文档视界 最新最全的文档下载
当前位置:文档视界 › 初一奥数题集带答案

初一奥数题集带答案

初一奥数题集带答案
初一奥数题集带答案

1、2002)1(-的值 ( B )

A. 2000

B.1

C.-1

D.-2000

2、a 为有理数,则2000

11+a 的值不能是 ( C ) A.1 B.-1 C .0 D.-2000

3、()[]}{20072006200720062007----的值等于 ( B )

A.-2007

B.2009

C.-2009

D.2007

4、)1()1()1()1()1(-÷-?---+-的结果是 ( A )

A.-1

B.1

C.0

D.2

5、2008200720061)1()1(-÷-+-的结果是 ( A )

A.0

B.1

C.-1

D.2

6、计算)2()2

1(22-+-÷-的结果是 ( D ) A.2 B.1 C.-1 D.0

7、计算:.2

1825.3825.325.0825.141825.3?+?+-? 8、计算:.3

11212311999212000212001212002-++-+-

9、计算:).13

8(113)521()75.0(5.2117-?÷-÷-?÷-

11、计算:.363531998199992000?+?-

练习:.22222222221098765432+--------.2)12(2221n n n n =-=-+ 6

12、计算: )98

97983981()656361()4341(21++++++++++ 结果为:

5.612249

122121=?++?+

13、计算:

.200720061431321211?++?+?+? 应用:)111(1)1(+-=+n n d n n d

练习:

.105

1011171311391951?++?+?+?

13、计算:

35217106253121147642321??+??+????+??+??. 结果为5

2

14、求21-++x x 的最小值及取最小值时x 的取值围.

练习:已知实数c b a ,,满足,01b a c <<<<-且,a c b >>求b a c a c ---+-1的值.

练习:

1、计算2007200619991998)1()1()1()1(-+-++-+- 的值为 ( C )

A.1

B.-1

C.0

D.10

2、若m 为正整数,那么()[]

)1(11412---m m 的值 ( B ) A.一定是零 B.一定是偶数

C.是整数但不一定是偶数

D.不能确定

3、若n 是大于1的整数,则2)(12)1(n n n p ---+=的值是 ( B )

A.一定是偶数

B.一定是奇数

C.是偶数但不是2

D.可以是奇数或偶数

4、观察以下数表,第10行的各数之和为 ( C )

1

4 3

6 7 8

13 12 11 10

15 16 17 18 19

26 25 24 23 22 21

A.980

B.1190

C.595

D.490

5、已知,200220012002200120022001200220012?++?+?+= a 20022002=b ,则a 与b 满足的关系是 ( C )

A.2001+=b a

B.2002+=b a

C.b a =

D.2002-=b a

6、计算:

.35217201241062531211471284642321??+??+??+????+??+??+??5

2

7、计算:.561742163015201412136121++++++8

328

8、计算:.100

321132112111+++++++++++

9、计算: .999999999999999999999+++++

10、计算)1000

11)(99911)(99811()411)(311)(211(10201970198019992000-------++-+- .610 11、已知,9

11,999909

999==Q p 比较Q P ,的大小. Q p ==??=??=909

9909999099

119991199)911(

12、设n 为正整数,计算:4

3424131323332312122211+++++++++++ 111211234n n n --

2

)1(21+=

+++n n n

13、2007加上它的21得到一个数,再加上所得的数的31又得到一个数,再加上这次得到的4

1又得到一个数,… ,依次类推,一直加到上一次得数的

20071,最后得到的数是多少? 2005003)2002

11()311()211(2002=+??+?+?

14、有一种“二十四点”的 游戏,其游戏规则是这样的:任取四个1至13之间的 自然数,将这四个(每个数用且只用一次)进行加减四则运算与)321(4++?应视作相同方法的运算,现有四个有理数3,4,-6,10.运用上述规则写出三种不同方法的运算,使其结果等于24,运算式:

(1)_______________________;

(2)________________________;

(3)________________________;

15.黑板上写有1,2,3,…,1997,1998这1998个自然数,对它们进行操作,每次操作规则如下:擦掉写在黑板上的三个数后,再添写上所擦掉三个数之和的个位数字,例如:擦掉5,13和1998后,添加上6;若再擦掉6,6,38,添上0,等等。如果经过998次操作后,发现黑板上剩下两个数,一个是25,求另一个数.

一、选择题(每题1分,共5分)

以下每个题目里给出的A ,B ,C ,D 四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.

