文档视界 最新最全的文档下载
当前位置:文档视界 › 北京高考导数大题分类(2020年整理).doc

北京高考导数大题分类(2020年整理).doc

北京高考导数大题分类(2020年整理).doc
北京高考导数大题分类(2020年整理).doc

导数大题分类

一、含参数单调区间的求解步骤:

①确定定义域(易错点)

②求导函数)('x f

③对)('x f 进行整理,能十字交叉的十字交叉分解,若含分式项,则进行通分整理.

④)('x f 中x 的最高次系数是否为0,为0时求出单调区间.

例1:x x a x a x f ++-=232

13)(,则)1)(1()('--=x ax x f 要首先讨论0=a 情况 ⑤)('x f 最高次系数不为0,讨论参数取某范围的值时,若0)('≥x f ,则)(x f 在定义域内单调递增;

若0)('

≤x f ,则)(x f 在定义域内单调递减. 例2:x x a x f ln 2

)(2+=,则)('x f =)0(,12>+x x ax ,显然0≥a 时0)('>x f ,此时)(x f 的单调区间为),0(+∞.

⑥)('x f 最高次系数不为0,且参数取某范围的值时,不会出现0)('≥x f 或者0)('≤x f 的情况 求出)('

x f =0的根,(一般为两个)21,x x ,判断两个根是否都在定义域内.如果只有一根在定义域

内,那么单调区间只有两段.

若两根都在定义域内且一根为常数,一根含参数.则通过比较两根大小分三种情况讨论单调区间,

即212121,,x x x x x x =<>. 例3:若)0(,ln )1(2

)(2≠++-=

a x x a x a x f ,则x x ax x f )1)(1()('--=,)0(>x 解方程0)('=x f 得a x x 1,121== 0

0>a 时,比较两根要分三种情况:1,10,1><<=a a a

用所得的根将定义域分成几个不同的子区间,讨论)('x f

在每个子区间内的正负,求得)(x f

的单调区间。

(1)求函数的单调区间

1.已知函数22

)1ln()(x k x x x f +-+= )0(≥k (Ⅰ)当2=k 时,求曲线)(x f y =在点))1(,1(f 处的切线方程.

(Ⅱ)求)(x f 得单调区间.

2. 已知函数2()4ln f x ax x =-,a ∈R . (Ⅰ)当12

a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)讨论()f x 的单调性.

3.已知函数()()sin cos ,(0,)f x x a x x x π=-+∈. (Ⅰ)当π2

a =

时,求函数()f x 值域; (Ⅱ)当π2a >时,求函数()f x 的单调区间. 4.已知函数1

2e ()44

x f x ax x +=++,其中a ∈R . (Ⅰ)若0a =,求函数()f x 的极值;

(Ⅱ)当1a >时,试确定函数()f x 的单调区间.

(二)求函数在给定的区间的最值问题

5.已知函数1)(2+=ax x f )0(>a ,bx x x g +=3)(.

(Ⅰ)若曲线)(x f 与)(x g 在它们的交点),1(c 处具有公切线,求b a ,的值.

(Ⅱ)当b a 42=时,求函数)()(x g x f +的单调区间,并求其在)1,(--∞上的最大值.

6.已知函数21()ln 2

f x ax x =-,a ∈R . (Ⅰ)求函数()f x 的单调区间;

(Ⅱ)若函数()f x 在区间[1,e]的最小值为1,求a 的值.

7.已知函数bx ax x x f ++=2

ln )((其中b a ,为常数且0≠a )在1=x 处取得极值.

(Ⅰ)当1a =时,求函数()f x 的单调区间;

(Ⅱ)若函数)(x f 在区间[0,e]上的最大值为1,求a 的值.

8.已知函数)1ln(2

1)(2x ax x x f +--=,其中a ∈R . (Ⅰ)若2x =是)(x f 的极值点,求a 的值;

(Ⅱ)求)(x f 的单调区间;

(Ⅲ)若)(x f 在[0,)+∞上的最大值是0,求a 的取值范围.

9.已知21()ln(1)2

f x ax x x =-+-+,其中0>a . (Ⅰ)若函数()f x 在点(3,(3))f 处切线斜率为0,求a 的值;

(Ⅱ)求()f x 的单调区间;

(Ⅲ)若()f x 在[)0,+∞上的最大值是0,求a 的取值范围.

10.设函数()x f x e ax =-,x R ∈.

(Ⅰ)当2a =时,求曲线()f x 在点(0,(0))f 处的切线方程;

(Ⅱ)在(Ⅰ)的条件下,求证: ()0f x >;

(Ⅲ)当1a >时,求函数()f x 在[0,]a 上的最大值.

二、恒成立问题的几种问法:

1.对于()b a x ,∈?,k x f ≥)(恒成立,等价于函数)(x f 在()b a ,上的最小值k x f ≥min )(.诉讼

2.对于()b a x ,∈?,a x f ≤)(恒成立,等价于函数)(x f 在()b a ,上的最大值k x f ≤max )(.

