文档视界 最新最全的文档下载
当前位置:文档视界 › 机械系统的动力学分析

机械系统的动力学分析

机械系统的动力学分析
机械系统的动力学分析

第二章机械系统的动力学分析

机械系统动力学分析方法概述

对于含有多种结合部的大型复杂机械系统,多采用动态子结构方法建立其理论动力学模型,并对其进行动力分析、模型仿真、结构修改及动态优化,以达到预期目标函数的要求。

需要说明的是,随着现代高速、大容量电子计算机及软件的发展,可直接用有限元法建立大型复杂机械系统的理论模型,即首先建立其三维图形,再利用有限元软件的前处理功能直接划分出机械系统的有限元闷格图,而毋需采用子结构方法。但动态子结构方法仍有其自身的优越性,尤其在进行结构动力分析和结构动力学修改时是卓有成效的。

2.1动态子结构方法

一、动态子结构方法的思想

当机械结构十分复杂,特别是含有多个动力学参数难以确定的结合部时,宜采用动态子结构方法。即把一个复杂的完整结构人为地分解为若干个比较简单的小结构——子结构,对每个子结构建模并进行动力分析,得到其动力特性及各种数据资料,再根据各子结构间的连接条件,将各子结构的动力特性综合起来,得到整体结构的动力学模型,进而可对整体结构进行动力分析、计算机仿真、结构动力修改及动态优化设计。

二、动态子结构方法的产生与发展

高效、高性能、自动化机械产品的问世,更要求机械设计者既要尽量减小结构尺寸、降低重量,又要保证机械产品具有良好的工作精度和可靠性。因此.必须对机械产品的动态性能作定量分析,以便对机械产品的振动、噪声等进行严格限制。所以,寻求机械结构动态特性精确可行的分析方法,已成为亟待解决的重大课题。

比较成熟的动态子结构综合方法主要有两类:机械阻抗法和模态综合法。

三、动态子结构法的基本步骤

动态子结构方法的基本步骤如下:

1)将整体结构划分为若干个子结构。若子结构联接界面上的自由度完全固定,则为固定界面法;若子结构联接界面上的自由度完全自由,则为自由界面法。

2)采用子结构的各种建模或参数识别方法,建立各子结构的功力学模型。

3)求解各子结构的动力学模型,得其动力特性。当采用模态综合法对子结构进行综合时,则可利用坐标变换,将子结构在物理坐标下的运动方程变换到模态坐标下,得到没有耦合的模态坐标下的运动方程,通过分析计算或试验,提取各子结构的低阶模态参数,即频率、振型、响应、模态刚度和模态质量等。

4)利用子结构联接界面上各对接点的联接条件(协调方程和平衡方程),将所有子结构的模态坐标变换到整体结构的耦联广义坐标,再利用坐标变换,得到解耦的整体结构的数学模型。

5)求解整体结构的数学模型,得其动力特性,其各点的动力响应可表示为各阶模态响应的叠加。在一定条件下模态参数可经坐标逆变换转回到物理坐标下,从而得到物理坐标下的相应参数。

6)若分析的机械结构已有实物,可利用对实物的试验测试结果,修改整机动力学模型,再根据整机结构动力特性的设计目标函数,对整机结构进行优化;若无实物,可根据目标函数,直接对动力学模型进行修改与优化。

建立各子结构动力学模型的理论方法主要有三种:集中参数法、分布参数法和有限元法。其中以有限元法对实际结构的模拟精度最高,应用最广。用有限元法建立于结构的动力学模型,一般可满足工程应用的精度要求。

2.1.2 子结构的划分

子结构的划分原则:

1)尽量按照实际复杂结构的装配部件和独立的几何形体划分。

2)尽量分离较少的联系而获得数量适宜的子结构,即尽量用较少的边界处理就能取得化整为零的最大效果。

3)各子结构的建模及动力分析要适应现有计算机及相应软件的处理能力,以便有效地提取子结构参与综合所需的动力参数。若现有计算机和相应软件的处理能力很强,亦可不划分子结构,直接进行整机建模及分析。

4)尽量使每个子结构的自由度数相接近,避免刚度矩阵或质量矩阵相差悬殊,以利于子结构综合。若各子结构采用不同方法建模时,则可能形成集中参数或分布参数模型与有限元模型相综合,则有可能由于各种模型间自由度数相差很大,造成综合困难,则可对有限元模型或分布参数模型采用自由度凝聚技术后,再进行综合。

5)按同类的几何形状和边界条件构成相同的子结构,以减少子结构特征值的计算次数,提高计算效率。

6)按试验模态与理论计算模态综合技术的需要划分。当一部分结构无法进行理论计算就必须按这二类模态的不同处理方法划分。

7)尽量使每个子结构的固频大些,这样可以提高整机综合的精度和效率。

复杂机械结构被分解为若干个子结构后,各子结构间的联接方式大体可分为两类,即刚性联接和柔性联接。

2.1.3 机械阻抗法

机械阻抗综合法的基本思路是:将整体结构分解成若干个子结构,应用机械阻抗方法(包括理论计算及试验测试),分别建立每个子结构的运动方程;根据子结构之间相互联接的实际情况,确定联接界面处的约束条件,这些约束条件,可在联接界面处适当地选取若干个联接点,并通过联接点的运动坐标(一般代表结点的位移)和作用力之间的关系来建立;最后,通过子结构之间的联接条件(约束方程),将各子结构的运动方程耦合起来,从而得到整体结

构的运动方程和动力特性。

机械系统动力学

机械系统动力学报告 题目:电梯机械系统的动态特性分析 姓名: 专业: 学号:

电梯机械系统的动态特性分析 一、课题背景介绍 随着社会的快速发展,城市人口密度越来越大,高层建筑不断涌现,因此,现在对电梯的提出了更高的要求,随着科技的进步,在满足客观需求的基础上,电梯向着舒适性,高速,高效的方向发展。在电梯的发展过程中,安全性和功能性一直是电梯公司首要考虑的因素,其中舒适性也要包含在电梯的设计中,避免出现速度或者加速度出现突变,或者电梯运行过程中的振动引起人们的不适。因此,在电梯的设计过程中,对电梯进行动态特性分析是十分必要的。 二、在MATLAB中编程、绘图。 通过同组小伙伴的努力,已经得到了该系统的简化模型与运动方程。因此进行编程: 该系统的微分方程:[][][]{}[]Q x k x c x M= + ? ? ? ? ? ? + ? ? ? ? ? ?? ? ? ,其中矩阵[M]、 [C]、[K]、[Q]都已知。 该系统的微分方程是一个二阶一元微分方程,在MATLAB中,提供有求解常微分方程数值解的函数,其中在MATLAB中常用的求微分方程数值解的有7个:ode45,ode23,ode113,ode15s,ode23s,ode23t,ode23tb 。 ode是MATLAB专门用于解微分方程的功能函数。该求解器有变步长(variable-step)和定步长(fixed-step)两种类型。不同类型有着不同的求解器,其中ode45求解器属于变步长的一种,采用Runge-Kutta

算法;和他采用相同算法的变步长求解器还有ode23。 ode45表示采用四阶,五阶Runge-Kutta单步算法,截断误差为(Δx)^3。解决的是Nonstiff(非刚性)常微分方程。 ode45是解决数值解问题的首选方法,若长时间没结果,应该就是刚性的,可换用ode23试试。 Ode45函数调用形式如下:[T,Y]=ode45(odefun,tspan,y0) 相关参数介绍如下: 通过以上的了解,并对该微分方程进行变换与降阶,得出程序。MATLAB程序: (1)建立M函数文件来定义方程组如下: function dy=func(t,y) dy=zeros(10,1); dy(1)=y(2); dy(2)=1/1660*(-0.006*y(2)+0.003*y(4)-0.0006*y(10)-1.27*10^7*y(1)+1.27*10^7*y (3)+2.54*10^6*y(9)); dy(3)=y(4); dy(4)=1/1600*(+0.03*y(2)-0.007*y(4)+0.003*y(6)+1.27*10^7*y(1)-7.274*10^8*y(3 )+1.27*10^7*y(5)); dy(5)=y(6);

张力减径机的动力学和运动学的分析详细版

文件编号:GD/FS-1093 (解决方案范本系列) 张力减径机的动力学和运动学的分析详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

张力减径机的动力学和运动学的分 析详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 文章主要对三辊式张力减径机进行分析,主要分析张力减径机的动力学和运动学原理,通过对张力减径机的速度分析、转速分析和速度控制来分析张力减径机运动学特征,通过对张力减径机受力分析、轧制压力和轧制力矩进行分析张力减径机的动力学特征分析。 张力减径机是现代化的生产机组,其作用和优越性使其在大规模无缝钢管生产中不可缺少。随着我国钢管工业的发展张力减径机组正被广泛运用。对三辊式张力减径机进行分析,该机组是90年代研制的,具有许多独特的优点。以下分析张力减径机的运动学

和动力学原理。 1.张力减径机的运动学特征 1.1.运动学特征 在张力减径的过程中,要求各个机架的延伸系数和轧辊圆周协调一致,同时决定连轧机工作的基本条件要求通过每个机架的金属的秒流量相等。 在所有的机架都充满金属而C不等于0的情况下,对于每对轧辊在任意瞬间都遵守秒流量、相等的原则,这种相等可通过轧辊和金属之间的滑移达到。因此当C不等于0时,减径机任何一个机架中的变形条件发生变化,都会影响其余机架中的变形条件,但由于连轧过程本身存在着相适应,自相调整的过程,因此即使在这种相互作用的复杂关系中减径过程仍然能够在任一瞬间保持秒流量相等。但是当差别较大时,必然会造成严重的拉钢和推钢,轻者不能获得

中国矿业大学机械系统动力学实验指导书(实验报告)

《机械系统动力学》 实验指导书 编制机械系统动力学课程组 中国矿业大学机电工程学院机械设计系 2019年3月

图1 幅值判别法和相位判别法仪器连接图 实验:结构的固有频率与模态的测试 一、结构的固有频率测试 1.实验目的 1、学习机械系统固有频率的测试方法; 2、学习共振法测试振动固有频率的原理与方法;(幅值判别法和相位判别法) 3、学习锤击法测试振动系统固有频率的原理与方法;(传函判别法) 4、学习自由衰减振动波形自谱分析法测试振动系统固有频率的原理和方法。(自谱分析法) 2.实验仪器及安装示意图 实验仪器:INV1601B 型振动教学实验仪、INV1601T 型振动教学实验台、加速度传感器、接触式激振器、MSC-1力锤(橡胶头)。软件:INV1601型DASP 软件。 图2 传函判别法和自谱分析法仪器连接图

3.实验原理 对于振动系统,经常要测定其固有频率,最常用的方法就是用简谐力激振,引起系统共振,从而找到系统的各阶固有频率。另一种方法是用锤击法,用冲击力激振,通过输入的力信号和输出的响应信号进行传函分析,得到各阶固有频率。 1、简谐力激振 由简谐力作用下的强迫振动系统,其运动方程为: t F Kx x C x m e ωsin 0=++ 方程式的解由21x x +这二部分组成: ) sin cos (211t C t C e x D D t ωωε+=-式中21D D -=ωω1C 、2C 常数由初始条件决定 t A t A x e e ωωcos sin 212+=其中222222214)()(e e e q A ωεωωωω+--= 2222224)(2e e e q A ωεωωεω+-=,m F q 0=1x 代表阻尼自由振动基,2x 代表阻尼强迫振动项。自由振动项周期 D D T ωπ2=强迫振动项周期e e T ωπ2=由于阻尼的存在,自由振动基随时间不断地衰减消失。最后,只剩下后两项,也就是通常讲的定常强动,只剩下强迫振动部分,即 t q t q x e e e e e e e e ωωεωωεωωωεωωωωsin 4)(2cos 4)()(222222222222+-++--=通过变换可写成 ) sin(?ω-=t A x e 式中4 22222222214)1(/ωωεωωωe e q A A A +-=+= t e 图3阻尼强迫振动