1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( A )

A.a%.B.(1+a)%. C.

1

100

a

a

+

D.

100

a

a

+

2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( A )

A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.

B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.

C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.

D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.

3.已知数x=100,则( A )

A.x是完全平方数.B.(x-50)是完全平方数.

C.(x-25)是完全平方数.D.(x+50)是完全平方数.

4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111

,,

ab b a c

-

的大小关系是( C )

A.111

ab b a c

<<

-

; B.

1

b a

-

<

1

ab

<

1

c

; C.

1

c

<

1

b a

-

<

1

ab

; D.

1

c

<

1

ab

<

1

b a

-

.

5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有

( )

A.2组.B.6组.C.12组.D.16组.

二、填空题(每题1分,共5分)

1.方程|1990x-1990|=1990的根是______.

2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y的二元一次三项式的乘积.

5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.

三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)

1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相

小学全部奥数题及答案_经典奥数题目

六年级奥数题及答案 1、电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元? 解:设一张电影票价x元 (x-3)×(1+1/2)=(1+1/5)x (1+1/5)x这一步是什么意思,为什么这么做 (x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)} 左边算式求出了总收入 (1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)} 如此计算后得到总收入,使方程左右相等 2、甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。这时两人钱相等,求乙的存款 答案 取40%后,存款有 9600×(1-40%)=5760(元) 这时,乙有:5760÷2+120=3000(元) 乙原来有:3000÷(1-40%)=5000(元) 3、由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗? 答案 加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%, 巧克力是奶糖的60/40=1。5倍 再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍 增加了3-1.5=1.5倍,说明30颗占1.5倍 奶糖=30/1.5=20颗 巧克力=1.5*20=30颗 奶糖=20-10=10颗 4、小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。”小明原有玻璃球多少个? 答案 小明说:“你有球的个数比我少1/4!”,则想成小明的球的个数为4份,则小亮的球的个数为3份 4*1/6=2/3 (小明要给小亮2/3份玻璃球) 小明还剩:4-2/3=3又1/3(份) 小亮现有:3+2/3=3又2/3(份)

小学全部奥数题及答案-经典奥数题目

欢迎阅读六年级奥数题及答案 1、电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元? 2、甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。这时两人钱相等,求乙的存款 3、由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗? 批零件时,两人各做了多少个零件? 13、某工会男女会员的人数之比是3:2,分为甲乙丙三组,已知甲乙丙三组人数之比是10:8:7,甲组中男女比是3:1,乙组中男女比是5:3。求丙组男女人数之比 14、甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是8:7:5原来三个村计划按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协商,丙村应抽出的劳力由甲乙两村分担,丙村付给甲乙两村工钱1350元,结果,甲村共派出60人,乙村共派出40人,问甲乙两村各应分得工钱多少元?

15、李明的爸爸经营已个水果店,按开始的定价,每买出1千克水果,可获利0.2元。后来李明建 议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。问:每千克 水果降价多少元? 16、.哈利.波特参加数学竞赛,他一共得了68分。评分的标准是:每做对一道得20分,每做错一道倒扣6分。已知他做对题的数量是做错题的两倍,并且所有的题他都做了,请问这套试卷共有多少道题? 17、爸爸妈妈和奶奶乘飞机去旅行,三人所带行李的质量都超过了可免费携带行李的质量,要另付行李费,三人共付了4元,而三人行李共重150千克,如果这些行李让一个人带,那么除了免费部分,应另付行李费8元,求每人可免费携带行李的质量。 18 19、,两堆 20、 21、 8小时,.泥 22 碗, 23 24、 。现25 26 27 两校各多少人参赛? 28、在浓度为40%的盐水中加入千克水,浓度变为30%,再加入多千克盐,浓度变为50%? 29、某人到商店买红蓝两种钢笔,红钢笔定价5元,蓝钢笔定价9元,由于购买量较多,商店给予优惠,红钢笔八五折,蓝钢笔八折,结果此人付的钱比原来节省的18%,已知他买了蓝钢笔30枝,那么。他买了几支红钢笔? 30、甲说:“我乙丙共有100元。”乙说:“如果甲的钱是现有的6倍,我的钱是现有的1/3,丙的钱不变,我们仍有钱100元。”丙说:“我的钱都没有30元。”三人原来各有多少钱? 31、某厂向银行申请甲乙两种贷款共30万,每年需支付利息4万元,甲种贷款年利率为12%,乙种贷款年利率为14%,该厂申请甲乙两种贷款金额各多少元?

