文档视界 最新最全的文档下载
当前位置:文档视界 › 专升本微积分重要知识点及公式

专升本微积分重要知识点及公式

专升本微积分重要知识点及公式
专升本微积分重要知识点及公式

微积分知识点小结

第一章 函数 一、本章提要 基本概念 函数,定义域,单调性,奇偶性,有界性,周期性,分段函数,反函数,复合函数,基本初等函数,初等函数 第二章 极限与连续 一、本章提要 1.基本概念 函数的极限,左极限,右极限,数列的极限,无穷小量,无穷大量,等价无穷小,在一点连续,连续函数,间断点,第一类间断点(可去间断点,跳跃间断点),第二类间断点. 2.基本公式 (1) 1sin lim 0=→口 口口, (2) e )11(lim 0=+→口口口 (口代表同一变量). 3.基本方法 ⑴ 利用函数的连续性求极限; ⑵ 利用四则运算法则求极限; ⑶ 利用两个重要极限求极限; ⑷ 利用无穷小替换定理求极限; ⑸ 利用分子、分母消去共同的非零公因子求0 0形式的极限; ⑹ 利用分子,分母同除以自变量的最高次幂求 ∞∞形式的极限; ⑺ 利用连续函数的函数符号与极限符号可交换次序的特性求极限; ⑻ 利用“无穷小与有界函数之积仍为无穷小量”求极限. 4.定理 左右极限与极限的关系,单调有界原理,夹逼准则,极限的惟一性,极限的保号性,极限的四则运算法则,极限与无穷小的关系,无穷小的运算性质,无穷小的替换定理,无穷小与无穷大的关系,初等函数的连续性,闭区间上连续函数的性质. 第三章 导数与微分 一、本章提要

瞬时速度,切线,导数,变化率,加速度,高阶导数,线性主部,微分. 2.基本公式 基本导数表,求导法则,微分公式,微分法则,微分近似公式. 3.基本方法 ⑴利用导数定义求导数; ⑵利用导数公式与求导法则求导数; ⑶利用复合函数求导法则求导数; ⑷隐含数微分法; ⑸参数方程微分法; ⑹对数求导法; ⑺利用微分运算法则求微分或导数. 第四章微分学的应用 一、本章提要 1. 基本概念 未定型,极值点,驻点,尖点,可能极值点,极值,最值,曲率,上凹,下凹,拐点,渐近线,水平渐近线,铅直渐近线. 2.基本方法 ⑴用洛必达法则求未定型的极限; ⑵函数单调性的判定; ⑶单调区间的求法; ⑷可能极值点的求法与极大值(或极小值)的求法; ⑸连续函数在闭区间上的最大值及最小值的求法; ⑹求实际问题的最大(或最小)值的方法; ⑺曲线的凹向及拐点的求法; ⑻曲线的渐近线的求法; ⑼一元函数图像的描绘方法. 3. 定理 柯西中值定理,拉格朗日中值定理,罗尔中值定理, 洛必达法则,函数单调性的判定定理,极值的必要条件,极值的第一充分条件,极值的第二充分条件,曲线凹向的判别法则. 第五章不定积分 一、本章提要 1. 基本概念 原函数,不定积分.

微积分下册知识点

微积分(下)知识点 第 1 页 共 18 页 微积分下册知识点 第一章 空间解析几何与向量代数 (一) 向量及其线性运算 1、 向量,向量相等,单位向量,零向量,向量平行、共线、 共面; 2、 线性运算:加减法、数乘; 3、 空间直角坐标系:坐标轴、坐标面、卦限,向量的坐标分解式; 4、 利用坐标做向量的运算:设),,(z y x a a a a = , ),,(z y x b b b b = , 则 ),,(z z y y x x b a b a b a b a ±±±=± , ),,(z y x a a a a λλλλ= ; 5、 向量的模、方向角、投影: 1) 向量的模: 222z y x r ++= ; 2) 两 点 间 的 距 离公式: 212212212)()()(z z y y x x B A -+-+-= 3) 方向角:非零向量与三个坐标轴的正向的夹角γβα,, 4) 方向余弦:r z r y r x ===γβαcos ,cos ,cos 1cos cos cos 222=++γβα 5) 投影:?cos Pr a a j u =,其中?为向量a 与u 的夹角。 (二) 数量积,向量积 1、 数量积:θcos b a b a =? 1)2a a a =? 2)?⊥b a 0=?b a z z y y x x b a b a b a b a ++=? 2、 向量积:b a c ?=

