample Count 1 ——————— 报告页数 Page Count——————— 检测人Analyzed by *** ——————— 审核人 Checked by *** ——————— 报告日期 Date 2017 ————— 年 Y 1 ———— 月 M 1 ———— 日 D ***

一、实验原理 本测试采用沉降法-筛析法对岩石粒度进行测试。对小于74微米的颗粒,采用沉降法;对粒径大于74微米的岩石颗粒,采用筛析法进行分析。 沉降法原理:微细粒固体颗粒在流体介质中的自由沉降速度与其粒度直径平方成正比,因此可以通过测定颗粒的沉降速度来确定其粒度。 筛析法原理:选取合适的筛网,应用干法筛分避免很细的颗粒附着在筛孔上面堵塞筛孔,其筛析结果采用频率分布和累积分布来表示颗粒的粒度分布。频率分布表示各个粒径相对应的颗粒百分含量(微分型);累积分布表示小于(或大于)某粒径的颗粒占全部颗粒的百分含量与该粒径的关系(积分型)。 二、实验器材 1.沉降粒度分析成像系统; 2. 标准筛1套; 3. 振筛机1台; 4. 托盘天平1架; 5.烘箱1个。 三、实验步骤 1)试样制备:将试样放入烘箱中烘干至恒重,准确称取100-500克。 2)套筛按孔径由大至小顺序放好,并装上筛底,安装在振筛机

粉末冶金原理考试题标准答案

2006 粉末冶金原理课程I考试题标准答案 一、名词解释:( 20 分,每小题 2 分) 临界转速:机械研磨时,使球磨筒内小球沿筒壁运动能够正好经过顶点位置而不发生抛落时,筒体的转动速度 比表面积:单位质量或单位体积粉末具有的表面积 一次颗粒:由多个一次颗粒在没有冶金键合而结合成粉末颗粒称为二次颗粒; 离解压:每种金属氧化物都有离解的趋势,而且随温度提高,氧离解的趋势越大,离解后的氧形成氧分压越大,离解压即是此氧分压。 电化当量:这是表述电解过程输入电量与粉末产出的定量关系,表达为每 96500库仑应该有一克当量的物质经电解析出 气相迁移:细小金属氧化物粉末颗粒由于较大的蒸气压,在高温经挥发进入气相,被还原后沉降在大颗粒上,导致颗粒长大的过程 颗粒密度:真密度、似密度、相对密度 比形状因子:将粉末颗粒面积因子与体积因子之比称为比形状因子 压坯密度:压坯质量与压坯体积的比值 粒度分布:将粉末样品分成若干粒径,并以这些粒径的粉末质量(颗粒数量、粉末体积)占粉末样品总质量(总颗粒数量、总粉末体积)的百分数对粒径作图,即为粒度分布 二、分析讨论:( 25 分) 1 、粉末冶金技术有何重要优缺点,并举例说明。( 10 分) 重要优点: * 能够制备部分其他方法难以制备的材料,如难熔金属,假合金、多孔材料、特殊功能材料(硬质合金); * 因为粉末冶金在成形过程采用与最终产品形状非常接近的模具,因此产品加工量少而节省材料; * 对于一部分产品,尤其是形状特异的产品,采用模具生产易于,且工件加工量少,制作成本低 , 如齿轮产品。重要缺点: * 由于粉末冶金产品中的孔隙难以消除,因此粉末冶金产品力学性能较相同铸造加工产品偏低; * 由于成形过程需要模具和相应压机,因此大型工件或产品难以制造; * 规模效益比较小 2 、气体雾化制粉过程可分解为几个区域,每个区域的特点是什么?( 10 分) 气体雾化制粉过程可分解为金属液流紊流区,原始液滴形成区,有效雾化区和冷却区等四个区域。其特点如下: 金属液流紊流区:金属液流在雾化气体的回流作用下,金属流柱流动受到阻碍,破坏了层流状态,产生紊流; 原始液滴形成区:由于下端雾化气体的冲刷,对紊流金属液流产生牵张作用,金属流柱被拉断,形成带状 - 管状原始液滴; 有效雾化区:音高速运动雾化气体携带大量动能对形成带状 - 管状原始液滴的冲击,使之破碎,成为微小金属液滴冷却区。此时,微小液滴离开有效雾化区,冷却,并由于表面张力作用逐渐球化。 3 、分析为什么要采用蓝钨作为还原制备钨粉的原料?( 5 分) 采用蓝钨作为原料制备钨粉的主要优点是 * 可以获得粒度细小的一次颗粒,尽管二次颗粒较采用 WO3 作为原料制备的钨粉二次颗粒要大。 * 采用蓝钨作为原料,蓝钨二次颗粒大,(一次颗粒小),在 H2 中挥发少,通过气相迁移长大的机会降低,获得 WO2 颗粒小;在一段还原获得 WO2 后,在干氢中高温进一步还原,颗粒长大不明显,且产量高。