初一奥数题及解答

初一奥数复习题 2.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值. 3.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n,求x的取值范围.4.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值. 5.已知方程组 有解,求k的值. 6.解方程2|x+1|+|x-3|=6. 7.解方程组 8.解不等式||x+3|-|x-1||>2. 9.比较下面两个数的大小: 10.x,y,z均是非负实数,且满足:

x+3y+2z=3,3x+3y+z=4, 求u=3x-2y+4z的最大值与最小值. 11.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式. 12.如图1-88所示.小柱住在甲村,奶奶住在乙村,星期日小柱去看望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应该选择怎样的路线才能使路程最短? 13.如图1-89所示.AOB是一条直线,OC,OE分别是∠AOD和∠DOB的平分线,∠COD=55°.求∠DOE的补角. 14.如图1-90所示.BE平分∠ABC,∠CBF=∠CFB=55°,∠EDF=70°.求证:BC ∥AE.

15.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BEF.求证:∠AGD=∠ACB. 16.如图1-92所示.在△ABC中,∠B=∠C,BD⊥AC于D.求 17.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且BD∶DC=1∶2,AD与BE交于F.求△BDF与四边形FDCE的面积之比. 18.如图1-94所示.四边形ABCD两组对边延长相交于K及L,对角线AC∥KL,BD 延长线交KL于F.求证:KF=FL. 19.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由. 20.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸? 21.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).

小升初道经典奥数题附答案

小升初50道经典奥数题(附答案) 1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元 2.3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克 3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米 4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。每支铅笔多少钱 5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行 45千米,两地相距多少千米(交换乘客的时间略去不计) 6.学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组 7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨 8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米 9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元 10.一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米 11.某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。运后结算时,共付运费4400元。托运中损坏了多少箱玻璃 12.五年级一中队和二中队要到距学校20千米的地方去春游。第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队 13.某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克 14.妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。结果小红却买了8支

2019小学奥数题汇总及答案

小学全部奥数题及答案 工程问题 1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时? 解: 1/20+1/16=9/80表示甲乙的工作效率 9/80×5=45/80表示5小时后进水量 1-45/80=35/80表示还要的进水量 35/80÷(9/80-1/10)=35表示还要35小时注满 答:5小时后还要35小时就能将水池注满。 2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天? 解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。 又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。 设合作时间为x天,则甲独做时间为(16-x)天 1/20*(16-x)+7/100*x=1 x=10 答:甲乙最短合作10天 3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时? 解: 由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量 (1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。 根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。 所以1-9/10=1/10表示乙做6-4=2小时的工作量。 1/10÷2=1/20表示乙的工作效率。 1÷1/20=20小时表示乙单独完成需要20小时。 答:乙单独完成需要20小时。 4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成? 解:由题意可知 1/甲+1/乙+1/甲+1/乙+……+1/甲=1 1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1 (1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天) 1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等) 得到1/甲=1/乙×2

初一数学上册奥数题及答案

初一数学上册奥数题及答案 一、选择题(每题1分,共10分) 1.如果a,b都代表有理数,并且a+b=0,那么 ( ) A.a,b都是0. B.a,b之一是0. C.a,b互为相反数. D.a,b互为倒数. 2.下面的说法中准确的是 ( ) A.单项式与单项式的和是单项式. B.单项式与单项式的和是多项式. C.多项式与多项式的和是多项式. D.整式与整式的和是整式. 3.下面说法中不准确的是 ( ) A. 有最小的自然数. B.没有最小的正有理数. C.没有的负整数. D.没有的非负数. 4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( ) A.a,b同号. B.a,b异号.

C.a>0. D.b>0. 5.大于-π并且不是自然数的整数有 ( ) A.2个. B.3个. C.4个. D.无数个. 6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立 方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数 的立方不一定大于它本身.这四种说法中,不准确的说法的个数是 ( ) A.0个. B.1个. C.2个. D.3个. 7.a代表有理数,那么,a和-a的大小关系是 ( ) A.a大于-a. B.a小于-a. C.a大于-a或a小于-a. D.a不一定大于-a. 8.在解方程的过程中,为了使得到的方程和原方程同解,能够在原 方程的两边( ) A.乘以同一个数.