微积分(下)知识点 第 1 页 共 18 页 大小:θsin b a ,方向:c b a ,,符合右手规则 1)0 =?a a 2)b a //?0 =?b a z y x z y x b b b a a a k j i b a =? 运算律:反交换律 b a a b ?-=? (三) 曲面及其方程 1、 曲面方程的概念:0),,(:=z y x f S 2、 旋转曲面: yoz 面上曲线0),(:=z y f C , 绕y 轴旋转一周: 0),(2 2=+±z x y f 绕 z 轴旋转一周: 0),(22=+±z y x f 3、 柱面: ),(=y x F 表示母线平行于 z 轴,准线为 ?????==0 ),(z y x F 的柱面 4、 二次曲面(不考) 1) 椭圆锥面:2 2 222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:122 222 2=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 4) 双叶双曲面:122 22 2 2 =--c z b y a x

高等数学积分公式大全

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1.d x ax b +? =1 ln ax b C a ++ 2.()d ax b x μ+?=11 ()(1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +? =21 (ln )ax b b ax b C a +-++ 4.2d x x ax b +? =22311()2()ln 2ax b b ax b b ax b C a ?? +-++++???? 5.d () x x ax b +?=1ln ax b C b x +-+ 6.2 d () x x ax b +?=21ln a ax b C bx b x +-++ 7.2d ()x x ax b +? =21(ln )b ax b C a ax b ++++ 8.22 d ()x x ax b +?=2 31(2ln )b ax b b ax b C a ax b +-+-++ 9.2 d ()x x ax b +? = 211ln ()ax b C b ax b b x +-++ 的积分 10.x C + 11.x ?=2 2(3215ax b C a -+ 12.x x ?=2223 2 (15128105a x abx b C a -+ 13.x =22 (23ax b C a - 14.2x =2223 2(34815a x abx b C a -+

15 . =(0) (0) C b C b ?+>< 16 . 2a b - 17 .x =b +18 .x =2a x -+ (三)含有22x a ±的积分 19.22d x x a +?=1arctan x C a a + 20.22d ()n x x a +?=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+? 21.22 d x x a -? =1ln 2x a C a x a -++ (四)含有2(0)ax b a +>的积分 22.2d x ax b +? =(0) (0) C b C b ?+>+< 23.2 d x x ax b +? =2 1ln 2ax b C a ++ 24.22d x x ax b +?=2d x b x a a ax b -+? 25.2d ()x x ax b +?=2 2 1ln 2x C b ax b ++ 26.22d ()x x ax b +? =21d a x bx b ax b --+?

微积分下册主要知识点

微积分下册主要知识点

4.1不定积分 *基本积分表 *基本积分法:利用基本积分表。 4.2换元积分法 一、第一换元积分法(凑微分法) C x F C u F du u g dx x x g +=+=='??)]([)()()()]([???. 二、常用凑微分公式 三、第二换元法 x u x u x u x u x u x u a u e u x u x u b ax u x d x f dx x x f x d x f dx x x f x d x f xdx x f x d x f xdx x f x d x f xdx x f x d x f xdx x f da a f a dx a a f de e f dx e e f x d x f dx x x f x d x f dx x x f a b ax d b ax f a dx b ax f x x x x x x x x x x arcsin arctan cot tan cos sin ln ) (arcsin )(arcsin 11 )(arcsin .11) (arctan )(arctan 11 )(arctan .10cot )(cot csc )(cot .9tan )(tan sec )(tan .8cos )(cos sin )(cos .7sin )(sin cos )(sin .6)(ln 1)(.5)()(..4) (ln )(ln 1 )(ln .3) 0()()(1 )(.2)0()()(1 )(.12 2 221==========+=-=-=+-==-=?=?=?=?=?≠=≠++= +??????????????????????-μμμμμμμ 法 分 积元换 一第换元公式积分类型