《材料分析测试技术》试卷答案

《材料分析测试技术》试卷(答案) 一、填空题:(20分,每空一分) 1.X射线管主要由阳极、阴极、和窗口构成。 2.X射线透过物质时产生的物理效应有:散射、光电效应、透射X 射线、和热。 3.德拜照相法中的底片安装方法有: 正装、反装和偏装三种。 4. X射线物相分析方法分: 定性分析和定量分析两种;测钢中残余奥氏体的直接比较法就属于其中的定量分析方法。 5.透射电子显微镜的分辨率主要受衍射效应和像差两因素影响。 6.今天复型技术主要应用于萃取复型来揭取第二相微小颗粒进行分析。 7. 电子探针包括波谱仪和能谱仪成分分析仪器。 8.扫描电子显微镜常用的信号是二次电子和背散射电子。 二、选择题:(8分,每题一分) 1.X射线衍射方法中最常用的方法是( b )。 a.劳厄法;b.粉末多晶法;c.周转晶体法。 2. 已知X光管是铜靶,应选择的滤波片材料是(b)。 a.Co;b. Ni;c.Fe。 3.X射线物相定性分析方法中有三种索引,如果已知物质名时可以采用( c )。 a.哈氏无机数值索引;b. 芬克无机数值索引;c. 戴维无机字母索引。 4.能提高透射电镜成像衬度的可动光阑是(b)。 a.第二聚光镜光阑;b.物镜光阑;c. 选区光阑。 5. 透射电子显微镜中可以消除的像差是( b )。 a.球差; b. 像散; c. 色差。 6.可以帮助我们估计样品厚度的复杂衍射花样是( a)。 a.高阶劳厄斑点;b.超结构斑点;c. 二次衍射斑点。 7. 电子束与固体样品相互作用产生的物理信号中可用于分析1nm厚表层成分的信号是(b)。 a.背散射电子; b.俄歇电子;c. 特征X射线。 8. 中心暗场像的成像操作方法是(c)。 a.以物镜光栏套住透射斑;b.以物镜光栏套住衍射斑;c.将衍射斑移至中心并以物镜光栏套住透射斑。 三、问答题:(24分,每题8分) 1.X射线衍射仪法中对粉末多晶样品的要求是什么? 答: X射线衍射仪法中样品是块状粉末样品,首先要求粉末粒度要大小适 中,在1um-5um之间;其次粉末不能有应力和织构;最后是样品有一个 最佳厚度(t =

激光粒度仪实验报告

实验一LS230/VSM+激光粒度仪测定果汁饮料粒度 1实验目的 1.1了解激光粒度仪的基本操作; 1.2了解激光粒度仪测定的基本原理。 2实验原理 激光粒度分析仪的原理是基于激光的散射或衍射,颗粒的大小可直接通过散射角的大小表现出来,小颗粒对激光的散射角大,大颗粒对激光的散射角小,通过对颗粒角向散射光强的测量(不同颗粒散射的叠加),再运用矩阵反演分解角向散射光强即可获得样品的粒度分布。 激光粒度仪原理图如图1所示,来自固体激光器的一束窄光束经扩充系统扩充后,平行地照射在样品池中的被测颗粒群上,由颗粒群产生的衍射光或散射光经会聚透镜会聚后,利用光电探测器进行信号的光电转换,并通过信号放大、A/D 变换、数据采集送到计算机中,通过预先编制的优化程序,即可快速求出颗粒群的尺寸分布。 3实验试剂与仪器 3.1实验样品:果汁饮料。 3.2实验仪器:LS230/VSM+激光粒度仪。 4实验步骤 4.1按照粒度仪、计算机、打印机的顺序将电源打开,并使样品台里充满蒸馏水,开泵,仪器预热10分钟。