B.乘以同一个整式. C.加上同一个代数式. D.都加上1. 9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( ) A.一样多. B.多了. C.少了. D.多少都可能. 10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( ) A.增多. B.减少. C.不变. D.增多、减少都有可能. 二、填空题(每题1分,共10分) 2.198919902-198919892=______.3. =________.4. 关于x的方程的解是_________.5.1-2+3-4+5-6+7-8+ (4999) 5000=______.6.当x=- 时,代数式(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)的值是____.7.当a=-0.2,b=0.04时,代数式 的值是______.8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划

初一奥数题及解答

初一奥数题及解答 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

初一奥数复习题 2.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值. 3.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n,求x的取值范围. 4.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值. 5.已知方程组 有解,求k的值. 6.解方程2|x+1|+|x-3|=6. 7.解方程组 8.解不等式||x+3|-|x-1||>2. 9.比较下面两个数的大小: 10.x,y,z均是非负实数,且满足: x+3y+2z=3,3x+3y+z=4, 求u=3x-2y+4z的最大值与最小值. 11.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式. 12.如图1-88所示.小柱住在甲村,奶奶住在乙村,星期日小柱去看望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应该选择怎样的路线才能使路程最短 13.如图1-89所示.AOB是一条直线,OC,OE分别是∠AOD和∠DOB的平分线,∠COD=55°.求∠DOE的补角.

14.如图1-90所示.BE平分∠ABC,∠CBF=∠CFB=55°,∠EDF=70°.求证:BC ∥AE. 15.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BEF.求证:∠AGD=∠ACB. 16.如图1-92所示.在△ABC中,∠B=∠C,BD⊥AC于D.求 17.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且BD∶DC=1∶2,AD与BE交于F.求△BDF与四边形FDCE的面积之比. 18.如图1-94所示.四边形ABCD两组对边延长相交于K及L,对角线AC∥KL,BD 延长线交KL于F.求证:KF=FL. 19.任意改变某三位数数码顺序所得之数与原数之和能否为999说明理由. 20.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸 21.如果正整数p和p+2都是大于3的素数,求证:6|(p+1). 22.设n是满足下列条件的最小正整数,它们是75的倍数,且恰有 23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人 24.求不定方程49x-56y+14z=35的整数解. 25.男、女各8人跳集体舞. (1)如果男女分站两列; (2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.

初一奥数题集带答案

初一奥数题集带答案 The pony was revised in January 2021

1、2002)1(-的值(B) A.2000B.1C.-1D.-2000 2、a 为有理数,则2000 11+a 的值不能是(C ) A.1B.-1C.0D.-2000 3、()[]}{20072006200720062007----的值等于(B ) A.-2007 B.2009 C.-2009 D.2007 4、)1()1()1()1()1(-÷-?---+-的结果是(A ) A.-1 B.1 C.0 D.2 5、2008200720061)1()1(-÷-+-的结果是(A ) A.0B.1C.-1D.2 6、计算)2()2 1(22-+-÷-的结果是(D ) A.2B.1C.-1D.0 7、计算:.2 1825.3825.325.0825.141825.3?+?+-?

8、计算:.3 11212311999212000212001212002-++-+- 9、计算:).13 8(113)521()75.0(5.2117-?÷-÷-?÷- 11、计算:.363531998199992000?+?- 练习:.22222222221098765432+--------.2)12(2221n n n n =-=-+ 6 12、计算:)98 97983981()656361()4341(21++++++++++ 结果为:5.612249 122121=?++?+ 13、计算: .200720061431321211?++?+?+? 应用:)111(1)1(+-=+n n d n n d 练习:.105 1011171311391951?++?+?+? 13、计算:35217106253121147642321??+??+????+??+??.结果为52 14、求21-++x x 的最小值及取最小值时x 的取值范围. 练习:已知实数c b a ,,满足,01b a c <<<<-且,a c b >>求b a c a c ---+-1的值. 练习: 1、计算2007200619991998)1()1()1()1(-+-++-+- 的值为(C )