机械运动仿真和有限元分析技术

机械运动仿真和有限元分析技术 (浙江大学城市学院机电0905) 【摘要】本文主要对机械运动仿真和有限元分析技术概念、机械运动仿真和有限元分析软件使用过程有所了解,以及对PROE机械运动仿真和有限元分析使用案例进行分析 【关键词】机械运动仿真有限元分析 PROE案例 一、引言 目前,许多国内外的大型辅助设计软件,都包含了机械装配和运动学仿真的功能模块,例如PTC的Pro/Engineer,SDRC的1一DEAS,MATRA的EUCl ID软件及DES的UG等。机械产品的运动分析和仿真已经成为计算机辅助工程(CAE) 中不可缺少的重要环节,同时也成为机械设计的必经过程。进行机械产品设计时,通常要进行机构的运动分析,以此来验证机构设计的合理性和可行性。机构运动仿真技术就是通过对机构添加运动副、驱动器,使其运动起来,以实现机构的运动模拟。此外,运用机构中的后处理功能可以查看当前机构的运动,并且可以对机构进行运动速度、轨迹、位移、运动干涉情况的分析,为研究机构模型提供方便。在机械系统计算机辅助工程即MCAE领域内,根据数值分析求解机理和求解问题范围不同,常用的CAE技术有:有限元分析(FEA)技术;(固体力学范畴)计算流体动力学(CFD)分析技术;(流体力学范畴)刚体动力学分析(RBA)技术。 二、机械运动仿真和有限元分析技术概念

机械运动仿真技术是一种建立在机械系统运动学、动力学理论和计算机实用技术基础山的新技术,涉及建模、运动控制、机构学、运动学和动力学等方面的内容,主要是利用计算机来模拟机械系统在真实环境下的运动和动力特性,并根据机械设计要求和仿真结果,修改设计参数直至满足机械性能指标要求或对整个机械系统进行优化的过程。机械运动仿真的过程如图: 通过机械系统的运动仿真,不但可以对整个机械系统进行运动模拟,以验证设计方案是否正确合理,运动和力学性能参数是否满足设计要求,运动机构是否发生干涉等还可以及时发现设计中可能存在的问题,并通过不断改进和完善,严格保证设计阶段的质量,缩短了机械产品的研制周期,提高了设计成功率,从而不断提高产品在市场中的竞争力。因此,机械运动仿真当前已经成为机械系统运动学和动力学等方面研究的一种重要手段和方法,并在交通、国防、航空航天以及教学等领域都得到了非常广泛的应用。 机械系统的运动仿真可以采用VB、OpenGL、3D max、VC等语言编程实现,也可以使用具有运动仿真功能的机械设计软件(如ADMAS、Pro/E、EUCLID、UG、Solid Edge等)实现,而且,随着计算机软件功能的不断强大和完善,用软件进行运动仿真是一种省时、省力而用高效的方法,也是机械运动仿真发展趋势。 有限元分析技术,即CAE(Computer Aided Engineering),即计算机辅助工程。它是计算机仿真技术的一大分支,是通过计算机程序建立仿真数学物理模型,并对其进行求解的技术。CAE的覆盖范围很广,比如将教科书上的一个公式通过计算机编程后进行重复计算的简单过程,就属于CAE的范畴。在这里,我们通常所说的CAE是指工业级的CAE,即通过一系列的工具和求解器对工程结构进行数值仿真的技术。 CAE出现和发展的三大条件:数值分析方法;计算机仿真分析软件,计算机 机械运动仿真步骤示意图

运动学、动力学知识要点

《直线运动》知识要点 一、基本概念:时间、位移、速度、加速度 位移x ?——路程l 速度v ——平均速度与瞬时速度,速度与速率 加速度a ——t v a ??=??,物理意义 二、基本模型 质点 匀速直线运动 匀变速直线运动(自由落体运动、竖直抛体运动) 三、基本规律(模型草图) 1.匀速直线运动:vt x = 2.匀变速直线运动: at v v ±=0,202 1at t v x ±=,ax v v 2202±=-,220 t v v v v =+=,2aT x =? 3.t v -图象、t x -图象(点、线、面积、斜率、截距) 四、基本方法(过程草图) 比例法——相等时间、相等位移 逆向运动法——末速度为零的匀减速运动,其它 对称法——往返运动(竖直上抛运动) 平均速度法 逐差法 图象法 五、基本实验 打点计时器 纸带法测物体运动的时间、位移、速度(平均速度法)、加速度(图象法、逐差法) 六、难点题型 1.刹车问题——刹车时间 2.追击、相遇问题(草图、图象) (1)相遇问题——同一时刻、同一地点 (2)追击问题——关键:速度相等; 分析:速度相等前后; 结果:相距最近、最远,或能否追上。 *3.相对运动:相对参考系绝对v v v ???+= 七、易错点汇集 1.纸带处理:2naT x x m n m =-+,21234569)()(T x x x x x x a ++-++= 2.矢量性:减速运动或往返运动中,加速度为负值(一般规定出速度方向为正方向) 3.图象问题:用图象解决追击相遇问题 4.答题技巧:抓关键词,统一单位,字母区别 画过程草图,灵活选取公式——平均速度法

