文档视界 最新最全的文档下载
当前位置:文档视界 › 西南交大概率论习题一答案

西南交大概率论习题一答案

西南交大概率论习题一答案
西南交大概率论习题一答案

习题一

1. 用集合的形式写出下列随机试验的样本空间与随机事件A :

(1)掷两枚均匀骰子,观察朝上面的点数,事件A 表示“点数之和为7”;

(2)记录某电话总机一分钟内接到的呼唤次数,事件A 表示“一分钟内呼唤次数不超过3次”;

(3)从一批灯泡中随机抽取一只,测试它的寿命,事件A 表示“寿命在2 000到2 500小时之间”.

解:(1) )},(),,(),,(),,{(--+--+++=Ω, )},(),,{(--++=A .

(2) 记X 为一分钟内接到的呼叫次数,则

},2,1,0|{ ===Ωk k X , }3,2,1,0|{===k k X A .

(3) 记X 为抽到的灯泡的寿命(单位:小时),则

)},0({∞+∈=ΩX , )}2500,2000({∈=X A .

2. 袋中有10个球,分别编有号码1~10,从中任取1球,设A ={取得球的号码是偶数},B ={取得球的号码是奇数},C ={取得球的号码小于5},问下列运算表示什么事件:

(1)A B ;(2)AB ;(3)AC ;(4)AC ;(5)C A ;(6)B C ;(7)A C -. 解:(1) Ω=B A 是必然事件;(2) φ=AB 是不可能事件;

(3) =AC {取得球的号码是2,4};

(4) =AC {取得球的号码是1,3,5,6,7,8,9,10};

(5) =C A {取得球的号码为奇数,且不小于5}={取得球的号码为5,7,9}; (6) ==C B C B {取得球的号码是不小于5的偶数}={取得球的号码为6,8,10};

(7) ==-C A C A {取得球的号码是不小于5的偶数}={取得球的号码为6,8,10}

3. 在区间上任取一数,记112A x x ??=<≤????,1342B x x ??=≤≤????

,求下列事件的表达式:(1)A B ;(2)AB ;(3)AB ,(4)A B .

解:(1) ?

?????≤≤=2341x x B A ; (2) =??????≤<≤≤=B x x x B A 21210或??????≤

1x x x x ; ]2,0[

(3) 因为B A ?,所以φ=B A ;

(4) =?

?????≤<<≤=223410x x x A B A 或 ?

?????≤<≤<<≤223121410x x x x 或或 4. 用事件A ,B ,C 的运算关系式表示下列事件:

(1)A 出现,B ,C 都不出现;

(2)A ,B 都出现,C 不出现;

(3)所有三个事件都出现;

(4)三个事件中至少有一个出现;

(5)三个事件都不出现;

(6)不多于一个事件出现;

(7)不多于二个事件出现;

(8)三个事件中至少有二个出现.

解:(1)C B A E =1; (2)C AB E =2; (3)ABC E =3; (4)C B A E =4;

(5)C B A E =5; (6)C B A C B A C B A C B A E =6;

(7)C B A ABC E ==7;(8)BC AC AB E =8.

5. 一批产品中有合格品和废品,从中有放回地抽取三个产品,设表示事件“第次抽到废品”,试用的运算表示下列各个事件:

(1)第一次、第二次中至少有一次抽到废品;

(2)只有第一次抽到废品;

(3)三次都抽到废品;

(4)至少有一次抽到合格品;

(5)只有两次抽到废品.

解:(1)21A A ; (2)321A A A ; (3)321A A A ; (4)321A A A ; (5)321321321A A A A A A A A A .

6. 接连进行三次射击,设={第i 次射击命中}(i =1,2,3),试用表示下述事件:

(1)A ={前两次至少有一次击中目标};

(2)B ={三次射击恰好命中两次};

(3)C ={三次射击至少命中两次};

(4)D ={三次射击都未命中}. 解:321321321A A A A A A A A A B =,323121A A A A A A C =。

7. 一口袋中有5个红球及2个白球.从这袋中任取一球,看过它的颜色后放回袋中,然i A i i A i A 321,,A A A

后,再从这袋中任取一球.设每次取球时口袋中各个球被取到的可能性相同.求:

(1)第一次、第二次都取到红球的概率;

(2)第一次取到红球、第二次取到白球的概率;

(3)两次取得的球为红、白各一的概率;

(4)第二次取到红球的概率.

解:本题是有放回抽取模式,样本点总数2

7=n . 记(1)(2)(3)(4)题求概率的事件分别为D C B A ,,,.

(ⅰ)有利于A 的样本点数25=A k ,故492575)(2=??

? ??=A P (ⅱ) 有利于B 的样本点数25?=B k ,故4910725)(2

=?=

B P (ⅲ) 有利于

C 的样本点数252??=C k ,故49

20)(=C P (ⅳ) 有利于D 的样本点数57?=D k ,故754935757)(2==?=D P . 8. 一个口袋中装有6只球,分别编上号码1~6,随机地从这个口袋中取2只球,试求:

(1)最小号码是3的概率;(2)最大号码是3的概率.

解:本题是无放回模式,样本点总数56?=n .

(ⅰ) 最小号码为3,只能从编号为3,4,5,6这四个球中取2只,且有一次抽到3,因而有利样本点数为32?,所求概率为5

15632=??. (ⅱ) 最大号码为3,只能从1,2,3号球中取,且有一次取到3,于是有利样本点数为22?,所求概率为15

25622=??. 9. 一个盒子中装有6只晶体管,其中有2只是不合格品,现在作不放回抽样.接连取2次,每次随机地取1只,试求下列事件的概率:

(1)2只都是合格品;

(2)1只是合格品,一只是不合格品;

(3)至少有1只是合格品.

解:分别记题(1)、(2)、(3)涉及的事件为C B A ,,,则

522562342624)(=????=???

? ?????? ??=A P 15856224261214)(=???=???

? ?????? ?????? ??=B P

注意到B A C =,且A 与B 互斥,因而由概率的可加性知

15

1415852)()()(=+=+=B P A P C P 。 10. 掷两颗骰子,求下列事件的概率:

(1)点数之和为7;(2)点数之和不超过5;(3)点数之和为偶数.

