文档视界 最新最全的文档下载
当前位置:文档视界 › 聚乙烯醇的一些特点

聚乙烯醇的一些特点

聚乙烯醇的一些特点
聚乙烯醇的一些特点

聚乙烯醇的一些特点

性能特点

聚乙烯醇是一种高分子聚合物,无臭、无毒,外观为白色或微黄色絮状、片状或粉末状固体。分子式为(C2H4O)n,部分醇解PV A分子式为-(C2H4O)n-(C4H6O2)m-。絮状PV A的假比重为(0.21 ~0.30)g/cm3,片状PV A的假比重为(0.47±0.06)g/cm3。

聚乙烯醇有较好的化学稳定性及良好的绝缘性、成膜性。具有多元醇的典型化学性质,能进行酯化、醚化及缩醛化等反应。除此之外,还具有如下独特的性能:水溶性

聚乙烯醇的水溶性随醇解度和粘度的不同而稍有差异,根据我公司产品特点,宜采用以下溶解程序:

1. 在室温下将所需水量加入溶解釜;

2. 将计量好的PV A徐徐加入溶解釜并充分搅拌,搅拌速度宜控制在100转/分左右,

停止搅拌后再浸泡(30-60)分钟;

3. 宜用蒸汽加热,搅拌并逐渐升温至合适的温度且保持到PV A完全溶解。无蒸汽加热条件的,可直接用明火加热,但所配溶液浓度不宜超过10%,为避免明火加热产生糊焦,应注意加强搅拌,完全醇解的PV A宜升温至(95-98)°C,不

宜沸腾。17-88升温至60°C即可。

4. 聚乙烯醇溶解应完全彻底,其鉴别方法为:用烧杯取溶解后液体在明亮处观察,

溶液清亮,无可见透明颗粒。

5. 在溶解时起泡属于正常现象,若严重时可采取间歇加热搅拌方式,或适当降低溶解温度和搅拌转速(必要时可加入适量的消泡剂如辛醇、磷酸三丁酯等)。

6. 片状PV A溶解即将结束时,如采用釜底放料,应打开釜底阀,排出一部分釜底料(可重新投入溶解釜溶解),以保证底阀畅通。

聚乙烯醇水溶液的贮存稳定性

聚乙烯醇水溶液长时间保存几乎不起化学变化。在室温条件下,粘度会随放置时间的延长而逐渐升高;在低温下转变成凝胶,加热搅拌后可重新变成溶液。如长时间放置,可在溶液中添加防锈剂、防腐剂、防凝胶剂及粘度稳定剂等。但使用时应注意添加剂对产品质量及性能的影响。

粘结性

聚乙烯醇水溶液与亲水纤维素有很好的粘结力,粘结强度随醇解度和聚合度的增大而

升高。

界面化学性质

聚乙烯醇具有表面活性,可降低水的表面张力。

抗溶剂性

聚乙烯醇能溶于含羟基的极性溶液中,但易转变成凝胶,一般不溶于非极性有机溶液,也不溶于无机酸,水是其最好的溶剂。

热稳定性

聚乙烯醇具有较好的热稳定性,在140°C以下不发生任何变化。

聚乙烯醇pva的用途和应用

聚乙烯醇 PVA 的用途和应用 【新海湾-徐江】 聚乙烯醇(简称PVA)外观为白色粉末,是一种用途相当广泛的水溶性高分子聚合物,性能介于塑料和橡胶之间,它的用途可分为纤维和非纤维两大用途。 由于PVA具有独特的强力粘接性、皮膜柔韧性、平滑性、耐油性、耐溶剂性、保护胶体性、气体阻绝性、耐磨性以及经特殊处理具有的耐水性,因此除了作纤维原料外,还被大量用于生产涂料、粘合剂、纸品加工剂、乳化剂、分散剂、薄膜等产品,应用范围遍及纺织、食品、医药、建筑、木材加工、造纸、印刷、农业、钢铁、高分子化工等行业。 产品性能:聚乙烯醇树脂系列产品系白色固体,外型分絮状、颗粒状、粉状三种;无毒无味、无污染,可在80--90℃水中溶解。其水溶液有很好的粘接性和成膜性;能耐油类、润滑剂和烃类等大多数有机溶剂;具有长链多元醇酯化、醚化、缩醛化等化学性质。 产品用途:主要用于纺织行业经纱浆料、织物整理剂、维尼纶纤维原料;建筑装潢行业107胶、内外墙涂料、粘合剂;化工行业用作聚合乳化剂、分散剂及聚乙烯醇缩甲醛、缩乙醛、缩丁醛树脂;

造纸行业用作纸品粘合剂;农业方面用于土壤改良剂、农药粘附增效剂和聚乙烯醇薄膜;还可用于日用化妆品及高频淬火剂等方面。 使用方法:聚乙烯醇树脂系列产品均可以在95℃以下的热水中溶解,但由于聚合度、醇解度高低的不同,醇解方式等不同在溶解时间、温度上有一定的差异,因此在使用不同品牌聚乙烯醇树脂时,溶解方法和时间需要进行摸索。溶解时,可边搅拌边将本品缓缓加入20℃左右的冷水中充分溶胀、分散和挥发性物资的逸出(切勿在40℃以上的水中加入该产品直接进行溶解,以避免出现包状和皮溶内生现象),而后升温到95℃左右加速溶解,并保温2~小时,直到溶液不再含有微小颗粒,再经过28目不锈钢过滤杂质后,即可备用。 搅拌速度 70~100转/分,升温时,可采用夹套、水浴等间接加热方式,也可采用水蒸汽直接加热;但是,不可用明火直接加热,以免局部过热而分解,若没有搅拌机,可用蒸汽以切线方向吹入的方法,进行溶解。 聚乙烯醇树脂系列产品水溶液浓度一般在12~14%以下;低醇解度聚乙烯醇树脂产品水溶液浓度一般可在20%左右。

