文档视界 最新最全的文档下载
当前位置:文档视界 › 广西珊瑚矿区中部成矿期构造应力场热力场和地球化学场的耦合作用及成矿分析

广西珊瑚矿区中部成矿期构造应力场热力场和地球化学场的耦合作用及成矿分析

广西珊瑚矿区中部成矿期构造应力场热力场和地球化学场的耦合作用及成矿分析
广西珊瑚矿区中部成矿期构造应力场热力场和地球化学场的耦合作用及成矿分析

广西地质构造单元情况)

构造单元地壳大型构造的基本单位,又称大地构造单元。广西绝大部分地区在晚三叠世以前经历了海水覆盖的漫长地质历史时期,其中晚古生代到中三叠世也有相对隆起和相对凹陷的区域,隆起区有的长期露出水面为剥蚀区,凹陷区则接受沉积。根据地质构造发展演化历史及区域构造特征的不同,可将广西划分为一个一级构造单元,即广西一级构造单元属华南板块范畴,两个二级构造单元(扬子陆块、华南活动带),7个三级构造单元和19个四级构造单元。 桂北隆起三级构造单元。属于扬子陆块的东南缘,位于桂北九万大山至越城岭一带,呈北东方向展布,南面大致以罗城、融水、兴安一线为界,是广西出露最老的地层分布区。构成该隆起的地层以四堡群、丹洲群、震旦系为主,下古生界次之,上古生界及中新生界上叠盆地不发育,仅见于南部边缘和个别北偏东向断裂旁则。自西南向东北,地层具有由老变新的分布规律,西南部主要为四堡群、丹洲群和震旦系,东北部主要为寒武系、奥陶系。岩浆岩发育,除四堡期、雪峰期中基性火山岩和基性—超基性侵入岩分布在隆起区西南部四堡群和中部丹洲群外,尚有四堡期、雪峰期、加里东期和燕山期的中酸性花岗岩。雪峰期和加里东期花岗岩呈岩基产出,规模较大,分别出露于隆起区西南部和东北部。桂北隆起区经受多次构造运动的影响,构造比较复杂,四堡运动和广西运动使四堡群和丹洲群至下古生界的地层强烈褶皱,其后的构造运动以上升活动为主,为间歇性上升隆起区。四堡群以高角度紧密线状复式褶皱为主,构造线多呈西偏北方向,往东北逐渐转为北东向,至元宝山一带则为南北向。丹洲群至下古生界则以紧密线状平行排列的复式褶皱为主,次级褶皱发育,局部有倒转褶皱,构造线呈北偏东方向。上古生界(盖层)印支期褶皱,见于隆起区东北部和南部边缘,多呈短轴状或长轴状向斜,构造线呈北偏东方向。从上古生界及中新生界上叠盆地不发育的特征看,桂北一带在晚古生代和中新生代处于长期隆起,为露出海面的陆地和剥蚀区。 桂东北—桂中拗陷三级构造单元。位于桂中和桂东北,呈北东向展布,西北端为北西向。本区为古生代的长期拗陷区,晚古生代沉积盖层广泛发育,仅西南部较大向斜的核部有下中三叠统。桂东北较大背斜的核部,因剥蚀而出露基底(寒武纪地层),反映晚古生代桂中凹陷深,后期桂东北上升剥蚀强烈的特点。上古生界除下部有碎屑岩外,其余全为碳酸盐岩,是该区现代岩溶“桂林山水”发育的主要物质基础。岩浆活动不强烈,仅于东北部有加里东—燕山期的酸性岩浆侵入。加里东期褶皱为线状或倒转,呈北西西或北东向;印支期以平缓开阔褶皱为主,亦有长轴和短轴状,局部为倒转褶皱,呈北东向和北西向展布,在河池—柳城一带为近东西向的弧形构造,而在桂林一带构成向西突出的近南北向弧形构造。燕山期为小型的断陷盆地,构成平缓开阔的向斜构造。根据隆起和拗陷程度、沉积建造、岩浆活动及构造特征的不同,可将本区划分为桂中区和桂东北区,桂东北区隆升较强烈,褶皱基底断续出露,台地盖层隆起时间也较早,柳江运动已普遍开始抬升,晚石炭世已成为泻湖沉积环境,晚二叠世为海滨沼泽环境;岩浆活动及褶皱构造均较强烈。桂中区则自广西运动后长期处于拗陷状态,岩浆活动微弱,褶皱以平缓开阔为主。 大瑶山隆起三级构造单元。位于贵港、金秀至贺州间的龙山、大瑶山、大桂山、鹰阳关一带,呈北东向展布。以早古生代地层为主,主要为寒武系,南部有奥陶系分布,贺州鹰阳关出露小面积的震旦系。南北边缘泥盆系不整合覆于早古生代地层之上。岩浆岩不发育,仅贺州鹰阳关震旦系中有中—基性火山岩,金秀—大黎—藤县和梧州—信都具有一系列的印支—燕山期花岗岩、花岗闪长岩小岩体、岩株和岩脉群。加里东期褶皱分布广泛,以紧密线状复式褶皱为主,构造线以近东西和东偏北方向为主,其次为北东、北西向,局部近南北向。南北边缘晚古生代地层则以短轴向斜为主。发育有北东、东偏北和南北向三个方向的断裂。 钦州残余海槽三级构造单元。分布于桂东南玉林、钦州、防城一带,呈北东向展布。本