解:分别记题(1)、(2)、(3)的事件为C B A ,,,样本点总数2

6=n

(ⅰ)A 含样本点)2,5(),5,2(,(1,6),(6,1),(3,4),(4,3) 616

6)(2==

∴A P (ⅱ)B 含样本点(1,1),(1,2),(2,1),(1,3),(3,1),(1,4),(4,1),(2,2),(2,3),(3,2)

1856

10)(2==∴B P (ⅲ)C 含样本点(1,1),(1,3),(3,1),(1,5),(5,1);(2,2),(2,4),(4,2),(2,6),(6,2),(3,3), (3,5),(5,3);(4,4),(4,6),(6,4);(5,5);(6,6), 一共18个样本点。

213618)(==∴C P 11. 总经理的五位秘书中有两位精通英语,今偶遇其中的三位秘书,求下列事件的概率:

(1)事件A ={其中恰有一位精通英语};

(2)事件B ={其中恰有两位精通英语};

(3)事件C ={其中有人精通英语}.

解:样本点总数为???

?

??35 (1) 53106345!332352312)(==????=???

? ?????? ?????? ??=A P ; (2) 103345!33351322)(=???=???

? ?????? ?????? ??=B P ; (3) 因B A C =,且A 与B 互斥,因而10

910353)()()(=+=+=B P A P C P . 12. 设一质点一定落在xOy 平面内由x 轴,y 轴及直线x +y =1所围成的三角形内,而落在这三角形内各点处的可能性相等,即落在这三角形内任何区域上的可能性与这区域的面积成正比,计算这质点落在直线x =的左边的概率. 解:记求概率的事件为A ,则A S

3

1

为图中阴影部分,而2/1||=Ω, 18

59521322121||2=?=??? ??-=A S 最后由几何概型的概率计算公式可得 952/118/5||||)(==Ω=A S A P . 13. 已知B A ?,4.0)(=A P ,6.0)(=B P ,求:

(1))(),(B P A P ;(2)()P A B ;

(3))(AB P ;(4))(),(B A P A B P ;(5))(B A P . 解:(1)6.04.01)(1)(=-=-=A P A P ,4.06.01)(1)(=-=-=B P B P ;

(2)6.0)()()()()()()()(==-+=-+=B P A P B P A P AB P B P A P B A P ;

(3)4.0)()(==A P AB P ;(4)0)()()(==-=φP B A P A B P ,

()()1()10.60.4P AB P A B P A B ==-=-=;

(5).2.04.06.0)()(=-=-=A B P B A P

14. 设A ,B 是两个事件,已知P (A )=0.5,P (B )=0.7,()P A

B =0.8,试求:P (A -B )与P (B -A ).

解:注意到)()()()(AB P B P A P B A P -+= ,因而)()()(B P A P AB P += )(B A P -4.08.07.05.0=-+=. 于是,)()()()(AB P A P AB A P B A P -=-=- 1.04.05.0=-=;3.04.07.0)()()()(=-=-=-=-AB P B P AB B P A B P .

15. 已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P 及条件概率8.0)(=A B P ,试求)(AB P 及)(B A P .

解:4.08.05.0)|()()(=?==A B P A P AB P

)()()(1)(1)()(AB P B P A P B A P B A P B A P +--=-==

3.04.06.05.01=+--=

16. 某人有一笔资金,他投入基金的概率为0.58,购买股票的概率为0.28,两项投资都做的概率为0.19.

(1)已知他已投入基金,再购买股票的概率是多少?

(2)已知他已购买股票,再投入基金的概率是多少?

解:记=A {基金},=B {股票},则19.0)(,28.0)(,58.0)(===AB P B P A P

图1

(1) .327.058

.019.0)()()|(===A P AB P A B P (2) 678.028.019.0)()()|(===

B P AB P B A P . 17. 给定5.0)(=A P ,3.0)(=B P ,15.0)(=AB P ,验证下面四个等式:

)()(A P B A P =;)()(A P B A P =;)()(B P A B P =;)()(B P A B P =. 解:)(2

13.015.0)()()|(A P B P AB P B A P ==== )(5.07.035.07.015.05.0)(1)()()()()|(A P B P AB P A P B P B A P B A P ===-=--==

)(3.05

.015.0)()()|(B P A P AB P A B P ==== )(5.015.05.015.03.0)(1)()()()()|(B P A P AB P B P A P B A P A B P ==-=--==

18. 已知甲袋中装有6只红球,4只白球,乙袋中装有8只红球,6只白球.求下列事件的概率:(1)随机地取一只袋,再从该袋中随机地取一只球,该球是红球;(2)合并两只口袋,从中随机地取1只球,该球是红球.

解:(1) 记=B {该球是红球},=1A {取自甲袋},

=2A {取自乙袋},已知10/6)|(1=A B P ,14/8)|(2=A B P ,所以

70411482110621)|()()|()()(2211=?+?=

+=A B P A P A B P A P B P (2) 12

72414)(==B P 。 19. 设某一工厂有A ,B ,C 三间车间,它们生产同一种螺钉,每个车间的产量,分别占该厂生产螺钉总产量的25%、35%、40%,每个车间成品中次货的螺钉占该车间出产量的百分比分别为5%、4%、2%.如果从全厂总产品中抽取一件产品,(1)求抽取的产品是次品的概率;(2)已知得到的是次品,求它依次是车间A ,B ,C 生产的概率.

解:为方便计,记事件C B A ,,为C B A ,,车间生产的产品,事件=D {次品},因此

)|()()|()()|()()(C D P C P B D P B P A D P A P D P ++=

02.04.004.035.005.025.0?+?+?=

0345.0008.0014.00125.0=++=

362.00345

.005.025.0)()|()()|(=?==D P A D P A P D A P

406.00345

.004.035.0)()|()()|(=?==D P B D P B P D B P 232.00345.002.04.0)()|()()|(=?==

D P C D P C P D C P 20. 发报台分别以概率0.6和0.4发出信号“*”和“—”.由于通信系统受到干扰,当发出信号“*”时,收报台未必收到信号“*”,而是分别以概率0.8和0.2收到信号“*”和“—”.同样,当发出信号“—”时,收报台分别以概率0.9和0.1收到信号“—”和“*”.求:(1)收报台收到信号“*”的概率;(2)当收报台收到信号“*”时,发报台确是发出信号“*”的概率.