微积分(下册)主要知识点汇总

4.1不定积分 *基本积分表 *基本积分法:利用基本积分表。 4.2换元积分法 一、第一换元积分法(凑微分法) C x F C u F du u g dx x x g +=+=='??)]([)()()()]([???. 二、常用凑微分公式 三、第二换元法 C x F C t F dt t t f dx x f +=+='=??)]([)()()]([)(ψ??, 注: 以上几例所使用的均为三角代换, 三角代换的目的是化掉根式, 其一般规律如下: 当被积函数中含有 a) ,22x a - 可令 ;sin t a x = b) ,22a x + 可令 ;tan t a x = c) ,22a x - 可令 .sec t a x = x u x u x u x u x u x u a u e u x u x u b ax u x d x f dx x x f x d x f dx x x f x d x f xdx x f x d x f xdx x f x d x f xdx x f x d x f xdx x f da a f a dx a a f de e f dx e e f x d x f dx x x f x d x f dx x x f a b ax d b ax f a dx b ax f x x x x x x x x x x arcsin arctan cot tan cos sin ln ) (arcsin )(arcsin 11 )(arcsin .11)(arctan )(arctan 11 ) (arctan .10cot )(cot csc )(cot .9tan )(tan sec )(tan .8cos )(cos sin )(cos .7sin )(sin cos )(sin .6)(ln 1)(.5)()(..4) (ln )(ln 1 )(ln .3) 0()()(1 )(.2) 0()()(1 )(.12 2221==========+=-=-=+-==-=?=?=?=?=?≠=≠++=+??????????????????????-μμμμμμμ 法 分 积元换 一第换元公式积分类型

常用微积分公式大全

常用微积分公式大全 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

常用微积分公式 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式.。 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有. 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式.

公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式. 解:由于,所以 (为任意常数) 例3 求不定积分.

(完整版)高等数学常用公式大全

高数常用公式 平方立方: 22222222 332233223223332233222(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()(8)222(a b a b a b a ab b a b a ab b a b a b a b a ab b a b a b a ab b a a b ab b a b a a b ab b a b a b c ab bc ca -=+-++=+-+=-+=+-+-=-+++++=+-+-=-+++++= 21221)(9)()(),(2) n n n n n n a b c a b a b a a b ab b n ----++-=-++++≥L 三角函数公式大全 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π -a) 半角公式 sin( 2 A )=2cos 1A - cos( 2 A )=2cos 1A + tan( 2 A )=A A cos 1cos 1+- cot(2 A )=A A cos 1cos 1-+ tan( 2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a -

微积分下册主要知识点

第一换元积分法(凑微分法) g[ (X)]「(x)dx = g(u)du = F(U) C = FL (x)] C J f (x)dx= J f[毋(t)]"(t)dt = F(t)+C = F[寧(X)PC , 注:以上几例所使用的均为三角代换,三角代换的目的是化掉根式,其一般规律如下当被积函数中含有 a).a2-x2,可令X =as int; b)x2a2,可令x =ata nt; C).X22 -a ,可令x =asect. 当有理分式函数中分母的阶较高时,常采用倒代换X=1 . t 四、积分表续 4.3分部积分法

UdV=UV- VdU (或微分)的逆运算.一般地,下列类型的被 n 都是正整数). n . X SInmX n X cosmx nx ? e SIn mx nx e cosmx 分部积分公式: UVdX=UV- U VdX (3.2) n mx X e n X arcsInmX X n (In x) X n arccosmx X n arcta nmx 等. 5.1定积分的概念 5.2定积分的性质 两点补充规定: 性质 性质 性质 性质 性质 推论 推论 b ⑻当 a=b 时, f(x)dx=0; (b)当 a b 时, f(x)dx - - f (x)dx . b [f (x)二g(x)]dx f (X )dx g (X )dx. a a a b b kf (x)dx =k f (x)dx, (k 为常数). a IJ a b Cb f (x)dx f(x)dx 亠 I f (x)dx . a ?a ?c 若在区间 若在区间 b dx 二b -a. a [a,b]上有 f(x)_g(x),则 f(χ)dx g(x)dx, (a :::b). ■a *a b [a,b]上 f(x)_0,贝 U f(x)dx_O, (a ::b). a b I L f(X)dx 兰『I f (X)IdX (a cb). a L - 性质6 (估值定理)设M 及m 分别是函数f(x)在区间[a,b ]上的最大值及最小值,则 b m(b —a) _ f (x)dx _ M (b —a). a 性质7 (定积分中值定理)如果函数f (x)在闭区间[a,b ]上连续,则在[a,b ]上至少存在 个点,使 b f(x)dx = f( )(b-a), (a _ -b). a 5.3微积分的基本公式 一、引例 X 二、积分上限的函数及其导数 ::?:J (X^ f(t)dt L a 定理2若函数f(x)在区间[a,b ]上连续,则函数 (3.1) 分部积分法实质上就是求两函数乘积的导数 积函数常考虑应用分部积分法 (其中m,