4.2进入LS230的操作程序,建立连接,再进行相应的参数设置: 启动Run-run cycle(运行信息) (1)选择measure offset(测量补偿),Alignment(光路校正),measure background(测量空白),loading(加样浓度),Start 1 run(开始测量(2)输入样品的基本信息,并将分析时间设为60秒,点击start(开始)。 如需要测量小于0.4μm以下的颗粒,选择Include PIDS,并将分析时 间改为90秒后,点击start(开始) (3)泵速的设定根据样品的大小来定,一般设在50,颗粒越大,泵速越高,反之亦然。 4.3在测量补偿,光路校正,测量空白的工作通过后,根据软件的提示,加入样品控制好浓度,Obscuratio n应稳定在8-12%:假如选择了PIDS,则要把PIDS 稳定在40-50%,待软件出现ok提示后,点击Done(完成)。 4.4分析结束后,排液,并加水清洗样品台,准备下一次分析。 4.5作平行试验,保存好结果,根据要求打印报告。 4.6退出程序,关电源,样品台里加满水,防止残余颗粒附着在镜片上。 5实验结果与讨论 5.1实验结果 由实验结果显示: 平均粒径:141.7μm

筛分析法测试粉体粒度及粒度分布

筛分析法测试粉体粒度及粒度分布 粒度分布通常是指某一粒径或某一粒径范围的颗粒在整个粉体中占多大的比例。它可用简单的表格、绘图和函数形式表示颗粒群粒径的分布状态。颗粒的粒度、粒度分布及形状能显著影响粉末及其产品的性质和用途。例如,水泥的凝结时间、强度与其细度有关,陶瓷原料和坯釉料的粒度及粒度分布影响着许多工艺性能和理化性能,磨料的粒度及粒度分布决定其质量等级等。为了掌握生产线的工作情况和产品是否合格,在生产过程中必须按时取样并对产品进行粒度分布的检验,粉碎和分级也需要测量粒度。 粒度测定方法有多种,常用的有筛析法、沉降法、激光法、小孔通过法、吸附法等。本实验用筛析法和沉降法,以及激光法测粉体粒度分布。 一、实验目的 筛析法是最简单的也是用得最早和应用最广泛的粒度测定方法,利用筛分方法不仅可以测定粒度分布,而且通过绘制累积粒度特性曲线,还可得到累积产率50%时的平均粒度。本实验用筛析法测粉体粒度,其实验的目的是: 1、了解筛析法测粉体粒度分布的原理和方法。 2、根据筛分析数据绘制粒度累积分布曲线和频率分布曲线。 二、基本原理 1、测试方法概述 筛析法是让粉体试样通过一系列不同筛孔的标准筛,将其分离成若干个粒级,分别称重,求得以质量分数表示的粒度分布。筛析法适用于约10mm至20μm之间的粒度分布测量。如采用电成形筛(微孔筛),其筛孔尺寸可小至5μm,甚至更小。 过去,筛孔的大小用“目”表示,其含义是每英寸(25.4mm)长度上筛孔的数目,也有用1cm长度上的孔数或1cm2筛面上的孔数表示的,还有的直接用筛孔的尺寸来表示。筛析法常使用标准套筛,标准筛的筛制按国际标准化组织(ISO)推荐的筛孔为1mm的筛子作为基筛,以优先系数及20/3为主序列,其筛孔为

显微镜法测试粉体粒度、粒度分布及形貌-(1)