解:记=B {收到信号“*”},=A {发出信号“*”}

(1) )|()()|()()(A B P A P A B P A P B P +=

52.004.048.01.04.08.06.0=+=?+?=; (2) 13

1252.08.06.0)()|()()|(=?==B P A B P A P B A P 。 21. 设事件A 与B 相互独立,且p A P =)(,q B P =)(.求下列事件的概率:

(),(),().P A B P A B P A B

解:pq q p B P A P B P A P B A P -+=-+=)()()()()(

pq q q p q p B P A P B P A P B A P +-=---+=-+=1)1(1)()()()()( pq B P A P AB P B A P -=-==1)()(1)()(

22. 已知事件A 与B 相互独立,且9

1)(=B A P ,)()(B A P B A P =.求:)(),(B P A P . 解:因)()(B A P B A P =,由独立性有)()()()(B P A P B P A P =

从而)()()()()()(B P A P B P B P A P A P -=-导致)()(B P A P = 再由9/1)(=B A P ,有2

))(1())(1))((1()()(9/1A P B P A P B P A P -=--== 所以3/1)(1=-A P ,最后得到()()2/3P B P A ==。

23. 三个人独立破译一密码,他们能独立译出的概率分别为0.25,0.35,0.4,求此密码被译出的概率.

解:记 =A {译出密码}, =i A {第i 人译出},.3,2,1=i 则

31231()1()()()10.750.650.610.29250.7075i i P A P A P A P A P A =??==- ???

=-??=-=。

24. 设六个相同的元件,如下图所示那样安置在线路中.设每个元件不通达的概率为p ,求这个装置通达的概率.假定各个元件通达、不通达是相互独立的.

解:记 =A {通达},=i A {元件i 通达},6,5,4,3,2,1=i

则 654321A A A A A A A =, 所以

)()()()(654321A A P A A P A A P A P ++=

)()()()(654321652165434321A A A A A A P A A A A P A A A A P A A A A P +---

642)1()1(3)1(3p p p -+---=

25. 某宾馆大楼有4部电梯,通过调查,知道在某时刻T ,各电梯正在运行的概率均为0.75,求:(1)在此时刻所有电梯都在运行的概率;

(2)在此时刻恰好有一半电梯在运行的概率;

(3)在此时刻至少有1台电梯在运行的概率.

解:(1) 256

255)25.0(1)75.01(144=-=-- (2) 1282741436)25.0()75.0(242222=??? ?????? ???=???

? ?? (3) 2568143)75.0(44=??

? ??= 26. 设在三次独立试验中,事件A 在每次试验中出现的概率相同.若已知A 至少出现一次的概率等于2719,求事件A 在每次试验中出现的概率)(A P . 解:记=i A {A 在第i 次试验中出现},.3,2,1=i )(A P p =,

依假设332131)1(1)(12719p A A A P A P i i --=-=???

? ??=

= , 所以278)1(3=

-p ,此即3/1=p 。

概率论与数理统计习题集及答案

概率论与数理统计习题 集及答案 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

《概率论与数理统计》作业集及答 案 第1章概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H﹑反面T 出现的情形. 样本空间是: S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是: S= ; 2.(1) 丢一颗骰子. A:出现奇数点,则A= ;B:数点大于2,则 B= . (2) 一枚硬币连丢2次, A:第一次出现正面,则A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则 C= . §1 .2 随机事件的运算 1. 设A、B、C为三事件,用A、B、C的运算关系表示下列各事件: (1)A、B、C都不发生表示为: .(2)A与B都发生,而C不发生表示为: . (3)A与B都不发生,而C发生表示为: .(4)A、B、C中最多二个发生表示为: . (5)A、B、C中至少二个发生表示为: .(6)A、B、C中不多于一个发生表示为: . 2. 设}4 =x B = x ≤ ≤ x < S:则 x A x 2: 1: 3 }, { { }, = {≤< 0: 5 ≤

(1)=?B A ,(2)=AB ,(3) =B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知, 3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则 =?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随 机地抽一个签,说明两人抽“中‘的概率相同。

概率论复习题及答案

概率论与数理统计复习题 一.事件及其概率 1. 设,,A B C 为三个事件,试写出下列事件的表达式: (1) ,,A B C 都不发生;(2),,A B C 不都发生;(3),,A B C 至少有一个发生;(4),,A B C 至多有一个发生。 解:(1) ABC A B C =?? (2) ABC B =?? (3) A B C ?? (4) BC AC AB ?? 2. 设B A ,为两相互独立的随机事件,4.0)(=A P ,6.0)(=B P ,求(),(),(|)P A B P A B P A B ?-。 解:()()()()()()()()0.76P A B P A P B P AB P A P B P A P B ?=+-=+-=; ()()()()0.16,(|)()0.4P A B P AB P A P B P A B P A -=====。 3. 设,A B 互斥,()0.5P A =,()0.9P A B ?=,求(),()P B P A B -。 解:()()()0.4,()()0.5P B P A B P A P A B P A =?-=-==。 4. 设()0.5,()0.6,(|)0.5P A P B P A B ===,求(),()P A B P AB ?。 解:()()(|)0.3,()()()()0.8,P AB P B P A B P A B P A P B P AB ==?=+-= ()()()()0. 2P A B P A B P A P A B = -=-=。 5. 设,,A B C 独立且()0.9,()0.8,()0.7,P A P B P C ===求()P A B C ??。 解:()1()1()1()()()0.994P A B C P A B C P ABC P A P B P C ??=-??=-=-=。 6. 袋中有4个黄球,6个白球,在袋中任取两球,求 (1) 取到两个黄球的概率; (2) 取到一个黄球、一个白球的概率。 解:(1) 24210215C P C ==;(2) 11462 108 15 C C P C ==。 7. 从0~9十个数字中任意选出三个不同的数字,求三个数字中最大数为5的概率。 解:12153 101 12 C C P C ==。