高等数学积分公式大全

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1. d x ax b +?=1 ln ax b C a ++ 2.()d ax b x μ +? = 11 ()(1) ax b C a μμ++++(1μ≠-) 3. d x x ax b +?=21 (ln )ax b b ax b C a +-++ 4.2d x x ax b +? =22311()2()ln 2ax b b ax b b ax b C a ?? +-++++???? 5. d ()x x ax b +?=1ln ax b C b x +-+ 6. 2 d () x x ax b +? =21ln a ax b C bx b x +-++ 7. 2 d ()x x ax b +?=21(ln )b ax b C a ax b ++++ 8.22 d ()x x ax b +?=2 31(2ln )b ax b b ax b C a ax b +-+-++

9. 2 d () x x ax b +? =211ln ()ax b C b ax b b x +-++ 的积分 10 . x ? C + 11 .x ? =2 2 (3215ax b C a - 12 .x x ? =2223 2(15128105a x abx b C a -++ 13 . x ? =22 (23ax b C a - 14 . 2x ? =222 3 2(34815a x abx b C a -++ 15 .? (0) (0) C b C b ?+>< 16 . ? =2a bx b -- 17 . x ? =b ?18. 2d x x ? =2a + (三)含有2 2 x a ±的积分 19. 22d x x a +?=1arctan x C a a +

微积分(下册)主要知识点汇总

一、第一换元积分法(凑微分法) C x F C u F du u g dx x x g +=+=='??)]([)()()()]([???. 二、常用凑微分公式 三、第二换元法 C x F C t F dt t t f dx x f +=+='=??)]([)()()]([)(ψ??, 注: 以上几例所使用的均为三角代换, 三角代换的目的是化掉根式, 其一般规律如下: 当被积函数中含有 a) ,22x a - 可令 ;sin t a x = b) ,22a x + 可令 ;tan t a x = c) ,22a x - 可令 .sec t a x = 当有理分式函数中分母的阶较高时, 常采用倒代换t x 1 =. 四、积分表续 4.3分部积分法 x u x u x u x u x u x u a u e u x u x u b ax u x d x f dx x x f x d x f dx x x f x d x f xdx x f x d x f xdx x f x d x f xdx x f x d x f xdx x f da a f a dx a a f de e f dx e e f x d x f dx x x f x d x f dx x x f a b ax d b ax f a dx b ax f x x x x x x x x x x arcsin arctan cot tan cos sin ln ) (arcsin )(arcsin 11 ) (arcsin .11) (arctan )(arctan 11)(arctan .10cot )(cot csc )(cot .9tan )(tan sec )(tan .8cos )(cos sin )(cos .7sin )(sin cos )(sin .6)(ln 1)(.5)()(..4)(ln )(ln 1 )(ln .3)0()()(1)(.2) 0()()(1 )(.1法 分 积元换一第换元公式 积分类型2 2 2 2 1==========+=-=-= +-==-=?=?=?=?=?≠=≠++= +?????? ????????????????-μμ μμμμμ

5.2 微积分基本公式-习题

1.设函数0 cos x y tdt = ?,求'(0)y ,'()4 y π。 【解】由题设得'()cos y x x =, 于是得 '(0)cos01y ==,'()cos 4 4 2 y ππ == 。 2.计算下列各导数: ⑴20x d dx ?; 【解】20x d dx ?2)x =2= ⑵ 1t d dt dx ; 【解】1t d dt dx 1 ()t d dt dx =-=-=。 ⑶ cos 2 sin cos()x x d t dt dx π?; 【解】cos 2sin cos()x x d t dt dx π?0cos 2 2sin 0[cos()cos()]x x d t dt t dt dx ππ=+?? 》 0cos 22 sin 0cos()cos()x x d d t dt t dt dx dx ππ= +?? sin cos 2200 [cos()]cos()x x d d t dt t dt dx dx ππ=-+?? 22cos(sin )(sin )cos(cos )(cos )d d x x x x dx dx ππ=-+ 22cos(sin )cos cos[(1sin )](sin )x x x x ππ=-+-- 22cos(sin )cos cos(sin )sin x x x x πππ=--- 22cos(sin )cos cos(sin )sin x x x x ππ=-+ 2cos(sin )(sin cos )x x x π=-。 ⑷2ln 1 x x d dt dx t ?。 【解】 2ln 1x x d dt dx t ?21ln 11 1[]x x d dt dt dx t t =+?? 21ln 111x x d d dt dt dx t dx t =+?? …

