文档视界 最新最全的文档下载
当前位置:文档视界 › 双闭环直流电机调速系统设计报告

双闭环直流电机调速系统设计报告

双闭环直流电机调速系统设计报告
双闭环直流电机调速系统设计报告

运动控制系统课程设计

专业:自动化

设计题目:双闭环直流电机调速系统设计

班级:学生姓名:学号:

指导教师:

分院院长:

教研室主任:

电气工程学院

一、课程设计任务书

1.设计参数

三相桥式整流电路,已知参数为:

P N=555K W,U N=750V,I N=760A,n N=375r/min,电动势系数Ce=,电枢回路总电阻R=0.14Ω,允许电流过载倍数λ=1.5,触发整流环节的放大倍数Ks=75,电磁时间常数Tl=0.031s,机电时间常数Tm=0.112s电流反馈时间常数Toi=0.002s,转速反馈滤波时间常数Ton=0.02s。且调节器输入输出电压U*nm=U*in=U*cm=10V,调节器输入电阻R0=40KΩ。

2.设计内容

1)根据题目的技术要求,分析论证并确定闭环调速系统的组成,画出系统组成的原理框图。

2)建立双闭环调速系统动态数学模型。

3)动态设计计算:根据技术要求,对系统进行动态校正,确定ASR 调节器与ACR调节器的结构形式及进行参数计算,使调速系统工作稳定,

并满足动态性能指标的要求。

4) 利用MATLAB 进行双闭环调速系统仿真分析,并研究参数变化时对直流电动机动态性能的影响。

3.设计要求:

1)该调速系统能进行平滑地速度调节,负载电机不可逆运行,具有较宽地转速调速范围(10D ≥),系统在工作范围内能稳定工作。

2)系统静特性良好,无静差(静差率2S ≤)。

3)动态性能指标:转速超调量δn ≤10%,电流超调量5%i δ<,动态

最大转速降810%n ?≤~,调速系统的过渡过程时间(调节时间)

1s t s ≤。

4)系统在5%负载以上变化的运行范围内电流连续。

5)主电路采用三项全控桥。

4. 课程设计报告要求

1)、要求在课程设计答辩时提交课程设计报告。

2)、报告应包括以下内容:

A 、系统各环节选型

双闭环直流调速系统的工作原理

调节器的工程设计

Simulink 仿真 B 、系统调试过程介绍,在调试过程中出现的问题,解决办法等;

C 、课程设计总结。包括本次课程设计过程中的收获、体会,以及对该课程设计的意见、建议等;

D 、设计中参考文献列表;

E 、报告使用B5纸打印,全文不少于2000字。

5. 参考资料

[1] 朱仁初,万伯任.电力拖动控制系统设计手册[M].北京:机械工业出版社,1994.

[2] 王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2006.

[3] 陈伯时. 电力拖动自动控制系统-运动控制系统[M],第三版. 北京:机械工业出版社, 2007年6月.

[4] 孔凡才.晶闸管直流调速系统[M ].北京:北京科技出版社,1985.

双闭环直流电机调速系统的SIMULINK仿真实验

双闭环直流电机调速系统的SIMULINK仿真实验 魏小景张晓娇刘姣 (自动化0602班) 摘要:采用工程设计方法对双闭环直流调速系统进行设计,选择调节器结构,进行参数的计算和校验;给出系统动态结构图,建立起动、抗负载扰动的Matlab Simulink 仿真模型.分析系统起动的转速和电流的仿真波形 ,并进行调试 ,使双闭环直流调速系统趋于合理与完善。 关键词:双闭环调速系统;调节器;Matlab Simulink建模仿真 1.引言 双闭环直流调速系统是目前直流调速系统中的主流设备,具有调速范围宽、平稳性好、稳速精度高等优点,在理论和实践方面都是比较成熟的系统,在拖动领域中发挥着极其重要的作用。由于直流电机双闭环调速是各种电机调速系统的基础,直流电机双闭环调速系统的工程设计主要是设计两个调节器。调节器的设计一般包括两个方面:第一选择调节器的结构,以确保系统稳定,同时满足所需的稳态精度. 第二选择调节器的参数,以满足动态性能指标。本文就直流电机调速进行了较系统的研究,从直流电机的基本特性到单闭环调速系统,然后进行双闭环直流电机设计方法研究,最后用实际系统进行工程设计,并采用Matlab/Sim-ulink进行仿真。 2.基本原理和系统建模 为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串联连接. 把转速调节器ASR 的输出当作电流调节器ACR 的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置GT ,TA为电流传感器,TG 为测速发电机. 从闭环结构上看,电流调节环在里面,叫做内环,转速调节环在外边叫做外环,这样就形了转速、 图1 直流电机双闭环调速系统的动态结构图

双闭环直流调速系统设计及仿真

双闭环直流调速系统设计及仿真 一转速、电流双闭环控制系统 一般来说,我们总希望在最大电流受限制的情况下,尽量发挥直流电动机的过载能力,使电力拖动控制系统以尽可能大的加速度起动,达到稳态转速后,电流应快速下降,保证输出转矩与负载转矩平衡,进入稳定运行状态[1]。这种理想的起动过程如图1所示。 n n t 图1 转速调节系统理想起动过程 为实现在约束条件快速起动,关键是要有一个使电流保持在最大值的恒流过程。根据反馈控制规律,要控制某个量,就要引入这个量的负反馈。因此很自然地想到要采用电流负反馈控制过程。这里实际提到了两个控制阶段。起动过程中,电动机转速快速上升,而要保持电流恒定,只需电流负反馈;稳定运行过程中,要求转矩保持平衡,需使转速保持恒定,应以转速负反馈为主。如何才能做到使电流、转速两种负反馈在不同的控制阶段发挥作用呢?答案是采用转速、电流双闭环控制系统。如图2所示。 图2 双闭环直流调速控制系统原理图 参考双闭环的结构图和一些电力电子的知识,采用机理分析法可以得到双闭环系统的动态结构图。如图3所示。