3.对于[]b a x x ,,21∈?,)()(21x g x f ≥,等价于)(x f 在区间[]b a ,上的最小值min )(x f ,大于等于)(x g

在区间[]b a ,上的最大值max )(x g ,即max min )()(x g x f ≥.

4. 对于[]b a x x ,,21∈?,)()(21x g x f ≤,等价于)(x f 在区间[]b a ,上的最大值max )(x f ,小于等于)(x g

在区间[]b a ,上的最小值min )(x g ,即min max )()(x g x f ≤.

5.对于[]b a x ,∈?,)()(x g x f ≥,等价于构造函数)()()(x g x f x h -=,)(x h 在区间[]b a ,上的最小值

0)(min ≥x h .

6.对于[]b a x ,∈?,)()(x g x f ≤,等价于构造函数)()()(x g x f x h -=,)(x h 在区间[]b a ,上的最大值

0)(max ≤x h .

7.)(x f 在区间[]b a ,上单调递增,等价于[]b a x x f ,,0)(min '

∈≥. 8.)(x f 在区间[]b a ,上单调递减,等价于[]b a x x f ,,0)(max '∈≤.

1.已知函数k x e k x x f 2)()(-=.

(Ⅰ)求)(x f 的单调区间.

(Ⅱ)若对于任意的),0(+∞∈x ,都有e x f 1)(≤

,求k 的取值范围. 2.设l 为曲线C:x

x y ln =在点)0,1(处的切线. (Ⅰ)求l 的方程.

(Ⅱ)证明:除切点外,曲线C 在直线l 下方.

3.已知函数x x x x f sin cos )(-=,??????∈2,

0πx (Ⅰ)求证:0)(≤x f (Ⅱ)若b x x a <

? ??2,0π上恒成立,求a 的最大值和b 的最小值. 5.已知0a >,函数2()21ax f x a x =

++,()ln g x a x x a =-+. (Ⅰ)求函数()f x 的单调区间;

(Ⅱ)求证:对于任意的12,(0,e)x x ∈,都有12()()f x g x >.

6.已知函数21()e 1x f x ax +=-+,a ∈R .

(Ⅰ)若曲线()y f x =在点(0,(0))f 处的切线与直线e 10x y ++=垂直,求a 的值;

(Ⅱ)求函数()f x 的单调区间;

(Ⅲ)设32e a <,当[0,1]x ∈时,都有()f x ≥1成立,求实数a 的取值范围.

7.已知函数R a x a x x f ∈-=,ln )()(

(Ⅰ)当0=a 时求)(x f 的极小值 .

(Ⅱ) 若函数)(x f 在区间),0(+∞上为增函数,求a 得取值范围

8. 已知3)(,ln )(2

-+-==ax x x g x x x f .

(I )求函数)(x f 在)0](2,[>+t t t 上的最小值;

(II )对一切)()(2),,0(x g x f x ≥+∞∈恒成立,求实数a 的取值范围.

9.已知函数2()ln ,.f x x ax x a =-+∈R

(I )若函数()f x 在(1,(1))f 处的切线垂直于y 轴,求实数a 的值;

(II) 在(I )的条件下,求函数()f x 的单调区间;

(III) 若1,()0x f x >>时恒成立,求实数a 的取值范围. 10.已知函数,其中a ∈ R .

⑴ 当 时,求 f (x )的单调区间;

⑵ 当a > 0时,证明:存在实数m > 0,使得对于任意的实数x ,都有| f (x )|≤m 成立.

三、存在性问题的几种问法:

1.()b a x ,0∈?,使得k x f ≥)(成立,等价函数)(x f 在()b a ,上的最大值k x f ≥max )(.

2.()b a x ,0∈?,使得k x f ≤)(成立,等价函数)(x f 在()b a ,上的最小值k x f ≤min )(.

3.[]b a x x ,,21∈?,使得)()(21x g x f ≥成立,等价于)(x f 在区间[]b a ,上的最大值max )(x f ,大于等于 )(x g 在区间[]b a ,上的最小值min )(x g ,即min max )()(x g x f ≥.

4.[]b a x x ,,21∈?,使得)()(21x g x f ≤,等价于)(x f 在区间[]b a ,上的最小值min )(x f ,小于等于)(x g 在区间[]b a ,上的最大值max )(x g ,即max min )()(x g x f ≤.

5.[]b a x ,∈?,使得)()(x g x f ≥,等价于构造函数)()()(x g x f x h -=,)(x h 在区间[]b a ,上的最大值

0)(max ≥x h .

6. []b a x ,∈?,使得)()(x g x f ≤,等价于构造函数)()()(x g x f x h -=,)(x h 在区间[]b a ,上的最小值 0)(min ≤x h .

7.)(x f 在区间()b a ,上存在单调递增区间,等价于)('x f

的最大值0)(max '>x f . 8.)(x f 在区间()b a ,上存在单调递减区间,等价于)('x f

的最小值0)(min '

1.已知曲线()x f x ax e =-(0)a ≠. (Ⅰ)求曲线在点(0,(0)f )处的切线方程;

(Ⅱ)若存在0x 使得0()0f x ≥,求a 的取值范围.