木糖醇的特性及其在食品中的应用

木糖醇的特性及其在食品中的应用 摘要:木糖醇的理化性质类似于蔗糖,是一种应用广泛的甜味剂,其自身特有的功能赋予了它保健性.本文简单的介绍了木糖醇的理化性质;讨论了其在营养学、临床医学上的保健功能性;综述了其作为甜味剂在食品行业中的应用;介绍了其在食品中的检测方法;探讨了今后的研究前景;对木糖醇在食品中的应用提出了见解。 关键词:木糖醇,应用,特性,食品, 应用 木糖醇是一种白色粉末或白色晶体五碳糖醇,具有清凉甜味,甜度为蔗糖的0.65~1.05倍,入口后清凉似薄荷,没有杂味.熔点92~96摄氏度,能量低,其分子式为C5H12O5。它是联合国粮农组织和世界卫生组织食品添加剂联合专家委员会(JECFA)于上世纪七十年代批准为A类食品添加剂,并对ADI值不作规定的公认安全食品。国际食品法典委员会(CAC)于1999年6月通过为“在食品中可以按正常生产需要使用的食品添加剂”食用糖醇之一。由于它和其他糖醇比较,有较高的能量和甜度,经国内外研究证明,且具有防龋齿、改善糖尿病患者病情、消除血酮症、改善肝功能等某些特殊的生理功能。1999年,我国通过动物和人体试验,首次证明木糖醇和低聚糖一样,具有双岐杆菌的增殖功能,受到国内外各方关注。 一.木糖醇作为药物 1.木糖醇能提高肠内钙的吸收和体内钙保留率。 芬兰通过动物试验证明,木糖醇和钙的复合物,能提高肠内钙的吸收和使提高体内钙保留率。经12周研究结果确定,木糖醇和钙的最佳摩尔比为1:5。检验采用同位素45钙,来确认保留率的钙。 2.抑制和减少内耳的感染 美国小儿科医学院的一项最新医学研究表明:摄入甜味剂,可以抑制和减少内耳的感染。巳知木糖醇因能阻止突变链球茁的生长而可防龋齿,为探讨木糖醇对引起急性中耳炎的肺炎链球苗是否也有同样的作用,该研究对 857名儿童作了试验,让他们嚼服以木糖醇为基料的口香糖和胶质软糖,或服用木糖浆,结果发现减少了这类耳部感染的病例。 3.木糖醇护肤 日本报导,木糖醇作为医药制剂,和葡萄糖谷氨酸相同,能透过血脑屏障。作为降眼压常用甘露醇外,木糖醇、赤鲜醇也有此功效。日本资生堂公司宣布,经常期研究,据认为木糖醇不仅具有甘油相同的保湿和改善皮肤粗糙的效果,而且使用时不发粘,会令人奋感清爽。因此资生堂公司已开始大力研制配有木糖醇的护肤用品,准备今年生产出以爽身化妆水和乳液为基础的化妆晶。

2020年聚乙烯醇膜行业分析研究报告

2020年聚乙烯醇膜行业分 析研究报告

目录 一、中国聚乙烯醇膜行业概况 (4) 1、聚乙烯醇膜市场规模达7000亿元,保持稳中向好发展趋势 (4) 2、中国聚乙烯醇膜行业PEST分析 (5) 3、聚乙烯醇膜行业处于初级阶段,资源整合盈利亟待突破 (6) 4、中国聚乙烯醇膜行业存在的问题分析 (7) 5、行业进入洗牌期,信息化趋势明显 (8) 二、中国聚乙烯醇膜行业市场分析 (9) 1、市场结构多元化,服务包装占比突出 (9) 2、行业地位逐步提高,影响力突出 (10) 3、行业规模同比增长19.6% (11) 4、行业的覆盖人群规模大、服务及服务用户占比高 (11) 5、生产服务状况今非昔比 (11) 6、市场策略连锁直销、渠道销售模式 (11) 7、价格走势遵循一般行业服务走势规律 (12) 三、中国聚乙烯醇膜行业政策环境 (12) 1、十三五规划解读 (12) 2、地级市的标准需要参考省级区域的标准 (12) 3、财政税收政策较为全面 (13) 4、政策走势日趋重视,技术环境开拓创新 (13) 四、中国聚乙烯醇膜行业竞争格局 (13) 1、竞争企业介绍 (13) 2、行业竞争力分析 (14) 3、竞争焦点介绍 (14) 4、竞争技术介绍 (14)

5、竞争趋势与影响 (15) 五、中国聚乙烯醇膜行业发展趋势预测 (15) 1、行业特征分析 (15) 2、行业发展趋势分析 (16) 3、行业前景 (17) 4、商机发掘 (18) 5、发展路径与未来走向 (18) 六、中国聚乙烯醇膜行业投资策略分析 (18) 1、投资机会 (18) 2、投资风险 (19) 3、投资建议 (19) 4、投资回报 (20)

聚乙烯醇

聚乙烯醇 摘要:聚乙烯醇是一种用途广泛的水溶性高分子聚合物,其性能介于塑料和橡胶之间,是重要的化工原料,其潜在市场也相当大。本文主要介绍了聚乙烯醇的基本性质以及合成和应用,从不同方面说明聚乙烯醇的制备方法,同时介绍聚乙烯醇在工业以及生活上的应用和发展前景。 关键词:聚乙烯醇性质合成应用发展前景 一、聚乙烯醇的性质 1.物理性质 聚乙烯醇是一种高分子聚合物,无臭、无毒,外观为白色或微黄色絮状、片状或粉末状固体。分子式为(C2H4O)n,部分醇解PVA分子式为-(C2H4O)n-(C4H6O2)m -。絮状PVA的假比重为(0.21 ~0.30)g/cm3,片状PVA的假比重为(0.47±0.06)g/cm3。其充填密度约0.20~0.48g/cm3,折射率为1.51~1.53。聚乙烯醇的熔点难于直接测定,因为它在空气中的分解温度低于熔融温度。用间接法测得其熔点在230℃左右。不同立规程度的聚乙烯醇具有不同的熔点,其中S—PVA(间规)熔点最高,A—PVA(无规)次之,I—PVA(等规)最低。聚乙烯醇的玻璃化温度约80℃。 2.化学性质 聚乙烯醇主链大分子上有大量仲羟基,在化学性质方面有许多与纤维素相似之处。聚乙烯醇可与多种酸、酸酐、酰氯等作用,生成相应的聚乙烯醇的酯。但其反应能力低于一般低分子醇类。聚乙烯醇的醚化反应较酯化反应容易进行。醚化反应后,聚乙烯醇分子间作用力有所减弱,制品的强度、软化点和亲水性等都有所降低。在聚乙烯醇水溶液中加入少量硼酸,其粘度将明显增大,这种变化与介质的pH值关系密切。当介质的pH值偏于碱性时,硼酸与聚乙烯醇发生分子间反应,使溶液粘度剧增,以致形成凝胶。聚乙烯醇水溶液与氢氧化钠反应,其粘度增加的速度较之添加硼酸更快。因此,可以利用氢氧化钠水溶液作为聚乙烯醇纺丝的凝固剂。在酸性催化剂作用下,聚乙烯醇可与醛发生缩醛化反应。缩醛化反应既可在均相中进行,也可在非均相中进行。不过均相反应所得产物的缩醛化基团分布均匀,其缩醛化物的强度、弹性模量以及耐热性等都有所降低。当进行非均相反应时,在控制适当的条件下,由于缩醛化基团分布不均匀,并主要发生在非晶区,故对生成物的力学性能影响不大,而耐热性还有所提高。 3.其他性质 (1)具有很好的机械性能,其强度高、模量高、伸度低。 (2)耐酸碱性、抗化学药品性强。 (3)耐光性:在长时间的日照下,纤维强度损失率低。 (4)耐腐蚀性:纤维埋入地下长时间不发霉、不腐烂、不虫蛀。 (5)纤维具有良好的分散性:纤维不粘连、水中分散性好。 (6)纤维与水泥、塑料等的亲和性好,粘合强度高。 (7)对人体和环境无毒无害。 三、聚乙烯醇的合成方法 1.乙烯直接合成法 石油裂解乙烯直接合成法。目前,国际上生产聚乙烯醇的工艺路线以乙烯法占主导地位,其数量约占总生产能力的72%。美国已完成了乙炔法向乙烯法的转变,日本的乙烯法也占70%以上,而中国的生产企业只有两家为乙烯法。其工艺流程