地质构造应力场分析方法与原则

地质构造应力场分析方法与原则 发表时间:2019-01-04T10:34:05.383Z 来源:《基层建设》2018年第34期作者:郭建锐[导读] 摘要:构造应力场是地球动力学重要组成部分,是地壳动力学的主体部分,其研究对于构造分析研究、地震分析预报、工程抗震等领域都有着十分重要的理论和实践意义。 赤峰市利拓矿业有限公司内蒙古赤峰市 024000摘要:构造应力场是地球动力学重要组成部分,是地壳动力学的主体部分,其研究对于构造分析研究、地震分析预报、工程抗震等领域都有着十分重要的理论和实践意义。本次研究针对地质构造应力场的测量方法水力压裂法、井壁崩落法、磁组构法进行分析,并对地质构造应场力分析原则进行阐述,继而进一步丰富构造应力场的理论。 关键词:地质构造;构造应场力;应场力引言:构造应力场就是在一个空间范围内构造应力的分布。构造应力场是作用在地壳某一地区内部的和由于这一地区某种变形的构造单元的发育而出现的应力总和。应力场是一种物理场,它和其他物理场,如重力场、电滋场、位势场等一样,也是物质存在的一种形式。场不是空间,而是在空间范围内某个物理量的按势分布。随着时间的变化,场内各点的强度和方向也将发生变化。构造应力场是地球动力学重要组成部分,是地壳动力学的主体部分,其研究对于构造分析研究、地震分析预报、工程抗震等领域都有着十分重要的理论和实践意义。 1.地质构造应力场概述 构造应力场概念是由我国地质学家李四光率先提出的。1947年李四光提出用构造形迹反推构造应力场,并研究各种不同力学性质的构造形迹与应力方向、应力作用方式之间的相互关系。1940年格佐夫斯基也提出研究构造应力场,并把用赤平投影求主应力轴方向的方法引进构造应力场的研究。1950年一1996年国内外地质工作者结合地震地质的研究工作开展了构造应力测量,经多年努力,通过野外与室内实测证实了构造应力的存在,并探索、研究了行之有效的构造应力测量技术方法,完善了构造应力测量的理论基础,建立了可靠的测量技术方法和数据处理系统。万天丰(1999)、武红岭(1999,2003)等将矿场构造应力场研究的方法延伸到盆地构造研究领域,取得了人量的研究认识和资料,极大地丰富了构造应力场研究理论,也为盆地构造应力场研究积累了丰富的地质认识和方法。1970年构造应力场的研究有长足进展,逐渐深入到地质学的多个领域。1980年以后,构造应力场问题越来越受到国内外地质学界的重视,研究内容多涉及板块、大陆,大洋地区的构造应力场。1990年以来,全球大陆与海洋科学钻探计划开始研究现今构造应力和古应力状态和岩石圈动力学问题。 2.地质构造应力场分析方法 构造应力场研究的主要内容是在确定各地的点应力状态(应力方向和应力大小)的基础上,研究在一定区域范围内各个构造活动时期的构造应力分布特征。古应力测量可通过构造形迹分析法、古地磁法、节理测量法来确定古构造应力作用方向,利用声发射法。晶格位错法等可确定古地应力值的大小(导致地层变形时的最大水平古应力)。现今应力测量可利用震源机制解法、水力压裂法、井壁崩落法等来确定现今构造应力最大主应力方向,利用声发射法、经验公式法可确定现今地应力大小。 2.1.1水力压裂法 水力压裂测量地应力的方法首先在美国发展起来,1977年B.Haimson在井深5.1Km处进行了水力压裂地应力测量。我国学者葛洪魁(1998)、康红普(2014)均在研究中采用水力压裂测量法进行验证。水力压裂(Hydraulic fracturing)地应力测量是通过在井眼周围地层中诱发人工裂缝来获取地应力的一种方法,测试精度受多种因素的影响,如测试层位筛选、施工仪器设备、施工方案的选择以及测试数据的分析等。 2.1.2井壁崩落法 井壁崩落椭圆法的理论依据为崩落椭圆是由地壳内的构造应力场形成的,所以二者之间存在确定的关系。它的基本原理是,由于地壳内存在水平差应力,致使钻井壁形成应力集中,在垂直于最大水平主应力(压应力为正)方向的井壁端切向应力最大,当该处切向应力达到或超过岩石的破裂极限强度时,即发生破裂,从而形成井壁崩落椭圆。1970年加拿大Bell在研究阿尔伯达油田四臂井径测量的地层倾角测井资料后,发现井眼扩大方向与区域内的最小水平主应力方向平行,Gough等也发现了这种现象。1985年,Zoboek使用井下电视观测证实了Boll的发现,并与B.Haimson等人对井眼崩落机制进行研究,说明了井壁崩落法是测量水平主应力方向的可行方法。shulnberger测井公司研究应用测井资料解释地层压力问题,并用于解释石油工程中的地层破裂压力、地层坍塌压力及油层出砂等问题。这种用测井资料解释地应力剖面的方法,己经能够解决石油工程中的许多问题。 2.1.3磁组构测量法 磁组构是指磁性颗粒或晶格的定向排列或组合,其实质是岩石磁化率各向异性。岩石磁化率各向异性是指岩石的磁化强度随方向的变化性质,包括感应磁化率各向异性与剩余磁化率各向异性。GrahamJ.w(1954)提出,儿乎所有岩石都可以观测到磁各向异性。研究表明,岩石的磁化率一般表现为磁化率数量椭球的形状和方向。椭球可以反映岩石内部铁磁性颗粒长轴的主要分布方向,与沉积搬运和充填方式、岩浆岩流动构造、变质岩类型和变质程度、页理、线理、褶皱轴方向等存在一定对应关系,是地史时期定向应力和温度作用的结果,是岩组分析和有限应变测量的重要手段之一。 3.地质构造应力场分析原则 3.1时间局限性原则 一般认为根据不同构造形变的切错和叠加等关系可以确定构造应力场的分期,即相对活动次序。可以根据组成构造形变的最新地层时代和角度不整合面之上的最老上覆地层的时代,来确定构造应力场作用的大致时间。如果有地层或侵入体同位素年代的资料时,构造应力作用的时间可以确定得更准确些。即使如此,构造应力作用的时间还是不可能确定得十分精确。 如果已知组成某一构造形变的最新地层年代和侵蚀了构造形变的不整合面之上的最老上覆地层的年代,构造形变肯定是在不整合形成期间发生的;但两个沉积地层的年代之间,发生了许多变化:老地层沉积之后要下沉、硬结成岩;受构造应力作用后造成构造形变;隆起遭受剥蚀;地壳重新下降,接受新的沉积。可以看出在整个不整合的形成过程中造成构造形变的构造应力作用只局限在一个较短的时间内。如果再考虑到同位素年代的不精确性(由于采样、测试方法等原因),要准确测定构造应力作用的时间实际上目前还难以实现。 3.2空间动态性原则