2.已知函数1()()2ln ()f x a x x a x

=--∈R . (Ⅰ)若2a =,求曲线()y f x =在点(1,(1))f 处的切线方程;

(Ⅱ)求函数()f x 的单调区间; (Ⅲ)设函数()a g x x

=-.若至少存在一个0[1,e]x ∈,使得00()()f x g x >成立,求实数a 的取值范围. 3.已知函数1()ln (0,)f x a x a a x

=+≠∈ R (Ⅰ)若1a =,求函数()f x 的极值和单调区间;

(Ⅱ) 若在区间[1,e]上至少存在一点0x ,使得0()0f x <成立,求实数a 的取值范围.

4.已知函数()e x f x x a -=+?.

(Ⅰ)当2e a =时,求()f x 在区间[1,3]上的最小值;

(Ⅱ)求证:存在实数0[3,3]x ∈-,有0()f x a >.

四、切线问题

1.已知函数()f x =ln ,x a x a +∈R .

(Ⅰ)求函数()f x 的单调区间;

(Ⅱ)当[]1,2x ∈时,都有()0f x >成立,求a 的取值范围;

(Ⅲ)试问过点(13)P ,可作多少条直线与曲线()y f x =相切?并说明理由.

高考导数压轴题型归类总结

导数压轴题型归类总结 目 录 一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31) (一)作差证明不等式 (二)变形构造函数证明不等式 (三)替换构造不等式证明不等式 四、不等式恒成立求字母范围 (51) (一)恒成立之最值的直接应用 (二)恒成立之分离常数 (三)恒成立之讨论字母范围 五、函数与导数性质的综合运用 (70) 六、导数应用题 (84) 七、导数结合三角函数 (85) 书中常用结论 ⑴sin ,(0,)x x x π<∈,变形即为sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>.

一、导数单调性、极值、最值的直接应用 1. (切线)设函数a x x f -=2)(. (1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值; (2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21. 解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得3 3 ±=x . 所以当33= x 时,)(x g 有最小值9 32)33(-=g . (2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='= 曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12 122x a x x +=,∴12 1 112 11222x x a x x a x x x -=-+=- ∵a x >1,∴ 021 21 <-x x a ,即12x x <. 又∵1122x a x ≠,∴a x a x x a x x a x x =?>+=+= 1 1111212222222 所以a x x >>21. 2. (2009天津理20,极值比较讨论) 已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当2 3 a ≠ 时,求函数()f x 的单调区间与极值. 解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。 ⑴.3)1(')2()(')(022e f e x x x f e x x f a x x =+===,故,时,当 .3))1(,1()(e f x f y 处的切线的斜率为在点所以曲线= ⑵[] .42)2()('22x e a a x a x x f +-++= .223 2 .220)('-≠-≠-=-==a a a a x a x x f 知,由,或,解得令

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编 函数与导数 一. 选择题: 1.(全国一1 )函数y =的定义域为( C ) A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥ D .{}|01x x ≤≤ 2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A ) 3.(全国一6)若函数(1)y f x =- 的图像与函数ln 1y =的图像关于直线y x =对称,则()f x =( B ) A .21x e - B .2x e C .21x e + D .22x e + 4.(全国一7)设曲线11x y x += -在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2 B .12 C .12- D .2- 5.(全国一9)设奇函数()f x 在(0)+∞, 上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( D ) A .(10)(1)-+∞,, B .(1)(01)-∞-, , C .(1)(1)-∞-+∞, , D .(10)(01)-,, 6.(全国二3)函数1()f x x x = -的图像关于( C ) A .y 轴对称 B . 直线x y -=对称 A B C D

C . 坐标原点对称 D . 直线x y =对称 8.(全国二4)若13(1)ln 2ln ln x e a x b x c x -∈===,, ,,,则( C ) A .a > B .b a c >> C .c a b >> D .b c a >> 10.(北京卷3)“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( B ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 11.(四川卷10)设()()sin f x x ω?=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) (A)()01f = (B)()00f = (C)()'01f = (D)()'00f = 12.(四川卷11)设定义在R 上的函数()f x 满足()()213f x f x ?+=,若()12f =,则()99f =( C ) (A)13 (B)2 (C)132 (D)213 13.(天津卷3)函数1y =04x ≤≤)的反函数是A (A )2(1)y x =-(13x ≤≤) (B )2(1)y x =-(04x ≤≤) (C )21y x =-(13x ≤≤) (D )21y x =-(04x ≤≤) 14.(天津卷10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值集合为B (A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3} 15.(安徽卷7)0a <是方程2210ax x ++=至少有一个负数根的( B ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 16.(安徽卷9)在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称。而函数()y f x =的图象与()y g x =的图象关于y 轴对称,若()1f m =-,