小学五年级奥数题集锦及答案

小学五年级奥数题集锦及答案 1、甲乙两车同时从AB两地相对开出。甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。求AB两地相距多少千米? 2、一辆客车和一辆货车分别从甲乙两地同时相向开出。货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。甲乙两地相距多少千米? 3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。求乙绕城一周所需要的时间? 4、甲乙两人同时从A地步行走向B地,当甲走了全程的1\4时,乙离B地还有640米,当甲走余下的5\6时,乙走完全程的7\10,求AB两地距离是多少米? 解:甲走完1/4后余下1-1/4=3/4 那么余下的5/6是3/4×5/6=5/8 此时甲一共走了1/4+5/8=7/8 那么甲乙的路程比=7/8:7/10=5:4 所以甲走全程的1/4时,乙走了全程的1/4×4/5=1/5 那么AB距离=640/(1-1/5)=800米 5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。甲车每小时行75千米,乙车行完全程需7小时。两车开出3小时后相距15千米,A,B两地相距多少千米? 解:一种情况:此时甲乙还没有相遇 乙车3小时行全程的3/7 甲3小时行75×3=225千米 AB距离=(225+15)/(1-3/7)=240/(4/7)=420千米 一种情况:甲乙已经相遇 (225-15)/(1-3/7)=210/(4/7)=367.5千米 6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟已相遇? 解:甲相当于比乙晚出发3+3+3=9分钟 将全部路程看作单位1 那么甲的速度=1/30 乙的速度=1/20 甲拿完东西出发时,乙已经走了1/20×9=9/20 那么甲乙合走的距离1-9/20=11/20 甲乙的速度和=1/20+1/30=1/12 那么再有(11/20)/(1/12)=6.6分钟相遇 7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车? 解:路程差=36×2=72千米 速度差=48-36=12千米/小时 乙车需要72/12=6小时追上甲 8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度? 解: 甲在相遇时实际走了36×1/2+1×2=20千米

初一奥数题00道(最新知识点)

初一奥数题00道a,b,c,d,e五个数,和为8,平方和为16,求e的最值。 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B 地植树,乙先在A地植树,然后转到B地植树。两块地同时开始同时结束,乙应在开始后第几天从A地转到B地? 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快。第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天? 3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元。在保证一星期内完成的前提下,选择哪个队单独承包费用最少?

4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水。3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比。 5.甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售。两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套? 6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池。这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A 池时,乙管再经过多少小时注满B池?...感谢聆听... 7。小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小

(完整)二年级奥数题50道带答案2019年

二年级奥数题50道带答案2019年 1、用0、1、 2、3能组成多少个不同的三位数?18个 2、小华参加数学竞赛,共有10道赛题。规定答对一题给十分,答错一题扣五分。小华十题全部答完,得了85分。小华答对了几题?(10×10-85)÷(10+5)=1题10-1=9题 3、2,3,5,8,12,( 17 ),( 23 ) 4、1,3,7,15,( 31 ),63,( 127 ) 5、1,5,2,10,3,15,4,( 20 ),( 5 ) 6、○、△、☆分别代表什么数?(1)、○+○+○=18 (2)、△+○=14 (3)、☆+☆+☆+☆=20 ○=( 6 ) △=( 8 ) ☆=( 5 ) 7、△+○=9 △+△+○+○+○=25 △=( 2 ) ○=( 7 ) 8、有35颗糖,按淘气-笑笑-丁丁-冬冬的顺序,每人每次发一颗,想一想,谁分到最后一颗?35÷4=8……3 丁丁 9、淘气有300元钱,买书用去56元,买文具用去128元,淘气剩下的钱比原来少多少元?56+128=184(元) 10、5只猫吃5只老鼠用5分钟,20只猫吃20只老鼠用多少分钟?5分钟 11.修花坛要用94块砖,第一次搬来36块,第二次搬来38,还要搬多少块?(用两种方法计算) 94-(36+38)=20(块)94-36-38=20(块) 12.王老师买来一条绳子,长20米剪下5米修理球网,剩下多少米?20-5=15(米) 13.食堂买来60棵白菜,吃了56棵,又买来30棵,现在人多少棵?60-56+30=34(棵) 14、小红有41元钱,在文具店买了3支钢笔,每支6元钱,还剩多少元?41-3×6=23(元) 15、二(1)班从书店买来了89本书,第一组同学借了25本,第二组同学借了38本,还剩多少本?89-25-38=27(本) 16、果园里有桃树126颗,是梨树棵数的3倍,果园里桃树和梨树一共多少棵? 126+126÷3=168 17、1+2+3+4+5+6+7+8+9+10=( 55 ) 18、11+12+13+14+15+16+17+18+19=( 145 ) 19、按规律填数。(1)1,3,5,7,9,( 11 ) (2)1,2,3,5,8,13( 21 ) (3)1,4,9,16,( 25 ),36 (4)10,1,8,2,6,4,4,7,2,( 11 ) 20、在下面算式适当的位置添上适当的运算符号,使等式成立。(1)8 ×(8×8 + 8×8)- 8- 8 - 8 =1000 (2)(4+4 )×4 –4×4 =16 (3)9 + 8 ×7- 6×5- 4×3- 2+ 1=22 21、30名学生报名参加小组。其中有26人参加了美术组,17人参加了书法组。问两个组都参加的有多少人?26+17-30=13 22、用6根短绳连成一条长绳,一共要打( 5 )个结。 23、篮子里有10个红萝卜,小灰兔吃了其中的一半,小白兔吃了2个,还剩下( 3 )个。 24、2个苹果之间有2个梨,5个苹果之间有几个梨?8个 25、用1、2、3三个数字可以组成( 6 )个不同的三位数。 26、有两个数,它们的和是9,差是1,这两个数是( 4 )和( 5 27、3个小朋友下棋,每人都要与其他两人各下一盘,他们共要下( 3 )盘。 28、把4、6、7、8、9、10填下入面的空格里(三行三列的格子),使横行、竖行、斜行上三个数的和都是18。(题目出错) 29、15个小朋友排成一排报数,报双数的小朋友去打乒乓,队伍里留下( 8 )人。 30、一只梅花鹿从起点向前跳5米,再向后跳4米,又朝前跳7米,朝后跳10米;然后停下休息,你知道梅花鹿停在起点前还是起点后?与起点相距几米?起点后2米