概率论第6章习题及答案

第六章 数理统计习题 一、填空题 1.若n ξξξ,,,21Λ是取自正态总体),(2 σμN 的样本,则∑==n i i n 1 1ξξ服从分布 )n ,(N 2 σμ 2. 设随机变量ξ与η相互独立, 且都服从正态分布(0,9)N , 而129(,,,) x x x L 和 129(,,,) y y y L 是分别来自总体ξ和η的简单随机样本, 则统计量 129 222129 ~U y y y =+++L (9)t . 3. 设~(0,16),~(0,9),,X N Y N X Y 相互独立, 129,,,X X X L 与1216 ,,,Y Y Y L 分别 为X 与Y 的一个简单随机样本, 则22 2 129222 1216X X X Y Y Y ++++++L L 服从的分布为 (9,16).F 二、选择题 1、设总体ξ服从正态分布,其中μ已知,σ未知,321,,ξξξ是取自总体ξ的 个样本,则非统计量是( D ). A 、)(3 1321ξξξ++ B 、μξξ221++ C 、),,m ax (321ξξξ D 、 )(1 2322212 ξξξσ++ 2、设)2,1(~2 N ξ,n ξξξK ,,21为ξ的样本,则( C ). 221N n ξ?? ???:, A 、 )1,0(~2 1N -ξ B 、)1.0(~41 N -ξ C 、)1,0(~/21N n -ξ D 、 )1,0(~/21 N n -ξ 3、设n ξξξΛ,,21是总体)1,0(~N ξ的样本,S ,ξ分别是样本的均值和样本标准差, 则有( C ) A 、)1,0(~N n ξ B 、)1,0(~N ξ C 、 ∑=n i i n x 1 22)(~ξ D 、)1(~/-n t S ξ 三、计算题 1、在总体)2,30(~2N X 中随机地抽取一个容量为16的样本,求样本均值X 在 29到31之间取值的概率.

概率论复习题及答案

复习提纲 (一)随机事件和概率 (1)理解随机事件、基本事件和样本空间的概念,掌握事件之间的关系与运算。 (2)了解概率的定义,掌握概率的基本性质和应用这些性质进行概率计算。 (3)理解条件概率的概念,掌握概率的加法公式、乘法公式、全概率公式、Bayes 公式, 以及应用这些公式进行概率计算。 (4)理解事件的独立性概念,掌握应用事件独立性进行概率计算。 (5)掌握Bernoulli 概型及其计算。 (二)随机变量及其概率分布 (1)理解随机变量的概念。 (2)理解随机变量分布函数)}{)((x X P x F ≤=的概念及性质,理解离散型随机变量的分布律及其性质,理解连续型随机变量的概率密度及其性质,会应用概率分布计算有关事件的概率。 (3)掌握二项分布、Poisson 分布、正态分布、均匀分布和指数分布。 (4)会求简单随机变量函数的概率分布。 (三)二维随机变量及其概率分布 (1)了解二维随机变量的概念。 (2)了解二维随机变量的联合分布函数及其性质,了解二维离散型随机变量的联合分布律 及其性质,并会用它们计算有关事件的概率。 (3)了解二维随机变量分边缘分布和条件分布,并会计算边缘分布。 (4)理解随机变量独立性的概念,掌握应用随机变量的独立性进行概率计算。 (5)会求两个随机变量之和的分布,计算多个独立随机变量最大值、最小值的分布。 (6)理解二维均匀分布和二维正态分布。 (四)随机变量的数字特征 (1)理解数学期望和方差的概念,掌握它们的性质与计算。 (2)掌握6种常用分布的数学期望和方差。 (3)会计算随机变量函数的数学期望。 (4)了解矩、协方差和相关系数的概念和性质,并会计算。 (五)大数定律和中心极限定理 (1)了解Chebyshev 不等式。 (2)了解Chebyshev 大数定律和Benoulli 大数定律。 (3)了解独立同分布场合的中心极限定理和De Moivre-Laplace 中心极限定理的应用条件 和结论,并会用相关定理近似计算有关随机事件的概率。

概率统计试题及答案

<概率论>试题 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A U = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,U 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===???则 A=______________ 7. 已知随机变量X 的密度为()f x =? ??<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a = ________ b =________ 8. 设X ~2 (2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80 81 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥= ,4 {0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<= 14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分

《概率论与数理统计》习题册答案

第一章 随机事件与概率 § 随机试验 随机事件 一、选择题 1. 设B 表示事件“甲种产品畅销”,C 表示事件“乙种产品滞销”,则依题意得A=BC .于是对立事件 {}A B C ==甲产品滞销或乙产品畅销,故选D. 2. 由A B B A B B A AB =?????=Φ,故选D.也可由文氏图表示得出. 二 写出下列随机试验的样本空间 1. {}3,420,, 2 []0,100 3. z y x z y x z y x z y x ,,},1,0,0,0|),,{(=++>>>=Ω分别表示折后三段长度。 三、(1)任意抛掷一枚骰子可以看作是一次随机试验,易知共有6个不同的结果.设试验的样本点 ""1,2,3,4,5,6i i i ω==出点点, ;则{}246,,A ωωω=,{}36,B ωω= (2){}135,,A ωωω=,{}1245,,,B ωωωω=,{}2346,,,A B ωωωω=,{}6AB ω=, {} 15,A B ωω= 四、(1)ABC ;(2)ABC ;(3)“A B C 、、不都发生”就是“A B C 、、都发生”的对立事件,所以应记为ABC ;(4)A B C ;(5)“A B C 、、中最多有一事件发生”就是“A B C 、、中至少有二事件发生”的对立事件,所以应记为:AB AC BC .又这个事件也就是“A B C 、、中至少有二事件不发生”,即为三事件AB AC BC 、、的并,所以也可以记为AB AC BC . § 随机事件的概率 一、填空题 1. 试验的样本空间包含样本点数为10本书的全排列10!,设{}A =指定的3本书放在一起,所以A 中包含的样本点数为8!3!?,即把指定的3本书捆在一起看做整体,与其他三本书全排,然后这指定的3本书再全排。故8!3!1 ()10!15 P A ?= =。 2. 样本空间样本点7!5040n ==,设事件A 表示这7个字母恰好组成单词SCIENCE ,则因为C 及C, E 及E 是两两相同的,所以A 包含的样本点数是2!2!4A =?=,故