麦芽糖醇概况

麦芽糖醇概况1.1 麦芽糖醇的基本概况 麦芽糖醇:又称氢化麦芽糖; 化学名:4-O-a-D-葡萄糖基-D-葡萄醇 英文名称:Maltitol;Hydrogenated Maltose; 分子式:C 12H 24 O 11 ; 分子量:344.31 CAS 编号:585-88-6 图1.1 麦芽糖醇分子结构图 麦芽糖醇是以淀粉为主要原料,在高麦芽糖浆生产技术基础上发展起来的,较木糖醇、山梨糖醇使用更为广泛的一种功能性甜味剂。 以往人们食用的甜味剂基本上都是热量高、甜度大的糖类,易引起糖尿病、肥胖症、动脉硬化和心脏衰弱等疾病。麦芽糖醇甜度高、热量低、安全性好,原料也比较充足,制造工艺简单,具有其它甜味料所不具备的独特性能。 麦芽糖醇是以麦芽糖为原料加氢作用还原而得的一种新糖醇类化合物,属非消化性和非发酵性甜味剂,它有液体状和结晶状两种产品。 麦芽糖醇具有甜味高、热量低、安全性好、耐酸热性好、难发酵性强、保湿性良好、产品透明度高等特点。可广泛应用于焙烤食品、糖果、水果罐头、充气饮料、乳酸饮料、冰淇淋、儿童食品、老年食品及其功能性食品的生产中。欧、美、日等

国家麦芽糖醇现大量应用于无糖糖果、食品、饮料产品的生产及开发。按我国食品添加剂使用卫生标准,麦芽糖醇的最大使用量为“正常生产需要”,不作限制。但是与其它糖醇类甜味剂一样,也应避免一次使用量过多,以免引起肠胃不适。 1.2 麦芽糖醇基本理化性质 麦芽糖醇是由淀粉水解、氢化精制而得的一种双糖醇,为白色结晶粉末或无色透明的中性粘稠液体,易溶于水,甜度略低于蔗糖,其甜味柔和可口,具有非发醇性(可防蛀牙)、低热值(可防发胖)、粘度大(可作增稠剂)、耐热耐酸性好(可作安定剂)等特点,食用后不升高血糖值,是一种新型功能性甜味剂,广泛应用于食品加工、医药、保健品等领域。广泛用于食品、医药、化工等领域。 麦芽糖醇易溶于水和乙醇等溶剂,不溶于甲醇和乙醇,黏度适中;具有耐热性、耐酸性、保湿性和非发酵性等特点,基本上不起美拉德反应。晶体形式熔点为148~151℃,甜度为蔗糖的0.8~0.9倍,液体形式的甜度为蔗糖的0.6倍,其甜味柔和可口,无余味。 纯净的麦芽糖醇呈无色透明的晶体,熔点135~140℃,对热和酸都很稳定,极易溶于水,不易溶于甲醇或乙醇。麦芽糖醇的甜度与蔗糖相当,但甜味温和,清口无余味。麦芽糖醇吸湿性强,是各种食品良好的保湿剂,麦芽糖醇很难结晶,商品多为粉剂。麦芽糖醇粘度比山梨醇大两倍,冻结温度与蔗糖相近。 麦芽糖醇的理化性质及生理功能如下:

聚乙烯醇水凝胶的制备方法及设备

1.实验 1.1试剂和仪器 (1)仪器:Alpha-Centau“FT.IR型红外光谱仪 (日本岛津),S540—SEM型扫描电镜(日本日立),热 分析(DT A_TG)(Du Pont 1090B型热分析仪),紫 外一可见光谱仪(日本日立)UV-3400紫外可见分光光度计,PH孓3C型精密pH计(上海精密科学有限 公司)。 (2)试剂:壳聚糖(CS)(浙江玉环县化工厂,分 子量:1.5×105,脱乙酰度:93%),聚乙烯醇(PVA) (佛山市化工实验厂,日本进口分装,Mw一1.o× 105),冰乙酸(分析纯),甲醛(37%,分析纯),盐酸 (分析纯),氢氧化钠(分析纯)。 1.2水凝胶的制备及其溶胀性能测试 1.2.1水凝胶的制备 取50mL圆底烧瓶,向其中加入o.5 g CS、 15mL二次水和2mL冰乙酸(3 m01/L),搅拌均匀 后,再加入o.39 PVA,搅拌混合均匀,然后抽真空, 向其中加入2mL甲醛(37%),室温反应24h;成胶 后,取出,切成1mm3左右的颗粒,用二次水浸泡,每 天换1次水,1周后取出;真空干燥,最后置于干燥 器中备用。

2. 实验 1.1 实验样品的制备 1.1.1 银溶胶的制备 将0.001mol/L的单宁酸和0.1mol/L的Naz COs溶液加热 至6O℃并搅拌,逐滴滴加0,001mol/L的AgNO3。当混合物颜 色逐渐加深至橙红色时,形成稳定的银溶胶。反应的关键是控 制AgNOa溶液的滴加速度和加入量。其反应机理l1]为: 6 AgNOs+ 6H52046+ 3 Na2C03— 6Ag +C76H52049+6 NaNO3+3 0 1.1.2 Ag/聚乙烯醇复合水凝胶的制备 制备浓度为1O%的PVA溶胶,将新制备的银溶胶在搅拌 的条件下加入PVA溶胶中,其混合液在室温下静置5min后倒 入模具中,放入THCD-04低温恒温槽中,采用冷冻一解冻法使之 结晶成型。每个循环的冷冻一解冻工艺见图1。按此做7个循环 制得样品,即得到Ag/PVA水凝胶。同理可制得Ag 浓度为 O%、0.125%、0.25 、0.5% (即Ag 占PVA的质量百分比 为:O%、1.25%、2.5 和5 )的Ag/PVA复合水凝胶。将样品制成哑铃形,测试区宽度约4mm,厚度约lmm(每个样品在测试前用千分尺精确测定其宽度和厚度)。每个样品裁5个样条,结果取平均值。2.1 Ag/PVA复合水凝胶的制备 微粒由于比表面积很大和表面不饱和键较多,具有很高的 表面能,所以极易团聚_3]。如果金属微粒发生团聚,则其光、电、

