文档视界 最新最全的文档下载
当前位置:文档视界 › 膳食纤维改性技术研究进展_杨明华

膳食纤维改性技术研究进展_杨明华

膳食纤维改性技术研究进展_杨明华
膳食纤维改性技术研究进展_杨明华

膳食纤维改性技术研究进展

杨明华,太周伟,俞政全,潘洪彬,李琦华,赵素梅*,黄英*

(云南农业大学动物科学技术学院,云南省动物营养与饲料重点实验室,云南昆明650201)

要:膳食纤维是不能被人体消化的多糖类碳水化合物及木质素的总称,由水溶性膳食纤维(SDF )和非水溶性膳食

纤维(IDF )组成。SDF 组成比例是影响膳食纤维生理功能的重要因素。膳食纤维改性技术是提高SDF 含量,提升膳食纤维物理化学特性及生理功能的关键技术。

本文结合当今国内外研究结论,从物理、化学、生物和联合处理四个方面就膳食纤维改性技术研究进展进行综述,探讨了改性对膳食纤维品质的影响,旨在为相关领域研究者提供理论参考。关键词:膳食纤维;改性技术;生理功能

The Progress of the Modification Technologies on Dietary Fiber

YANG Ming-hua ,TAI Zhou-wei ,YU Zheng-quan ,PAN Hong-bin ,LI Qi-hua ,ZHAO Su-mei *,HUANG Ying *

(Yunnan Key Lab of Agricultural Animal Nutrition and Feed Science ,Yunnan Agricultural University ,

Kunming 650201,Yunnan ,China )

Abstract :The modification technologies on dietary Fiber is to improve the content of soluble dietary fiber ,en -hance the dietary fiber physical and chemical properties and physiological function.Based on the conclusion of the study at home and abroad ,the developments of dietary fiber's modification technologies treated by chemical ,biolog-cal ,physical and combined technology were reviewed ,the effect of modification on dietary fiber quality were described ,It provides a theoretical reference to reaserchers in the relative fields.Key words :dietary fiber ;modification technologies ;physiological function

食品研究与开发

F ood Research And Development

2016年5月

第37卷第10期

DOI :10.3969/j.issn.1005-6521.2016.10.051

作者简介:杨明华(1967—),女(汉),实验师,硕士,研究方向:动物营养与代谢调控。

*通信作者:赵素梅,教授,博士,研究方向:动物营养与代谢调控;黄英,高级实验师,硕士,研究方向:动物营养与代谢调控。

膳食纤维(Dietary fiber ,DF )是由Hipsley 等率先提出的,不能被人体消化的多糖类碳水化合物及木质素的总称。国内外的研究表明,

膳食纤维可缩短食物胃肠通过时间,增加排便量,有效降低血液胆固醇、血脂及餐后血糖含量,增强动物抗氧化、

抗胃肠癌的能力,是继六大营养素后的“第七大营养素”[1-2]

依据膳食纤维在水中的不溶解性可将它分为SDF 和IDF 两大类。其中IDF 可增强肠道蠕动,缓解便秘,减少肥胖等;较IDF 而言,SDF 有着更广泛更重要的生理功能,它不仅可以显著影响碳水化合物及脂类的代谢,同时还具有吸附重金属离子及胆固醇,是影响膳食纤维生理功能的重要因素。

然而,许多天然膳食纤维品质低,SDF 含量仅为3%~4%,达不到高品质膳食纤维SDF 含量≥10%的

要求,不具备较好的生理活性和保健功能,无法满足现代食品医药、食品开发与加工的需要[3-5]。对DF 进行改性已成为必然。1膳食纤维改性方法

膳食纤维改性技术是对DF 进行适当处理,促进IDF 向SDF 转化,使SDF 含量增加的技术。其原理就是通过改性让IDF 大分子连接键———糖苷键断裂,使致密的网状结构疏松,由此改变膳食纤维的物理化学特性及生物活性,使其具备更高的生理效能。

目前文献报道的膳食纤维改性方法主要有4种。一是以超高压、粉碎、挤压膨化等技术为主的物理方法;二是以酸、碱法为主的化学方法;三是以酶法、发酵法为主的生物技术方法;四是同时运用以上多种方法的联合处理法。1.1物理法