实验二显微镜法测试粉体粒度、粒度分布 及形貌 一、目的意义 显微镜是少数能对单个颗粒同时进行观测和测量的方法。除颗粒大小外,它还可以对颗粒的形状(球形、方形、条形、针形、不规则多边形等)、颗粒结构状况(实心、空心、疏松状、多孔状等)以及表面形貌等有一个认识和了解。因此显微镜法是一种最基本也是最实用的测量方法,常被用来作为对其他测量方法的一种校验甚至确定的方法。 本实验的目的: 通过使用生物显微镜观察粉末的形状和粒度掌握: 1、制样方法及计算方法 2、数据处理 3、粒度分布曲线的描绘 二、方法实质 生物显微镜是透光式光学显微镜的一种。用生物显微镜法检测粉末是一般材料实验室中通用的方法。虽然计算颗粒数目有限。粒度数据往往缺乏代表性,但它是唯一的对单个颗粒进行测量的粒度分析方法。此法还具有直观性可以研究颗粒外表形态。因此称为粒度分析的基本方法之一。 测试时首先将欲测粉末样品分散在载玻片上。并将载玻片置于显微镜载物台上。通过选择适当的物镜目镜放大倍数和配合调节焦距到粒子的轮廓清晰。粒径的大小用标定过的目镜测微尺度量,样品粒度的范围过宽时,可通过变换镜头放大倍数或配合筛分法进行。观测若干视场,当计数粒子足够多时,测量结果可反映粉末的粒度组成,进而还可以计算粉末平均粒度。 三、仪器与原材料 物镜测微尺、标准测微尺、生物显微镜、分散剂(酒精、环乙醇等)、玻璃棒、吸管粉末试样(雾化粉、电解粉)

四、测试方法 1、显微镜使用前的准备 将目镜测微尺放入所选用的目镜中,并将目镜和物镜安装在显微镜上,将标准测微尺(每小格10微米)置于载物台上通过旋转公降螺钉(注意:不得使物镜接触载玻片1),调节焦距标定目镜测微尺一格比代表的长度(u)。 2、样品的制备 用显微镜测试的粉末应经过筛分,否则由于粉末粒度范围过宽,测试中需经常更换物镜或目镜,不仅造成测试工作的不便而且由于视场范围的变化引起测试的不准确。 粉末样品由于具有发达的表面积,因而有较高的表面能,使粉末颗粒产生聚集,形成团块,影响粉末粒度的测定,所以制样过程中应使颗粒聚集体分散成单个颗粒,一般是将少量粉末样品(0.01克左右)放置在干净的载玻片上,滴上数滴分散介质,用另一干净载玻片覆盖其上。进行对磨并观察情况然后平行对拉将两片玻璃载玻片分开,即得测试用样品,待分散介质挥发后放于显微镜载物台上进行观测。 对分散介质要求: (1)对粉末润湿性好且与所测粉末不起化学作用。 (2)介质应易挥发且挥发的蒸汽对显微镜镜头无腐蚀性。 对需长期保存的试样可采用有机玻璃或纤维素溶液进行覆盖,待覆盖膜干燥后颗粒即被固定。 3、观测方法 理想的试样片应便于观测计数,即一个视场内颗粒数不应过多。且各视场颗粒分布情况应尽量均匀。 实验采用垂直投影法,即所测颗粒在视场内同一个方向移动、顺序地、无选择地逐个进行测量。当颗粒形状不规则时测量这一方向上的最大尺寸如图1所示。颗粒在视场中作上下运动而且目镜测微尺处于水平位置,测试中注意不要对某一颗粒重复计数或漏掉某些颗粒。