广西地质构造

广西地质构造单元 地壳大型构造的基本单位,又称大地构造单元。广西绝大部分地区在晚三叠世以前经历了海水覆盖的漫长地质历史时期,其中晚古生代到中三叠世也有相对隆起和相对凹陷的区域,隆起区有的长期露出水面为剥蚀区,凹陷区则接受沉积。根据地质构造发展演化历史及区域构造特征的不同,可将广西划分为一个一级构造单元,即广西一级构造单元属华南板块范畴,两个二级构造单元(扬子陆块、华南活动带),7个三级构造单元和19个四级构造单元。 桂北隆起 三级构造单元。属于扬子陆块的东南缘,位于桂北九万大山至越城岭一带,呈北东方向展布,南面大致以罗城、融水、兴安一线为界,是广西出露最老的地层分布区。构成该隆起的地层以四堡群、丹洲群、震旦系为主,下古生界次之,上古生界及中新生界上叠盆地不发育,仅见于南部边缘和个别北偏东向断裂旁则。自西南向东北,地层具有由老变新的分布规律,西南部主要为四堡群、丹洲群和震旦系,东北部主要为寒武系、奥陶系。岩浆岩发育,除四堡期、雪峰期中基性火山岩和基性—超基性侵入岩分布在隆起区西南部四堡群和中部丹洲群外,尚有四堡期、雪峰期、加里东期和燕山期的中酸性花岗岩。雪峰期和加里东期花岗岩呈岩基产出,规模较大,分别出露于隆起区西南部和东北部。桂北隆起区经受多次构造运动的影响,构造比较复杂,四堡运动和广西运动使四堡群和丹洲群至下古生界的地层强烈褶皱,其后的构造运动以上升活动为主,为间歇性上升隆起区。四堡群以高角度紧密线状复式褶皱为主,构造线多呈西偏北方向,往东北逐渐转为北东向,至元宝山一带则为南北向。丹洲群至下古生界则以紧密线状平行排列的复式褶皱为主,次级褶皱发育,局部有倒转褶皱,构造线呈北偏东方向。上古生界(盖层)印支期褶皱,见于隆起区东北部和南部边缘,多呈短轴状或长轴状向斜,构造线呈北偏东方向。从上古生界及中新生界上叠盆地不发育的特征看,桂北一带在晚古生代和中新生代处于长期隆起,为露出海面的陆地和剥蚀区。 桂东北—桂中拗陷三级构造单元。位于桂中和桂东北,呈北东向展

ABAQUS顺序热力耦合分析实例

ABAQUS顺序热力耦合分析实例此实例中需要确定一个冷却栅管的温度场分布。温度场的求解采用稳态热分析,在此之后还将进行热应力分析来求出冷却栅管在温度作用下产生的位移和应力分布。由于冷却栅管比较长,并且是轴对称结构,根据上述特点,可以简化有限元分析模型。此实例中使用国际单位制。 1、part中创建轴对称可变形壳体,大致尺寸为1,通过creat line创建一个封闭曲线(0.127,0) (0.304,0)(0.304,0.006)(0.152,0.006)(0.152,0.031)(0.127,0.031)(0.127,0) 使用creat Fillet功能对模型倒角处设置0.005的倒圆角。倒角后,模型并未改变,需要在模型树中,part下的Features右键,Regenerate,最终模型如下图所示。 2、在材料模块中定义密度7800,弹性模量1.93E11,泊松比0.3。所不同的是,热分析还需 要指定热传导系数以及比热。在Thermal里输入参数,热铲刀系数25.96,比热451。 3、创建截面属性以及装备部件,和普通的静力分析设置一样。 4、Step有所不同,分析类型仍为通用分析步,下面要更改为Heat Transfer。在Edit Step窗 口中,使用默认的瞬态分析(Transient),时长设置为3s。切换到Incrementatin进行相应的设置,如下图。

5、Load模块中,设置左边温度为100度,右边及上边温度为20度。Creat BC,类型选择 Other>Temperature。在纯粹的热传导分析方程中,没有位移项,因此不会发生刚体位移,这里也就不需要设置位移边界条件。 6、接下来划分网格,种子尺寸给0.005,单元类型需要在单元族中选择专门用来热分析的 Heat Transfer,查看下面确保使用的单元为DCAX4。使用结构化的全四边形网格划分方法。 7、到此,热分析的设置已经完成,可以提交计算,完成后,查看变量NT11即为节点温度。