聚乙烯醇水溶液基本性能介绍

https://www.docsj.com/doc/c716906273.html, 聚乙烯醇水溶液基本性能介绍 聚乙烯醇水溶液有哪些基本性能? (1)黏度 聚乙烯醇水溶液具有一定的黏度。其黏度随品种、浓度和温度而变化。随着浓度的提高,黏度值急剧上升;而温度的升高使黏度明显下降。 聚乙烯醇水溶液为非牛顿流体,当质量分数低于0.5%、在较低剪切速率(<400s-1)时可视为牛顿流体。 (2)水溶性 聚乙烯醇的溶解性随其醇解度的高低有很大差别。醇解度87%~89%的产品水溶性最好,不管在冷水中还是在热水中都能很快地溶解且表现出最大的溶解度。醇解度在90%以上的产品,为了完全溶解,一般需加热到60~70℃。醇解度为99%以上的聚乙烯醇只溶于9 5℃的热水。而醇解度在75%~80%的产品只溶于冷水,不溶于热水。醇解度小于6 6%的,由于憎水的乙酰基含量增大,水溶性下降。直到醇解度50%以下,聚乙烯醇不再溶解于水。聚乙烯醇一旦制成水溶液,就不会在冷却时从溶液中再析出来。 (3)表面活性 通过对醇解度和醇解方法的改变,可以得到一种具有优良表面活性、富有强乳化力和分散力的产品。例如早就用于乙酸乙烯乳液聚合的乳化剂和保护胶、氯乙烯悬浮聚合的分散剂就是这样的聚乙烯醇。 聚乙烯醇的表面活性和表面胶体效应两者都随醇解度的下降而提高。保护胶体能力随分子量的增大而提高,但表面活性则随分子量的增大而减少。 (4)粘结性 聚乙烯醇对于多孔、亲水表面(如纸张、纺织品、木材等)有很强的融合力。它对颜料和其他细小颗粒也是有效的黏结剂。对平滑、不吸水表面,其粘结力随醇解度的提高而降低。 (5)成膜性 聚乙烯醇水溶液干燥后,能形成非常强韧耐撕裂的膜,膜的耐磨性也很好。聚乙烯醇膜的力学性能可通过增塑剂用量、含水量及不同的聚乙烯醇牌号等项来调节。 所有牌号的聚乙烯醇都具有吸湿性,聚乙烯醇的膜甚至在高温度下仍保持不黏和干燥。 聚乙烯醇对许多气体有高度的不透性。聚乙烯醇的连续膜或涂层对氧气、二氧化碳、氢气、氦气和硫化氢都有很好的隔气性。但氨和水蒸气对聚乙烯醇膜的透过率较高。 (6)对盐的容忍度及凝胶化作用 聚乙烯醇水溶液对氢氧化铵、乙酸及大多数无机酸都有很高的容忍度。但浓度相当低的氢氧化钠溶液就会使聚乙烯醇从溶液中沉淀出来。 聚乙烯醇溶液对硝酸钠、氯化铝、氯化钙等也都有很高的容忍度。低浓度下作为沉淀剂的盐类有碳酸钙、硫酸钠和硫酸钾。 聚乙烯醇水溶液对硼砂特别敏感,即使很少剂量的硼砂也会使聚乙烯醇水溶液凝胶化而失去流动性。聚乙烯醇水溶液的凝胶化是可逆的,低温下形成的凝胶,在高温下将变稀,冷却时又会成为凝胶。 钒、锆等的化合物及高锰酸钾也可使聚乙烯醇凝胶。 原文来源https://www.docsj.com/doc/c716906273.html,/sites/tl.html

木糖醇的特性及其应用

木糖醇的特性及其应用 食品科学与工程092班谢巧奇200916020210 摘要:本文介绍了木糖醇的化学组成、理化性质及合成方法,重点分析了木糖醇的功能特性和它在各行业中的应用,并对其在未来的发展做出了合理的展望。 关键字:木糖醇;特性;合成;应用 1前言 随着经济的发展,生活水平的提高,人们的食品消费观念发生了极大改变,越来越注重饮食对自身健康水平的影响,消费趋势逐渐从色、香、味均佳的食品转向具有合理营养和保健功能的功能性食品。由于木糖醇具有独特的生理功能——可以作为糖尿病、肥胖病、儿童龋齿、老年性缺钙、心脑血管病等病人的良好食疗添加剂,故木糖醇已被广泛应用于食品生产中,另外,由于木糖醇的各种生理功能,它在各个行业中的应用也甚为广泛。本文将阐述木糖醇的各种生理功能及其特性,分析其应用。 2木糖醇的化学组成 木糖醇(Xylitol),又称为戊五醇,是一种五碳糖醇。木糖醇的分子式为C5H12O5,分子量为152·15,外观为白色结晶状粉末,无臭味,沸点125℃(101·33 k Pa),熔点为92~96℃,易溶于水,溶解度169 g·(100 g水)-1(20℃),水解液pH=5~7[lg·(10 mL水)-1],溶解热-145·6 J·g-1,热能16.99 J·g-1[1]。 虽然早在1890年,德国科学家Fisher,Stahe和法国科学家Betrand就发现了木糖醇,然而在自然界植物中首次发现木糖醇却是在1943年。木糖醇虽广泛地存在于多种植物如草莓、李子、梨、桦树等之中,但数量却非常少,只有0.014 %~0.9 %,不能满足现代生活人们对木糖醇日益增长的需求。近年来,国内外科学工作者们对木糖醇的生产合成工艺进行了坚持不懈的研究与开发,并不断地取得突破性的进展,如采用先进的生物化学法,木糖醇收率可达80 %,纯度99 %;以麦秆为原料,采用高温水解法,收率为63 %;芬兰、瑞士等国家采用原料处理木糖醇的理化性质水解及水解产物浸渍的连续生产工艺,效率高,产品纯度高且成本低。这些日新月异的先进生产工艺技术为木糖醇得以满足不断扩大的全球市场创造了积极而主动的有利条件。 3木糖醇的理化性质 3.1 木糖醇的清凉感

醇解法制备聚乙烯醇

醇解法制备聚乙烯醇

第一章产品简介 (6) 1.1 产品的性质 (6) 1.2 产品的应用 (7) 第二章原料规格及性质 (9) 2.1 原料规格 (8) 2.2 原料性质 (9) 第三章合成原理及工艺路线 (10) 第四章流程图 (12) 4.1 生产设备 (12) 4.2 工艺流程 (12) 第五章操作步骤及工艺参数 (13) 5.1 操作步骤 (15) 第六章产品规格及标准 (17) 第七章消耗定额及成本核算 (18) 7.1 工程投资 (18) 7.2 生产投资 (18) 7.3 年利润核算 (18) 第八章参考文献 (19) 附图说明 (20)

1.1 产品的性质 聚乙烯醇是以乙烯法生产的醋酸乙烯为原料,经溶液聚合、无水低碱醇解得。聚乙烯醇(PV A)其充填密度约0.20~0.48g/cm3,折射率为1.51~1.53。聚乙烯醇的熔点难于直接测定,因为它在空气中的分解温度低于熔融温度。用间接法测得其熔点在230℃左右。聚乙烯醇的玻璃化温度约80℃。玻璃化温度除与测定条件有关外,也与其结构有关。聚乙烯醇工艺具有物耗低、能耗低、污染小的特点,是一种环保型产品,聚乙烯醇主要有完主醇解型和部分醇解型两大类。聚乙烯醇的端基较复杂,除了羟基外,还有羧基、羰基和二甲基乙氰基等。这些基团表现了复杂的行为。它们除了影响到维尼维纤维的着色、染色性能、吸湿性能,并促使聚乙烯醇溶解部分的增加。根据羟基空间分布的位臵,可分为全同结构聚乙烯醇(I-PV A)、间位结构聚乙烯醇(S-PV A)和无规结构聚乙烯醇(A-PV A)。 聚乙烯醇的一般性质:1) 外观:白色或微黄色片状、颗粒状固体。2) 填充比重:0.4~0.5g/ml 3) 水溶性:本品在冷水中仅溶胀,随水温的升高而逐渐溶解,在搅拌情况下至95℃能迅速溶解。在热水中的最高浓度达16%左右。其水溶液具有良好的成膜性和粘接性。4) 耐化学药品性:本品耐弱酸、弱碱及有机溶剂,耐油性极好。5) 热稳定性:在40℃以下没有显著变色,至160℃时颜色逐渐变深,超过220℃开始分解,生成水、乙酸、乙醛等。6) 贮存稳定性:本品贮存稳定性良好,长期贮存不发霉,不变质。但其水溶液长期贮存时,需加一定的防霉剂,如FF02等。而且由于聚乙烯醇主链大分子上有大量仲羟基,在化学性质方面有许多与纤维素相似之处。聚乙烯醇可与多种酸、酸酐、酰氯等作用,生成相应的聚乙烯醇的酯。但其反应能力低于一般低分子醇类。聚乙烯醇的醚化反应较酯化反应容易进行。醚化反应后,聚乙烯醇分子间作用力有所减弱,制品的强度、软化点和亲水性等都有所降低。在聚乙烯醇水溶液