2020年高考文科数学《导数的综合应用》题型归纳与训练

a - a (- ),( , +∞) 单调递增, 在 (- ( 2020 年高考文科数学《导数的综合应用》题型归纳与训练 【题型归纳】 题型一 含参数的分类讨论 例1 已知函数 f ( x ) = ax 3 - 12 x ,导函数为 f '( x) , (1)求函数 f ( x ) 的单调区间; (2)若 f '(1)= -6, 求函数f ( x ) 在[—1,3]上的最大值和最小值。 【答案】略 【解析】(I ) f '( x ) = 3ax 2 - 12 = 3(ax 2 - 4) ,(下面要解不等式 3(ax 2 - 4) > 0 ,到了分类讨论的时机,分 类标准是零) 当 a ≤ 0时, f '( x ) < 0, f ( x )在(-∞, +∞) 单调递减; 当 a > 0时,当x 变化时, f '( x ), f ( x ) 的变化如下表: x (-∞, - 2 ) 2 2 2 , ) a a 2 a ( 2 a , +∞) f '( x ) + 0 — + f ( x ) 极大值 极小值 此时, f ( x )在(-∞, - 2 2 6 a 2 2 , ) 单调递减; a a (II )由 f '(1) = 3a -12 = -6, 得a = 2. 由(I )知, f ( x )在(-1, 2) 单调递减 ,在( 2 ,3)单调递增。 【易错点】搞不清分类讨论的时机,分类讨论不彻底 【思维点拨】分类讨论的难度是两个, 1)分类讨论的时机,也就是何时分类讨论,先按自然的思路推理, 由于参数的存在,到了不能一概而论的时候,自然地进入分类讨论阶段;(2)分类讨论的标准,要做到不 重复一遗漏。还要注意一点的是,最后注意将结果进行合理的整合。 题型二 已知单调性求参数取值范围问题 例 1 已知函数 f ( x) = 1 3 x 3 + x 2 + ax - 5 , 若函数在[1,+∞) 上是单调增函数,求 a 的取值范围

高考真题导数第一问分类汇总

切线问题 1 已知函数31()4 f x x ax =++,()ln g x x =-.当a 为何值时,x 轴为曲线()y f x =的切线; 2 设函数1 (0ln x x be f x ae x x -=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. 3已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.求a 、b 的值; 4 设函数()()23x x ax f x a R e +=∈若()f x 在0x =处取得极值,确定a 的值,并求此时曲线()y f x =在点()()1,1f 处的切线方程; 5已知函数f(x)=e x -ax(a 为常数)的图像与y 轴交于点A ,曲线y =f(x)在点A 处的切线斜率为-1. 求a 的值及函数f(x)的极值; 6设函数,曲线在点处的切线方程为, 7已知函数.求曲线在点处的切线方程; 8设函数f (x )=x 2+ax +b ,g (x )=e x (cx +d ).若曲线y =f (x )和曲线y =g (x )都过点P (0,2),且在点P 处有相同的切线y =4x +2.求a ,b ,c ,d 的值; ()a x f x xe bx -=+()y f x =(2,(2))f (1)4y e x =-+()e cos x f x x x =-()y f x =(0,(0))f

单调性问题 1已知函数)(x f 满足212 1)0()1(')(x x f e f x f x +-=-.求)(x f 的解析式及单调区间; 2 讨论函数2()2 x x f x e x -=+ 的单调性,并证明当x >0时,(2)20x x e x -++>; 3已知函数()2x x f x e e x -=--. 讨论()f x 的单调性; 4 设1a >,函数a e x x f x -+=)1()(2.求)(x f 的单调区间 ; 5已知函数f (x )=a e 2x -b e -2x -cx (a ,b ,c ∈R )的导函数f ′(x )为偶函数,且曲线y =f (x )在点(0,f (0))处的 切线的斜率为4-c . (1)确定a ,b 的值; (2)若c =3,判断f (x )的单调性; 6设,已知定义在R 上的函数在区间内有一个零点,为的导函数.求的单调区间; 7已知函数()ln()x f x e x m =-+. 设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; a ∈Z 432 ()2336f x x x x x a =+--+(1,2)0x ()g x ()f x ()g x

2017至2018年北京高三模拟分类汇编之导数大题

2017至2018年北京高三模拟分类汇编之导数大题,20创新题 精心校对版 △注意事项: 1.本系列试题包含2017年-2018年北京高考一模和二模真题的分类汇编。 2.本系列文档有相关的试题分类汇编,具体见封面。 3.本系列文档为北京双高教育精心校对版本 4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科 一 、解答题(本大题共22小题,共0分) 1.(2017北京东城区高三一模数学(文))设函数ax x x x f +-=232131)(,R a ∈. (Ⅰ)若2=x 是)(x f 的极值点,求a 的值,并讨论)(x f 的单调性; (Ⅱ)已知函数3221)()(2+-=ax x f x g ,若)(x g 在区间)1,0(内有零点,求a 的取值范围; (Ⅲ)设)(x f 有两个极值点1x ,2x ,试讨论过两点))(,(11x f x ,))(,(22x f x 的直线能否过点)1,1(,若能,求a 的值;若不能,说明理由. 2.(2017北京丰台区高三一模数学(文)) 已知函数1()e x x f x +=,A 1()x m ,,B 2()x m ,是曲线()y f x =上两个不同的点. (Ⅰ)求()f x 的单调区间,并写出实数m 的取值范围; (Ⅱ)证明:120x x +>. 3.(2017北京丰台区高三二模数学(文)) 已知函数ln ()x f x ax =(0)a >. (Ⅰ)当1a =时,求曲线()y f x =在点(1(1)),f 处的切线方程; 姓名:__________班级:__________考号:__________ ●-------------------------密--------------封------------ --线------ --------内------ ------- -请------- -------不-------------- 要--------------答--------------题-------------------------●