贵州地质构造

地质构造(简称构造):地壳或岩石圈各个组成部份的形态及其相互结合方式和面貌特征的总称。地质构造的规模,大的上千公里,需要通过地质和地球物理资料的综合分析和遥感资料的解译才能识别,如岩石圈板块构造。小的以毫米甚至微米计,需要借助于光学显微镜或电子显微镜才能观察到,如矿物晶粒变形、晶格的位错等。贵州位于华南板块内,处于东亚中生代造山与阿尔卑斯-特提斯新生代造山带之间,横跨扬子陆块和南华活动带两个大地构造单元。在已知1400Ma地质历史时期中经历了武陵、雪峰、加里东、华力西-印支、燕山-喜山等5个阶段。雪峰运动奠定了扬子陆块的基底,广西运动使黔东南地区褶皱隆起与扬子陆块熔为一体,以后又经历了裂陷作用、俯冲作用,燕山运动奠定了现今构造的基本格局。多次造山作用的地应力场在变化多端的地应力条件下,形成了挤压型、直扭型和旋扭型三类构造型式,交织成一幅复杂多变的应变图象。其特点是:(1)贵州的地质构造属板内构造,构造的主体为薄皮构造。(2)变形不十分强烈,在贵州发育最完整、最广泛的构造样式是侏罗山式褶皱带。都匀运动:原地矿部第八普查大队(1980)命名,系指发生在贵州中部及南部,奥陶纪末到志留纪初之间的一次地壳运动。该运动的表现是:在毕节-遵义-湄潭-铜仁连线与贵阳-施秉联线之间的贵州中部地区,普遍缺失上奥陶统中上部,下志留统中上部与下伏奥陶系不同层位呈假整合,在不少地区如贵阳乌当附近可见到志留系底部的砾岩层或含砾粘土岩嵌覆于呈数米起伏的间断面上。在黔南地区下志留统中部超覆于奥陶系的不同层位之上,其间缺失地层达数百米,志留系底部常见底砾岩,部分地区见风化壳。这是一次大面积的抬升运动。独山抬升:王约1994年命名,系指独山地区中泥盆统独山组鸡窝寨段与下伏宋家桥段之间的抬升运动。在该区独山组鸡窝寨段之底有风化残积的褐铁矿层,其上为底砾岩。另外,根据遗迹化石组合在区域上的对比,可以确认独山组宋家桥段上部受到不同程度风化剥蚀。鸡窝寨段底部直覆在凸凹不平的基底上。所有这些都表明在独山组宋家桥段沉积之后,地壳有一次极为广泛而明显的上升运动。黔桂运动:赵金科等(1959)年命名,原指广西栖霞组与马坪组之间的假整合。在贵州除部分地区外,绝大部分地区马坪组与其上覆的梁山组、栖霞组为假整合,故沿用此名。根据我国最新公布的地质年表,这次运动发生在中、下二叠统之间。碧痕运动:林树基(1994)命名。命名地点在晴隆碧痕营。在那里早更新世早期地层(如坪地组)发生了明显的褶曲和断层,地层倾角局部达50°~70°,但上覆的早更新世中晚期沉积没有变形。林树基将使早更新世中晚期及其以前的晚新生代沉积发生变形的构造运动称为碧痕运动。从已有资料分析,它大致发生在距今约150~120万年前。是贵州地区晚新生代时期发生最激烈的构造运动,大致与云南的"元谋运动"对比。这场运动开始了贵州地壳大幅度整体性自西向东掀斜隆升的新时期。贵州侏罗山式褶皱带:侏罗山式褶皱带的特点是背斜和向斜的变形强度不同,较紧闭的褶皱和较开阔的褶皱相间并列,代表性的构造是隔挡式与隔槽式褶皱。侏罗山式褶皱带占据了贵州扬子陆块的大部份,卷入褶皱带的地层从中元古界至中生界。虽褶皱样式多样,但以隔槽式褶皱最为发育和典型。它是由一系列的紧密向斜和平缓背斜相间平行排列而成,在平面上和剖面上呈雁形排列。在广大范围内,普遍发育有与褶皱轴(主要是背斜轴)平行的冲断层,与上述褶皱一起构成褶皱-推覆构造。冲断面产状一般较为平缓,有时出现飞来峰或构造窗;有的则形成双重构造或叠瓦状冲断岩片。另外,区内另一类重要断层是与上述褶皱和冲断层斜交的走滑(平移)断层,它与前述的冲断层构成复杂的断裂网络。此外,在贵州侏罗山式褶皱带的一些大断裂傍侧,还发育了小型拉伸构造-箕状断裂,常表现为半地堑盆地,其中堆积的晚白垩世磨拉石已发生轻微变形,这显然是喜山运动的表现。四川盆地边缘平缓开阔褶皱带:属四川盆地南部边缘,涉及范围仅限于我省赤水和习水两市(县)。区内构造变形较微弱,地层产状一般平缓,有的甚至水平,褶皱作用极其缓慢,主要由晚三叠世晚期至晚白垩世陆相碎屑地层组成的褶皱一般开阔,其型式以横弯顶薄者为主,仅有一些规模不大的舒缓的背斜和向斜,主要呈近东西向分布。断裂构造亦不发育,仅有一些小型的正断层。据四川深部地球物理资料,

广西地质构造单元情况

构造单元 地壳大型构造的基本单位,又称大地构造单元。广西绝大部分地区在晚三叠世以前经历了海水覆盖的漫长地质历史时期,其中晚古生代到中三叠世也有相对隆起和相对凹陷的区域,隆起区有的长期露出水面为剥蚀区,凹陷区则接受沉积。根据地质构造发展演化历史及区域构造特征的不同,可将广西划分为一个一级构造单元,即广西一级构造单元属华南板块范畴,两个二级构造单元(扬子陆块、华南活动带),7个三级构造单元和19个四级构造单元。 桂北隆起 三级构造单元。属于扬子陆块的东南缘,位于桂北九万大山至越城岭一带,呈北东方向展布,南面大致以罗城、融水、兴安一线为界,是广西出露最老的地层分布区。构成该隆起的地层以四堡群、丹洲群、震旦系为主,下古生界次之,上古生界及中新生界上叠盆地不发育,仅见于南部边缘和个别北偏东向断裂旁则。自西南向东北,地层具有由老变新的分布规律,西南部主要为四堡群、丹洲群和震旦系,东北部主要为寒武系、奥陶系。岩浆岩发育,除四堡期、雪峰期中基性火山岩和基性—超基性侵入岩分布在隆起区西南部四堡群和中部丹洲群外,尚有四堡期、雪峰期、加里东期和燕山期的中酸性花岗岩。雪峰期和加里东期花岗岩呈岩基产出,规模较大,分别出露于隆起区西南部和东北部。桂北隆起区经受多次构造运动的影响,构造比较复杂,四堡运动和广西运动使四堡群和丹洲群至下古生界的地层强烈褶皱,其后的构造运动以上升活动为主,为间歇性上升隆起区。四堡群以高角度紧密线状复式褶皱为主,构造线多呈西偏北方向,往东北逐渐转为北东向,至元宝山一带则为南北向。丹洲群至下古生界则以紧密线状平行排列的复式褶皱为主,次级褶皱发育,局部有倒转褶皱,构造线呈北偏东方向。上古生界(盖层)印支期褶皱,见于隆起区东北部和南部边缘,多呈短轴状或长轴状向斜,构造线呈北偏东方向。从上古生界及中新生界上叠盆地不发育的特征看,桂北一带在晚古生代和中新生代处于长期隆起,为露出海面的陆地和剥蚀区。 桂东北——桂中拗陷三级构造单元。位于桂中和桂东北,呈北东向展布,桂东北 西北端为北西向。本区为古生代的长期拗陷区,晚古生代沉积盖层广泛发育,仅西南部较大向斜的核部有下中三叠统。桂东北较大背斜的核部,因剥蚀而出露基