2019年聚乙烯醇PVA行业分析报告

2019年聚乙烯醇PVA 行业分析报告 2019年7月

目录 一、聚乙烯醇(PVA)及其应用 (3) (一)聚乙烯醇性能优异用途广泛 (3) (二)消费结构向高品质功能化应用转变 (5) 二、供给集中,优势产能逐步实现替代 (7) (一)全球PVA产能较为集中 (7) (二)中国西部低成本产能逐步实现供应替代 (8) 1、资源优势西部企业大举介入PVA行业 (8) 2、传统老旧产能逐步退出 (10) (三)价格回稳,开发高品质品种是发展方向 (10) 三、国内外主要PVA生产商介绍 (12) (一)日本可乐丽(Kuraray) (12) (二)皖维高新 (13)

需求向高品质功能性应用产品转变:聚乙烯醇(PVA)是一种性能优异、无毒无味的水溶性聚合物,最初用于维尼纶生产。随着PVA 技术与工艺的不断改进,更多不同性能的PVA 品种被开发出来,PVA 消费结构也逐步趋于分散,向各种功能性用途转变。2005 年以来,国内PVA 表观消费量增速在5%上下波动,至2017 年消费量达到约69.6 万吨。我们预计未来国内PVA 表观消费量仍将维持在5%-6%的年平均增速,需求增量主要转向高品质产品及其下游新材料应用。 低成本新产能逐步替代老旧产能:全球PVA 供给集中于中国、日本、美国等少数几个国家,2018 总产能约188.8 万吨,中国(含台湾地区)产能占比超过60%。2009 年以来,国内新进民营企业及原有生产企业在西北地区依托当地廉价煤炭资源,大举投建电石乙炔法PVA 新产能,而传统老旧产能在竞争压力下陆续关停,西部低成本优势产能逐步实现了供应替代。 开发高品质产品及其应用是行业发展方向:我国是PVA 生产大国,但产品内在质量与国外产品相比还有不小差距。未来加强高品质PVA 产品开发,拓展高附加值的下游应用是行业发展方向。 一、聚乙烯醇(PVA)及其应用 (一)聚乙烯醇性能优异用途广泛 聚乙烯醇(简称PVA)是由醋酸乙烯(VAc)经聚合醇解而制成的一种水溶性高分子聚合物,外观通常为白色片状、絮状或粉末状固

水溶性高分子聚乙烯醇的制备及其应用

水溶性高分子聚乙烯醇的制备及其应用 * 中山大学化学与化学工程学院应用化学广州 510275 摘要:本实验采用溶液聚合法,以AIBN作为引发剂合成聚乙酸乙烯酯,然后用NaOH的甲醇溶液进行醇解,得到聚乙烯醇5.527 g,产率54.0%,之后利用红外对聚乙酸乙烯酯与聚乙烯醇进行表征。之后利用聚乙 烯醇的缩醛化反应制备胶水,利用聚乙烯醇的性质制备面膜。 关键词:水溶性高分子聚乙烯醇聚乙酸乙烯酯红外光谱法 1.引言 水溶性高分子化合物又称水溶性树脂或水溶性聚合物,是一种亲水性的高分子材料,在水中能溶胀而形成溶液或分散液。1924年,德国化学家WO. Hermann和WW. Haehel首次将碱液加入到聚乙酸乙烯酯的甲醇溶液中,得到聚乙烯醇(PV A)。聚乙烯醇为白色絮状固体或片状固体,无毒无味,是使用最广泛的合成水溶性高分子,具有优良的力学性能和可调节的表面活性。PV A具有多羟基强氢键,以及单一的-C-C-单键结构,这样的结构不但使PV A具有亲水性,还有黏合性、成膜性、分散性、润滑性、增稠性等良好性能。 PV A的制备首先由乙酸乙烯酯聚合成聚乙酸乙烯酯,然后将其醇解生成PV A,其反应式如下: PVA的结构可以看成是交替相隔的碳原子上带有羟基的多元醇,因此,其发生的反应为多元醇反应,如醚化、酯化、缩醛化。聚乙烯醇和羰基化合物反应可得到缩醛化合物。本实验利用聚乙烯醇和甲醛反应,生产聚乙烯醇缩甲醛,作为胶水使用。 2.实验过程 2.1 实验仪器 三颈瓶,回流冷凝管,水浴锅,蒸汽蒸馏装置,滴液漏斗,pH试纸,培养皿,抽滤装置,滤纸,真空烘箱。2.2 实验试剂 偶氮二异丁腈(AIBN),甲醇,乙酸乙烯酯,NaOH,聚乙烯醇,甲酸,40%甲醛水溶液,盐酸,羧甲基纤维素,丙二醇,乙醇。 2.3 实验步骤

聚乙烯醇生产工艺流程

合成工艺 由乙炔站来的乙炔,进入清净系统后,进行加压进入TQ101。该塔为次氯酸钠洗涤塔,塔内液相为次氯酸钠,此溶液由氯气与烧碱进过文丘里反应器生成,然后进入TQ101循环,利用其氧化性除去乙炔中的H2S,H3P等有害杂质,除去的过程中化学反应生成 H2SO4、H3PO4、净化乙炔。 被TQ101净化的乙炔进入综合洗涤塔TQ102,此塔分为3段: 一段洗碱,目的是除去乙炔气中夹带酸性物质。 二段水洗,洗去自一段夹带的碱性滴液。 三段为填料,除去自二段带来的水滴。 从TQ102出来的乙炔,经过活性炭吸附槽,进一步除去水分和杂质,出来的是精乙炔 精乙炔与循环乙炔混合称为混合乙炔进入鼓风机GF104加压,加压后分冷、热两路进入反应器SB112: 热路-进入醋酸蒸发器ZF101与醋酸蒸汽混合反应进入反应器; 冷路-混合乙炔直接进入反应器; 冷、热两路气量的大小决定反应器的温度,是重要的控制单元。 合成反应器SB112为流化床反应器。反应器中装有大量的载有醋酸锌的活性炭(触媒),乙炔和醋酸的混合气体在GF104的加压下,使反应器中的触媒成流化态。气体与触媒充分接触并在催化剂(触媒)的作用下,醋酸与乙炔进行合成反应,约有三分之一的乙炔和醋酸转化成醋酸乙烯(VAC)、含有醋酸,乙炔,醋酸乙烯,乙醛,丁烯醛的混合气体从反应器的顶部出来进入吸收塔TQ103。 TQ103分为3段: 1段采用80℃左右的醋酸吸收,由于吸收液在吸收过程中扑集了大量的活性炭粉末,成为黑液。吸收液吸收时增加的部分铜活性炭粉末一同送往过滤毡进行过滤,滤出的清液补充进入吸收塔(TQ103)2段。 2段的循环液经循环水冷却至32℃左右,与反应生成的混合气体逆流接触,使大部分的醋酸,醋酸乙烯等被冷凝下来,不断采出。 3段循环液温度控制在0℃(介质冷冻盐水),进一步冷却2段中的未冷凝气体中的醋酸,醋酸乙烯,乙醛等物质。冷却液与2段采出汇合作为合成工序的产品(反应液),送往原料工段,经过TQ103