小学奥数题及答案

小学奥数题及答案 工程问题 1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时? 解: 1/20+1/16=9/80表示甲乙的工作效率 9/80×5=45/80表示5小时后进水量 1-45/80=35/80表示还要的进水量 35/80÷(9/80-1/10)=35表示还要35小时注满 答:5小时后还要35小时就能将水池注满。 2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天? 解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。 又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。 设合作时间为x天,则甲独做时间为(16-x)天 1/20*(16-x)+7/100*x=1 x=10 答:甲乙最短合作10天 3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时? 解: 由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量 (1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。 根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。 所以1-9/10=1/10表示乙做6-4=2小时的工作量。 1/10÷2=1/20表示乙的工作效率。 1÷1/20=20小时表示乙单独完成需要20小时。 答:乙单独完成需要20小时。 4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成? 解:由题意可知 1/甲+1/乙+1/甲+1/乙+……+1/甲=1 1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1 (1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天) 1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等) 得到1/甲=1/乙×2 又因为1/乙=1/17 所以1/甲=2/17,甲等于17÷2=8.5天 5.师徒俩人加工同样多的零件。当师傅完成了1/2时,徒弟完成了120个。当师傅完成了任务时,徒弟完

七年级奥数题集(带答案)

精心整理 奥数 1、2002)1(-的值(B) A.2000 B.1 C.-1 D.-2000 2、a 为有理数,则2000 11+a 的值不能是(C ) A.1B.-1C.0D.-2000 3、()[]}{20072006200720062007----的值等于(B ) A.-2007 B.2009 C.-2009 D.2007 4、)1()1()1()1()1(-÷-?---+-的结果是(A ) A.-1 B.1 C.0 D.2 5、2008200720061 )1()1(-÷-+-的结果是(A ) A.0B.1C.-1D.2 6、计算)2()2 1(22-+-÷-的结果是(D ) A.2B.1C.-1D.0 7、计算:.21825.3825.325.0825.141825.3?+?+-? 8、计算:.3 11212311999212000212001212002-++-+- 9、计算:).138(113)521()75.0(5.2117-?÷-÷-?÷- 11、计算:.363531998199992000?+?- 练习:.22222222221098765432+--------.2)12(2221n n n n =-=-+ 6 12、计算:)98 97983981()656361()4341(21++++++++++ 结果为:5.612249 122121=?++?+ 13、计算: .2007 20061431321211?++?+?+? 应用:)111(1)1(+-=+n n d n n d