概率论与数理统计第二版_课后答案_科学出版社_参考答案_

习题2参考答案 X 2 3 4 5 6 7 8 9 10 11 12 P 1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/36 解:根据 1)(0 ==∑∞ =k k X P ,得10 =∑∞ =-k k ae ,即111 1 =---e ae 。 故 1-=e a 解:用X 表示甲在两次投篮中所投中的次数,X~B(2, 用Y 表示乙在两次投篮中所投中的次数, Y~B(2, (1)两人投中的次数相同 P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}= 1 1 2 2 020********* 2222220.70.30.40.60.70.30.40.60.70.30.40.60.3124C C C C C C ?+?+?=(2)甲比乙投中的次数多 P{X>Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}= 1 2 2 1 110220022011222222 0.70.30.40.60.70.30.40.60.70.30.40.60.5628C C C C C C ?+?+?=解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155 ++= (2)P{

解:(1)P{X=2,4,6,…}=246211112222k +++L =11[1()] 14 41314 k k lim →∞-=- (2)P{X ≥3}=1―P{X<3}=1―P{X=1}- P{X=2}=111 1244 --= 解:设i A 表示第i 次取出的是次品,X 的所有可能取值为0,1,2 12341213124123{0}{}()(|)(|)(|)P X P A A A A P A P A A P A A A P A A A A ====18171615122019181719 ???= 1123412342341234{1}{}{}{}{} 2181716182171618182161817162322019181720191817201918172019181795 P X P A A A A P A A A A P A A A A P A A A A ==+++=???+???+???+???= 12323 {2}1{0}{1}1199595 P X P X P X ==-=-==- -= 解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4, 34 314044(3)(3)(4)0.40.60.40.60.1792P X P X P X C C ≥==+==+= (2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5, 3 4 5 324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X C C C ≥==+=+==++= (1)X ~P(λ)=P ×3)= P 0 1.51.5{0}0! P X e -=== 1.5 e - (2)X ~P(λ)=P ×4)= P(2) 0122 222{2}1{0}{1}1130!1! P X P X P X e e e ---≥=-=-==--=-

概率统计试题及答案

西南石油大学《概率论与数理统计》考试题及答案 一、填空题(每小题3分,共30分) 1、“事件,,A B C 中至少有一个不发生”这一事件可以表示为 . 2、设()0.7,()0.3P A P AB ==,则()P A B =U ________________. 3、袋中有6个白球,5个红球,从中任取3个,恰好抽到2个红球的概率 . 4、设随机变量X 的分布律为(),(1,2,,8),8 a P X k k ===L 则a =_________. 5、设随机变量X 在(2,8)内服从均匀分布,则(24)P X -≤<= . 6、设随机变量X 的分布律为,则2Y X =的分布律是 . 7、设随机变量X 服从参数为λ的泊松分布,且已知,X X E 1)]2)(1[(=-- 则=λ . 8、设129,,,X X X L 是来自正态总体(2,9)N -的样本,X 是样本均植,则X 服从的分布是 . 二、(本题12分)甲乙两家企业生产同一种产品.甲企业生产的60件产品中有12件 是次品,乙企业生产的50件产品中有10件次品.两家企业生产的产品混合在一起存放,现从中任取1件进行检验.求: (1)求取出的产品为次品的概率; (2)若取出的一件产品为次品,问这件产品是乙企业生产的概率. 三、(本题12分)设随机变量X 的概率密度为 , 03()2,342 0, kx x x f x x ≤

概率论习题答案

第一章 随机事件与概率 1.对立事件与互不相容事件有何联系与区别? 它们的联系与区别是: (1)两事件对立(互逆),必定互不相容(互斥),但互不相容未必对立。 (2)互不相容的概念适用于多个事件,但对立的概念仅适用于两个事件。 (3)两个事件互不相容只表示两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生。而两个事件对立则表明它们有且仅有一个发生,即肯定了至少有一个发生。特别地,A A =、?=A A U 、φ=A A I 。 2.两事件相互独立与两事件互不相容有何联系与区别? 两事件相互独立与两事件互不相容没有必然的联系。我们所说的两个事件相互独立,其实质是事件是否发生不影响A B 、A 事件B 发生的概率。而说两个事件互不相容,则是指事件发生必然导致事件A B 、A B 不发生,或事件B 发生必然导致事件不发生,即A φ=AB ,这就是说事件是否发生对事件A B 发生的概率有影响。 3.随机事件与样本空间、样本点有何联系? 所谓样本空间是指:随机试验的所有基本事件组成的集合,常用来记。其中基本事件也称为样本点。而随机事件可看作是有样本空间中具有某种特性的样本点组成的集合。通常称这类事件为复合事件;只有一个样本点组成的集合称为基本事件。在每次试验中,一定发生的事件叫做必然事件,记作。而一定不发生的事件叫做不可能事件,记作??φ。为了以后讨论问题方便,通常将必然事件和不可能事件看成是特殊的随机事件。这是由于事件的性质

随着试验条件的变化而变化,即:无论是必然事件、随机事件还是不可能事件,都是相对“一定条件”而言的。条件发生变化,事件的性质也发生变化。例如:抛掷两颗骰子,“出现的点数之和为3点”及“出现的点数之和大于3点”,都是随机事件。若同时抛掷4颗骰子,“出现的点数之和为3点”,则是不可能事件了;而“出现的点数之和大于3点”则是必然事件了。而样本空间中的样本点是由试验目的所确定的。例如: (1)将一颗骰子连续抛掷三次,观察出现的点数之和,其样本空间为 ?={34}。 518,,,,L (2)将一颗骰子连续抛掷三次,观察六点出现的次数,其样本空间为 ?={012}。 3,,, 在(1)、(2)中同是将一颗骰子连续抛掷三次,由于试验目的不同,其样本空间也就不一样。 4.频率与概率有何联系与区别? 事件的概率是指事件在一次试验中发生的可能性大小,其严格的定义为: A A 概率的公理化定义:设E 为随机试验,?为它的样本空间,对E 中的每一个事件都赋予一个实数,记为,且满足 A P A () (1)非负性:01≤≤P A (); (2)规范性:P ()?=1; (3)可加性:若两两互不相容,有。 A A A n 12,,,,L L )P A P A i i i i ()(=∞=∞ =∑11U 则称为事件的概率。 P A ()A 而事件的频率是指事件在次重复试验中出现的次数与总的试验次数n 之比,即A A n n A ()n A n )(为次试验中出现的频率。因此当试验次数n 为有限数时,频率只能在一定程度上反映了事件n A A 发生的可能性大小,并且在一定条件下做重复试验,其结果可能是不一样的,所以不能用频率代替概率。