物理改性常指采用超高压、超微粉碎、挤压膨化等机械降解处理膳食纤维,使纤维物质发生破碎、膨化。

专题论述

207

1.1.1超高压技术

超高压技术是指将密封于弹性容器内的食品置于以水或其他液体作为传压介质的压力系统中,采用100MPa以上的压力处理,达到杀菌、钝化酶和改善食品功能特性的一种物理冷加工技术[6]。其作用均匀、操作安全、耗能低,可以破坏大分子物质的氢键,使大分子物质改性或变性[7]。经超高压处理,膳食纤维的葡萄糖吸附能力和胆酸盐结合能力均高于对照,超高压红薯渣膳食纤维能将葡萄糖浓度控制在较低的水平,对餐后血糖的快速升高有抑制作用[6]。万婕[8]等采用动态高压微射流技术(DHPM)对新鲜豆渣进行处理时发现:DHPM处理后膳食纤维的比表面积明显高于未处理的原料膳食纤维(P<0.05),在40MPa~140MPa压力区间内样品的比表面积随处理压力的升高而增加,且在140MPa时达到最大值2.8875m2/g。该技术处理还可改善豆渣膳食纤维对重金属Pb、Cu、Cd及Hg的吸附能力。在采取不同的相对最适处理压力时,豆渣膳食纤维对肠道中的Pb2+、Hg2+、Cu2+、Cd2+的吸附力达到最大,分别较未处理前提高15%、16%、12%和16%[9]。目前已被广泛地应用在膳食纤维改性上。

1.1.2超微粉碎

超微粉碎就是利用流体动力或机械将3mm以上的物料颗粒粉碎至粒径在100μm以下的一种高新技术。依据粉碎粒径的大小又可分为微米级粉碎(1μm~ 100μm)、亚微米级粉碎(0.1μm~1μm)、纳米级粉碎(0.001μm~0.1μm,即1nm~100nm)[10]。粉碎后的颗粒由于体积变小,表面积和孔隙率增加,亲水性基团暴露增多,溶解性得到提高[11]。苦荞麸、菱角、柑橘、杨桃等DF经超微粉碎后粒径减小,各项物化特性显著增强,柑橘DF的GAC(葡萄糖吸收能力)及α-淀粉酶抑制活性显著增强,分别升高至原来的1.7倍和6.4倍[11-14]。此外,膳食纤维的持油力、持水力、膨胀力、重金属离子吸咐力等功能性质随着粒径的减小而提高[15-16];Li等发现,用D-ODF(超微粉碎处理的膳食纤维)、C-ODF(未经超微化处理的样品)灌喂BALB/c小鼠28d,灌喂C-ODF对照组小鼠的甘油三酯水平较灌喂前有所升高,而D-ODF组则降低了29.2%[17]。

超微粉碎技术不仅可以将许多可食动植物加工成超微粉,甚至还可以将动植物的不可食部分通过超微化被人体吸收,提高原料的加工性能,赋予产品细腻的口感,是低脂酸奶中脂肪的较好替代品,在降低食品脂肪含量的同时仍能保持食品的高品质[10,18]。

超微粉碎技术对设备、工艺要求不高,环境污染小,成本低,美国利用该技术生产的“金谷纤维王”膳食纤维含量高达80%,现已风靡欧美[19]。

1.1.3冷冻粉碎

冷冻粉碎技术是利用超低温脆性实现物料粉碎的技术,由冷冻和粉碎两个操作单元构成。它能使富含纤维的韧性物料进入“低温脆性”,常温下难以粉碎的物料较容易粉碎[20]。处理后的物料颗粒粒度分布理想,流动性好,且不会因发热出现变色、氧化、分解等现象,特别适用于常温下难以粉碎物料及功效成分物料的粉碎[21]。

黄晟[20]等采用超微粉碎和冷冻粉碎技术处理麦麸水不溶性膳食纤维时发现,冷冻粉碎可以缩短物料处理时间,冷冻粉碎1h就可达到超微粉碎3h的水平,粉体均匀性好。经超微和冷冻粉碎3h的麦麸膳食纤维平均粒径分别为20.861μm和13.382μm,SDF含量分别提高到7.59%和11.47%,膨胀力分别增加了9.91%和37.77%,冷冻粉碎样品各功能性质大大优于超微粉碎样品。

1.1.4挤压膨化

挤压膨化技术是指膳食纤维经高温、高压及剪切力作用,在挤压设备出口瞬间失去压力,导致DF分子及空间结构发生变化,IDF转变为SDF的手段,是集混合、搅拌、破碎、加热、蒸煮、杀菌、膨化及成型为一体,能改善纤维物料口感的新型加工技术[22-23]。