练习:.105 1011171311391951?++?+?+? 13、计算: 35217106253121147642321??+??+????+??+??.结果为52 14、求21-++x x 的最小值及取最小值时x 的取值范围. 练习:已知实数c b a ,,满足,01b a c <<<<-且,a c b >>求b a c a c ---+-1的值. 练习: 1、计算2007200619991998)1()1()1()1(-+-++-+- 的值为(C ) A.1 B.-1 C.0 D.10 2、若m 为正整数,那么()[] )1(11412---m m 的值(B ) A.一定是零B.一定是偶数 C.是整数但不一定是偶数 D.不能确定 3、若n 是大于1的整数,则2)(12)1(n n n p ---+=的值是(B ) A.一定是偶数 B.一定是奇数 C.是偶数但不是2 D.可以是奇数或偶数 4、观察以下数表,第10行的各数之和为(C ) 1 43 678 13121110 1516171819 262524232221 … A.980 B.1190 C.595 D.490 5、已知,200220012002200120022001200220012?++?+?+= a 20022002=b ,则a 与b 满足的关系是(C ) A.2001+=b a B.2002+=b a C.b a = D.2002-=b a 6、计算:.35217201241062531211471284642321??+??+??+????+??+??+??5 2 7、计算:.561742163015201412136121++++++8 328

小学五年级奥数题集锦及答案更新版

小学五年级奥数题集锦 及答案更新版 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

小学五年级奥数题集锦及答案 1、甲乙两车同时从AB两地相对开出。甲行驶了全程的5/11,如果甲每小时行驶千米,乙行了5小时。求AB两地相距多少千米? 解:AB距离=(×5)/(5/11)=千米 2、一辆客车和一辆货车分别从甲乙两地同时相向开出。货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。甲乙两地相距多少千米? 解:客车和货车的速度之比为5:4 那么相遇时的路程比=5:4 相遇时货车行全程的4/9 此时货车行了全程的1/4 距离相遇点还有4/9-1/4=7/36 那么全程=28/(7/36)=144千米 3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。求乙绕城一周所需要的时间? 解:甲乙速度比=8:6=4:3 相遇时乙行了全程的3/7 那么4小时就是行全程的4/7 所以乙行一周用的时间=4/(4/7)=7小时 4、甲乙两人同时从A地步行走向B地,当甲走了全程的1\4时,乙离B地还有640米,当甲走余下的5\6时,乙走完全程的7\10,求AB两地距离是多少米

解:甲走完1/4后余下1-1/4=3/4 那么余下的5/6是3/4×5/6=5/8 此时甲一共走了1/4+5/8=7/8 那么甲乙的路程比=7/8:7/10=5:4 所以甲走全程的1/4时,乙走了全程的1/4×4/5=1/5 那么AB距离=640/(1-1/5)=800米 5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。甲车每小时行75千米,乙车行完全程需7小时。两车开出3小时后相距15千米,A,B两地相距多少千米 解:一种情况:此时甲乙还没有相遇 乙车3小时行全程的3/7 甲3小时行75×3=225千米 AB距离=(225+15)/(1-3/7)=240/(4/7)=420千米 一种情况:甲乙已经相遇 (225-15)/(1-3/7)=210/(4/7)=千米 6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟已相遇? 解:甲相当于比乙晚出发3+3+3=9分钟 将全部路程看作单位1 那么甲的速度=1/30 乙的速度=1/20 甲拿完东西出发时,乙已经走了1/20×9=9/20

小学五年级奥数题精选各类题型及答案

小学五年级奥数题精各类题型及答案 ConlPany number : [WTUT-WT88Y-W8BBGB-BWYTT-19998]

小学五年级各类题型奥数及答案 面积计算(五年级奥数题) 1、(05年三帆中学考题)右图中AB二3厘米,CD二12厘米,ED二8厘米,AF二7厘米. 四边形ABDE的面积是()平方厘米. F E D 2、如图,已知每个小正方形格的面积是1平方厘米,则不规则图形的面积是— 图形面积(一)(五年级奥数题) 1、(06年清华附中考题)如图,在三角形ABC中,D为BC的中点? E为AB上的

—点,且BE=1∕3AB,已知四边形EDCA的面积是35,求三角形ABC的面积?