基于热力耦合的汽油机曲柄连杆机构结构分析

基于热力耦合的汽油机曲柄连杆机构结构分析 高洪1,胡静丽2,张海涛1,柳剑玲2,李玲纯1 (1.安徽工程大学机械与汽车工程学院 安徽芜湖 241000) (2.芜湖市质量技术监督局,安徽 芜湖 241000) 摘要:基于能量守恒、质量守恒和理想气体状态方程,建立汽油机作功行程气体质量、温度、压力随曲轴转角的函数关系求解模型。在此基础上,将曲柄连杆机构视为装配体,基于单区模型对该装配体进行热力学分析,基于多体动力学对该装配体进行机械负荷分析。最后在ANSYS12.1软件中实现该装配体的热力耦合分析。上述方法可用于解决曲柄连杆机构结构设计的强刚度评价问题,有助于缩短汽油机开发周期和减少成本。 主题词:汽油机;装配体;热负荷;机械负荷;热力耦合;结构分析 1 引言 对内燃机曲柄连杆机构的结构设计强刚度评价,一般有实验法和理论分析法两种。实验法固然可靠,但周期长耗资大;而理论分析法则一般对活塞作热力学分析,对连杆曲轴等只 作单一机械负荷分析[1~3]。 我们认为,从内燃机工作实际看,曲柄连杆机构应是机械负荷与热负荷耦合作用的。因此本文将多场耦合技术与装配体有限元分析技术结合,提出了基于热力耦合分析的汽油机曲柄连杆机构结构分析方法,可用于解决曲柄连杆机构结构设计的强刚度评价问题。 对内燃机工作过程的数值模拟,一般有单区(Single-Zone )模型、双区模型、多区(Multi-Zone )模型等。单区模型满足基本假设,即系统内各参数不随空间坐标而变化,只随曲轴转角而变化,其对应的数学模型为常微分方程组。而双区模型、多区模型则是单区模型的推广,前者用于排气污染分析和预测,后者则是将系统划分为n (n ≥3)个互相独立的子区,每个子区内各自满足单区模型基本假设,通过联立n 组微分方程可得燃烧室内各参数的数值解。 因讨论的目标是曲柄连杆机构各零件的强刚度问题,只涉及汽油机负荷、速度等运行特性并不计算有害排放物,故热力学分析中采用单区模型;机械负荷分析中则依据多体动力学进行。最后在ANSYS12.1软件中实现曲柄连杆机构装配体的热力耦合分析。 2 作功行程气体质量、温度、压力随曲轴转角的关系 四冲程汽油机工作过程是包含物理、化学、流动、传热、传质的复杂过程,一般由能量守恒方程、质量守恒方程和理想气体状态方程把整个过程联系起来: ???? ?????=+=-+-+++=mRT pV d dm d dm d dm u h d dm u h d dm d dV p d dQ d dQ mc d dT e s e e s s W B v ?????????)]()([1 (1) 其中,?为曲轴转角,Q B 为燃料在气缸内燃烧放出的热量,Q W 为通过气缸壁面传入或传出的热量,h S 为进气门处工质的比焓,h e 为排气门处工质的比焓,u 为工质的比内能,c v 为定容过热比热容,m 为气缸内工质质量,m s 为流入气缸的质量,m e 为流出气缸的质量,R 为气体常数,p 为气缸内工质压力,V 为气缸工作容积,T 为气缸内工质温度。

电池组热力耦合分析

电池组热力耦合分析 本例展示基于热-结构耦合的热力耦合分析。 1 问题设定 一块电池组,尺寸为70mm x 175mm x 400mm。对模型进行适当简化,保留主体电芯和PC部分,约束电池组底部Z方向,电芯部分给定生热源,电池组外表面给定自然对流散热边界条件,模拟电池组温度变化和应力变化。 由于需要进行实时热力耦合分析,因此电池,PC材料等采用实体建模,设定相关的coupling耦合单元和tie约束,建立电芯和PC材料之间的接触关系(包括热接触)。 本案例用到的附件包括: Battery1003_heat.cae 稳态热力耦合分析

2 分析过程 一般来说,针对热力学问题,通常有顺序耦合和完全耦合两种方法。顺序耦合是先进行热传导分析,得到温度分布结果,然后把温度分布结果映射到结构分析模型上。完全耦合则是直接在abaqus中直接给建立的coupled temp-displacement分析步,完全实时同步计算温度变化和应力变化,并可考虑温度和结构变形之间的互相影响。 2.1 有限元计算 2.1.1 几何处理 在CAD软件中进行简单处理后,导入Abaqus中,需要对零件进行几何清理和修复,删除不必要的细节特征。 2.1.2 赋予材料属性 根据不同材料电池,PC等赋予相应的材料参数,注意因为这里需要进行完全热力耦合分析,因此材料参数必须同时具有力学参数和热学参数,包括:密度,弹性模量,泊松比,塑性曲线,热膨胀系数,热导率,比热等,如下图所示:

2.1.3 模型装配 在Abaqus中装配的模型,通在CAD软件中装配位置关系完全一致。如果在CAD软件中已经装配即可。这里由于单个电池芯模型一致,因此为减小前处理工作量,在Abaqus 中对单个电芯进行阵列处理,后期只需要分析修改单个电芯模型,整个装配体所有电芯模型自动更新。 2.1.4 定义相互作用 根据模型需要,定义相关接触关系和耦合约束等等。如下所示: 定义接触属性:在Interaction模块,点击Create Interaction property,选择contact,进入Edit contact property窗口,分别定义Tangential behavior 中设定0.1的摩擦系数,以及Thermal conductance 中的接触热传导参数,如下图所示:

应力场分析与裂缝预测

《应力场分析与裂缝预测》教学大纲 (2004年制定,2012年第二次修改) 课程名称:应力场分析与裂缝预测 课程英文名称:Stress Field Analysis and Fracture Prediction 课内学时:32 课程学分:2 课程性质:学位课开课学期:每学年第一学期 教学方式:课堂讲授考核方式(考试/考查):考试 大纲执笔人:曾联波主讲教师:曾联波 师资队伍:曾联波、童亨茂、陈书平 一、课程内容简介 《应力场分析与裂缝预测》是地质学专业和资源勘探与地质工程专业硕士研究生的一门专门课程。讲授古、现应力场和储层裂缝的研究方法及其在油气勘探与开发中的应用,包括应力与应力场的基础概念、古构造应力场分析方法、现今地应力测量方法、裂缝的基础知识,裂缝定量预测方法、古应力场在油气勘探中的应用、现今地应力和裂缝在低渗透油气田开发中的应用。本门课程为32学时,2学分。 二、课程目的和基本要求 课程的目的是培养学生掌握古、今应力场分析与储层裂缝预测的基本理论和方法分析油田应力场分布及进行储层裂缝预测的基本能力。《应力场分析与裂缝预测》课程涉及构造地质学、地质力学、储层地质学、岩石力学、石油地质学和油气藏工程等多方面的基本知识,要求学生系统学习了大学本科地质类专业的构造地质学、固体力学、石油地质学和储层地质学等课程。 学完本课程后,应达到以下基本要求: 1.了解应力、应力场和裂缝的基本概念及基本分布特征; 2.掌握古应力场研究方法及进展,并能运用这些基本方法分析油田古应力场分布和指导油气勘探; 3.掌握现今地应力测量方法,并能运用这些方法分析低渗透油气田的地应力分布和指导油气田开发。 4. 掌握储层裂缝的研究和预测方法,并能运用这些方法研究和预测低渗透储层裂缝的分布规律。 三、课程主要内容 §1. 应力场分析和裂缝预测的基础知识(4学时) §1.1应力、应力场和裂缝的基本概念。 §1.2应力场和裂缝研究的基本内容与方法。 §1.3应力场分析和裂缝预测的研究现状与发展趋势。 §1.4应力场分析和裂缝预测的研究意义。 §2. 现今地应力测量方法(4学时) §2.1现场地应力测量方法。 §2.2岩心地应力测量方法。 §2.3测井地应力分析方法。 §2.4地应力的分布规律及影响因素 §3. 古构造应力场分析方法(6学时) §3.1古构造应力方向分析方法。