概率论答案第三章测试题

第三章测试题 1箱子里装有12件产品,其中两件是次品.每次从箱子里任取1件产品,共取两次(取后不放回).定义随机变量X Y ,如下: 0X=1???,若第一次取出正品,若第一次取出次品 0Y=1??? ,若第二次取出正品,若第二次取出次品 (1)求出二维随机变量X Y (,)的联合分布律及边缘分布律; (2)求在Y=1的条件下,X 的条件分布律。 解 (2) 2 设二维随机变量 X Y (,)的概率密度Cy(2-x),0x 1,0y x, f(x,y)=0,.≤≤≤≤??? 其他 (1)试确定常数C ;(2)求边缘概率密度。 解 (1)1)(=??+∞∞-+∞∞-dy dx x f 即1)2(100=??-x dxdy x Cy x ,5 12 = ∴C 3设X Y (,)的联合分布律为: 求(1)Z X Y =+的分布律;(2)V min(X ,Y )=的分布律 (2)

4设X 和Y 是两个相互独立的随机变量,X 服从(0,1)上的均匀分布,Y 的概率密度为: y 212Y e ,y 0 f (y )0,y 0 -??>=? ≤?? (1)求X 和Y 的联合概率密度; (2)设含有a 的二次方程为2 a 2Xa Y 0++=,试求a 有实根的概率。 解 (1)X 1,0x 1 f (x )0,other <<<==∴-other y x e y f x f y x f y Y X , 00,10,21)()(),(2 (2)2 a 2Xa Y 0++=有实根,则0442≥-=?Y X ,即求02 ≥-Y X 的概率 ?-=??=??=≥---≥-1 01 00 20 2 2 22 121),(}0{dx e dy e dx dxdy y x f Y X P x x y y x 3413.0)0()1(211 2 2=Φ-Φ=?- dx e x π ,π23413.010 22=?∴-dx e x

概率论与数理统计浙大四版习题答案第六章1

第六章 样本及抽样分布 1.[一] 在总体N (52,6.32)中随机抽一容量为36的样本,求样本均值X 落在50.8到53.8之间的概率。 解: 8293 .0)7 8( )7 12( } 6 3.68.16 3.6526 3.62.1{}8.538.50{),36 3.6, 52(~2 =-Φ-Φ=< -< - =<15}. (3)求概率P {min (X 1,X 2,X 3,X 4,X 5)>10}. 解:(1)??? ???? ?? ?????>-=?????????? ?? ?? > -=>-255412 25415412 }112 {|X P X P X P =2628.0)]2 5(1[2=Φ- (2)P {max (X 1,X 2,X 3,X 4,X 5)>15}=1-P {max (X 1,X 2,X 3,X 4,X 5)≤15} =.2923.0)]2 1215( [1}15{15 5 1 =-Φ-=≤-∏=i i X P (3)P {min (X 1,X 2,X 3,X 4,X 5)<10}=1- P {min (X 1,X 2,X 3,X 4,X 5)≥10} =.5785.0)]1([1)]2 1210( 1[1}10{15 55 1 =Φ-=-Φ--=≥-∏=i i X P 4.[四] 设X 1,X 2…,X 10为N (0,0.32 )的一个样本,求}.44.1{10 1 2>∑=i i X P

概率论试题及答案

试卷一 一、填空(每小题2分,共10分) 1.设是三个随机事件,则至少发生两个可表示为______________________。 2. 掷一颗骰子,表示“出现奇数点”,表示“点数不大于3”,则表示______________________。 3.已知互斥的两个事件满足,则___________。 4.设为两个随机事件,,,则___________。 5.设是三个随机事件,,,、, 则至少发生一个的概率为___________。 二、单项选择(每小题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内。每小题2分,共20分) 1. 从装有2只红球,2只白球的袋中任取两球,记“取到2只白球”,则()。 (A) 取到2只红球(B)取到1只白球 (C)没有取到白球(D)至少取到1只红球 2.对掷一枚硬币的试验, “出现正面”称为()。 (A)随机事件(B)必然事件 (C)不可能事件(D)样本空间 3. 设A、B为随机事件,则()。 (A) A (B) B (C) AB(D) φ 4. 设和是任意两个概率不为零的互斥事件,则下列结论中肯定正确的是()。 (A) 与互斥(B)与不互斥 (C)(D) 5. 设为两随机事件,且,则下列式子正确的是()。 (A) (B) (C)(D) 6. 设相互独立,则()。 (A) (B) (C)(D) 7.设是三个随机事件,且有,则 ()。 (A) 0.1 (B) 0.6 (C) 0.8 (D)0.7 8. 进行一系列独立的试验,每次试验成功的概率为p,则在成功2次之前已经失败3次的概率为()。 (A) p2(1–p)3(B) 4 p (1–p)3 (C) 5 p2(1–p)3(D) 4 p2(1–p)3 9. 设A、B为两随机事件,且,则下列式子正确的是()。 (A) (B) (C) (D) 10. 设事件A与B同时发生时,事件C一定发生,则()。