二自由度机械臂动力学分析培训资料

二自由度机械臂动力 学分析

平面二自由度机械臂动力学分析 姓名:黄辉龙 专业年级:13级机电 单位:汕头大学 摘要:机器臂是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。经过分析,得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。 关键字:平面二自由度 动力学方程 拉格朗日方程 相关介绍 机器人动力学的研究有牛顿-欧拉(Newton-Euler )法、拉格朗日 (Langrange)法、高斯(Gauss )法等,但一般在构建机器人动力学方程中,多采用牛顿-欧拉法及拉格朗日法。 欧拉方程又称牛顿-欧拉方程,应用欧拉方程建立机器人机构的动力学方程是指研究构件质心的运动使用牛顿方程,研究相对于构件质心的转动使用欧拉方程,欧拉方程表征了力、力矩、惯性张量和加速度之间的关系。 在机器人的动力学研究中,主要应用拉格朗日方程建立机器人的动力学方程,这类方程可直接表示为系统控制输入的函数,若采用齐次坐标,递推的拉格朗日方程也可以建立比较方便且有效的动力学方程。 在求解机器人动力学方程过程中,其问题有两类: 1)给出已知轨迹点上? ??θθθ、及、 ,即机器人关节位置、速度和加速度,求相应的关节力矩矢量τ。这对实现机器人动态控制是相当有用的。 2)已知关节驱动力矩,求机器人系统相应各瞬时的运动。也就是说,给出关节力矩矢量τ,求机器人所产生的运动? ??θθθ、及、 。这对模拟机器人的运动是非常有用的。 平面二自由度机械臂动力学方程分析及推导过程 1、机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。机器人动力学方程的具体推导过程如下: 1) 选取坐标系,选定完全而且独立的广义关节变量n r ,,2,1,r ???=θ。 2) 选定相应关节上的广义力r F :当r θ是位移变量时,r F 为力;当r θ是角度变量时,r F 为力矩。 3)求出机器人各构件的动能和势能,构造拉格朗日函数。 4) 代入拉格朗日方程求得机器人系统的动力学方程。 2、下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。

仿人机器人运动学和动力学分析

国防科学技术大学 硕士学位论文 仿人机器人运动学和动力学分析 姓名:王建文 申请学位级别:硕士 专业:模式识别与智能系统 指导教师:马宏绪 20031101

能力;目前,ASIMO代表着仿人机器人研究的最高水平,见图卜2。2000年,索尼公司也推出了自己研制的仿人机器人SDR一3X,2002年又研制出了SDR一4X,见图卜3。日本东京大学也一直在进行仿人机器人的研究,与Kawada工学院合作相继研制成功了H5、H6和H7仿人机器人,其中H6机器人高1.37米,体重55公斤,具有35个自由度,目前正在开发名为Isamu的新一代仿人机器人,其身高1.5米,体重55公斤,具有32个自由度。日本科学技术振兴机构也在从事PINO机器人的研究,PINO高0.75米,采用29个电机驱动,见图卜4。日本Waseda大学一直在从事仿人机器人研究计划,研制的wL系列仿人机器人和WENDY机器人在机器人界有很大的影响,至今已投入100多万美元,仍在研究之中。Tohoku大学研制的Saika3机器人高1.27米,重47公斤,具有30个自由度。美国的MIT和剑桥马萨诸塞技术学院等单位也一直在从事仿人机器人研究。德国、英国和韩国等也有很多单位在进行类似的研究。 图卜1P2机器人图卜2ASIMO机器人图1.3SDR-4X机器人图1-4PINO机器人 图卜5第一代机器人图l-6第二代机器人图1.7第三代机器人图1—8第四代机器人 在国家“863”高技术计划和自然科学基金的资助下,国内也开展了仿人机器人的研究工作。目前,国内主要有国防科技大学、哈尔滨工业大学和北京理工大学等单位从事仿人机器人的研究。国防科技大学机器人实验室研制机器人已有10余年的历史,该实验室在这期间分四阶段推出了四代机器人,其中,2000年底推出的仿人机器入一“先行者”一是国内第一台仿人机器人。2003年6月,又成功研制了一台具有新型机械结构和运动特性的仿人机器人,这台机器人身高1.55米,体重63.5公斤,共有36个自由度,脚踝有力 第2页

研究生《机械系统动力学》试卷及答案

太原理工大学研究生试题 姓名: 学号: 专业班级: 机械工程2014级 课程名称: 《机械系统动力学》 考试时间: 120分钟 考试日期: 题号 一 二 三 四 五 六 七 八 总分 分数 1 圆柱型仪表悬浮在液体中,如图1所示。仪表质量为m ,液体的比重为ρ,液体的粘性阻尼系数为r ,试导出仪表在液体中竖直方向自由振动方程式,并求固有频率。(10分) 2 系统如图2所示,试计算系统微幅摆动的固有频率,假定OA 是均质刚性杆,质量为m 。(10分) 3 图3所示的悬臂梁,单位长度质量为ρ,试用雷利法计算横向振动的周期。假定梁的 变形曲线为?? ? ?? -=x L y y M 2cos 1π(y M 为自由端的挠度)。(10分) 4 如图4所示的系统,试推导质量m 微幅振动的方程式并求解θ(t)。(10分) 5 一简支梁如图5所示,在跨中央有重量W 为4900N 电机,在W 的作用下,梁的静挠度δst=,粘性阻尼使自由振动10周后振幅减小为初始值的一半,电机n=600rpm 时,转子不平衡质量产生的离心惯性力Q=1960N ,梁的分布质量略去不计,试求系统稳态受迫振动的振幅。(15分) 6 如图6所示的扭转摆,弹簧杆的刚度系数为K ,圆盘的转动惯量为J ,试求系统的固有频率。(15分) 7如图7一提升机,通过刚度系数m N K /1057823?=的钢丝绳和天轮(定滑轮)提升货载。货载重量N W 147000=,以s m v /025.0=的速度等速下降。求提升机突然制动时的钢丝绳最大张力。(15分) 8某振动系统如图8所示,试用拉个朗日法写出动能、势能和能量散失函数。(15分) 太原理工大学研究生试题纸