聚乙烯醇的改性研究

聚乙烯醇的改性研究 引言:本文介绍了聚乙烯醇的性质、改性的必要性以及改性的方法、最后介绍下聚乙烯醇的应用。 关键词:聚乙烯醇性质;聚乙烯醇改性;聚乙烯醇应用 一CH(OH)一基团的高聚物,由聚醋酸乙烯醋醇解而聚乙烯醇是分子主链含一CH 2 制得。其别名为PVA ,Poval,使用得最多的部门是它的特性而用于油田、纤维、胶粘剂、涂料、功能高分子材料、膜材料、造纸、土壤改良剂等等。近年来, 利用其单体开发出一系列新产品, 其附加值和新用途颇受业内人士的亲睐。[1] 1聚乙烯醇概况 1.1聚乙烯醇性质 聚乙烯醇为白色或微带黄色粉末或粒状, 密度为1.27一1.3 一。折射率(n 气)1.49 一1.53。热稳定性: 在10一140 ℃时稳定; 高于150 ℃时漫漫变色, 在170 ~200 ℃时分子间脱水, 高于250 ℃时分子内脱水, 颜色很深, 不溶解; 玻璃化温度65 ~ 87 ℃ , 无定形聚乙烯醉玻璃化温度一般为7 0 一8 0 ℃。比热(卡/克·℃ )0.4。与强酸作用, 溶解或分解。与强碱作用, 变软或溶解。与弱酸作用, 变软或溶解。对矿物油、脂肪、烃类、醇、醋、酮二硫化碳等具有良好的耐浸蚀性。分子量越低, 水溶性越好。依水解度不同, 产物溶于水或仅能溶胀。透气性很小, 除水蒸汽和氨外, 氢、氮、氧、二氧化碳等气体透过率很低。高水解度的聚乙烯醉膜在25 ℃下, 对氧的透气性几乎为零, 二氧化碳的透气性仅为0. 2g/m2 , 不吸收声音, 能很正确地传声。 根据聚合度和醉解度的不同, 聚乙烯醇可分为许多类。工业产品按聚合度分, 低聚合度在20℃,4%水溶液, 粘度为5x10-3Pa·S;中聚合度粘度为(20-30)X10-3Pa·S ; 高聚合度粘度为(40 一50)x10 -3Pa·S。根据醇解度分, 有82、86、88、90、97、98、99、l00(摩尔, % )等, 大于98者称完全醇解型, 其余均为部分醇解型, 随着醉解度的加大, 其在水中的溶解度明显下降, 醇解度为8%时水溶性最好。最普遍的产品规格是17一8和17一9两种型号, 其中17表示平均聚合度为1700一1800。[1] 1.2聚乙烯醇的特性及其改性的必要性 我国是聚乙烯醇(PVA)的生产大国,产量高达全球的1/3,主要应用范围遍及纺织、造纸、粘合剂和包装印刷等多个领域。聚乙烯醇具有良好的成膜性、优越的阻隔性,而且可生物降解、绿色环保,因此国外将聚乙烯醇作为高阻隔性包装材料的应用越来越多。在国内,原国家经济贸易委员会发布“工业行业近期发展导向”(国经贸行[20021716 号)提出“开发高阻隔性容器、包装材料,多功能薄膜、水溶性薄膜和可降解性材料的工艺和设备”,在塑料包装材料“十五”及2010 年发展规划中把聚乙烯醇高阻隔薄膜的开发作为专用包装基材新品种,列入包装薄膜重点产品的发展方向。聚乙烯醇高阻隔包装材料的加工方式有两种:涂布加工和挤出加工。现阶段国内主要以涂布加工为主。由于聚乙烯醇中含有大量的亲水性基团羟基,在高湿环境中,对水表现出强烈的亲合作用,因此聚乙烯醇虽然在干燥环境中具有很好的阻气性能,但是随着环境湿度的升高,其阻隔性能会急剧降低。因此,采用聚乙烯醇作为高阻隔性包装材料就必须进行耐水改性,

聚乙烯醇

聚乙烯醇的合成与应用 08206020222 08高分子<2>班吴家彬 【摘要】本文介绍聚乙烯醇的基本性质以及合成和应用,从不同方面说明聚乙烯醇的制备方法,同时介绍聚乙烯醇在工业以及生活上的应用和发展前景。【关键字】聚乙烯醇制备前景 聚乙烯醇,英文名称: polyvinyl alcohol,vinylalcohol polymer,poval,简称PVA 有机化合物,白色片状、絮状或粉末状固体,无味。溶于水,不溶于汽油、煤油、植物油、苯、甲苯、二氯乙烷、四氯化碳、丙酮、醋酸乙酯、甲醇、乙二醇等。微溶于二甲基亚砜。聚乙烯醇是重要的化工原料,用于制造聚乙烯醇缩醛、耐汽油管道和维尼纶合成纤维、织物处理剂、乳化剂、纸张涂层、粘合剂等。 聚乙烯醇的制备方法 聚乙烯醇的制备方法原料路线聚乙烯醇是由醋酸乙烯(VAc)经聚合醇解而制成,生产 PVA 通常有两种原料路线,一种是以乙烯为原料制备醋酸乙烯,再制得聚乙烯醇;另外一种是以乙炔 (分为电石乙炔和天然气乙炔)为原料制备醋酸乙烯,再制得聚乙烯醇。 ( 1)乙烯直接合成法)石油裂解乙烯直接合成法。目前,国际上生产聚乙烯醇的工艺路线以乙烯法占主导地位,其数量约占总生产能力的 72%。美国已完成了乙炔法向乙烯法的转变,日本的乙烯法也占 70%以上,而中国的生产企业只有两家为乙烯法。其工艺流程包括:乙烯的获取及醋酸乙烯(VAc)合成、精馏、聚合、聚醋酸乙烯(PVAc)醇解、醋酸和甲醇回收五个工序。石油乙烯法的工艺特点:生产规模较乙炔法大,产品质量好,设备易于维护、管理和清洗、热利用率高,能量节约明显,生产成本较乙炔法低 30%以上。 (2)电石乙炔合成法)电石乙炔合成法,最早实现工业化生产,其工艺特点是操作比较简单、产率高、副产物易于分离,因而国内至今仍有 1O 家工厂沿用此法生产,且大部分应用高碱法生产聚乙烯醇。但由于乙炔高碱法工艺路线产品能耗高、质量差、成本高,生产过程产生的杂质污染环境亦较为严重,缺乏市场竞争力,属逐渐淘汰工艺。国外先进国家早于 20 世纪 7O 年代已全部用低碱法生产工艺。 (3)天然气乙炔合成法)天然气乙炔为原料的 Borden 法,不但技术成熟,