任庆等[24]利用双螺杆挤出机对白菜渣进行挤压,得到的白菜渣SDF含量为11.06%,比原白菜渣提高了3.57%;Berrios[25]等研究显示,在最佳处理条件下对干豌豆进行挤压,其可溶性膳食纤维含量由0.65%增加到2.9%;叶发银等研究发现挤压处理番茄皮可使其水溶性膳食纤维的含量由处理前3.40g/100g上升到12.13g/100g[26];Yan X等通过挤压膨胀处理麦麸,麦麸的SDF含量也从未处理的9.82提高到16.72,此外从挤压得到的SDF中还可分离出水溶性多糖WSP,可作为天然抗氧化剂使用在功能性食品、化妆品和药品中[27]。

从有关研究报道来看,挤压膨化法可处理多种来源的膳食纤维,经挤压膨胀后的SDF含量和质量都有显著提高。

该技术对操作环境要求不严,不破坏原料特性,不参入新的有害物质,工艺简单适用性广,可有效应用于开发新型功能性产品[28]。

1.2化学法

化学法是指利用酸碱等化学试剂处理膳食纤维,使纤维类大分子转化为非消化性多糖,使膳食纤维物化性质和生理功能得以提高的方法[29]。吴丽萍[30-31]等分

杨明华,等:膳食纤维改性技术研究进展专题论述208

别对竹笋、花生壳膳食纤维进行化学改性发现:改性后的竹笋膳食纤维SDF的含量由改性前的5.04%提高到16.2%;改性后的花生壳膳食纤维组织均匀、分散,膳食纤维含量提高为16.8%,结构及物化特性均得到改善。

化学方法虽方便快捷,但产品色泽差不易漂白、对容器腐蚀严重、反应复杂、作用时间长、转化率低、污染环境,已逐渐被其他降解方法所取代[5,32]。

1.3生物法

1.3.1酶法

酶法就是利用酶将膳食纤维中的大分子组分酶解成可溶性小分子化合物的方法。它作用温和、专性强、产品色泽变化小、反应时间短、纯度高,是近年来处理膳食纤维改性的较有潜力的新方法[32]。目前常用的酶主要有木聚糖酶、纤维素酶和木质素氧化酶等。赵梅[33]等研究显示,添加纤维素酶和木聚糖酶双酶法对枣渣进行改性,可将枣渣纤维的可溶性纤维的比例由6.79%提高到10.15%,使SDF与IDF更接近1∶3的最佳比例。钱海峰等采用纤维素酶水解米糠膳食纤维,得到的总膳食纤维和可溶性膳食纤维的总酚含量分别是酶解前的2.08倍和8.82倍,总抗氧化能力分别是酶解前的2.13倍和4.86倍,在亚油酸体系中的抗氧化能力均强于0.5mg/mL的抗坏血酸[34]。

尽管经酶法改性的膳食纤维具有高的物化特性及生理功能活性,但由于膳食纤维改性的纯化酶价格较高,酶法成本也因此比较昂贵,该技术在实际生产中还无法全面推广。

1.3.2微生物发酵法

微生物发酵法是利用微生物生长过程中分泌的酶和酸等发酵产物,强化膳食纤维功能特性的技术。其产品口感香甜、无异味,是一种相对安全、高效、低成本的膳食纤维改性方法[31]。

目前所用菌种多为用于食品发酵生产的传统菌种,对保加利亚乳酸杆菌、嗜热链球菌、绿色木霉、药用真菌等的使用尤为普遍。令博[35]等用保加利亚乳杆菌和嗜热链球菌混合菌对酿酒葡萄皮渣进行发酵处理,总膳食纤维含量由发酵前的69.61%提高到了84.4%,SDF含量由8.37%提升至17.25%,膨胀力、持水力和持油力分别为3.38mL/g、4.32g/g和1.87g/g,膳食纤维的品质得到有效提高。以杏仁果肉为原料采用绿色木霉发酵法制备SDF,通过饲喂实验发现这种杏仁果肉粉可以减轻大鼠的糖尿病症状[36]。

1.4联合处理

综上所述,膳食纤维改性的方法中,不论是物理方法、化学法还是生物法,都各有利弊。采用多方法联合处理膳食纤维,一方面可以避免单一方法的缺陷,一方面又能相互协作,更有效地提升膳食纤维的产率及品质。何欢[37]以花生壳为原料,采用挤压预处理、化学(酸)洗涤、a-淀粉酶酶解等多法处理制备膳食纤维,所得的花生壳膳食纤维SDF含量达18.1%,DF含量达到80.7%,大大提高了膳食纤维的获得率。对发酵后的大豆膳食纤维进一步进行超高压均质处理,SDF/ TDF比值高达41.44%,是发酵后未经高压均质的1.56倍,解决了经发酵后SDF难以再提高的问题[38]。