两自由度机械手动力学问题

两自由度机械手动力学问题 1题目 图示为两杆机械手,由上臂AB、下臂BC和手部C组成。在A处和B处安装 有伺服电动机,分别产生控制力矩M 1和M 2 。M 1 带动整个机械手运动,M 2 带动下臂 相对上臂转动。假设此两杆机械手只能在铅垂平面内运动,两臂长为l 1和l 2 , 自重忽略不计,B处的伺服电动机及减速装置的质量为m 1 ,手部C握持重物质量 为m 2 ,试建立此两自由度机械手的动力学方程。 图1 图2

2数值法求解 拉格朗日方程 此两杆机械手可以简化为一个双摆系统,改双摆系统在B 、C 出具有质量m 1,m 2,在A 、B 处有控制力矩M 1和M 2作用。考虑到控制力矩M 2的作用与杆2相对杆1的相对转角θ2有关,故取广义力矩坐标为 2211,θθ==q q 系统的动能为二质点m 1、m 2的动能之和,即 由图2所示的速度矢量关系图可知 以A 处为零势能位置,则系统的势能为 由拉格朗日函数,动势为: 广义力2211,M Q M Q == 求出拉格朗日方程中的偏导数,即

代入拉格朗日方程式,整理得: 给定条件 (1)角位移运动规律 ()231*52335.0*1163.0t t t +-=θ,()232*52335.0*1163.0t t t +-=θ 21θθ和都是从0到90°,角位移曲线为三次函数曲线。 (2)质量 m 1=4㎏ m 2=5kg (3)杆长 l 1= l 2= MATLAB 程序 t=0::3; theta1=*t.^3+*t.^2; w1=*t.^2+*t; a1=*t+; theta2=*t.^3+*t.^2; w2=*t.^2+*t; a2=*t+; m1=4; m2=5; l1=; l2=;

机械系统动力学讨论课

机械系统动力学讨论课 Prepared on 22 November 2020

机械系统动力学讨论课 指导老师:胡波 小组成员:班级:机电1班 完成时间:2015年7月4日 1 简述所学几种机械系统动力学建模方法的特点和区别 答:数学代码建模。特点:1)、通过数学代码建立模型,适合对模型进行理论分析。2)、它能在同一画面上进行灵活操作,快速排除输入程序中的书写错误、语法错误以至语义错误,从而我们加快了修改和调试程序的速度。 实体建模。特点:1)、强大的基于特征的实体建模功能属于用来验证理论的正确性。2)、建立的模型真实可靠,形象生动。3)、使用方便,适合初学者使用。 坐标建模分析。特点:1)、适合用来验证理论的正确性。2)、使用方便,适合初学者使用。 2 机械系统动力学建模过程中,广义坐标应如何选取,对结果有何影响答:1、广义坐标是表示力学体系位置的独立坐标,它的个数是由力学系统的自由度数来确定的,在系统受几何约束的情况下,系统的广义坐标数目与其自由度的数目相等。广义坐标可以是长度、角度、或者用长度的二次方的量。无论是哪种,度必须符合独立的原则,否则计算结果就不准确。例如,选取角度时应该选取运动副的转动角度为广义坐标,而不是与自然坐标的夹角。前一种情况,和simulink是一致的,仿真的结果更加符合理

论结果。后一种情况,在求导的时候,各个坐标都是关联的,求导时容易出错,所以广义坐标的选取很重要。 3 为确保机械系统动力学计算和仿真对比吻合,应注意哪些因素 为确保机械系统动力学计算和仿真对比吻合必须注意以下几点:(1)SolidWorks仿真:保证装配体的三个基准面和某个零件的三个基准面重合,例如,滑道的三个基准面和装配体的三个基准面重合,大多数情况下还带插入一个基准面,配合使其与装配体的基准面重合;注意各个数据单位的转换,例如,弹性系数在SolidWorks中的单位是N/mm;通过计算,选择合适的参数,例如,阻尼的大小、弹簧的长度、受迫振动的频率、幅值等等;选择合适的初始位置,有时候初始位置选择的不合理,会给计算,MATLAB的仿真带来很大麻烦。 (2)MATLAB仿真:合理的选择各个模块,根据设计原则,选择所要要的块;注意body模块中的坐标填写;同时body质量也要和SolidWorks中的质量一致; (3)MATLAB编程:运用合理的方法推导出正确的运动方程,质量,刚度系数,阻尼等各个参数都必须与上述参数相一致,另外,要特别注意,最终结果中未知参数是根据初始条件计算的。初始条件必须带入最终结果。 4 结合所做三级项目谈谈弹性系统参数(质量,刚度系数,阻尼等)对机械系统的影响。 质量会影响振动系统的振动频率,质量越大,振动频率越低,但他不影响幅值;刚度系数也会影响振动频率,刚度系数越大,振动频率越高;阻尼越大,振动系统会越快达到平稳或静止。

机械系统动力学试题

机械系统动力学试题 一、 简答题: 1.机械振动系统的固有频率与哪些因素有关?关系如何? 2.简述机械振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。 3.简述无阻尼单自由度系统共振的能量集聚过程。 4. 简述线性多自由度系统动力响应分析方法。 5. 如何设计参数,使减振器效果最佳? 二、 计算题: 1、 单自由度系统质量Kg m 10=, m s N c /20?=, m N k /4000=, m x 01.00=, 00=? x ,根据下列条件求系统的总响应。 (a ) 作用在系统的外激励为t F t F ωcos )(0=,其中N F 1000=, s rad /10=ω。 (b ) 0)(=t F 时的自由振动。 2、 质量为m 的发电转子,它的转动惯量J 0的确定采用试验方法:在转子径向R 1的地方附加一小质量m 1。试验装置如图2所示,记录其振动周期。 a )求发电机转子J 0。 b )并证明R 的微小变化在R 1=(m/m 1+1)·R 时有最小影响。 3、 如图3所示扭转振动系统,忽略阻尼的影响 J J J J ===321,K K K ==21 (1)写出其刚度矩阵; (2)写出系统自由振动运动微分方程; (2)求出系统的固有频率; (3)在图示运动平面上,绘出与固有频率对应的振型图。 1 θ(图2)