麦芽糖醇功能

麦芽糖醇的应用 1、麦芽糖醇在食品工业中的应用 (1)制备无糖食品通过对糖尿病患者进行急性试验共38例, 服用麦芽糖醇餐后1h及2h的血糖和对照组相比无显著差异。4 例糖尿病患者, 每日服麦芽糖醇20g, 连续服用40d (二个疗程) , 检查血糖、血脂、肾功、肝功未见变化, 说明糖尿病患者可食用麦芽糖醇, 同时麦芽糖醇的甜度是蔗糖的80%~95% , 较其他糖醇高, 且甜昧特性接近于蔗糖,使它在无需改变传统工艺或配方的情况下, 就能直接替代蔗糖, 制造多种无糖食品。 无糖饼干在生产无糖饼干时, 它使用方便, 不用改变基于蔗糖的传统生产配方工艺,以重量比直接代替蔗糖使用, 无须改变原有的设备, 这样生产出来的饼干, 在面团黏度、烘烤参数、颜色、味道、体积及酥脆度等方面, 都与传统产品相似。 面包食品面包在人们饮食生活中占有重要地位, 深受人们的喜爱。目前, 世界各国都有以面包为主食的发展趋势, 如英国、美国、法国等发达国家, 人们的主食中2 /3 以上是面包。面包在我国也逐渐发展成为人们的主食, 当将麦芽糖醇加入面包中时, 由于麦芽糖醇难以被面包酵母、霉菌等菌类利用, 属于难发酵性糖质, 可以延长面包的保质期, 同时, 加入麦芽糖醇后,面包更加柔软, 口感细腻, 更能防止龋齿, 在肠胃内吸收缓慢, 抑制脂肪的形成, 促进钙的吸收, 非常适合肥胖和糖尿病患者等特殊人群食用, 所以无糖面包食品, 食用人群广泛, 市场潜力巨大。 (2)制备无糖糖果由于麦芽糖醇的风味口感好, 具有良好的保湿性和非结晶性, 同时甜味柔和纯正, 加热至150℃不着色, 与氨基酸一起加热不引起美拉德反应, 可用来制造各种糖果。 无糖硬糖麦芽糖醇具有抗结晶的特性, 可与结晶型糖醇如木糖醇等相配合生产无糖硬糖。无糖硬糖有水果风味型, 也有清凉薄荷型, 要求口感、甜度适中, 香味、风味突出。生产无糖硬糖不必选用结晶麦芽糖醇, 但麦芽糖醇含量不能太低, 要求在75%以上, 利用它的熬糖温度高、耐酸稳定性、抗结晶性和吸附保留香精风味能力强的特性, 可显著提高糖果质构的稳定性、光泽性, 有助糖

聚乙烯醇的性质上课讲义

预混液的量和你要做的固含量有关,一般只用调节预混液的水含量来控制固含量,其他单体、交联剂、分散剂、粉体质量什么的量都不用动。AM一般按预混液质量分数算,分散剂按粉体质量分数算,固含量就是粉体占粉体+预混液体积的分数。一般10wt或 15wt%AM,0.几wt%分散剂,记得调节PH,固含量50vol%以上。引发剂和催化剂应该是根据AM和MBAM的量算,这几个都是固定值,一般只调节水就可以了 先由单体、交联剂以及分散剂与去离子水(或其他)配制成预混液,预混液配置好后通常会调节PH值,之后再加入粉料进行球磨,若干小时候取出,抽真空,加入引发剂和催化剂,最后注模,希望有所帮助。 一、聚乙烯醇的性质 1、基本物理及化学性质聚乙烯醇(Polyvinyl Alcohol,缩写PVA),分子式为[C2H4O]n,结构式为,是水溶性高分子树脂。白色片状、絮状或粉末状固体,无味,无毒,但其粉末吸入会对人体产生刺激。相对密度(25℃/4℃)1.27~1.31(固体)、1.02(10%溶液。 玻璃化温度:75~85℃,引燃温度(℃):410(粉末)。 聚乙烯醇分子中存在两种化学结构: (2)1,2——乙二醇结构 图1为聚乙烯醇薄膜的红外光谱,为聚乙烯醇薄膜的红外光谱,图中标明了几个主要键和基团特征频率变化情况。图中3587 cm–1处的强吸收峰对应于二级羟基σ键的振动,2950 cm–1处的吸收对应于C–H2σ键的振动, 1652cm–1处的强吸收属于残留的聚醋酸乙烯酯结构中C=O键的伸缩振动,1320 cm–1附近的强吸收对应于C–H键和O–H键共同作用的σ键的变形振 动。2.聚乙烯醇的醇解及溶解性能聚乙烯醇的醇解度(摩尔分数)通常有三种,即78%、88%和98%。完全醇解的聚乙烯醇的醇解度为98%~100%;而部分醇解的聚乙烯的醇解度通常为87%~89%;78%的则为低醇解度聚乙烯醇。我国聚乙烯醇牌号命名是取聚合度的千、百位数放在牌号的前两位,把醇解度的百分数放在牌号的后两位,如1799,即聚合度为1700,醇解度为99%,完全醇解的聚乙烯醇。

麦芽糖醇

麦芽糖醇 标签:暂无标签 顶[0]分享到发表评论(0)编辑词条开心001人人网新浪微博 麦芽糖醇 麦芽糖醇是由麦芽糖氢化而得到的糖醇,它有液体状和结晶状两种产品。液体产品是由高麦芽糖醇结晶析出,即可制得结晶产品。作为麦芽糖醇的原料,麦芽糖的含量要达到60%以上为好,否则氢化后总醇中麦芽糖醇不到50%,就不能叫麦芽糖醇。麦芽糖醇氢化的主要流程如下:备料——调pH——进料反应——过滤脱色——离子交换——蒸发浓缩——成品。 目录 ?? 简介 ?? 生理学特性 ?? 生产工艺 ?? 糖浆制备 [显示全部] 简介编辑本段回目录 麦芽糖醇 麦芽糖醇 分子式:C12H24O11 分子量:344.31 生理学特性编辑本段回目录