图3 双闭环直流调速系统动态结构图 在转速环、电流环的反馈通道和输入端增加了转速滤波、电流滤波和给定滤波环节。因为电流检测信号中常含有交流成分,须加低通滤波,其滤波时间常数按需要而定。滤波环节可以抑制检测信号中的交流分量,但同时也个反馈检测信号带来延迟。所以在给定信号通道中加入一个给定滤波环节,使给定信号与反馈信号同步,并可使设计简化。由测速发电机得到的转速反馈电压含有电机的换向纹波,因此也需要滤波,其时间常数用表示[2]。 二双闭环控制系统起动过程分析 前面已经指出,设置双闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析双闭环调速系统的动态性能时,有必要先探讨它的起动过程。双闭环调速系统突加给定电压由静止状态起动时,转速和电流的过渡过程如图4所示。由于在起动过程中转速调节器ASR 经历了不饱和、饱和、退饱和三个阶段,整个过渡过程也就分为三个阶段,在图中表以Ⅰ、Ⅱ和Ⅲ。 第Ⅰ阶段:0~t1是电流上升阶段。突加给定电压后,通过两个调节器的控制作用,使、、都上升,当后,电动机开始转动。由于机电惯性的作用,转速的增长不会太快,因而ASR的输入偏差电压数值较大并使其输出达到饱和值,强迫电流迅速上升。当时,,电流调节器ACR的作用使不再迅速增加,标志着这一阶段的结束。 在这一阶段中,ASR由不饱和很快达到饱和,而ACR一般应该不饱和,

双闭环调速系统课程设计

目录页 第一章绪论 (2) 1-1课题背景,实验目的与实验设备 (2) 1-2国内外研究情况 (3) 第二章双闭环调速系统设计理论 (3) 2-1典型Ⅰ型和典型Ⅱ型系统 (3) 2-2系统的静,动态性能指标 (4) 2-3非典型系统的典型化 (6) 2-4转速调节器和电流调节器的设计 (7) 第三章模型参数测定和模型建立 (9) 3-1系统模型参数测定实验步骤和原理 (9) 3-2模型测定实验的计算分析 (11) 3-3系统模型仿真和误差分析 (18) 第四章工程设计方法设计和整定转速,电流反馈调速系统 (22) 4-1 设计整定的思路 (22) 4-2 电流调节器的整定和电流内环的校正,简化 (23) 4-3转速调节器的整定和转速环的校正,简化 (25) 4-4系统的实际运行整定 (27) 4-5 关于ASR和ACR调节器的进一步探讨…………………………………… 33 第五章设计分析和心得总结 (34)

5-1实验中出现的问题 (34) 5-2实验心得体会 (35) 第六章实验原始数据 (38) 6-1建模测定数据 (38) 6-2 系统调试实验数据 (39) 第一章绪论 1-1课题背景,实验目的与实验设备 转速,电流反馈控制的调速系统是一种动静态特性优良的直流调速系统,它的控制规律是建立在经典控制规律的基础上的,用传递函数建立动态数学模型,并从传递函数模型和开环频域特性去总结其控制规律,用跟随和抗扰两个方面的指标去衡量它的动静态性能。转速,电流反馈控制的调速系统是一种串级系统,所以其整定系统参数的方法也借鉴了一般串级系统的差别,但又有不同于一般串级系统的。 本次实验的主要目的是针对一套调速系统(包括电源,电机,励磁回路等)建立模型并整定出带滤波的电流调节器和转速调节器参数,投入运行。实验正值暑期实践及国际交流周,我们将用两周的时间来完成参数测定实验,系统建模,调节器整定和系统投入运行。 本次实验的实验设备包括:

直流电机PWM调速与控制设计报告

综合设计报告 单位:自动化学院 学生姓名: 专业:测控技术与仪器 班级:0820801 学号: 指导老师: 成绩: 设计时间:2011 年12 月 重庆邮电大学自动化学院制

一、题目 直流电机调速与控制系统设计。 二、技术要求 设计直流电机调速与控制系统,要求如下: 1、学习直流电机调速与控制的基本原理; 2、了解直流电机速度脉冲检测原理; 3、利用51单片机和合适的电机驱动芯片设计控制器及速度检测电路; 4、使用C语言编写控制程序,通过实时串口能够完成和上位机的通信; 5、选择合适控制平台,绘制系统的组建结构图,给出完整的设计流程图。 6、要求电机能实现正反转控制; 7、系统具有实时显示电机速度功能; 8、电机的设定速度由电位器输入; 9、电机的速度调节误差应在允许的误差范围内。 三、给定条件 1、《直流电机驱动原理》,《单片机原理及接口技术》等参考资料; 2、电阻、电容等各种分离元件、IC、直流电机、电源等; 3、STC12C5A60S2单片机、LM298以及PC机; 四、设计 1. 确定总体方案; 2. 画出系统结构图; 3. 选择以电机控制芯片和单片机及速度检测电路,设计硬件电路; 4. 设计串口及通信程序,完成和上位机的通信; 5. 画出程序流程图并编写调试代码,完成报告;