同济五版习题册 概率论 参考答案-推荐下载

第一章概率论基本概念 一、填空 1.(1)AUBUC (2) (3) A B C A B C A B C -- - - -- ??A B B C AC -- -- -- ??2. 0.7 (注释: P(AUB)=P(A)+P(B)-P(AB)= P(A)+P(B)-P(A)*P(B|A) ) 3. 3/7 (注释: ) ()()()()1()()()()P A B P A P B P A B P A P B P B P AB - - - ?=+-=-+-+4.77 221A ?- 5. 0.75 (注释: , 此时不能直接用BEYES 公式,因为要得到一个划分.)() (|)() P AB P B A P A = [掌握]二、选择 1.A 2.D 3.B 4.D 5.A 三、计算题 1.全概率公式求解: 设能开门记为事件A ,B0为取到0把能开门的锁,B1为取到一把能开门的锁,B2为取到两把能开门的锁 P(A)=P(B0)P(A|B0)+ P(B1)P(A|B1)+ P(B1)P(A|B1)=8/15 2.设3本一套放在一起记为A ,两套各自放在一起记为B ,两套中至少有一套放在一起记为C (1)13783710 101 ()=15 A A A P A A =(2) 35435410 101 ()=210 A A A P B A =(3) 3847354384735410 102 ()=21 A A A A A A A P C A +-=3.设购买空调记为A,购买电脑记为B,购买DVD 记为C (1) P(AUBUC)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)=0.15+0.12+0.2+-0.06-0.1-0.05+0.02 =0.28 (2)()()()()-2() P A B B C AC P A B P B C P AC P A B C -- -------- -- --- ??=++ (3)()1() P A B C P A B C --- =-??[掌握]4. 全概率公式求解:设取得正品记为A, 取到的产品来自甲厂记为B1, 取到的产品来自乙厂记为B2, 取到的产品来自丙厂记为B3, ()(1)(|1)(2)(|2)(3)(|3)0.92 P A P B P A B P B P A B P B P A B =++=

概率论与数理统计(第三版)课后答案习题1

第一章 事件与概率 1.写出下列随机试验的样本空间。 (1)记录一个班级一次概率统计考试的平均分数(设以百分制记分)。 (2)同时掷三颗骰子,记录三颗骰子点数之和。 (3)生产产品直到有10件正品为止,记录生产产品的总件数。 (4)对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”,如连续查出2个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 (5)在单位正方形内任意取一点,记录它的坐标。 (6)实测某种型号灯泡的寿命。 解 (1)}, 100,,1,0{n i n i ==Ω其中n 为班级 人数。 (2)}18,,4,3{ =Ω。 (3)},11,10{ =Ω。

(4)=Ω{00,100,0100,0101,0110,1100,1010,1011,0111,1101,0111,1111},其中0表示次品,1表示正品。 (5)=Ω{(x,y) 0

概率论第六章课后习题答案

习题六 1.设总体X 的概率密度为(1)01(;)0x x f x θ θθ?+<<=? ?其它 ,其中1θ>-, 12,,X X ,n X 为来自总体X 的样本,求参数θ的矩估计量。 解:总体的一阶原点矩为2 1 )1();()(1 11++= +===??++∞ ∞ -θθθθθdx x dx x xf X E v ,而样本的一阶原点矩为X X n A n i i ==∑=1 11,用样本的一阶原点矩估计总体的一阶 原点矩,即有 X =++21θθ,由此得θ的矩估计量为.112?X X --=θ 3.设总体~(0,)X U θ,现从该总体中抽取容量为10的样本,样本观测值为: 0.5,1.3,0.6,1.7,2.2,1.2,0.8,1.5,2.0,1.6 试求参数θ的矩估计值。 解:总体的一阶原点矩为2 )(1θ = =X E v ,而样本的一阶原点矩为 X X n A n i i ==∑=111,用样本的一阶原点矩估计总体的一阶原点矩,即有X =2θ, 由此得θ的矩估计量为X 2?=θ ,其矩估计值为 68.2)6.10.25.18.02.12.27.16.03.15.0(10 1 22?=+++++++++?==x θ 6.设12,,,n x x x 为来自总体X 的一组样本观测值, 求下列总体概率密度中θ的最大似然估计值。 (1)101(;)0 x x f x θθθ-?<<=??其它(0θ>); (2)10 (;)0x x e x f x α αθθαθ--?>?=? ?? 其它 (α已知); (3)?? ? ??≤>=-000);(2 2 22x x e x x f x θθθ

概率论复习题册答案解析我国地质大学武汉

概率论习题册答案 第一章 随机事件及其概率 §1.1 样本空间与随机事件 一、 计算下列各题 1.写出下列随机实验样本空间: (1) 同时掷出三颗骰子,记录三只骰子总数之和; (2) 10只产品中有3次产品,每次从中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数; (3) 一只口袋中有许多红色、白色、蓝色乒乓球,在其中抽取4只,观察它们具有哪种颜色; (4) 有C B A ,,三只盒子,c b a ,,三只球,将三只球,装入三只盒子中,使每只盒子装一只球,观察装球情况; (5) 将一尺之棰折成三段,观察各段的长度。 解 1(1)}18,,5,4,3{ ; (2)}10,,5,4,3{ ; (3)},,,,,,{RW B W B RB RW B W R ;其中B W R ,,分别表示红色,白色和蓝色; (4){,,;,,;,,;,,;,,,,,}Aa Bb Cc Aa Bc Cb Ab Ba Cc Ab Bc Ca Ac Bb Ca Ac Ba Cb 其中Aa 表示a 求放在盒子A 中,可类推; (5)}1,0,0,0|),,{(=++>>>z y x z y x z y x 其中z y x ,,分别表示三段之长。 2. 设C B A ,,为三事件,用C B A ,,运算关系表示下列事件: (1)A 发生,B 和C 不发生; (2)A 与B 都发生, 而C 不发生; (3)C B A ,,均发生; (4)C B A ,,至少一个不发生; (5)C B A ,,都不发生; (6)C B A ,,最多一个发生; (7)C B A ,,中不多于二个发生; (8)C B A ,,中至少二个发生。 解 (1)C B A ;(2)C AB ;(3)ABC ;(4)A B C ++;(5)C B A ; (6)C B A C B A C B A C B A +++;(7)ABC ;(8)BC AC AB ++ 3.下面各式说明什么包含关系? (1) A AB = ; (2) A B A =+; (3) A C B A =++ 解 (1)B A ?; (2)B A ?; (3)C B A +?