2结语

膳食纤维是不能被消化酶所消化的食物组分,是正常生理、生化过程中非常重要的组成部分,能排毒素、降血脂、降血糖、抗癌等,在“文明病”发病率不断攀升的今天人们对它的需求越来越大。然而来源于蔬菜、瓜果、谷物等的天然膳食纤维,SDF含量低,不能满足人们日渐增长的需求,人类只有积极地利用各种改性方法,才能尽可能地提高膳食纤维的得率及品质。我国膳食纤维资源较为丰富,充分利用资源大力开展膳食纤维改性的技术研究,不仅可以满足市场化需求,且深切地影响着国民的营养健康。因此膳食纤维的开发利用还存在着广阔的空间,而且不同资源的膳食纤维改性技术还需优化。

参考文献:

[1]赵丽,李倩,朱丹实,等.膳食纤维的研究现状与展望[J].食品与发

酵科技,2014(5):76-82,86

[2]MCKEE L H,LATNER T A.Underutilized sources of dietary fiber:

A review[J].Plant Foods for Human Nutrition,2000,55(4):285-304

[3]WESTENBRINK S,BRUNT K,JW V D K.Dietary fibre:Challenges

in production and use of food composition data[J].Food Chemistry, 2013,140(3):562-567

[4]韩东平,刘玉环,李瑞贞,等.提高豆渣膳食纤维活性改性研究[J].

食品科学,2008,29(8):670-672

[5]朱国君,赵国华.膳食纤维改性研究进展[J].粮食与油脂,2008(4):

40-42

[6]赵健,郑刚,赵国华.超高压处理对红薯渣膳食纤维理化性质的影

响[J].食品科学,2009,30(17):109-112

[7]BALNY C.High Pressure and Protein Oligomeric Dissociation[J].

International Journal of High Pressure Research,2002,22(3):737-741

[8]万婕,刘成梅,李俶,等.动态高压微射流作用对膳食纤维结晶结

构的影响[J].高压物理学报,2012,26(6):639-644

[9]阮传英.动态高压微射流技术对豆渣膳食纤维吸附重金属能力

的影响[D].南昌:南昌大学,2014

杨明华,等:膳食纤维改性技术研究进展

专题论述

209

[10]孙颖.小麦麸皮膳食纤维的脱色及超微粉碎加工[D].无锡:江南

大学,2008

[11]CHI FAI CHAU,YU LING WEN,YI TING WANG.Effects of mi-

cronization on the characteristics and physicochemical properties of insoluble fibers[J].Journal of the science of Food&Agriculture,2006, 86(14):2380-2386

[12]郑慧,王敏,于智峰,等.超微粉碎对苦荞麸功能特性的影响[J].农

业工程学报,2007,23(12):258-262

[13]WANG C C R,CIOU J Y,CHIANG P Y.Effect of micronization on

functional properties of the water caltrop(Trapa taiwanensis Nakai) pericarp[J].Food Chemistry,2009,113(4):970-974

[14]CHI FAI CHAU,YU LING WEN,YI TING WANG.Improvement of

the functionality of a potential fruit insoluble fibre by micron tech-nology[J].International Journal of Food Science&Technology,2006, 41(9):1054-1060

[15]李伦,张晖,王兴国,等.超微粉碎对脱脂米糠膳食纤维理化特性

及组成成分的影响[J].中国油脂,2009,34(2):56-59

[16]蓝海军,刘成梅,涂宗财,等.大豆膳食纤维的湿法超微粉碎与干

法超微粉碎比较研究[J].食品科学,2007,28(6):171-174

[17]LI T,ZHONG J Z,JIE W,et al.Effects of micronized okara dietary

fiber on cecal microbiota,serum cholesterol and lipid levels in BALB/c mice[J].International Journal of Food Sciences&Nutrition, 2013,64(8):968-973

[18]TIAN Y,XING JIANG H,SIYI PAN,et al.Physicochemical and

functional properties of micronized jincheng orange by-products (Citrus sinensis Osbeck)dietary fiber and its application as a fat re-placer in yogurt[J].International Journal of Food Sciences&Nutri-tion,2014,65(5):565-572