直流电机调速与控制 摘要:当今社会,电动机作为最主要的机电能量转换装置,其应用范围已遍及国民经济的各个领域和人们的日常生活。无论是在工农业生产,交通运输,国防,航空航天,医疗卫生,商务和办公设备中,还是在日常生活的家用电器和消费电子产品(如电冰箱,空调,DVD等)中,都大量使用着各种各样的电动机。据资料显示,在所有动力资源中,百分之九十以上来自电动机。同样,我国生产的电能中有百分之六十是用于电动机的。电动机与人的生活息息相关,密不可分。电气时代,电动机的调速控制一般采用模拟法、PID控制等,对电动机的简单控制应用比较多。简单控制是指对电动机进行启动,制动,正反转控制和顺序控制。这类控制可通过继电器,光耦、可编程控制器和开关元件来实现。还有一类控制叫复杂控制,是指对电动机的转速,转角,转矩,电压,电流,功率等物理量进行控制。 本电机控制系统基于51内核的单片机设计,采用LM298直流电机驱动器,利用PWM 脉宽调制控制电机,并通过光耦管测速,经单片机I/O口定时采样,最后通过闭环反馈控制系统实现电机转速的精确控制,其中电机的设定速度由电位器经A/D通过输入,系统的状显示与控制由上位机实现。经过设计和调试,本控制系统能实现电机转速较小误差的控制,系统具有上位机显示转速和控制电机开启、停止和正反转等功能。具有一定的实际应用意义。关键字:直流电机、反馈控制、51内核、PWM脉宽调制、LM298 一、系统原理及功能概述 1、系统设计原理 本电机控制系统采用基于51内核的单片机设计,主要用于电机的测速与转速控制,硬件方面设计有可调电源模块,串口电路模块、电机测速模块、速度脉冲信号调理电路模块、直流电机驱动模块等电路;软件方面采用基于C语言的编程语言,能实现系统与上位机的通信,并实时显示电机的转速和控制电机的运行状态,如开启、停止、正反转等。 单片机选用了51升级系列的STC12c5a60s2作为主控制器,该芯片完全兼容之前较低版本的所有51指令,同时它还自带2路PWM控制器、2个定时器、2个串行口支持独立的波特率发生器、3路可编程时钟输出、8路10位AD转换器、一个SPI接口等,

直流电机双闭环调速大作业

题目(中)直流电机双闭环控制调速 姓名与学号 指导教师 年级与专业

所在学院

目录: 一、电机控制实验目的和要求 (4) 二、双闭环调速控制内容 (4) 三、主要仪器设备和仿真平台 (5) 四、仿真建模步骤及分析 (5) 1.直流电机双闭环调速各模块功能分析 (5) 2.仿真结果分析(转速、转矩改变) (18) 3.转速PI调节器参数对电机运行性能的影响 (24) 4.电流调节器改用PI调节器后的仿真 (27) 5.加入位置闭环后的仿真 (28) 6.速度无超调仿真 (30) 七、实验心得 (32)

一、电机控制实验目的和要求 1、加深对直流电机双闭环PWM调速模型的理解。 2、学会利用MATLAB中的SIMULINK工具进行建模仿真。 3、掌握PI调节器的使用,分析其参数对电机运行性能的影响。 二、双闭环调速控制内容 必做: 1、描述Chopper-Fed DC Motor Drive中每个模块的功能。 2、仿真结果分析:包括转速改变、转矩改变下电机运行性能,并解释相应现象。 3、转速PI调节器参数对电机运行性能的影响。 4、电流调节器改用PI调节器后,对电机运行调速结果的影响。 选做: 5、加入位置闭环 6、速度无超调

三、主要仪器设备和仿真平台 1、MATLAB R2014b 2、Microsoft Officials Word 2016 四、仿真建模步骤及分析 1.直流电机双闭环调速各模块功能分析 参考Matlab自带的直流电机双闭环调速的SIMULINK仿真模型: demo/simulink/simpowersystem/Power Electronics Models/Chopper-Fed DC Motor Drive

双闭环控制系统设计

双闭环控制系统设计 课程设计报告 电力拖动自动控制系统课程设计 题目:双闭环控制系统设计学生姓名:董长青专业:电气自动化技术专业班级: Z070303 学号: Z07030330 指导教师:姬宣德 日期:2010年03月10日 随着现代工业的发展,在调速领域中,双闭环控制的理念已经得 到了越来越广泛的认同与应用。相对于单闭环系统中不能随心所欲地 控制电流和转矩的动态过程的弱点。双闭环控制则很好的弥补了他的 这一缺陷。 双闭环控制可实现转速和电流两种负反馈的分别作用,从而获得 良好的静,动态性能。其良好的动态性能主要体现在其抗负载扰动以 及抗电网电压扰动之上。正由于双闭环调速的众多优点,所以在此有 必要对其最优化设计进行深入的探讨和研究。本次课程设计目的就是 旨在对双闭环进行最优化的设计。 Summary With the development of modern industry, in the speed area, the concept of dual-loop control has been increasingly widespread recognition and application. Relative to the single closed-loop system can not arbitrarily control the dynamic

process of current and torque weakness. Double closed-loop control is very good to make up for this shortcoming of his. Double-loop speed and current control can achieve the difference of two negative feedback effect, thus get a good static and dynamic performance. The good dynamic performance mainly reflected in its anti-disturbance and anti-grid load over voltage disturbance. Precisely because of the many advantages of Double Closed Loop, so here it is necessary to optimize the design of its depth discussion and study. This course is designed to designed to optimize the double loop design. 一.课程设计设计说明书4 1.1系统性能指标 1.2整流电路4 1.3触发电路的选择和同步5 1.4双闭环控制电路的工作原理6 二. 设计计算书7 2.1整流装置的计算7 2.1.1变压器副方电压7 2.1.2变压器和晶闸管的容量8 2.1.3平波电抗器的电感量8 2.1.4晶闸管保护电路9 2.2 控制电路的计算10

直流电动机闭环调速试验

. University of South China 电气传动技术 实验报告1 实验名称直流电动机闭环调速实验 学院名称电气工程学院 指导教师 班级电力 学号 学生姓名 文档Word . 一预习报告

目的:1了解并掌握典型环节模拟电路构成方法。 2 熟悉各典型线性环节阶跃响应曲线。 3 了解参数变化对典型环节动态性能影响。内容: 1比例积分控制的无静差直流调速系统的仿真模型 2电流环调速系统的仿真模型 3转速环调速系统的仿真模型