2、正方形ABFD的面积为IOO平方厘米,直角三角形ABC的面积,比直角三角形(CDE的面积大30平方厘米,求DE的长是多少 B A 7 F DE 图形面积(一)(答案)面积计算(答案) 1、解:阴影面积二 1/2XEDXAF+1/2XABXCD二 1/2X8X7+1/2X3X12二28+18 =46 o 2、解答:基本的格点面积的求解,可以用解答种这样的方法求解‘当然也可以用格点面积公式来做,内部点有16个,周边点有8个,所以面积为16÷8÷2-1=19 1、解答:根据定理:ΔBED _ Ixl _1 UBC 2x5 6' 所以四边形ACDE的面积就 是6-1二5份,这样三角形35÷5X6二42。 2、解:公共部分的运用,三角形ABC面积-三角形CDE的面积二30, 两部分都加上公共 部分(四边形BCDF),正方形ABFD-三角形BFE二30, 所以三角形BFE的面积为70,所以FE的长为70×2÷10=141所以DE二4。 图形面积(二)(五年级奥数题) 1、求出图中梯形ABCD的面积,其中BC二56厘米。(单位:厘米)

2017年初中奥数题及答案

初中奥数题试题一 一、选择题(每题1分,共10分) 1.如果a,b都代表有理数,并且a+b=0,那么 ( ) A.a,b都是0 B.a,b之一是0 C.a,b互为相反数 D.a,b互为倒数 答案:C 解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。 2.下面的说法中正确的是 ( ) A.单项式与单项式的和是单项式 B.单项式与单项式的和是多项式 C.多项式与多项式的和是多项式 D.整式与整式的和是整式 答案:D 解析:x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A。两个单项式x2,2x2之和为3x2是单项式,排除B。两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。 3.下面说法中不正确的是 ( ) A. 有最小的自然数 B.没有最小的正有理数 C.没有最大的负整数 D.没有最大的非负数 答案:C 解析:最大的负整数是-1,故C错误。 4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( ) A.a,b同号 B.a,b异号 C.a>0 D.b>0 答案:D 5.大于-π并且不是自然数的整数有 ( ) A.2个 B.3个 C.4个 D.无数个 答案:C 解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。 6.有四种说法: 甲.正数的平方不一定大于它本身;

乙.正数的立方不一定大于它本身; 丙.负数的平方不一定大于它本身; 丁.负数的立方不一定大于它本身。 这四种说法中,不正确的说法的个数是 ( ) A.0个 B.1个 C.2个 D.3个 答案:B 解析:负数的平方是正数,所以一定大于它本身,故丙错误。 7.a代表有理数,那么,a和-a的大小关系是 ( ) A.a大于-a B.a小于-a C.a大于-a或a小于-a D.a不一定大于-a 答案:D 解析:令a=0,马上可以排除A、B、C,应选D。 8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数 B.乘以同一个整式 C.加上同一个代数式 D.都加上1 答案:D 解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B。同理应排除C.事实上方程两边同时加上一 个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D. 9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( ) A.一样多 B.多了 C.少了 D.多少都可能 答案:C 解析:设杯中原有水量为a,依题意可得, 第二天杯中水量为a×(1-10%)=0.9a; 第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a; 第三天杯中水量与第一天杯中水量之比为0.99∶1, 所以第三天杯中水量比第一天杯中水量少了,选C。 10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( ) A.增多

初中一年级奥数题集[带答案解析]

奥 数 1、2002)1(-的值 ( B ) A. 2000 B.1 C.-1 D.-2000 2、a 为有理数,则2000 11+a 的值不能是 ( C ) A.1 B.-1 C .0 D.-2000 3、()[]}{20072006200720062007----的值等于 ( B ) A.-2007 B.2009 C.-2009 D.2007 4、)1()1()1()1()1(-÷-?---+-的结果是 ( A ) A.-1 B.1 C.0 D.2 5、2008200720061)1()1(-÷-+-的结果是 ( A ) A.0 B.1 C.-1 D.2 6、计算)2()2 1(22-+-÷-的结果是 ( D ) A.2 B.1 C.-1 D.0 7、计算:.2 1825.3825.325.0825.141825.3?+?+-? 8、计算:.3 11212311999212000212001212002-++-+-Λ 9、计算:).13 8(113)521()75.0(5.2117-?÷-÷-?÷- 11、计算:.363531998199992000?+?-

练习:.22222222221098765432+--------.2)12(2221n n n n =-=-+ 6 12、计算: )98 97983981()656361()4341(21++++++++++ΛΛ 结果为: 5.612249 122121=?++?+Λ 13、计算: .200720061431321211?++?+?+?Λ应用:)111(1)1(+-=+n n d n n d 练习: .105 1011171311391951?++?+?+?Λ 13、计算: 35217106253121147642321??+??+????+??+??. 结果为5 2 14、求21-++x x 的最小值及取最小值时x 的取值范围. 练习:已知实数c b a ,,满足,01b a c <<<<-且,a c b >>求b a c a c ---+-1的值.

相关文档
相关文档 最新文档