热力耦合单元介绍

热力耦合分析单元简介 SOLID5-三维耦合场实体 具有三维磁场、温度场、电场、压电场和结构场之间有限耦合的功能。本单元由8个节点定义,每个节点有6个自由度。在静态磁场分析中,可以使用标量势公式(对于简化的RSP,微分的DSP,通用的GSP)。在结构和压电分析中,具有大变形的应力钢化功能。与其相似的耦合场单元有PLANE13、SOLID62和SOLID98。 INFIN9-二维无限边界 用于模拟一个二维无界问题的开放边界。具有两个节点,每个节点上带有磁向量势或温度自由度。所依附的单元类型可以为PLANE13和PLANE53磁单元,或PLANE55和PLANE77和PLANE35热单元。使用磁自由度(AZ)时,分析可以是线性的也可以是非线性的,静态的或动态的。使用热自由度时,只能进行线性稳态分析。 PLANE13-二维耦合场实体 具有二维磁场、温度场、电场和结构场之间有限耦合的功能。由4个节点定义,每个节点可达到4个自由度。具有非线性磁场功能,可用于模拟B-H曲线和永久磁铁去磁曲线。具有大变形和应力钢化功能。当用于纯结构分析时,具有大变形功能,相似的耦合场单元有SOLID5、SOLID98和SOLID62。 LINK31-辐射线单元 用于模拟空间两点间辐射热流率的单轴单元。每个节点有一个自由度。可用于二维(平面或轴对称)或三维的、稳态的或瞬态的热分析问题。 允许形状因子和面积分别乘以温度的经验公式是有效的。发射率可与温度相关。如果包含热辐射单元的模型还需要进行结构分析,辐射单元应当被一个等效的或(空)结构单元所代替。LINK32-二维传导杆 用于两节点间热传导的单轴单元。该单元每个节点只有一个温度自由度。可用于二维(平面或轴对称)稳态或瞬态的热分析问题。 如果包含热传导杆单元的模型还需进行结构分析,该单元可被一个等效的结构单元所代替。LINK33-三维传导杆 用于节点间热传导的单轴单元。该单元每个节点只有一个温度自由度。可用于稳态或瞬态的热分析问题,如果包含热传导杆单元的模型还需进行结构分析,该单元可被一个等效的结构单元所代替。

刹车过程的热力耦合分析FEM实例

刹车过程的热力耦合分析实例 摘要:机动车的刹车盘在刹车过程中由于刹车片和刹车盘的摩擦会产生大量的热,生成的热会对刹车片的材料性能和刹车性能产生很大的影响,本例以此为例来分析刹车过程中的热应力,为刹车盘的改进设计以及事故的预防提供技术依据。 关键词:耦合热应力 1 实例说明 刹车盘的材料为钢,外径为135mm,内径为90mm,厚度为6mm;刹车盘基座上的圆环外径为135mm,内径为100mm,厚度为2mm,材料同样的为钢,如图1.1所示;刹车片为树脂加强的复合材料,可以用来提高摩擦系数和材料性能随着温度变化,如表1.1和表1.2所示。 图1.1 刹车盘 表1.1

表1.2 温度对材料性能的影响 2 建立模型 根据要求的数据,利用ABAQUS分别建立刹车盘和刹车片两个模型,如图2.1和2.2所示。 图2.1 刹车盘图2.2 刹车片并通过利用其abssembly的装配功能,将上面两的部件装配成如图2.3所示的刹车系统。

图2.3 刹车系统 3 设定分析步 考虑到刹车盘和刹车片之间的摩擦生热现象以及热传导过程,并且分析由于热产生的应力,在分析过程中刹车盘和刹车片存在着接触摩擦关系,所以定义两个分析步: 在第一个分析步中对刹车片施加压力,使刹车片和刹车盘建立稳定的接触关系; 在第二个分析步中使刹车盘旋转60度,来分析刹车过程。 4 分析结果 在结果中可以选择不同的输出变量,因而得出不同的结果。如图4.1为节点 温度。