文档Word . 二实验报告 直流电动机:额定电压U=220N,额定电流I=55A,额定转速 dNN n=1000r/min,电动机电动势系数C=0.192V·min/r。假定晶闸管整流eN装置输出电流可逆,装置的放大系数Ks=44,滞后的时间常数 T=0.00167s。电枢回路总电阻R=1.0Ω,电枢回路电磁时间常数 s T=0.00167s,电力拖动系统机电时间常数T=0.075s。转速反馈系数ml*U。对应额定转速时的给定电压·α=0.01Vmin/r=10V。双闭环调速系统中Ks=40,T=0.0017s,T=0.18s,T=0.03s,T=0.002s,T=0.01s,R=0onlmsoi Ω,C=0.132V·min/r,α=0.00666V·min/r,β=0.05V·min/r。e一比例积分控制的无静差直流调速系统中PI调节器的值为: K=0.56,1/τ=11.34 P 文档Word .

无静差调速系统输出(Scope图像1) 输出波形比例部分(Scope1图像2) 对比图1和图2可以发现,只应用比例控制的话,系统响应速度快,但是静差率大,而添加积分环节后,系统既保留了比例环节的快速响应性,又具有了积分环节的无静差调速特性,使调速系统稳定性相对更高,动态响应速度也快。 文档Word .

直流电机双闭环调速系统设计.

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 目录 1 绪论 (1) 1.1课题研究背景 (1) 1.2研究双闭环直流调速系统的目的和意义 (1) 2 直流电机双闭环调速系统 (3) 2.1直流电动机的起动与调速 (3) 2.2直流调速系统的性能指标 (3) 2.2.1静态性能指标 (3) 2.2.2动态的性能指标 (4) 2.3双闭环直流调速系统的组成 (6) 3 双闭环直流调速系统的设计 (8) 3.1电流调节器的设计 (8) 3.2转速调节器的设计 (10) 3.3闭环动态结构框图设计 (12) 3.4设计实例 (12) 3.4.1设计电流调节器 (13) 3.4.2设计转速调节器 (15) 4.Matlab仿真 (17) 4.1仿真结果分析 (19) 5 结论 (20) 参考文献 (21)

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊1 绪论 1.1课题研究背景 直流调速是现代电力拖动自动控制系统中发展较早的技术。就目前而言,直流调速系统仍然是自动调速系统的主要形式,电机自动控制系统广泛应用于机械,钢铁,矿山,冶金,化工,石油,纺织,军工等行业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。 以上等等需要高性能调速的场合得到广泛的应用。然而传统双闭环直流电动机调速系统多数采用结构比较简单、性能相对稳定的常规PID控制技术,在实际的拖动控制系统中,由于电机本身及拖动负载的参数(如转动惯量)并不像模型那样保持不变,而是在某些具体场合会随工况发生改变;与此同时,电机作为被控对象是非线性的,很多拖动负载含有间隙或弹性等非线性的因素。因此被控制对象的参数发生改变或非线性特性,使得线性的常参数的PID控制器往往顾此失彼,不能使得系统在各种工况下都保持与设计时一致的性能指标,常常使控制系统的鲁棒性较差,尤其对模型参数变化范围大且具的非线性环节较强的系统,常规PID调节器就很难满足精度高、响应快的控制指标,往往不能有效克服模型参数变化范围大及非线性因素的影响。 1.2研究双闭环直流调速系统的目的和意义 双闭环直流调速系统是性能很好,应用最广的直流调速系统。采用该系统可获得优良的静、动态调速特性。此系统的控制规律,性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础。 20世纪90年代前的大约50年的时间里,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场相互独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的起动,制动和调速性能。尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。因为它具有良好的线性特性,优异的控制性能,高效率等优点。直流调速仍然是目前最可靠,精度最高的调速方法。 通过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,通过对该系统不足之处的完善,可提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。并以此为基础,再对交流调速系统进行研究,最终掌握各种交、直流调速系统的原理,使之能够应用于国民经济各个

双闭环直流电机调速系统设计参考案例

《运动控制系统》课程设计指导书 一、课程设计的主要任务 (一)系统各环节选型 1、主回路方案确定。 2、控制回路选择:给定器、调节放大器、触发器、稳压电源、电流截止环节,调节器锁零电路、电流、电压检测环节、同步变压器接线方式(须对以上环节画出线路图,说明其原理)。 (二)主要电气设备的计算和选择 1、整流变压器计算:变压器原副方电压、电流、容量以及联接组别选择。 2、晶闸管整流元件:电压定额、电流定额计算及定额选择。 3、系统各主要保护环节的设计:快速熔断器计算选择、阻容保护计算选择计算。 4、平波电抗器选择计算。 (三)系统参数计算 1、电流调节器ACR 中i i R C 、 计算。

2、转速调节器ASR 中n n R C 、 计算。 3、动态性能指标计算。 (四)画出双闭环调速系统电气原理图。 使用A1或A2图纸,并画出动态框图和波德图(在设计说明书中)。 二、基本要求 1、使学生进一步熟悉和掌握单、双闭环直流调速系统工作原理,了解工程设计的基本方法和步骤。 2、熟练掌握主电路结构选择方法,主电路元器件的选型计算方法。 3、熟练掌握过电压、过电流保护方式的配置及其整定计算。 4、掌握触发电路的选型、设计方法。 5、掌握同步电压相位的选择方法。 6、掌握速度调节器、电流调节器的典型设计方法。 7、掌握电气系统线路图绘制方法。 8、掌握撰写课程设计报告的方法。 三、 课程设计原始数据