(图3) 4、求汽车俯仰振动(角运动)和跳振(上下垂直振动)的频率以及振 动中心(节点)的位置(如图4)。参数如下:质量m=1000kg,回转半径r=0.9m,前轴距重心的距离l1=0.1m,后轴距重心的距离l2=1.5m,前弹簧刚度k1=18kN/m,后弹簧刚度k2=22kN/m (图4) 5、如5图所示锻锤作用在工件上的冲击力可以近似为矩形脉冲。已知 工件,铁锤与框架的质量为m1=200 Mg,基础质量为m2=250Mg,弹簧垫的刚度为k1=150MN/m,土壤的刚度为k2=75MN/m.假定各质量的初始位移与速度均为零,求系统的振动规律。

复习小结-机械系统动力学汇总

《机械系统动力学》复习小结 第一章绪论 ★ 1?《机械系统动力学》课程的脉络(主要内容、研究对象、研究方法)主要分为两部分:刚体动力学和机械振动学 "单自由度刚体动力学:等效力学模型; 刚体动力学Y 二自由度刚体动力学:拉格朗日方程、龙格库塔法; -单自由度系统振动:单自由度无阻尼(有阻尼)自由振动(强迫振动) 有频率计算、Duhamel积分; ,两自由度系统振动:固有频率及主振型求解、动力减振器; 机械振动学]多自由度系统振动:影响系数法、模态分析法、矩阵迭代法;弹性体振动:杆的纵向振动、轴的扭转振动、梁的横向自由振动 W种边界条件下的频率方程; 2.机械系统的一些基本概念 系统、机械系统、离散系统、连续系统以及激励的确定性、随机性、模糊性。 3.机械振动的概念及其分类 简谐振动:x = Asin「t亠"] 复数形式* x = Ae‘上 ★ 4.谐波分析法:把一个周期函数展开成一个傅立叶级数形式。 a 迂 Fourier 级数:Ft ° 亠〔a* cosb n si n n t 2 心 ★ 5.机械系统动力学的研究意义、研究任务、发展趋势 第二章单自由度刚体系统动力学 1.驱动力&工作阻力的分类 机械特性的概念 三相异步电动机的机械特性分析; 输出力矩与角速度之间的关系:M = a c 2。 ★ 2 ?等效力学模型 原则:转化前后,等效构件与原系统的动能相等,等效力与外力所作的功相等。通常取做定轴转动或直线平动的构件为等效构件。、固 (受迫振动)、 m 八F k k T V k COS 二k m F e 八F k k M V k COS k V

★ 4 .运动方程的求解方法 1)等效力矩是等效构件转角的函数时运动方程的求解,即 4 W 「二,,M e : 2)等效转动惯量是常数,等效力矩是等效构件角速度函数时运动方程的求解 J e = con st , M e = M e ■ 分离变量法 3)等效力矩是等效构件转角&角速度的函数时运动方程的求解,即 4)等效力矩是等效构件转角、角速度和时间的函数时运动方程的求解,即 M e 二 M e , ,t : - J e m j j4 I - m j 与传动速比有关,与机构的运动速度无关。 运动方程用动能定理确定。 1 2 LE 二W J e2 '2 2 e2 2 — gje1 ‘12 二,2 M ed : 灵=P ― Je dF 2^ 忑= Me 等效构件运动方程的基本形式 如p22例题1、p23例题2及课后思考题 3. 等效转动惯量&等效转动惯量导数的计算 1) 假设等效构件做匀速转动,即令 ■ =1^ =0 ; 2) 3) 对机构进行运动分析,求出各构件对应的角速度和角加速度以及各构件质心的速度和 加速度——出相应的传动速比及其导数; 利用公式计算等效转动惯量&等效转动惯量导数: - J e =》m j 壬 dJ e d 7 n =2X j m dv sj da j ' m ? v ? --- + J. co -------------- 『V s j 的J j j d 申丿 数值积分方法(梯形法) ,即 欧拉法、龙格库塔法 訐j ,' J j J j

二自由度机械臂动力学分析

平面二自由度机械臂动力学分析 姓名:黄辉龙 专业年级:13级机电 单位:汕头大学 摘要:机器臂是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。经过分析,得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。 关键字:平面二自由度 动力学方程 拉格朗日方程 相关介绍 机器人动力学的研究有牛顿-欧拉(Newton-Euler )法、拉格朗日(Langrange)法、高斯(Gauss )法等,但一般在构建机器人动力学方程中,多采用牛顿-欧拉法及拉格朗日法。 欧拉方程又称牛顿-欧拉方程,应用欧拉方程建立机器人机构的动力学方程是指研究构件质心的运动使用牛顿方程,研究相对于构件质心的转动使用欧拉方程,欧拉方程表征了力、力矩、惯性张量和加速度之间的关系。 在机器人的动力学研究中,主要应用拉格朗日方程建立机器人的动力学方程,这类方程可直接表示为系统控制输入的函数,若采用齐次坐标,递推的拉格朗日方程也可以建立比较方便且有效的动力学方程。 在求解机器人动力学方程过程中,其问题有两类: 1)给出已知轨迹点上? ??θθθ、及、 ,即机器人关节位置、速度和加速度,求相应的关节力矩矢量τ。这对实现机器人动态控制是相当有用的。 2)已知关节驱动力矩,求机器人系统相应各瞬时的运动。也就是说,给出关节力矩矢量τ,求机器人所产生的运动? ??θθθ、及、 。这对模拟机器人的运动是非常有用的。 平面二自由度机械臂动力学方程分析及推导过程 1、机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。机器人动力学方程的具体推导过程如下: 1) 选取坐标系,选定完全而且独立的广义关节变量n r ,,2,1,r ???=θ。 2) 选定相应关节上的广义力r F :当r θ是位移变量时,r F 为力;当r θ是角度变量时,r F 为力矩。 3)求出机器人各构件的动能和势能,构造拉格朗日函数。 4) 代入拉格朗日方程求得机器人系统的动力学方程。 2、下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。