材料分析测试技术期末考试重点知识点归纳

材料分析测试技术复习参考资料(注:所有的标题都是按老师所给的“重点”的标题,) 第一章x射线的性质 射线的本质:X射线属电磁波或电磁辐射,同时具有波动性和粒子性特征,波长较为可见光短,约与晶体的晶格常数为同一数量级,在10-8cm左右。其波动性表现为以一定的频率和波长在空间传播;粒子性表现为由大量的不连续的粒子流构成。 2,X射线的产生条件:a产生自由电子;b使电子做定向高速运动;c在电子运动的路径上设置使其突然减速的障碍物。 3,对X射线管施加不同的电压,再用适当的方法去测量由X射线管发出的X射线的波长和强度,便会得到X射线强度与波长的关系曲线,称为X射线谱。在管电压很低,小于某一值(Mo阳极X射线管小于20KV)时,曲线变化时连续变化的,称为连续谱。在各种管压下的连续谱都存在一个最短的波长值λo,称为短波限,在高速电子打到阳极靶上时,某些电子在一次碰撞中将全部能量一次性转化为一个光量子,这个光量子便具有最高的能量和最短的波长,这波长即为λo。λo=V。 4,特征X射线谱: 概念:在连续X射线谱上,当电压继续升高,大于某个临界值时,突然在连续谱的某个波长处出现强度峰,峰窄而尖锐,改变管电流、管电压,这些谱线只改变强度而峰的位置所对应的波长不变,即波长只与靶的原子序数有关,与电压无关。因这种强度峰的波长反映了物质的原子序数特征、所以叫特征x射线,

由特征X射线构成的x射线谱叫特征x射线谱,而产生特征X射线的最低电压叫激发电压。 产生:当外来的高速度粒子(电子或光子)的动aE足够大时,可以将壳层中某个电子击出去,或击到原于系统之外,或使这个电子填到未满的高能级上。于是在原来位置出现空位,原子的系统能量因此而升高,处于激发态。这种激发态是不稳定的,势必自发地向低能态转化,使原子系统能量重新降低而趋于稳定。这一转化是由较高能级上的电子向低能级上的空位跃迁的方式完成的,电子由高能级向低能级跃迁的过程中,有能量降低,降低的能量以光量子的形式释放出来形成光子能量,对于原子序数为Z的确定的物质来说,各原子能级的能量是固有的,所以.光子能量是固有的,λ也是固有的。即特征X射线波长为一固定值。 能量:若为K层向L层跃迁,则能量为: 各个系的概念:原于处于激发态后,外层电子使争相向内层跃迁,同时辐射出特征x射线。我们定义把K层电子被击出的过程叫K系激发,随之的电子跃迁所引起的辐射叫K系辐射,同理,把L层电子被击出的过程叫L系激发,随之的电子跃迁所引起的辐射叫L系辐射,依次类推。我们再按电子跃迁时所跨越的能级数目的不同把同一辐射线系分成几类,对跨 越I,2,3..个能级所引起的辐射分别标以α、β、γ等符号。电子由L—K,M—K跃迁(分别跨越1、2个能级)所引起的K系辐射定义为Kα,Kβ谱线;同理,由M—L,N—L电子跃迁将辐射出L系的Lα,Lβ谱线,以此类推还有M线系等。 莫赛莱定律:特征X射线谱的频率或波长只取决于阳极靶物质的原子能级结构,

材料测试分析方法答案

第一章 一、选择题 1.用来进行晶体结构分析的X射线学分支是() A.X射线透射学; B.X射线衍射学; C.X射线光谱学; D.其它 2. M层电子回迁到K层后,多余的能量放出的特征X射线称() A.Kα; B. Kβ; C. Kγ; D. Lα。 3. 当X射线发生装置是Cu靶,滤波片应选() A.Cu;B. Fe;C. Ni;D. Mo。 4. 当电子把所有能量都转换为X射线时,该X射线波长称() A.短波限λ0; B. 激发限λk; C. 吸收限; D. 特征X射线 5.当X射线将某物质原子的K层电子打出去后,L层电子回迁K层,多余能量将另一个L层电子打出核外,这整个过程将产生()(多选题) A.光电子; B. 二次荧光; C. 俄歇电子; D. (A+C) 二、正误题 1. 随X射线管的电压升高,λ0和λk都随之减小。() 2. 激发限与吸收限是一回事,只是从不同角度看问题。() 3. 经滤波后的X射线是相对的单色光。() 4. 产生特征X射线的前提是原子内层电子被打出核外,原子处于激发状态。() 5. 选择滤波片只要根据吸收曲线选择材料,而不需要考虑厚度。() 三、填空题 1. 当X射线管电压超过临界电压就可以产生X射线和X射线。 2. X射线与物质相互作用可以产生、、、、 、、、。 3. 经过厚度为H的物质后,X射线的强度为。 4. X射线的本质既是也是,具有性。 5. 短波长的X射线称,常用于;长波长的X射线称 ,常用于。 习题 1.X射线学有几个分支?每个分支的研究对象是什么?