有以下四个设计课题可供选用: A 组: 直流他励电动机:功率P e =1.1KW ,额定电流I e =6.7A ,磁极对数P=1, n e =1500r/min,励磁电压220V,电枢绕组电阻R a =2.34Ω,主电路总电阻R =7Ω,L ∑=246.25Mh(电枢电感、平波电感和变压器电感之和),K s =58.4,机电时间常数 T m =116.2ms ,滤波时间常数T on =T oi =0.00235s ,过载倍数λ=1.5,电流给定最大值 10V U im =*,速度给定最大值 10V U n =* B 组: 直流他励电动机:功率P e =22KW ,额定电压U e =220V ,额定电流I e =116A,磁极对 数P=2,n e =1500r/min,励磁电压220V,电枢绕组电阻R a =0.112Ω,主电路总电阻R = 0.32Ω,L ∑=37.22mH(电枢电感、平波电感和变压器电感之和),电磁系数 C e =0.138 Vmin /r ,K s =22,电磁时间常数T L =0.116ms ,机电时间常数T m =0.157ms , 滤波时间常数T on =T oi =0.00235s ,过载倍数λ=1.5,电流给定最大值 10V U im =*,速度给定最大值 10V U n =* C 组: 直流他励电动机:功率Pe =145KW ,额定电压Ue=220V ,额定电流Ie=733A,磁极对数P=2,ne=430r/min,励磁电压220V,电枢绕组电阻Ra=0.0015Ω,主电路总电阻R =0.036Ω,Ks=41.5,电磁时间常数TL=0.0734ms ,机电时间常数

单闭环直流电机速度控制系统研究报告

一.实验原理 直流电机在应用中有多种控制方式,在直流电机的调速控制系统中,主要采用电枢电压控制电机的转速与方向。 功率放大器是电机调速系统中的重要部件,它的性能及价格对系统都有重要的影响。过去的功率放大器是采用磁放大器、交磁放大机或可控硅<晶闸管)。现在基本上采用晶体管功率放大器。PWM功率放大器与线性功率放大器相比,有功耗低、效率高,有利于克服直流电机的静摩擦等优点。 PWM调制与晶体管功率放大器的工作原理: 1.PWM的工作原理 图1-1PWM的控制电路 上图所示为SG3525为核心的控制电路,SG3525是美国Silicon General公司生产的专用。 PWM控制集成芯片,其内部电路结构及各引脚如图1-2所示,它采用恒频脉宽调制控制方案,其内部包含有精密基准源、锯齿波振荡器、误差放大器、比较器、分频器和保护电路等。调节Ur的大小,在A、B两端可输出两个幅度相等、频率相等、相位相互错开180度、占空比可调的矩形波<即PWM信号)。它适用于各开关电源、斩波器的控制。 2.功放电路 直流电机PWM输出的信号一般比较小,不能直接去驱动直流电机,它必须经过功放后再接到直流电机的两端。该实验装置中采用直流15V的直流电压功放电路驱动。 3.反馈接口 在直流电机控制系统中,在直流电机的轴上贴有一块小磁钢,电机转动带动磁钢转动。磁钢的下面中有一个霍尔元件,当磁钢转到时霍尔元件感应输出。

4.直流电机控制系统如图1-3所示,由霍耳传感器将电机的速度转换成电信号,经数据采集卡变换成数字量后送到计算机与给定值比较,所得的差值按照一定的规律<通常为PID)运算,然后经数据采集卡输出控制量,供执行器来控制电机的转速和方向。 图1-2 SG3525内部结构 图1-3 直流电机控制系统 5.PID原理 过程控制的基本概念 过程控制――对生产过程的某一或某些物理参数进行的自动控制。 1.模拟控制系统 图1-4 基本模拟反馈控制回路 被控量的值由传感器或变送器来检测,这个值与给定值进行比较,得到偏差,模拟调节器依一定控制规律使操作变量变化,以使偏差趋近于零,其输出通过执行器作用于过程。 控制规律用对应的模拟硬件来实现,控制规律的修改需要更换模拟硬件。 2.微机过程控制系统

双闭环直流电机调速系统

双闭环直流电机调速系统 摘要: 关键词: 引言:速度和电流双臂环直流调速系统,是由单闭环调速系统发展而来的,调速系统采用比例积分调节器,实现了转速的无静差调速。又采用直流截止负反馈环节,限制了启(制)动时的最大电流。这对一般要求不太高的调速系统,基本已能满足要求。但是由于电流截止反馈限制了最大电流,再加上电动机反电动势随着电机转速的上升而增加,使电流达最大值后便迅速将下来。此时,电机的转矩也减小,使启动过程变慢,启动时间较长。 一、双闭环直流调速系统的组成 转速、电流双闭环直流调速系统原理如图 1 所示。系统的组成框图如图2所示。

图1 转速-电流双闭环直流调速系统 图2 转速-电流双闭环直流电机调速系统组成框图 由图可见,该系统由两个反馈构成两个闭环回路,其中一个是由电流调节器ACR和电流检测——反馈环节构成的电流环,另一个是由速度调节器ASR和转速检测——反馈环节构成的速度环。由于速度环包围电流环,因此称电流环为内环,称速度环为外环。在电路中,ASR和ACR实行串级联接,即由ASR去“驱动”ACR,再由ACR去控制“触发电路”。图中ASR和ACR均为PI调节器。ASR、ACR的输入、输出量的极性主要视触发电路对控制电压的要求而定。 (一)直流电机各物理量间的关系 直流电动机的电路图如图3所示。由图可知,直流电动机有两个独立回路,一个是电枢回路,另一个是励磁回路。

1.电枢绕组的电磁转矩和转矩平衡关系: 2.电枢回路电压平衡关系 结合以上公式可推出即e e T a e a T K K R K U n ?Φ -Φ= 2 其中,Φ ?= e a K U n 0,称为电机理想空载转速,e e T a T K K R n ?Φ=?2为电机转速降,故 直流电机的调速方法 改变电压调速,采用此方法的特性曲线如下图6所示: 图6 改变U 时的机械曲线特性 3.直流电动机的系统框图 (二)转速调节器与速度调节器—比例积分电路(PI 调节器) PI 调节器的电路原理图如图7所示:

双闭环直流调速系统的设计及其仿真

双闭环直流调速系统 的设计及其仿真 班级:自动化 学号: 姓名:

目录 1 前言?????????????????????????3 1.1 课题研究的意义??????????????????????3 1.2 课题研究的背景??????????????????????3 2 总体设计方案?????????????????????? 3 2.1 MATLAB 仿真软件介绍???????????????????3 2.2 设计目标????????????????????????? 4 2.3 系统理论设计?????????????????????? 5 2.4 仿真实验????????????????????????9 2.5 仿真结果???????????????????????10 3 结论???????????????????????12 4 参考文献???????????????????????13 1 前言 1.1 课题研究的意义 现代运动控制技术以各类电动机为控制对象,以计算机和其他电子装置为控制手段,以电力

电子装置为弱电控制强电的纽带,以自动控制理论和信息处理理论为基础,以计算机数字仿真和计算机辅助设计为研究和开发的工具。直调调速是现代电力拖动自动控制系统中发展较早的技术。就目前而言,直流调速系统仍然是自动调速系统的主要形式,在许多工业部门,如轧钢、矿山采掘、纺织、造纸等需要高性能调速的场合得到广泛的应用。且直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。由于直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流拖动控制系统的基础。所以加深直流电机控制原理理解有很重要的意义[1]。 1.2 课题研究的背景 电力电子技术是电机控制技术发展的最重要的助推器, 电力电机技术的迅猛发展

直流电机闭环调速课程设计

课程设计报告 课程名称:计算机控制系统 设计题目:直流电机闭环调速 院系:电气信息学院 班级: 姓名: 学号: 姓名: 学号: 姓名: 学号: 指导教师: 设计时间:

摘要 在电气时代的今天,电动机在工农业生产、人们日常生活中起着十分重要的作用。直流电机是最常见的一种电机,在各领域中得到广泛的应用。研究直流电机的控制和测量方法,对提高控制精度和响应速度、节约能源等都具有重要意义。电机调速问题一直是自动化领域中比较重要的问题之一。不同领域对于电机的调速性能有着不同的要求,因此,不同的调速方法有着不同的应用场合。 为了提高直流调速系统的动态、静态性能,通常采用闭环控制系统(主要包括单闭环、双闭环)。而在对调速指标要求不高的场合,采用单闭环即可。闭环系统较之开环系统能自动侦测把输出信号的一部分拉回到输入端,与输入信号相比较,其差值作为实际的输入信号;能自动调节输入量,能提高系统稳定性。在对调速系统性能有较高要求的领域常利用直流电动机,但直流电动机开环系统稳定性不能满足要求,可利用转速单闭环提高稳态精度。 本次课程设计利用软件定时方式采用Intel 8255A可编程外设接口芯片唐都TD-PITC 实验系统上模拟直流电动机闭环调速系统,A/D转换器实现模拟信号到数字信号的转换,设置电机转速的给定值,通过PWM方式可实现电机转速的调节,LED灯显示电机转速的大小状态。 关键字:闭环调速、inter 8255A、A/D转换器、PWM、LED

目录 摘要 1 控制系统总体设计方案 (3) 2 系统的组成及工作原理 (4) 2.1 8255工作原理 (4) 2.2 转速调节原理 (5) 2.3 A/D转换原理 (5) 2.4 LED灯的工作原理 (6) 2.5 实现两位十进制数的显示 (6) 3 硬件设计 (7) 3.1 接线图 (7) 4 软件设计 (8) 4.1 转速调节程序设计框图 (8) 4.2 主程序流程图 (9) 4.3 程序清单 (10) 5 调试及结果 (21) 5.1 调试步骤 (21) 5.2结果分析 (21) 5.2结论 (21) 参考文献 (22)

直流电机双闭环控制系统分析报告与设计

基于MATLAB 的直流电机 双闭环调速系统的设计与仿真 设计任务书: 1. 设置该大作业的目的 在转速闭环直流调速系统中,只有电流截止负反馈环节对电枢电流加以保护,缺少对电枢电流的精确控制,也就无法充分发挥直流伺服电动机的过载能力,因而也就达不到调速系统的快速起动和制动的效果。通过在转速闭环直流调速系统的基础上增加电流闭环,即按照快速起动和制动的要求,实现对电枢电流的精确控制,实质上是在起动或制动过程的主要阶段,实现一种以电动机最大电磁力矩输出能力进行启动或制动的过程。此外,通过完成本大作业题目,让学生体会反馈校正方法所具有的独特优点:改造受控对象的固有特性,使其满足更高的动态品质指标。 2. 大作业具体容 设一转速、电流双闭环直流调速系统,采用双极式H 桥PWM 方式驱动,已知电动机参数为: 额定功率200W ; 额定电压48V ; 额定电流4A ; 额定转速=500r/min ; 电枢回路总电阻8=R Ω; 允许电流过载倍数λ=2; 电势系数=e C 0.04Vmin/r ; 电磁时间常数=L T 0.008s ; 机电时间常数=m T 0.5s ; 电流反馈滤波时间常数=oi T 0.2ms ; 转速反馈滤波时间常数=on T 1ms ; 要求转速调节器和电流调节器的最大输入电压==* *im nm U U 10V ; 两调节器的输出限幅电压为10V ;