概率论第六章习题解答

概率论第六章习题解答 1、在总体2(52,6.3)N 中随机抽取一容量为36的样本,求样本均值X 落在50.8与53.8之间的概率。 解 因为2(52,6.3)N ,所以 3.8 52 {50.853{}6.336 P X << = 10.87.2 ( )()6.3 6.3 -=Φ-Φ(1.71)( 1.14)=Φ-Φ- 0.956410.87290.8293=-+= 2、在总体(12,4)N 中随机抽取一容量为5的样本1X ,2X ,3X ,4X ,5X , (1)求样本均值与总体均值之差的绝对值大于1的概率。 (2)求概率12345{max(,,,,)15}P X X X X X >,12345{min{(,,,,)10}P X X X X X < 解 (1)总体均值为12μ=,,样本均值5114 (12,)55 i i X X N ==∑ 所求概率为 {|12|1}1{|12|1}P X P X ->=--≤ 1{1121}P X =--≤-≤ 1P =-≤≤ 1( ()22 =-Φ+Φ- 22(1.12)=-Φ2(10.8686)0.2628=-= (2)1234512345{max(,,,,)15}1{max(,,,,)15}P X X X X X P X X X X X >=-≤ 123451{15,15,15,15,15}P X X X X X =-≤≤≤≤≤ 51 1{15}i i P X ==- ≤∏5 1 121512 1{ }22 i i X P =--=-≤∏ 51((1.5))=-Φ5 1(0.9332)0.2923=-=. (3) 12345{min{(,,,,)10}P X X X X X <

概率论与数理统计习题集及答案

概率论与数理统计习题集及答案《概率论与数理统计》作业集及答案 第1章概率论的基本概念 § 1 .1随机试验及随机事件 1.(1) 一枚硬币连丢3次,观察正面H、反面T 出现的情形.样本空间是:S= ____________ ; (2)一枚硬币连丢3次,观察出现正面的次数样本空间是:S= _______________________; 2.(1)丢一颗骰子.A:出现奇数点,则 A_______ ; B: 数点大于2,贝U B= (2) 一枚硬币连丢2次,A :第一次出现正面,贝y A=______________ ; B:两次出现同一面,贝I」= ________ ; C : 至少有一次出现正面,则C= . § 1 .2随机事件的运算 1.设A、B、C为三事件,用A、B、C的运算关系表

示下列各事件: (1)A、B、C都不发生表示为:.(2)A 与B都发生,而C不发生表示为:_____ 」 (3)A与B都不发生,而C发生表示 为: ___ J4)A 、B、C中最多二个发生表示为:. (5)A、B、C中至少二个发生表示

为: _______ * (6)A. B. C中不多于一个发生表 示为: _______ ? 贝[| 2* T§iS^{xiO

概率论(复旦三版)习题五答案

概率论与数理统计(复旦第三版) 习题五 答案 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

10.760.840.9.n i i X P n =??????≤ ≤≥???????? ∑ 根据独立同分布的中心极限定理得 0.8n i X n P ??-??≤≤???? ∑ 0.9,=Φ-Φ≥ 整理得 0.95,10?Φ≥ ?? 查表 1.64,≥ n ≥268.96, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为0.7,假定各 机床开动与否互不影响,开动时每部机床消耗电能15个单位. 问至少供应多少单位电能才可以95%的概率保证不致因供电不 足而影响生产. 【解】设需要供应车间至少15m ?个单位的电能,这么多电能最多能 同时供给m 部车床工作,我们的问题是求m 。 把观察一部机床是否在工作看成一次试验,在200次试验中, 用X 表示正在工作的机床数目,则~(200,0.7)X B , ()2000.7140, ()(1)2000.70.342,E X np D X np p ==?==-=??= 根据题意,结合棣莫弗—拉普拉斯定理可得 0.95{}P X m P =≤=≤=Φ

概率论模拟卷1~6及答案汇总

一、(15分)玻璃杯成箱出售,每箱20只。已知任取一箱,箱中0、1、2只残次品的概率相应为0.8、0.1和0.1,某顾客欲购买一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机地察看4只,若无残次品,则买下该箱玻璃杯,否则退回。 试求:(1)顾客买下该箱的概率;(2)在顾客买下的该箱中,没有残次品的概率。 二、(12分)设随机变量X的分布列为 .求:(1)参数;(2);(3) 的分布列。 三、(10分)设二维随机变量在矩形上服从均匀分布,(1)求的联合概率密度(2)求关于、的边缘概率密度(3)判断与的独立性。 四、(12分)设 ,,且与相互独立,试求和的相关系数(其中a、b是不全为零的常数)。 五、(12分)设从大批发芽率为0.9的种子中随意抽取1000粒,试求这1000粒种子中至少有880粒发芽的概率。 六、(12分)设总体的概率密度为 是取自总体的简单随机样本。求:(1)的矩估计量;(2)的方差。 七、(12分)设服从,是来自总体的样本,+。试求常数,使得服从分布。 八、(15分)从一批木材中抽取100根,测量其小头直径,得到样本平均数为,已知这批木材小头直径的标准差,问该批木材的平均小头直径能否认为是在以上?(取显著性水平=0.05) 附表一: , , , ,

一、(14分)已知50只铆钉中有3只是次品,将这50只铆钉随机地用在10个部件上。若每 个部件用3只铆钉,问3只次品铆钉恰好用在同一部件上的概率是多少? 二、(14分)已知随机变量X 的概率密度为()? ? ?<<=其他 ,01 0, 2x Ax x f ,求:(1)参数A ; (2)}35.0{<θ。试求θ的最大似然估计量。 八、(14分)已知在正常生产的情况下某种汽车零件的重量(克)服从正态分布)75.0,54(N ,在某日生产的零件中抽取10 件,测得重量如下: 54.0 55.1 53.8 54.2 52.1 54.2 55.0 55.8 55.1 55.3 如果标准差不变,该日生产的零件的平均重量是否有显著差异(取05.0=α)? 附表一: 5871.0)2222.0(=Φ,9495.0)64.1(=Φ,9505.0)65.1(=Φ,9750.0)96.1(=Φ,9826.0)108.2(=Φ,9901.0)33.2(=Φ,9929.0)45.2(=Φ,9950.0)575.2(=Φ.

相关文档
相关文档 最新文档