微积分下册知识点

微积分下册知识点 第一章 空间解析几何与向量代数 (一) 向量及其线性运算 1、 向量,向量相等,单位向量,零向量,向量平行、共线、共面; 2、 线性运算:加减法、数乘; 3、 空间直角坐标系:坐标轴、坐标面、卦限,向量的坐标分解式; 4、 利用坐标做向量的运算:设),,(z y x a a a a =ρ ,),,(z y x b b b b =ρ, 则 ),,(z z y y x x b a b a b a b a ±±±=±ρ ρ, ),,(z y x a a a a λλλλ=ρ; 5、 向量的模、方向角、投影: 1) 向量的模: 222z y x r ++=ρ; 2) 两点间的距离公式:2 12212212)()()(z z y y x x B A -+-+-= 3) 方向角:非零向量与三个坐标轴的正向的夹角γβα,, 4) 方向余弦:r z r y r x ρρρ===γβαcos ,cos ,cos 5) 投影:?cos Pr a a j u ρρρ =,其中?为向量a ρ与u ρ 的夹角。 (二) 数量积,向量积 1、 数量积:θ cos b a b a ρ ρρρ=? 1)2a a a ρρρ=? 2)?⊥b a ρρ0=?b a ρ ρ 2、 向量积:b a c ρ ρρ?=

大小:θsin b a ρρ,方向:c b a ρ ρρ,,符合右手规则 1)0ρρ=?a a 2)b a ρρ//?0ρρρ=?b a 运算律:反交换律 b a a b ρ ρρρ?-=? (三) 曲面及其方程 1、 曲面方程的概念:0),,(:=z y x f S 2、 旋转曲面: yoz 面上曲线0),(:=z y f C , 绕y 轴旋转一周: 0),(2 2=+±z x y f 绕 z 轴旋转一周:0),(22=+±z y x f 3、 柱面: 0),(=y x F 表示母线平行于z 轴,准线为?????==0 0),(z y x F 的柱面 4、 二次曲面(不考) 1) 椭圆锥面:2 222 2z b y a x =+ 2) 椭球面:122 22 2 2 =++c z b y a x 旋转椭球面:122 222 2=++c z a y a x