f10kHz; PWM功率变换器的开关频率= K 4.8。 放大倍数= s 试对该系统进行动态参数设计,设计指标: 稳态无静差; σ5%; 电流超调量≤ i 空载起动到额定转速时的转速超调量σ≤ 25%; t0.5 s。 过渡过程时间= s 3. 具体要求 (1) 计算电流和转速反馈系数; (2) 按工程设计法,详细写出电流环的动态校正过程和设计结果; (3) 编制Matlab程序,绘制经过小参数环节合并近似后的电流环开环频率特性曲线和单位阶跃响应曲线; (4) 编制Matlab程序,绘制未经过小参数环节合并近似处理的电流环开环频率特性曲线和单位阶跃响应曲线; (5) 按工程设计法,详细写出转速环的动态校正过程和设计结果; (6) 编制Matlab程序,绘制经过小参数环节合并近似后的转速环开环频率特性曲线和单位阶跃响应曲线; (7) 编制Matlab程序,绘制未经过小参数环节合并近似处理的转速环开环频率特性曲线和单位阶跃响应曲线; (8) 建立转速电流双闭环直流调速系统的Simulink仿真模型,对上述分析设计结果进行仿真; (9) 给出阶跃信号速度输入条件下的转速、电流、转速调节器输出、电流调节器输出过渡过程曲线,分析设计结果与要求指标的符合性;

直流电机调速系统设计报告

直流电机调速系统 设计报告 学院:信息控制与工程学院班级: 姓名: 学号: 时间:

一设计任务 设计并制作一套直流电机调速系统,主要包括两部分:主电路部 分和以单片机为核心的控制电路部分。设计要求、制作控制电路和主电路,实现如下功能: (1)通过码盘和光耦得到一系列脉冲,利用M 法、T 法或M/T 法对这些脉冲在单片机中进行处理得到电机的转速,在液晶或数码管上进行显示; (2)DC/DC 电路能够正常工作,通过旋钮或键盘设定转速,并 能够通过电力电子电路输出合适的电压,使电机的转速达到设定转速。 图1 系统总体框图 二、 设计思路和设计过程 在此次电路和软件的设计中,电机的转速的获得是通过光耦采集 码盘和光耦

脉冲传输到单片机的INT0管脚上进行中断,然后通过定时器T0产生1s的计时,计算在1s内脉冲的个数为X,由于电机上码盘上刻有23个孔,那么电机的转速为3X。而转速的设定采用的是电位器,采集0-5V的电压,通过单片机上P1.0端口进行A/D转换产生00H-FFH。PWM的产生是由P1.3口产生的,通过单片机的PCA中的寄存器设定初始值,产生大约是40KHZ的PWM波。通过驱动电路来改变电机的转速。 由于本次实习采用的是自主设计,需要同学们自己自行设计电路并编写程序,由于我之前并没有接触过这种设计,因此此次设计有很大的难度。电源部分的设计由于之前都做过很多,这是很简单的,在当天下午我们基本上就完成了这部分。至于单片机最下系统部分的电路和数码管显示的电路是参考老师给的关于STC12C5A16AD型号单片机的技术资料上参考得到的。驱动电路和主电路的设计是来源于网上的参考资料和从图书馆中借的书中,并与其他同学对照比较和在老师的帮助下完成的。这部分花了比较长的时间完成。 由于课程设计之前我自己看过C语言编写单片机程序的书,再加上参考老师给的一些资料,所以完成起来不是特别难。 三、电路调试过程中遇到的问题 1、由于在焊接数码管部分电路时,为了方便焊接就把数码管的管脚打乱了接,在程序设计过程中出现了几次修改才让数码 管显示正常。

双闭环直流电机控制完整版.

双闭环直流电机调速系统设计 摘要 转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。根据晶闸管的特性,通过调节控制角α大小来调节电压。基于设计题目,直流电动机调速控制器选用了转速、电流双闭环调速控制电路。在设计中调速系统的主电路采用了三相全控桥整流电路来供电。本文首先确定整个设计的方案和框图。然后确定主电路的结构形式和各元部件的设计,同时对其参数的计算,包括整流变压器、晶闸管、电抗器和保护电路的参数计算。接着驱动电路的设计包括触发电路和脉冲变压器的设计。最后,即本文的重点设计直流电动机调速控制器电路,本文采用转速、电流双闭环直流调速系统为对象来设计直流电动机调速控制器。为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈,二者之间实行嵌套联接。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称做外环。这就形成了转速、电流双闭环调速系统。先确定其结构形式和设计各元部件,并对其参数的计算,包括给定电压、转速调节器、电流调节器、检测电路、触发电路和稳压电路的参数计算然后最后采用MATLAB/SIMULINK对整个调速系统进行了仿真分析,最后画出了调速控制电路的电气原理图。 关键词:双闭环;转速调节器;电流调节器 目录 前言0 第1章绪论1 1.1直流调速系统的概述1 1.2研究课题的目的和意义1 1.3设计内容和要求1 1.3.1设计要求1 1.3.2设计内容1 第2章双闭环直流调速系统设计框图3 第3章系统电路的结构形式和双闭环调速系统的组成4

3.1主电路的选择与确定4 3.2 双闭环调速系统的组成6 3.3 稳态结构框图和动态数学模型7 3.3.1稳态结构框图7 3.3.2 动态数学模型9 第4章主电路各器件的选择和计算10 4.1变流变压器容量的计算和选择10 4.2 整流元件晶闸管的选型12 4.3 电抗器设计13 4.4 主电路保护电路设计15 4.4.1过电压保护设计15 4.4.2过电流保护设计17 第5章驱动电路的设计18 5.1晶闸管的触发电路18 5.2脉冲变压器的设计20 第6章双闭环调速系统调节器的动态设计22 6.1 电流调节器的设计23 6.2 转速调节器的设计24 第7章基于MATLAB/SIMULINK的调速系统的仿真28 小结31 致谢32 参考文献33 附表34 附图35