图4.1 节点温度 为了便于观察刹车盘和刹车片接触区的分析,我们可以把刹车片隐去。如图 4.2所示。

图4.2 节点温度 在输出变量中选择变量cshear1,则可以得到摩擦剪应力的分布。如图4.3所示。

广西主要构造运动

广西主要构造运动 运动由地球内力引起岩石圈的变位、变形以及洋底的增生和消亡的作用称构造运动。构造运动产生褶皱、断裂等各种地质构造,引起海、陆轮廓的变化、地壳的隆起和拗陷以及山脉、海沟的形成等。是使地壳不断变化发展的最重要的一种地质作用,引起地震活动、岩浆活动和变质作用。晚第三纪以来的构造运动在地貌、地物上保存较好,人们称之为新构造运动;晚第三纪以前发生的构造运动叫古构造运动;又将人类历史时期到现在所发生的新构造运动称为现代构造运动。广西构造运动频繁,计有21次,其中以四堡、广西、东吴、及燕山运动最为强烈,具有造山运动性质,显示出具多旋回的构造运动特征,据此可将广西划分为四堡、扬子—加里东、华力西、印支、燕山和喜马拉雅等6个构造旋回。 四堡运动1957年,广西石油普查大队首先根据罗城仫佬族自治县四堡圩湾塘角附近,丹洲群与四堡群之间的不整合关系而创名。后来,广西区域地质调查队于1963—1964年和1966年,在九万大山地区发现丹洲群与四堡群普遍呈明显的角度不整合接触,元宝山一带为平行不整合接触,从而进一步证实四堡运动的存在,发生时间大致在1000—1100百万年前。桂北四堡期地槽经四堡运动褶皱回返,在九万大山和元宝山西侧一带形成一系列向北或向东南倒转的紧密同斜褶皱,同时伴随有小规模中酸性岩浆侵入和区域变质作用,形成本洞、大坡岭等花岗闪长岩体和一套浅变质岩系。本洞岩体与上覆丹洲群沉积接触,其同位素年龄为1063百万年。运动强度自西向东变弱。 富禄上升广西区域地质调查队1962—1965年在三江侗族自治县富禄附近,发现震旦系富禄组底部为粗砂岩及含铁板岩,与下伏的长安组平行不整合接触,将造成此地质现象的构造运动称富禄上升。这次发生于震旦纪长安期末的构造运动,涉及面不广,主要发生在三江、龙胜一带,是一次局部上升。 肯城上升在九万大山南侧罗城肯城一带,震旦系陡山沱组底部为厚20~40cm的砾岩,与下伏的南沱组平行不整合接触,将造成此地质现象的构造运动

华北地区构造应力场研究

科技信息2011年第27期 SCIENCE &TECHNOLOGY INFORMATION 华北地区构造应力场研究 李富涛1孟昭焕2贾宝刚1 (1.山东省煤田地质局物探测量队山东泰安271021;2.莱芜市国土资源局山东莱芜271100) 【摘要】本文结合相关数据、模型和软件分别利用重力场、重力垂线偏差与构造应力场的内在关系式对华北地区陆地构造应力值进行了计算,通过对相关数据结果进行对比分析,总结并得出了华北地区重力总水平梯度、构造应力场和研究方法本身的一些规律和特征。 【关键词】重力场;重力水平梯度;垂线偏差;构造应力 0引言构造应力场是地球动力学研究领域一个重要的组成部分。由于我 们不能直接测量得到浅层地表以外的岩石圈构造应力场,一些学者于 是另辟蹊径,以可以直接测量得到的相关区域重力数据为参考,通过 研究构造应力场与重力场之间的内在关系的方法而最终获得构造应 力场数据。在这方面,典型的代表人物有游永雄、向文、方剑等。游永雄 曾利用重力场研究了包括华北地区在内的多个地区的构造应力场情 况,本文即利用近似方法专门针对华北地区东经[106°,124°]、北纬[31° 43°]范围的大陆构造应力场进行更加细致地研究[1],以期使得对该区 域构造应力场及其变化规律和研究手段本身认识得更加详尽。 1 重力和垂线偏差场转换构造应力场公式1.1利用重力场计算华北地区构造应力场 游永雄推导了重力场转换构造应力场的公式即[2]:Δσxx =g ρx ,y m g x (1)其中,Δσxx 代表构造应力;g 为正常重力;f 为引力常量;ρx ,y 为均衡 改正的单位均衡柱体密度;ρm 为地幔密度;g x 为重力总水平梯度,其水 平分量Δg x 和Δg y 值可用下面公式计算[2][3]: Δg x =-1+∞-∞乙+∞-∞乙(x-x')Δg z [(x-x')2+(y-y')2+H 2]32dx'dy 'Δg y =-12π+∞-∞乙+∞-∞乙(y -y ')Δg z [(x-x')2+(y-y')2+H 2] 32dx'dy 乙乙乙乙乙乙乙乙乙乙乙'(2)Δg z 是得到的重力异常值,x'和y '是流动坐标,遍及整个测量区 域,H 是空间延拓高度, 积分面积可以有限化和离散化,以适应计算,本文即以离散化后 2度范围为积分区域来计算。 求g x 的值的计算式为:g x =(Δg x )2+(Δg y )2 姨(3)1.2利用重力垂线偏差计算构造应力场公式 利用垂线偏差计算构造应力场公式如下[2]: Δσxx =-g 24πf ρx ,y ·u ρm ·ρ (4)式中,u 代表重力垂线偏差;ρ=206265rad ·s 。 u 的值根据下式计算[4]:u =(ξ2+η2) 1/2(5)其中,ξ为南北垂线偏差(垂线偏差子午圈分量);η为西东垂线偏 差(垂线偏差卯酉分量)。 2 计算华北地区构造应力场2.1利用重力场计算华北地区构造应力场 本文利用华北地区5′×5′分辨率的DTM 数据、360阶重力场模型 EGM96并借助于PALGrav1.0软件[5]求得该区域布格重力异常值Δg z , 然后计算得到重力总水平梯度g x 。在此基础上,再利用重力延拓知识[6], 并根据式(1)分别计算得到了华北地区地表、20公里和40公里深度 处的构造应力值。以下分别是该区5′×5′分辨率DTM 图、重力总水平 梯度图和地表、20公里、40公里深度构造应力场图。 2.2利用重力垂线偏差计算华北地区构造应力场 利用上述同样DTM 数据、重力场模型和软件计算南北垂线偏差 ξ和东西垂线偏差η,然后计算重力垂线偏差u 。根据公式(4)进一步 计算得到该区构造应力值。以下分别是利用垂线偏差计算得到的华北 地区重力总水平梯度图和地表构造应力场图。3分析和讨论 图1华北地区DTM 图(单位:m )图 2 华北地区重力总水平梯度矢量图(单位:E ) 图3华北地区重力总水平梯度等值线图(单位:E )图4华北地区地表构造应力场矢量图(单位:MPa ) ○科教前沿○

贵州地质构造.