麦芽糖醇 非腐蚀性:麦芽糖醇不是产酸的基质,几乎完全不会导致细菌合成不溶性聚糖,所以麦芽糖醇是极难形成龋齿的非腐蚀性新糖质。 促进钙的吸收:通过动物实验表明麦芽糖醇有促进肠道对钙吸收的作用和增加骨量及提升骨强度的性能。 刺激胰岛素的分泌:麦芽糖醇由于难以消化吸收,血糖值上升少,故而对葡萄糖代谢所必须的胰岛素的分泌,没有什么刺激作用,这样一来减少了胰岛素的分泌。由此可见,麦芽糖醇可以作为供糖尿病患者食用的甜味剂。 抑制体内脂肪过多积聚:如果同时摄入高脂肪和砂糖后,由于刺激了胰岛素的分泌,脂蛋白分解酶活性提高,故而很容易增加体内脂肪的积聚。若用麦芽糖醇替代砂糖制造如冰淇淋、蛋糕、巧克力之类的高脂肪食品,由于不会刺激胰岛素分泌,因此可以期望减少体内脂肪的过度积聚。 难消化性:麦芽糖醇在人体内几乎完全不能为唾液、胃液、小肠膜酶等分解,除肠内细菌可利用一部分外,其余均无法消化而排出体外。 摄人体内的麦芽糖醇中,约10%在小肠分解吸收后作为能源利用;余下的90%在大肠内的细菌作用下分解为短链脂肪酸,其余一部分在大肠吸收后作为能源利用。因而将麦芽糖醇在小肠内的吸收量加上大肠内短链脂肪酸的吸收量,可以计算出麦芽糖醇的热量值约为2Kea l/g。 生产工艺编辑本段回目录 麦芽糖醇是由麦芽糖经氢化还原制成的双糖醇。工业上其生产工艺可分为两大部分,第一部分是将淀粉水解制成高麦芽糖浆,第二部分是将制得的麦芽糖浆加氢还原制成麦芽糖醇。 麦芽糖醇

PVA生产工艺流程

生产工艺流程 (一)、乙炔发生工序: 电石与水在发生器中发生反应,反应温度为80±5℃,压力为10kPa,反应后生成的乙炔气体,由上部出来后到洗涤塔洗涤。电石与水生成的氢氧化钙由溢流管溢流到渣浆池。电石渣浆经沉淀后作为水泥的生产原料。反应后生成的矽铁定期排放到渣池中,由人工定期清理。发生器中生成的乙炔气,从乙炔发生器上部出来经过洗涤塔进入冷却器将乙炔气冷却至35~45℃,冷却后的乙炔气体从冷却塔低部出来,部分送至有机厂乙炔清净工序,部分经进入气柜以平衡流量。(二)、合成工序 2.1、触媒配制系统: 把定量的活性炭加入触媒加料槽,用罗次鼓风机将其风送至沸腾式触媒干燥塔内,活性炭加完后,打开空气予热器,触媒干燥塔夹套和内加热蛇管的蒸汽。再用鼓风机把经过空气予热器的热空气送入干燥塔内。活性炭沸腾预热至一定温度后,将溶解槽已配制好的醋酸锌水溶液由醋酸锌加料泵通过喷头向触媒干燥塔内均匀喷洒,喷洒停止后,继续干燥一段时间,待水分降至0.5%以下时,卸料装桶。 2.2、乙炔清净系统: 乙炔站送来的具有适当压力的粗乙炔进入次氯酸钠洗涤塔下部,与塔上部喷淋下来的次氯酸钠溶液逆流接触,除去硫化氢、磷化氢等杂质。塔顶馏出的乙炔进入综合洗涤塔,在第一段与循环喷淋的碱液逆流接触,除去酸雾、二氧化碳及少量的游离氯。在第二段,乙炔与循环喷

淋的低温水逆流接触,除去氢氧化钠、碳酸钠等雾滴和饱和的水蒸汽。塔顶乙炔进入乙炔干操塔除去乙炔中微量水分及有机杂质后进入合成系统。 2.3、醋酸乙烯合成系统: 清净后的精乙炔与来自气体分离塔顶的循环乙炔混合用乙炔鼓风机加压后,定量地送入醋酸蒸发器内,乙炔和醋酸混合气从醋酸蒸发器出来,然后进入反应器底部。反应气体从反应器顶部出来,气体进入气体分离塔。大部分循环液经板式换热器(RJ107)用盐水冷却后进入三段循环使用。部分作反应液采出,进入反应液收集槽后,用泵送往罐场贮槽。 2.4、乙炔回收系统: 来自分TQ-103顶部的乙炔,进入气体吸收塔底部,与塔顶喷淋下来的低温吸收液逆流接触,乙炔被溶解吸收。不被吸收的氮气等由塔顶放空。吸收塔釜吸收液由泵送入解吸塔。解吸后的釜液用泵少部分回至解吸塔顶,大部分返回至吸收塔塔顶。解吸出来的乙炔进入水洗塔。洗涤水从塔釜引出,用泵送出部分至精馏萃取塔。作洗涤塔二段循环液,落入塔釜。乙炔与两段吸收液逆流接触除去乙醛后送往清净工序综合洗涤塔。 (三)、精馏工序: 3.1、粗分系统: 合成反应液给第一精馏塔加料,塔顶馏出,冷凝液入第一馏出槽,用第一馏出泵送出,部分做塔内回流,部分给第七精馏塔下部加料,

聚乙烯醇及其缩丁醛的制备

五、聚乙烯醇及其缩丁醛的制备 一、实验目的 1.了解聚合物中官能团反应的常识,并学会其中的操作技术。 2.了解大分子的基本有机化学反应,在高分子链上有合适的反应基团时,均可 按小分子有机反应历程进行高分子反应。 3.了解通过高分子反应改性原理。 二、实验原理 由于单体乙烯醇并不存在,聚乙烯醇不可能从单体聚合而得,而只能以它的酯类(即聚乙酸乙烯酯)通过醇解在酸性条件下进行,通常用乙醇或甲醇作溶剂,酸性醇解时,由于痕量的酸极难自聚乙烯醇中除去,残留在产物中的酸,可能加速聚乙烯醇的脱水作用,使产物变黄或不溶于水;碱性醇解时,产品中含有副产品醋酸钠,目前工业上都采用碱性醇解法。 碱性醇解: 酸性醇解: 醇解在加热和搅拌下进行。初始时微量聚乙烯醇先在瓶壁析出,当约有60%的乙酰氨基被羟基取代后,聚乙烯醇即自溶液中大量析出,继续加热,醇解在两相中进行,在反应过程中,除了乙酸根被醇解外,还有支链的断裂,聚乙酸乙烯酯的支化度愈高,醇解后分子量降低就愈多。 聚乙烯醇是白色粉末,易溶于水,将它的水溶液自纺织头喷入Na 2SO 4-K 2SO 4的溶液中,聚乙烯醇即沉淀而出,再用甲醛处理就得高强度、密度大的人造纤维,商品名叫“维尼纶”。 聚乙烯醇水溶液在浓盐酸催化下与丁醛缩合制得的聚乙烯醇缩丁醛树脂,就C H 2H C OCOCH 3H 2C H C OCOCH 3CH OH NaOH C H 2H C OH H 2C H C OH +CH 3COONa +CH 3COOCH 3C H 2H C OCOCH 3H 2C H C OCOCH 3CH OH H 2SO 4 C H 2H C OH H 2C H C OH +CH 3COOH +CH 3COOCH 3

相关文档