双闭环直流调速系统的设计

双闭环直流调速系统设计 一、系统组成与数学建模 1)系统组成 为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。二者之间实行嵌套(或称串级)联接如下图所示。 L + - 图中,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。 这就形成了转速、电流双闭环调速系统。 为了获得良好的静、动态性能,转速和电流两个调节器一般都采用P I 调节器,这样构成的双闭环直流调速系统的电路原理图示于下图。图中标出了两个调节器输入输出电压的实际极性,它们是按照电力电子变换器的控制电压U c为正电压的情况标出的,并考虑到运算放大器的倒相作用。

2)数学建模 图中W ASR(s)和W ACR(s)分别表示转速调节器和电流调节器的传递函数。如果采用PI 调节器,则有 s s K s W i i i ACR 1 )(ττ+= s s K s W n n n ASR 1 )(ττ+= 二、 设计方法 采用工程设计法 1、设计方法的原则: (1)概念清楚、易懂; (2)计算公式简明、好记; 双闭环直流调速系统的动态结构图

(3)不仅给出参数计算的公式,而且指明参数调整的方向; (4)能考虑饱和非线性控制的情况,同样给出简单的计算公式; (5)适用于各种可以简化成典型系统的反馈控制系统。 2、工程设计方法的基本思路: (1)选择调节器结构,使系统典型化并满足稳定和稳态精度。 (2)设计调节器的参数,以满足动态性能指标的要求。 一般来说,许多控制系统的开环传递函数都可表示为 ∏∏==++= n 1 i i r m 1j j ) 1() 1()(s T s s K s W τ 上式中,分母中的 sr 项表示该系统在原点处有 r 重极点,或者说,系统含有 r 个积分环节。根据 r=0,1,2,……等不同数值,分别称作0型、I 型、Ⅱ型、……系统。 自动控制理论已经证明,0型系统稳态精度低,而Ⅲ型和Ⅲ型以上的系统很难稳定。 因此,为了保证稳定性和较好的稳态精度,多选用I 型和II 型系统。 三、 电流环设计 反电动势与电流反馈的作用相互交叉,给设计工作带来麻烦。 转速的变化往往比电流变化慢得多,对电流环来说,反电动势是一个变化较慢的扰动,在按动态性能设计电流环时,可以暂不考虑反电动势变化的动态影响,0≈?E 。 忽略反电动势对电流环作用的近似条件是 l m ci T T 1 3 ≥ω (3-45) 式中ωci ——电流环开环频率特性的截止频率。 图3-19 电流环的动态结构图及其化简 (a)忽略反电动势的动态影响 把给定滤波和反馈滤波同时等效地移到环内前向通道上,再把给定信号改成 ,则电流环便等效成单位负反馈系统。 ) (s W R (s ) C (s )

(完整word版)直流电机的闭环调速系统设计

控制系统课程设计报告书 系部名称: 学生姓名: 专业名称: 班级: 时间:

直流电机的闭环调速系统设计 一、设计要求: 利用PID 控制器、光电传感器及F/V 转换器设计直流电机的闭环调速系统。 要求:给定直流小电机,设计模拟PID 控制器,利用传感器检测速度(ST15、 LM331),搭建成闭环控制电机转速系统。 (1)阶跃响应的超调量:σ%≤20%; (2)阶跃响应的调节时间:t s =1s ±0.02s 。 二、设计方案分析 1、方案设计: 器材:电路板、PID 控制器、小型直流电机、LM331、ST151各一片 电阻、电容若干、导线、LM324若干 原理框图: 输入 输出 注: 1.输入电源信号与反映电机转速变化的电压信号的反馈调节电压信号,作为共同输入,通过PID 控制器调节,驱动电机工作。 2.电动机转动叶轮,叶轮通过转动在光电传感器处产生脉冲信号并输入给F/V 转换器;F/V 转换器将频率信号转换为电压信号,将此作为反馈信号然后通过PID 控制器对输出电压进行校正。 2、背景知识介绍: 减 PID 控制器 直流电机 F/V 转换器Lm331 光电传感器ST151

(1)选题背景及意义 在电气时代的今天,电动机一直在现代化生产和生活中起着十分的重要的作用。无论是在农业生产、交通运输、国防、医疗卫生、商务与办公设备,还是在日常的生活中的家用电器,都大量地使用着各种各样的电动机。对电动机的控制可分为简单控制和复杂控制两种,简单控制是只对电动机进行启动、制动、正反转控制和顺序控制。这类控制可通过继电器、可编程控制器和开关元件来实现。复杂控制是只对电动机的转角、转矩,电压、电流等物理量进行控制,而且有时往往需要非常精确的控制。以前对直流的简单控制的应用很多,但是,随着现代步伐的迈进,人们对自动化的要求越来越高,使直流电机的PID控制控制逐渐成为主流,实现对电机转速的精确控制。 (2)系统校正 系统校正,就是在系统中加入一些参数可以根据需要而改变的机构或装置,使系统整个特性发生改变,从而满足给定的各项性能指标,在系统校正中,当系统的性能指标以单位阶跃响应的峰值时间、调节时间、超调量、阻尼比、稳态误差等时域特征量给出时,一般采用的是根轨迹校正法,实验所用软件为MATLAB、EWB软件,使用MATLAB软件绘制系统校正前后的根轨迹图,系统的闭环阶跃响应,观察系统校正前后的各项性能指标是否满足系统所需性能指标,在Simulink界面下或使用EWB软件对校正前后的系统进行仿真运行,观察系统输出曲线的变化。 在控制系统设计中,常用的校正方法为串联校正和反馈校正,串联校正比反馈校正设计简单,也比较容易对信号进行各种必要形式的转换,特别在直流控制系统中,由于传递直流电压信号,适合采用串联校正。在确定校正装置的具体形式时,根据校正装置所需提供的控制规律选择相应的元件,常常采用比例、微分、积分控制规律,或基本规律的组合,如比例微分、比例积分等。而本次课题选择的正是PID即比例积分微分控制器。 三、硬件设计: 总体仿真电路:

相关文档
相关文档 最新文档