2009至2018年北京高考真题分类汇编之导数大题

2009至2018年北京高考真题分类汇编之导数大题精心校对版题号一总分得分△注意事项:1.本系列试题包含2009年-2018年北京高考真题的分类汇编。2.本系列文档有相关的试题分类汇编,具体见封面。3.本系列文档为北京双高教育精心校对版本4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科一、解答题(本大题共10小题,共0分)1.(2013年北京高考真题数学(文))已知函数2()sin cos f x x x x x (1)若曲线()y f x 在点(,())a f a 处与直线y b 相切,求a 与b 的值。(2)若曲线()y f x 与直线y b 有两个不同的交点,求b 的取值范围。2.(2012年北京高考真题数学(文))已知函数2()1(0)f x ax a ,3()g x x bx .(Ⅰ)若曲线()y f x 与曲线()y g x 在它们的交点(1,)c 处具有公共切线,求,a b 的值;(Ⅱ)当3a ,9b 时,若函数()()f x g x 在区间[,2]k 上的最大值为28,求k 的取值范围.3.(2011年北京高考真题数学(文))已知函数()()x f x x k e . (Ⅰ)求()f x 的单调区间;(Ⅱ)求()f x 在区间[0,1]上的最小值. 4.(2009年北京高考真题数学(文))姓名:__________班级:__________考号:__________●-------------------------密--------------封- -------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编 函数与导数 一. 选择题: 1.(全国一1 )函数y = C ) A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥ D .{}|01x x ≤≤ 2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A ) 3.(全国一6)若函数(1)y f x =- 的图像与函数1y =的图像关于直线y x =对称,则()f x =( B ) A .21x e - B .2x e C .21x e + D .22x e + 4.(全国一7)设曲线11x y x += -在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2 B .12 C .12- D .2- 5.(全国一9)设奇函数()f x 在(0)+∞, 上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( D ) A .(10)(1)-+∞ ,, B .(1)(01)-∞- , , C .(1)(1)-∞-+∞ ,, D .(10)(01)- , , 6.(全国二3)函数1()f x x x = -的图像关于( C ) A .y 轴对称 B . 直线x y -=对称 A . B . C . D .

C . 坐标原点对称 D . 直线x y =对称 8.(全国二4)若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( C ) A .a > B .b a c >> C .c a b >> D .b c a >> 10.(北京卷3)“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( B ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 11.(四川卷10)设()()sin f x x ω?=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) (A)()01f = (B)()00f = (C)()'01f = (D)()'00f = 12.(四川卷11)设定义在R 上的函数()f x 满足()()213f x f x ?+=,若()12f =,则()99f =( C ) (A)13 (B)2 (C)132 (D)213 13.(天津卷3)函数1y =04x ≤≤)的反函数是A (A )2(1)y x =-(13x ≤≤) (B )2(1)y x =-(04x ≤≤) (C )21y x =-(13x ≤≤) (D )21y x =-(04x ≤≤) 14.(天津卷10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时 a 的取值集合为B (A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3} 15.(安徽卷7)0a <是方程2210ax x ++=至少有一个负数根的( B ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 16.(安徽卷9)在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称。而函数()y f x =的图象与()y g x =的图象关于y 轴对称,若()1f m =-,

高考数学导数题型归纳(_好)

导数题型归纳 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数, 4323()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332x mx f x x '=-- 2 ()3g x x mx ∴=-- (1) ()y f x =Q 在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0)030 2(3)09330g m g m <-? ?<--

(完整word版)高考导数题型归纳

高考压轴题:导数题型及解题方法 (自己总结供参考) 一.切线问题 题型1 求曲线)(x f y =在0x x =处的切线方程。 方法:)(0x f '为在0x x =处的切线的斜率。 题型2 过点),(b a 的直线与曲线)(x f y =的相切问题。 方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。 注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。 例 已知函数f (x )=x 3﹣3x . (1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169=--y x ) (2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、 (提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。将问题转化为关于m x ,0的方程有三个不同实数根问题。(答案:m 的范围是()2,3--) 练习 1. 已知曲线x x y 33 -= (1)求过点(1,-3)与曲线x x y 33-=相切的直线方程。答案:(03=+y x 或027415=--y x ) (2)证明:过点(-2,5)与曲线x x y 33-=相切的直线有三条。 2.若直线0122=--+e y x e 与曲线x ae y -=1相切,求a 的值. (答案:1) 题型3 求两个曲线)(x f y =、)(x g y =的公切线。 方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。()(,22x f x );