贵州地质构造 贵州位于华南板块内,处于东亚中生代造山与阿尔卑斯-特提斯新生代造山带之间,横跨扬子陆块和南华活动带两个大地构造单元。在已知1400Ma地质历史时期中经历了武陵、雪峰、加里东、华力西-印支、燕山-喜山等5个阶段。雪峰运动奠定了扬子陆块的基底,广西运动使黔东南地区褶皱隆起与扬子陆块熔为一体,以后又经历了裂陷作用、俯冲作用,燕山运动奠定了现今构造的基本格局。多次造山作用的地应力场在变化多端的地应力条件下,形成了挤压型、直扭型和旋扭型三类构造型式,交织成一幅复杂多变的应变图象。其特点是:(1贵州的地质构造属板内构造,构造的主体为薄皮构造。(2变形不十分强烈,在贵州发育最完整、最广泛的构造样式是侏罗山式褶皱带。 都匀运动:原地矿部第八普查大队(1980命名,系指发生在贵州中部及南部,奥陶纪末到志留纪初之间的一次地壳运动。该运动的表现是:在毕节-遵义-湄潭-铜仁连线与贵阳-施秉联线之间的贵州中部地区,普遍缺失上奥陶统中上部,下志留统中上部与下伏奥陶系不同层位呈假整合,在不少地区如贵阳乌当附近可见到志留系底部的砾岩层或含砾粘土岩嵌覆于呈数米起伏的间断面上。在黔南地区下志留统中部超覆于奥陶系的不同层位之上,其间缺失地层达数百米,志留系底部常见底砾岩,部分地区见风化壳。这是一次大面积的抬升运动。 独山抬升:王约1994年命名,系指独山地区中泥盆统独山组鸡窝寨段与下伏宋家桥段之间的抬升运动。在该区独山组鸡窝寨段之底有风化残积的褐铁矿层,其上为底砾岩。另外,根据遗迹化石组合在区域上的对比,可以确认独山组宋家桥段上部受到不同程度风化剥蚀。鸡窝寨段底部直覆在凸凹不平的基底上。所有这些都表明在独山组宋家桥段沉积之后,地壳有一次极为广泛而明显的上升运动。 黔桂运动:赵金科等(1959年命名,原指广西栖霞组与马坪组之间的假整合。在贵州除部分地区外,绝大部分地区马坪组与其上覆的梁山组、栖霞组为假整合,故沿用此名。根据我国最新公布的地质年表,这次运动发生在中、下二叠统之间。 碧痕运动:林树基(1994命名。命名地点在晴隆碧痕营。在那里早更

热力耦合分析单元简介

热力耦合分析单元简介! SOLID5-三维耦合场实体 具有三维磁场、温度场、电场、压电场和结构场之间有限耦合的功能。本单元由8个节点定义,每个节点有6个自由度。在静态磁场分析中,可以使用标量势公式(对于简化的RSP,微分的DSP,通用的GSP)。在结构和压电分析中,具有大变形的应力钢化功能。与其相似的耦合场单元有PLANE13、SOLID62和SOLID98。 INFIN9-二维无限边界 用于模拟一个二维无界问题的开放边界。具有两个节点,每个节点上带有磁向量势或温度自由度。所依附的单元类型可以为PLANE13和PLANE53磁单元,或PLANE55和PLANE77和PLANE35热单元。使用磁自由度(AZ)时,分析可以是线性的也可以是非线性的,静态的或动态的。使用热自由度时,只能进行线性稳态分析。 PLANE13-二维耦合场实体 具有二维磁场、温度场、电场和结构场之间有限耦合的功能。由4个节点定义,每个节点可达到4个自由度。具有非线性磁场功能,可用于模拟B-H曲线和永久磁铁去磁曲线。具有大变形和应力钢化功能。当用于纯结构分析时,具有大变形功能,相似的耦合场单元有SOLID5、SOLID98和SOLID62。 LINK31-辐射线单元 用于模拟空间两点间辐射热流率的单轴单元。每个节点有一个自由度。可用于二维(平面或轴对称)或三维的、稳态的或瞬态的热分析问题。 允许形状因子和面积分别乘以温度的经验公式是有效的。发射率可与温度相关。如果包含热辐射单元的模型还需要进行结构分析,辐射单元应当被一个等效的或(空)结构单元所代替。 LINK32-二维传导杆 用于两节点间热传导的单轴单元。该单元每个节点只有一个温度自由度。可用于二维(平面或轴对称)稳态或瞬态的热分析问题。 如果包含热传导杆单元的模型还需进行结构分析,该单元可被一个等效的结构单元所代替。 LINK33-三维传导杆 用于节点间热传导的单轴单元。该单元每个节点只有一个温度自由度。可用于稳态或瞬态的热分析问题。 如果包含热传导杆单元的模型还需进行结构分析,该单元可被一个等效的结构单元所代替。 LINK34-对流线单元 用于模拟节点间热对流的单轴单元。该单元每个节点只有一个温度自由度。热对流杆单元可用于二维(平面或轴对称)或三维、稳态或瞬态的热分析问题。 如果包含热对流单元的模型还需要进行结构分析,热对流单元可被一个等效(或空)的结构单元所代替。单元的对流换热系数可分为非线性,即对流换热系数是温度或时间的函数。

地壳动力学在石油开发中的应用_四_构造应力场与石油勘探

地壳动力学在石油开发中的应用 ———(四)构造应力场与石油勘探 安 欧 (中国地震局地壳应力研究所 北京 100085) 摘要 本文综述了构造应力场在石油勘探中的应用,包括油田应力测算、成藏构造分析、裂缝分布估测、有利应力区划等,这些正是分析形成油藏的诸因素,用地壳动力学的理论对认识石油生、运、储系统以及油藏的形成帮助我们找到更多的高产油田。 一、油田应力测算 11构造应力场测量 (1)古构造应力测量 要分析测区石油在地质时期的生成、运移、储集规律,须测量该时期的古构造应力场。裂面擦痕法可用来测量古构造应力场中主应力大小和方向。若地区的地形高差小,剪裂面上的擦痕产状受后来构造运动的影响不大,则由区内露头和定向岩心上同一地质时期形成的剪裂面上擦痕方向的统计,可求得裂面形成时期构造应力主分量的方向和大小。 把地理坐标系O 2X YZ 的原点O 取在剪裂面上,X 轴向东,Y 轴向北,Z 轴铅直向上(图1)。图1 岩体剪裂面上盘单位滑动矢量方向在下盘裂面上的几何表示剪裂面的方位用单位法向矢量n 表示,n 在水平面上投影的指向为倾向,用与X 轴的夹角θn 表 示,从X 轴到此投影以逆时针方向为正;n 与水平 面的夹角

相关文档
相关文档 最新文档