2. 分析下列荧光辐射产生的可能性,为什么? (1)用CuK αX 射线激发CuK α荧光辐射; (2)用CuK βX 射线激发CuK α荧光辐射; (3)用CuK αX 射线激发CuL α荧光辐射。 3. 什么叫“相干散射”、“非相干散射”、“荧光辐射”、“吸收限”、“俄歇效应”、“发射谱”、 “吸收谱”? 4. X 射线的本质是什么?它与可见光、紫外线等电磁波的主要区别何在?用哪些物理量 描述它? 5. 产生X 射线需具备什么条件? 6. Ⅹ射线具有波粒二象性,其微粒性和波动性分别表现在哪些现象中? 7. 计算当管电压为50 kv 时,电子在与靶碰撞时的速度与动能以及所发射的连续谱的短 波限和光子的最大动能。 8. 特征X 射线与荧光X 射线的产生机理有何异同?某物质的K 系荧光X 射线波长是否等 于它的K 系特征X 射线波长? 9. 连续谱是怎样产生的?其短波限V eV hc 3 01024.1?= =λ与某物质的吸收限k k k V eV hc 3 1024.1?= =λ有何不同(V 和V K 以kv 为单位)? 10. Ⅹ射线与物质有哪些相互作用?规律如何?对x 射线分析有何影响?反冲电子、光电 子和俄歇电子有何不同? 11. 试计算当管压为50kv 时,Ⅹ射线管中电子击靶时的速度和动能,以及所发射的连续 谱的短波限和光子的最大能量是多少? 12. 为什么会出现吸收限?K 吸收限为什么只有一个而L 吸收限有三个?当激发X 系荧光 Ⅹ射线时,能否伴生L 系?当L 系激发时能否伴生K 系? 13. 已知钼的λK α=0.71?,铁的λK α=1.93?及钴的λK α=1.79?,试求光子的频率和能量。 试计算钼的K 激发电压,已知钼的λK =0.619?。已知钴的K 激发电压V K =7.71kv ,试求其λK 。 14. X 射线实验室用防护铅屏厚度通常至少为lmm ,试计算这种铅屏对CuK α、MoK α辐射 的透射系数各为多少? 15. 如果用1mm 厚的铅作防护屏,试求Cr K α和Mo K α的穿透系数。 16. 厚度为1mm 的铝片能把某单色Ⅹ射线束的强度降低为原来的23.9%,试求这种Ⅹ射 线的波长。 试计算含Wc =0.8%,Wcr =4%,Ww =18%的高速钢对MoK α辐射的质量吸收系数。 17. 欲使钼靶Ⅹ射线管发射的Ⅹ射线能激发放置在光束中的铜样品发射K 系荧光辐射,问 需加的最低的管压值是多少?所发射的荧光辐射波长是多少? 18. 什么厚度的镍滤波片可将Cu K α辐射的强度降低至入射时的70%?如果入射X 射线束 中K α和K β强度之比是5:1,滤波后的强度比是多少?已知μm α=49.03cm 2 /g ,μm β =290cm 2 /g 。 19. 如果Co 的K α、K β辐射的强度比为5:1,当通过涂有15mg /cm 2 的Fe 2O 3滤波片后,强 度比是多少?已知Fe 2O 3的ρ=5.24g /cm 3,铁对CoK α的μm =371cm 2 /g ,氧对CoK β的 μm =15cm 2 /g 。 20. 计算0.071 nm (MoK α)和0.154 nm (CuK α)的Ⅹ射线的振动频率和能量。(答案:4.23

相关文档
相关文档 最新文档