机械系统动力学三年级项目报告

机械系统动力学三年级 项目报告精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

机械系统动力学三级项目报告 指导老师:胡波 小组成员: 班级:机电1班 完成时间:2015年7月4日

目录

1、初始数据: L1 L3 L4 250 500 750 2、计算过程 平面四连杆矢量方程: 将上式写成两个分量形式的代数方程并整理为: 具体化简方法为: 将上式平方相加可得: 令: 则有: 解之可得位置角:

同理为求,应消去 将式改写为: 整理后可得: 其中: D=2 l 1 l 2 sin θ1 E=2l 2(l 1cos θ1-l 4) F=l 12+l 22+l 42-l 32-2l 1l 4cos θ1 解得: θ2=2arctan[(D ±222F E D -+)/(E-F)] 杆r 2上任意一点的位置坐标为: l x =l 1cos θ1+l 2'cos θ2 l y =l 1sin θ1+l 2'sin θ2 () 2、平面四连杆的速度、加速度分析 式()对时间求导,可得: -l 2ω2sin θ2 +l 3ω3sin θ3=l 1ω1sin θ1 l 2ω2cos θ2-l 3ω3cos θ3=-l 1ω1cos θ1 () 解之得r 2、r 3的角速度ω2、ω3为:

ω3=ω1 ()() 2323321211sin θcos θ-cos θsin θl sin θcos θ-cos θsin θl =ω1()()233211θ-θsin l θ-θsin l ω2=ω1 ()()2323231311sin θcos θcos θsin θl sin θcos θcos θsin θl --=ω2 ()() 2 θ-θsin l θ-θsin l 32311 () 式()对时间求导,可得r 2杆上任意一点的速度方程为: V lx =-l 1ω1cos θ1-l 2'ω2sin θ2 V ly =l 1ω1sin θ1-l 2'ω2cos θ2 () 式()对时间求导,可得: -l 2ε2sin θ2+l 3ε3sin θ3= l 222 ωcos θ2-l 323ωcos θ3+l 12 1ωcos θ1 l 2ε2cos θ2-l 3ε3cos θ3=l 22 2 ωsin θ2-l 323ωsin θ3+l 12 1ωsin θ1 () 解之得杆r 2、r 3的角加速度为: ε3=()()() 23233232 3322221211sin θcos θ-cos θsin θl θ-θcos ωl -ωl θ-θcos ωl + ε2=()()() 23232132 1123323222sin θcos θ-cos θsin θl θ-θcos ωl -ωl θ-θcos ωl + () 式()对时间求导,可得杆r 2上任意一点的线性加速度为: a lx =-l 1ε1sin θ1-l 12 1ωcos θ1-l 2'ε2sin θ2-l 2'22ωcos θ2 a ly =l 1ε1cos θ1-l 121ωsin θ1+l 2'ε2cos θ2-l 2'22ωsin θ2 () 3、平面四连杆的动力学分析 设G o 表示BC 杆的重力,(F m T m )表示BC 杆的广义惯性力和惯性矩,G mi 表示AB 、CD ,(F mi T mi )表示AB 、CD 杆的广义惯性力和惯性矩。 F m =-m o a ,T m =-J 0ε0 G m =m o g ,

运动学、静力学、动力学概念

运动学、静力学、动力学概念 运动学运动学是理论力学的一个分支学科,它是运用几何学的方法来研究物体的运动,通常不考虑力和质量等因素的影响。至于物体的运动和力的关系,则是动力学的研究课题。 用几何方法描述物体的运动必须确定一个参照系,因此,单纯从运动学的观点看,对任何运动的描述都是相对的。这里,运动的相对性是指经典力学范畴内的,即在不同的参照系中时间和空间的量度相同,和参照系的运动无关。不过当物体的速度接近光速时,时间和空间的量度就同参照系有关了。这里的“运动”指机械运动,即物体位置的改变;所谓“从几何的角度”是指不涉及物体本身的物理性质(如质量等)和加在物体上的力。 运动学主要研究点和刚体的运动规律。点是指没有大小和质量、在空间占据一定位置的几何点。刚体是没有质量、不变形、但有一定形状、占据空间一定位置的形体。运动学包括点的运动学和刚体运动学两部分。掌握了这两类运动,才可能进一步研究变形体(弹性体、流体等)的运动。 在变形体研究中,须把物体中微团的刚性位移和应变分开。点的运动学研究点的运动方程、轨迹、位移、速度、加速度等运动特征,这些都随所选的参考系不同而异;而刚体运动学还要研究刚体本身的转动过程、角速度、角加速度等更复杂些的运动特征。刚体运动按运动的特性又可分为:刚体的平动、刚体定轴转动、刚体平面运动、刚体定点转动和刚体一般运动。 运动学为动力学、机械原理(机械学)提供理论基础,也包含有自然科学和工程技术很多学科所必需的基本知识。 运动学的发展历史 运动学在发展的初期,从属于动力学,随着动力学而发展。古代,人们通过对地面物体和天体运动的观察,逐渐形成了物体在空间中位置的变化和时间的概念。中国战国时期在《墨经》中已有关于运动和时间先后的描述。亚里士多德在《物理学》中讨论了落体运动和圆运动,已有了速度的概念。 伽利略发现了等加速直线运动中,距离与时间二次方成正比的规律,建立了加速度的概念。在对弹射体运动的研究中,他得出抛物线轨迹,并建立了运动(或速度)合成的平行四边形法则,伽利略为点的运动学奠定了基础。在此基础上,惠更斯在对摆的运动和牛顿在对天体运动的研究中,各自独立地提出了离心力的概念,从而发现了向心加速度与速度的二次方成正比、同半径成反比的规律。

第二章挖掘装置动力学及运动学分析.