(完整word版)北京高考导数大题分类.doc

导数大题分类 一、含参数单调区间的求解步骤: ① 确定定义域(易错点) ②求导函数 f ' (x) ③对 f ' ( x) 进行整理,能十字交叉的十字交叉分解,若含分式项,则进行通分整理 . ④ f ' ( x) 中 x 的最高次系数是否为 0,为 0 时求出单调区间 . 例 1: f ( x) a x 3 a 1 x 2 x ,则 f ' ( x) (ax 1)( x 1) 要首先讨论 a 0 情况 3 2 ⑤ f ' ( ) 最高次系数不为 0,讨论参数取某范围的值时, 若 f ' (x) 0 ,则 f ( x) 在定义域内单调递增; x 若 f ' (x) 0 ,则 f ( x) 在定义域内单调递减 . 例 2: f (x) a x 2 ln x ,则 f ' ( x) = ax 2 1 , ( x 0) ,显然 a 0时 f ' ( x) 0 ,此时 f (x) 的 2 x 单调区间为 (0, ) . ⑥ f ' ( ) 最高次系数不为 0,且参数取某范围的值时,不会出现 f ' (x) 0 或者 f ' ( x) 0 的情况 x 求出 f ' ( x) =0 的根,(一般为两个) x 1 , x 2 ,判断两个根是否都在定义域内 . 如果只有一根在定义域 内,那么单调区间只有两段 . 若两根都在定义域内且一根为常数,一根含参数 . 则通过比较两根大小分三种情况讨论单调区间, 即 x 1 x 2 , x 1 x 2 , x 1 x 2 . 例 3: 若 f ( x) a x 2 (a 1)x ln x, (a 0) ,则 f ' ( x) ( ax 1)( x 1) , (x 0) 解方程 f ' ( x) 2 1 x 0 得 x 1 1, x 2 a a 0时,只有 x 1 1 在定义域内 . a 0 时 , 比较两根要分三种情况: a 1,0 a 1, a 1 用所得的根将定义域分成几个不同的子区间,讨论 f ' ( x) 在每个子区间内的正负,求得 f (x) 的单调区间。

高考导数大题30道(2020年整理).doc

导数大题 1 .已知函数()b ax x x f ++=2 3的图象在点P (1,0)处的切线与直线03=+y x 平行? (1)求常数a 、b 的值; (2)求函数()x f 在区间[]t ,0上的最小值和最大值(0>t )? 2 .已知函数R a ax x x f ∈+-=,)( 3 (1)若)(x f 在),1[+∞上为单调减函数,求实数a 取值范围; (2)若,12=a 求)(x f 在[-3,0]上的最大值和最小值? 3 .设函数x e x x f 22 1)(=. (1)求函数)(x f 的单调区间; (2)若当]2,2[-∈x 时,不等式m x f <)(恒成立,求实数m 的取值范围. 4 .已知函数.),2,1()(3)(3 l P P x f y x x x f 作直线过点上一点及-=-= (1)求使直线)(x f y l =和相切且以P 为切点的直线方程; (2)求使直线)(x f y l =和相切且切点异于P 的直线方程)(x g y =?

()I 求()f x 的单调区间; ()II 若()f x 在1x =-处取得极大值,直线y=m 与()y f x =的图象有三个不同的交点,求m 的取值范围? 7 .已知函数2 ()ln f x a x bx =-图象上一点(2,(2))P f 处的切线方程为22ln 23++-=x y . (Ⅰ)求b a ,的值; (Ⅱ)若方程()f x m +=m 的取值范围(其中e 为自然对数的底数); 8 .已知函数21 2 ()()ln f x a x x =-+.(R a ∈) (1)当a =1时,求()f x 在区间[1,e ]上的最大值和最小值; (2)若在区间(1,+∞)上,函数()f x 的图象恒在直线2y ax =下方,求a 的取值范围。 10.已知函数2 ()sin 2(),()()2f x x b x b R F x f x =+-∈=+,且对于任意实数x ,恒有(5)(5)F x F x -=-? ⑴求函数)(x f 的解析式; ⑵已知函数()()2(1)ln g x f x x a x =+++在区间(0,1)上单调,求实数a 的取值范围; ⑶讨论函数21()ln(1)()2 h x x f x k =+- -零点的个数?

高考数学导数题型归纳(文科)-

文科导数题型归纳 高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); (请同学们参看2010省统测2) 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常 数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =在区间[]0,3上为“凸函数” , 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0)030 2(3)09330 g m g m <-? ?<--

高二数学选修2-2导数12种题型归纳(中等难度)