(完整word版)证明微积分基本公式

定义(定积分) 设函数f (x )是定义在闭区间[a ,b ]上的连续函数,用n + 1个分点 a = x 0 < x 1 < x 2 < … < x n – 1 < x n = b 把闭区间[a ,b ]划分成n 个小区间 [x 0,x 1],[x 1,x 2],…,[x i – 1,x i ],…,[x n – 1,x n ] 记各小区间[x i – 1,x i ](i = 1,2,…,n )的长度为Δx i = x i - x i – 1,在各小区间[x i – 1,x i ]内任取一点ξi ,取函数值f (ξi )与小区间长度Δx i 的乘积f (ξi )Δx i ,作和式 n n i i n i i i x f x f x f x f x f Δ)(Δ)(Δ)(Δ)(Δ)(22111ξξξξξ+++++=∑= 称为函数f (x )在区间[a ,b ]上的积分和。记各小区间的最大长度为d = max{Δx i },如果对于区间 [a ,b ]任意的划分和点ξi 在[x i – 1,x i ]上的任意取法,当d → 0时,积分和的极限存在,则称此极限为函数f (x )在区间[a ,b ]上的定积分,简称积分,记为 ∑?=→=n i i i d b a x x f x x f 10Δ)(lim d )( 其中?为积分号,[a , b ]称为积分区间,f (x )称为被积函数,x 称为积分变量,a 称为积分下限,b 称为积分上限。如果函数f (x )在区间[a ,b ]上的积分存在,则称f (x )在[a ,b ]上可积。 上述定义中的积分限要求a < b ,实际上这个限制可以解除,补充两条规定: (1)当a = b 时,规定0d )(=?a a x x f ; (2)当a > b 时,规定??-=a b b a x x f x x f d )(d )(。 可以看出,这两条规定是合理的,其中第一条规定也可以根据第二条推出。 定理1(可积的必要条件) 如果函数f (x )在闭区间[a ,b ]上的可积,则f (x )在[a ,b ]上有界。 定理2(可积的充分条件) 1.如果函数f (x )在闭区间[a ,b ]上的连续,则f (x )在[a ,b ]上可积。 2.如果函数f (x )在闭区间[a ,b ]上的单调,则f (x )在[a ,b ]上可积。 3.如果在闭区间[a ,b ]内除去有限个不连续点外,函数f (x )有界,则f (x )在[a ,b ]上可积。 引理(微分中值定理) 设函数f (x )在闭区间[a ,b ]内连续,在开区间(a ,b )内可导,则至少存在一点ξ∈(a ,b ),成立等式 f (b ) ? f (a ) = f'(ξ)(b ? a ) 以上结论称为微分中值定理,等式称为微分中值公式。 设函数f (x )在闭区间[a ,b ]内连续,则可以证明f (x )在[a ,b ]上可积,于是存在新的函数F (x ),成立微分关系F'(x ) = f (x )或d F (x ) = f (x )d x ,则称F (x )为f (x )的一个原函数。试利用微分中值定理和定积分的定义证明微积分基本公式 )()()(d )(a F b F x F x x f b a b a -==? 这个公式又称为牛顿-莱布尼茨公式。 证明:

微积分公式与定积分计算练习大全

微积分公式与定积分计算练习(附加三角函数公式) 一、基本导数公式 ⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=? ⑻()csc csc cot x x x '=-? ⑼ ()x x e e '= ⑽ ()ln x x a a a '= ⑾ ()1 ln x x '= ⑿ () 1log ln x a x a '= ⒀ ( )arcsin x '= ⒁( )arccos x '= ⒂ ()21arctan 1x x '=+ ⒃() 21arccot 1x x '=-+⒄()1 x '= ⒅ '= 二、导数的四则运算法则 ()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v ''' -??= ??? 三、高阶导数的运算法则 (1)()()() () () () () n n n u x v x u x v x ±=±??? ? (2)()() ( ) ()n n cu x cu x =??? ? (3)()() () ()n n n u ax b a u ax b +=+??? ? (4) ()()() ( ) ()() ()0 n n n k k k n k u x v x c u x v x -=?=???? ∑ 四、基本初等函数的n 阶导数公式 (1) ()() ! n n x n = (2) ()() n ax b n ax b e a e ++=? (3) ()() ln n x x n a a a = (4) ()() sin sin 2n n ax b a ax b n π??+=++??? ??? ??(5) ()()cos cos 2n n ax b a ax b n π??+=++??? ???? ? (6) () () () 1 1! 1n n n n a n ax b ax b +???=- ?+?? + (7) ()() () ()() 1 1! ln 1n n n n a n ax b ax b -?-+=-???? + 五、微分公式与微分运算法则

高二数学理科下学期知识点总结

高二第二学期理科数学总结 一、导数 1、导数定义:f(x)在点x 0处的导数记作x x f x x f x f y x x x ?-?+='=' →?=)()(lim )(000 00 ; 2、几何意义:切线斜率;物理意义:瞬时速度; 3、常见函数的导数公式: ①;②1')(-=n n nx x ;③x x cos )(sin '=;④x x sin )(cos '-=; ⑤a a a x x ln )('=;⑥x x e e =')(;⑦a x x a ln 1)(log ' = ;⑧x x 1)(ln ' = 。 ⑨211x x -=' ?? ? ??;⑩ ()x x 21=' 4、导数的四则运算法则:;)(;)(;)(2 v v u v u v u v u v u uv v u v u ' -'=''+'=''±'='± 5、复合函数的导数:; x u x u y y '?'=' 6、导数的应用: (1)利用导数求切线:根据导数的几何意义,求得该点的切线斜率为该处的导数()(0x f k '=);利用点斜式()(00x x k y y -=-)求得切线方程。 注意ⅰ)所给点是切点吗?ⅱ)所求的是“在”还是“过”该点的切线? (2)利用导数判断函数单调性:①)(0)(x f x f ?>'是增函数; ②)(0)(x f x f ?<'为减函数;③)(0)(x f x f ?≡'为常数; 反之,)(x f 是增函数0)(≥'x f ,)(x f 是减函数0)(≤'x f (3)利用导数求极值:ⅰ)求导数)(x f ';ⅱ)求方程0)(='x f 的根;ⅲ)列表得极值。 (4)利用导数最大值与最小值: ⅰ)求得极值;ⅱ)求区间端点值(如果有);ⅲ得最值。 (5)求解实际优化问题: ①根据所求假设未知数和,并由题意找出两者的函数关系式,同时给出的范围;②求导,令其为0,解得值,舍去不符合要求的值; ③根据该值两侧的单调性,判断出最值情况(最大还是最小?); ④求最值(题目需要时);回归题意,给出结论; 7、定积分 ⑴定积分的定义: )(lim )(1 i n i b a n f n a b dx x f ξ∑ ? =∞ →-=(注意整体思想)