第二章挖掘装置运动学及动力学分析 2.1 挖掘装置的结构及工作特点 挖掘装载机反铲工作装置的结构,其基本型式见图 2-1 所示。 图2-1反铲结构简图 工作特点:反铲工作装置主要用于挖掘停机面以下的土壤,其挖掘轨迹决定于各液压缸的运动及其相互配合的情况。当采用动臂液压缸工作进行挖掘时(斗杆、铲斗液压缸不工作可以得到最大的挖掘半径和最大的挖掘行程,此时铲斗的挖掘轨迹系以动臂下铰点 C 为中心,斗齿尖 V 至 C 的距离|CV|为半径而作的圆弧线,其极限挖掘高度和挖掘深度(不是最大挖掘深度,分别决定于动臂的最大上倾角和下倾角(动臂对水平线的夹角,也即决定于动臂液压缸的行程由于这种挖掘方式时间

长,并且稳定条件限制了挖掘力的发挥,实际工作中基本上不采用。 当仅以斗杆液压缸工作进行挖掘时,铲斗的挖掘轨迹系以动臂与斗杆的铰点 F 为中心,斗齿尖 V 至 F 的距离|FV|为半径所作的圆弧线,同样,弧线的长度与包角决定于斗杆液压缸的行程 。当动臂位于最大下倾角时,可以得到最大挖掘深度,并且有较大的挖掘行程,在较硬的土质条件下工作时,能够保证装满铲斗,故中小型挖掘机构在实际工作中常以斗杆挖掘进行工作。 反铲装置如果仅以铲斗液压缸工作进行挖掘时,挖掘轨迹则为以铲斗与斗杆的铰点 Q 为中心,该铰点 Q 至斗齿尖 V 的距离 |QV|为半径所作的圆弧线。同理,圆弧线的包角( 铲斗的转角及弧长决定于铲斗液压缸的行程(|GH|–|GH|)。显然,以铲斗液压缸进行挖掘时的挖掘行程较短,如使铲斗在挖掘行程结束时能够装满土壤,需要有较大的挖掘力以保证能够挖掘较大厚度的土壤。所以,一般挖掘机构的斗齿最大挖掘力都在采用铲斗液压缸工作时实现。用铲斗液压缸进行挖掘常用于清除障碍,挖掘较松软的土壤以提高生产率,因此在一般土方工程机械中(土壤多为Ⅲ级土以下,转斗挖掘最常采用。在实际挖掘中,往往需要采

机械运动和动力学中英文对照外文翻译文献

(文档含英文原文和中文翻译) 中英文对照翻译 英文资料 Kinematics and dynamics of machinery One princple aim of kinemarics is to creat the designed motions of the subject mechanical parts and then mathematically compute the positions, velocities ,and accelerations ,which those motions will creat on the parts. Since ,for most earthbound mechanical systems ,the mass remains essentially constant with time,defining the accelerations as a function of time then also defines the dynamic forces as a function of time. Stress,in turn, will be a function of both applied

and inerials forces . since engineering design is charged with creating systems which will not fail during their expected service life,the goal is to keep stresses within acceptable limits for the materials chosen and the environmental conditions encountered. This obvisely requies that all system forces be defined and kept within desired limits. In mechinery , the largest forces encountered are often those due to the dynamics of the machine itself. These dynamic forces are proportional to acceletation, which brings us back to kinematics ,the foundation of mechanical design. Very basic and early decisions in the design process invovling kinematics wii prove troublesome and perform badly. Any mechanical system can be classified according to the number of degree of freedom which it possesses.the systems DOF is equal to the number of independent parameters which are needed to uniquely define its posion in space at any instant of time. A rigid body free to move within a reference frame will ,in the general case, have complex motoin, which is simultaneous combination of rotation and translation. In three-dimensional space , there may be rotation about any axis and also simultaneous translation which can be resoled into componention along three axes, in a plane ,or two-dimentional space ,complex motion becomes a combination of simultaneous along two axes in the plane. For simplicity ,we will limit our present discusstions to the case of planar motion: Pure rotation the body pessesses one point (center of rotation)which has no motion with respect to the stationary frame of reference. All other points on the body describe arcs about that center. A reference line drawn on the body through the center changes only its angulai orientation. Pure translation all points on the body describe parallel paths. A reference line drawn on the body changes its linear posion but does not change its angular oriention. Complex motion a simulaneous combination of rotion and translationm . any reference line drawn on the body will change both its linear pisition and its angular orientation. Points on the body will travel non-parallel paths ,and there will be , at every instant , a center of rotation , which will continuously change location. Linkages are the bacis building blocks of all mechanisms. All common forms of mechanisms (cams , gears ,belts , chains ) are in fact variations of linkages. Linkages are made up of links and kinematic pairs. A link is an (assumed)rigid body which possesses at least two or more links (at their nodes), which connection allows some motion, or potential motion,between the connected links. The term lower pair is used to describe jionts with surface contact , as with a pin surrounded by a hole. The term higher pair is used to describe jionts with point or line contact ,but if there is any clerance between pin and hole (as there must be for motion ),so-called surface contact in the

相关文档