导数题型分类解析(中等难度) 一、变化率与导数 函数)(0x f y =在x 0到x 0+x ?之间的平均变化率,即)('0x f =0 lim →?x x y ??=0 lim →?x x x f x x f Δ)()Δ(00-+,表 示函数)(0x f y =在x 0点的斜率。注意增量的意义。 例1:若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000 ()() lim h f x h f x h h →+-- 的值为( ) A .'0()f x B .'02()f x C .' 02()f x - D .0 例2:若' 0()3f x =-,则000 ()(3) lim h f x h f x h h →+--=( ) A.3- B .6- C .9- D .12- 例3:求0lim →h h x f h x f ) ()(020-+ 二、“隐函数”的求值 将)('0x f 当作一个常数对)(0x f 进行求导,代入0x 进行求值。 例1:已知()()232 f x x x f '+=,则()='2f 例2:已知函数()x x f x f sin cos 4+?? ? ??'=π,则??? ??4πf 的值为 . 例3:已知函数)(x f 在R 上满足88)2(2)(2 -+--=x x x f x f ,则曲线)(x f y =在点))1(,1(f 处的切线方程为( ) A. 12-=x y B. x y = C. 23-=x y D. 32+-=x y 三、导数的物理应用 如果物体运动的规律是s=s (t ),那么该物体在时刻t 的瞬间速度v=s ′(t )。 如果物体运动的速度随时间的变化的规律是v=v (t ),则该物体在时刻t 的加速度a=v′(t )。 例1:一个物体的运动方程为2 1t t s +-=其中s 的单位是米,t 的单位是秒,求物体在3秒末的瞬时速度。 例2:汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )

2019年高考文科数学导数及其应用分类汇编

导数及其应用 1.【2019年高考全国Ⅱ卷文数】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为 A .10x y --π-= B .2210x y --π-= C .2210x y +-π+= D .10x y +-π+= 【答案】C 【解析】2cos sin ,y x x '=-π2cos πsin π2,x y =∴=-=-' 则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=. 故选C . 2.【2019年高考全国Ⅲ卷文数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =- 【答案】D 【解析】∵e ln 1,x y a x '=++ ∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D . 3.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),03 2x x f x x a x ax x 0 C .a >–1,b <0 D .a >–1,b >0 【答案】C 【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x , 则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣b x 3 (a +1)x 2+ax ﹣ax ﹣b x 3 (a +1)x 2﹣b ,

近3年2015-2017各地高考数学真题分类专题汇总--导数及其应用

2017年高考数学试题分类汇编及答案解析---导数及其应用 一、选择题(在每小题给出的四个选项中?只有一项是符合题目要求的) 1(2017北京文)已知函数1()3()3 x x f x =-?则()f x ( ) .A 是偶函数?且在R 上是增函数 .B 是奇函数?且在R 上是增函数 .C 是偶函数?且在R 上是减函数 .D 是奇函数?且在R 上是增函数 2.(2017新课标Ⅱ文)函数2()ln(28)f x x x =--的单调递增区间是( ) .A (,2)-∞- .B (,1)-∞ .C (1, )+∞ .D (4,)+∞ З.(2017山东文)设()()1 21,1x f x x x <<=-≥?? ,若()()1f a f a =+,则 1f a ?? = ??? ( )2.A 4.B 6.C 8.D 4.(2017山东文)若函数()e x f x 在()f x 的定义域上单调递增,则称函数()f x 具有M 性 质.下列函数中具有M 性质的是( ) x x f A -=2)(. .B ()2f x x = .C ()3x f x -= .D ()c o s f x x = 5.(2017新课标Ⅰ文数)函数sin21cos x y x = -的部分图像大致为( ) б.(2017新课标Ⅰ文数)已知函数()ln ln(2)f x x x =+-?则( ) .A )(x f y =在)2,0(单调递增 .B )(x f y =在)2,0(单调递减 .C )(x f y =的图像关于直线1=x 对称 .D )(x f y =的图像关于点)0,1(对称 7.(2017天津文)已知奇函数()f x 在R 上是增函数.若 0.8221 (log ),(log 4.1),(2)5a f b f c f =-==?则,,a b c 的大小关系为( ) .A a b c << .B b a c << .C c b a << .D c a b <<

2017年北京高三模拟题分类汇编之导数大题

2017年北京高三模拟题分类汇编之导数大题精心校对版题号一总分得分△注意事项:1.本系列试题包含2017北京市各城区一模二模真题。2.本系列文档有相关的试题分类汇编,具体见封面。3.本系列文档为北京双高教育精心校对版本4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科一、解答题(本大题共12小题,共0分)1.(2017北京东城区高三一模数学(文))设函数ax x x x f 232131)(,R a .(Ⅰ)若2x 是)(x f 的极值点,求a 的值,并讨论)(x f 的单调性;(Ⅱ)已知函数3221)()(2ax x f x g ,若)(x g 在区间)1,0(内有零点,求a 的取值范围;(Ⅲ)设)(x f 有两个极值点1x ,2x ,试讨论过两点))(,(11x f x ,))(,(22x f x 的直线能否过点)1,1(,若能,求a 的值;若不能,说明理由.2.(2017北京丰台区高三一模数学(文))已知函数1()e x x f x ,A 1()x m ,,B 2()x m ,是曲线()y f x 上两个不同的点. (Ⅰ)求()f x 的单调区间,并写出实数m 的取值范围;(Ⅱ)证明:120x x . 3.(2017北京丰台区高三二模数学(文))已知函数ln ()x f x ax (0)a . (Ⅰ)当1a 时,求曲线()y f x 在点(1(1)),f 处的切线方程;姓名:__________班级:__________考号:__________●-------------------------密--------------封- -------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●