高等数学常用积分公式查询表

导数公式: 基本积分表: 1.d x ax b +?=1ln ax b C a ++ 2.()d ax b x μ+?=11()(1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +?=21(ln )ax b b ax b C a +-++ 5.d ()x x ax b +?=1ln ax b C b x +-+ 6.2d ()x x ax b +?=21ln a ax b C bx b x +-++ 10 .x C 19.22d x x a +?=1arctan x C a a + 21.22d x x a -?=1ln 2x a C a x a -++ 23.2d x x ax b +?=21ln 2ax b C a ++ 24.2 2d x x ax b +?=2d x b x a a ax b -+? a x x a a a x x x x x x x x x x a x x ln 1)(log ln )(cot csc )(csc tan sec )(sec csc )(cot sec )(tan 22='='?-='?='-='='222211)cot (11)(arctan 11)(arccos 11)(arcsin x x arc x x x x x x +-='+='--='-='

31. 1arsh x C a +=ln(x C + 32. =C + 33. x =C 34. x =C + 35.2 x =2ln(2a x C -++ 39. x 2 ln(2a x C +++ 43.x a C + 44.2d x x ?=ln(x C +++ 47. x =C 53.x 2 ln 2 a x C 57.x =arccos a a C x + 59. arcsin x C a + 61. x =C

微积分下册主要知识点

微积分下册主要知识点 C x F C u F du u g dx x x g +=+=='??)]([)()()()]([???. 二、常用凑微分公式 三、第二换元法 C x F C t F dt t t f dx x f +=+='=??)]([)()()]([)(ψ??, 注: 以上几例所使用的均为三角代换, 三角代换的目的是化掉根式, 其一般规律如下: 当被积函数中含有 a) ,2 2x a - 可令 ;sin t a x = b) ,2 2a x + 可令 ;tan t a x = c) ,2 2a x - 可令 .sec t a x = 当有理分式函数中分母的阶较高时, 常采用倒代换t x 1= . 四、积分表续 4.3分部积分法 分部积分公式: x u x u x u x u x u x u a u e u x u x u b ax u x d x f dx x x f x d x f dx x x f x d x f xdx x f x d x f xdx x f x d x f xdx x f x d x f xdx x f da a f a dx a a f de e f dx e e f x d x f dx x x f x d x f dx x x f a b ax d b ax f a dx b ax f x x x x x x x x x x arcsin arctan cot tan cos sin ln ) (arcsin )(arcsin 11 ) (arcsin .11) (arctan )(arctan 11)(arctan .10cot )(cot csc )(cot .9tan )(tan sec )(tan .8cos )(cos sin )(cos .7sin )(sin cos )(sin .6)(ln 1)(.5)()(..4)(ln )(ln 1 )(ln .3)0()()(1)(.2) 0()()(1 )(.1法 分 积元换一第换元公式 积分类型2 2 2 2 1==========+=-=-= +-==-=?=?=?=?=?≠=≠++= +?????? ????????????????-μμ μμμμμ

高等数学常用积分公式查询表

导数公式: 基本积分表: 三角函数的有理式积分: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

常用微积分公式大全

常用微积分公式大全 Prepared on 24 November 2020

常用微积分公式 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式.。 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有. 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同.

公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式. 解:由于,所以 (为任意常数)

相关文档
相关文档 最新文档