高中数学导数题型总结

导数 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值围。 例6. 设函数3 2 ()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值; (2)若对于任意的[03]x ∈, ,都有2 ()f x c <成立,求c 的取值围。 点评:本题考查利用导数求函数的极值。求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。

例7. 已知a 为实数,()() ()a x x x f --=42 。求导数()x f ';(2)若()01'=-f ,求() x f 在区间[]2,2-上的最大值和最小值。 解析:(1)()a x ax x x f 442 3 +--=,∴ ()423'2 --=ax x x f 。 (2)()04231'=-+=-a f ,2 1= ∴a 。()()()14343'2 +-=--=∴x x x x x f 令()0'=x f ,即()()0143=+-x x ,解得1-=x 或3 4 =x , 则()x f 和()x f '在区间[] 2,2- ()2 91= -f ,275034-=??? ??f 。所以,()x f 在区间[]2,2-上的最大值为 275034-=?? ? ??f ,最 小值为()2 9 1= -f 。 答案:(1)()423'2 --=ax x x f ;(2)最大值为275034- =?? ? ??f ,最小值为()2 91=-f 。 点评:本题考查可导函数最值的求法。求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。 考点七:导数的综合性问题。 例8. 设函数3 ()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线 670x y --=垂直,导函数'()f x 的最小值为12-。(1)求a ,b ,c 的值; (2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。

高考导数大题大全理科答案

一、解答题 1. 解:(Ⅰ) 函数()f x 的定义域为(0,)+∞,'11 2()e ln e e e .x x x x a b b f x a x x x x --=+-+ 由题意可得' (1)2,(1) e.f f ==故1,2a b ==. (Ⅱ)由(Ⅰ)知1 2e ()e ln ,x x f x x x -=+ 从而()1f x >等价于2 ln e .e x x x x ->- 设函数()ln g x x x =,则()1ln g x x '=+,所以当1 (0,)e x ∈时,' ()0g x <; 当1 (,)e x ∈+∞时,' ()0g x >,故()g x 在1(0,)e 单调递减,在1(,)e +∞单调递增, 从而()g x 在(0,)+∞的最小值为1 1().e e g =-. 设函数2 ()e e x h x x -=-,则'()e (1)x h x x -=-,所以当(0,1)x ∈时,'()0h x >; 当(1,)x ∈+∞时,' ()0h x <,故()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,从而()h x 在(0,)+∞的最大值为1(1)e h =- . 综上,当0x >时,()()g x h x >,即()1f x >. 2. 解题指南(1)根据导数公式求出函数的导数,利用分类讨论思想求解;(2)根据函数的单调性以及函数极值与导数的关系式确定函数的极值点,代入函数中求解. 解析(1)2/ 22 2(2)24(1) ()1(2)(1)(2)a x x ax a f x ax x ax x +-+-=-=++++ (*) 当1a ≥时,/ ()0f x >,此时,()f x 在区间(0,)+∞上单调递增. 当01a <<时,由/ ()0f x = 得1 x = (2x =-舍去). 当1(0,)x x ∈时,/()0f x <;当1(,)x x ∈+∞时,/ ()0f x >. 故()f x 在区间1(0,)x 上单调递减,在区间1(,)x +∞上单调递增. 综上所述,当1a ≥时,()f x 在区间(0,)+∞上单调递增. 当01a <<时,()f x 在区间(0, 上单调递减,在区间)+∞上单调递增. 由(*)式知,当1a ≥时,/ ()0f x >,此时()f x 不存在极值点,因而要使得()f x 有两个极值点, 必有01a <<.又()f x 的极值点只可能是1 x = 和2x =-,且由定义可知,1 x a >- 且2x ≠- ,所以1a ->- 且2-≠-,解得1 2 a ≠- 此时,由(*)式易知,12,x x 分别是()f x 的极小值和极大值点,而 令21a x -=,则01a <<且12a ≠-知:当102 a <<时,10x -<<;当112a <<时,01x <<. 记2 2 ()ln 2g x x x =+-, (Ⅰ)当10x -< <时,2()2ln()2g x x x =-+-,所以/22 2222 ()0x g x x x x -=-=< 因此,()g x 在区间(1,0)-上单调递减,从而()(1)40g x g <-=-<,故当1 02 a << 时, 12()()0f x f x +<. (Ⅱ)当01x <<时,2()2ln 2g x x x =+ -,所以/222222 ()0x g x x x x -=-=< 因此,()g x 在区间(0,1)上单调递减,从而()(1)0g x g >=,故当时 1 12 a <<,12()()0f x f x +>. 综上所述,满足条件的a 的取值范围为1 (,1)2. 3. (1)证明:因为对任意x ∈R ,都有() ()e e e e ()x x x x f x f x -----=+=+=,所以f (x )是R 上的偶函数. (2)解:由条件知(e e 1)e 1x x x m --+-≤-在(0,+∞)上恒成立. 令t = e x (x >0),则t >1,所以m ≤211 11111 t t t t t -- =--+-++-对于任意t >1成立. 因为11111t t -+ +≥- = 3,所以1113111 t t - ≥--++-, 当且仅当t = 2,即x = ln2时等号成立.

相关文档 最新文档