[19]梅新,木泰华,陈学玲,等.超微粉碎对甘薯膳食纤维成分及物化

特性影响[J].中国粮油学报,2014,29(2):76-81

[20]黄晟,朱科学,钱海峰,等.超微及冷冻粉碎对麦麸膳食纤维理化

性质的影响[J].食品科学,2009(15):40-44

[21]李丽,王白鸥,罗仓学,等.膳食纤维的改性研究[J].中国果菜,2007

(3):47-48

[22]刘传富,王兆升,董海洲,等.挤压膨化对豆渣加工特性影响的研

究[J].食品与发酵工业,2008,34(12):102-105

[23]葛邦国,吴茂玉,肖丽霞,等.苹果膳食纤维的研究进展[J].食品研

究与开发,2009,30(2):162-165[24]任庆,孙波,赵晓,等.挤压膨化对白菜渣可溶性膳食纤维含量的

影响[J].食品工业,2014,35(10):96-99

[25]BERRIOS J D J,MORALES P,CAMARA M,et al.Carbohydrate

composition of raw and extruded pulse flours[J].Food Research In-ternational,2010,43(2):531-536

[26]叶发银,汪美凤,刘嘉,等.挤压处理番茄皮膳食纤维的化学组成

与结构[J].食品科学,2014(13):43-48

[27]YAN X,YE R,CHEN Y.Blasting extrusion processing:The in-

crease of soluble dietary fiber content and extraction of soluble-fiber polysaccharides from wheat bran[J].Food Chemistry,2015, 180:106-115

[28]叶琼娟,杨公明,张全凯,等.挤压膨化技术及其最新应用进展[J].

食品安全质量检测学报,2013,4(5):1329-1334

[29]王强,赵欣.不同膳食纤维改性技术研究进展[J].食品工业科技,

2013,34(9):392-395

[30]吴丽萍,朱妞.化学改性对竹笋膳食纤维结构及理化性能的影响

[J].食品工业科技,2013,34(21):124-126

[31]吴丽萍,朱妞,陈雪峰.花生壳膳食纤维化学改性工艺参数优化及

品质分析[J].食品工业科技,2014,35(22):286-290

[32]YANGILAR F.The application of dietary fibre in food industry

structural features,effects on health and definition,obtaining and analysis of dietary fibre:A review[J].Journal of Food and Nutrition Research,2013,1(3):13-23

[33]赵梅,许学勤,许艳顺,等.纤维素酶-木聚糖酶对红枣渣膳食纤维

的酶法改性[J].食品与发酵工业,2014(5):11-15

[34]钱海峰,黄冬云,苑华宁,等.纤维素酶对米糠可溶性膳食纤维含

量及抗氧化性的影响[J].食品工业科技,2014(15):112-115,120 [35]令博,田云波,吴洪斌,等.微生物发酵法制取葡萄皮渣膳食纤维

的工艺优化[J].食品科学,2012(15):178-182

[36]CUI J,GU X,ZHANG Q,et al.Production and anti-diabetic activity

of soluble dietary fiber from apricot pulp by Trichoderma viride fer-mentation[J].Food Funct,2015,6(5):1635-1642

[37]何欢.花生壳膳食纤维提取工艺的研究[J].中国食品添加剂,2015

(1):102-106

[38]涂宗财,林德荣,刘成梅,等.粗壮脉纹孢菌发酵制备高活性膳食

纤维的研究[J].食品与发酵工业,2008,34(4):68-70

收稿日期:2015-05-22

杨明华,等:膳食纤维改性技术研究进展专题论述210

高分子改性材料的应用

天 然 高 分 子 改 性 材 料 的 发 展 以 及 运 用 景 姓名:李毅 学号:5404310016 专业班级:工业工程101

天然高分子改性材料的发展以及运用 姓名:李毅学号:5404310016 班级:工业工程101 摘要:本文介绍了淀粉、木质素、甲壳素、壳聚糖及瓜尔胶等几种天然高分子材料的研究进展以及改性方法,同时通过几种不同的化学反应详细介绍了壳聚糖的应用,同时介绍了其他几种在当代生活不同领域的应用。 关键词:天然高分子,改性,羧甲基化反应,酯化反应,酰化反应,接枝反应,运用,阻燃和耐热。 正文部分: 1.引言 近年来基于石油产品的合成高聚物材料也已广泛应用于包装、日用品、医用、建材、宇航、工业和农业各个领域,。然而,基于石油资源的合成高分子材料大量使用不仅造成环境污染,而且以后将面临石油资源逐渐枯竭的威胁。而天然高分子来源于自然界中动物、植物和微生物,它们是取之不尽,用之不竭的可再生资源。所以在石油资源日益匮乏和价格持续高涨之际,天然高分子的研究和利用出现新的发展机遇。天然高分子中含量最丰富的资源包括纤维素、木质素、甲壳素、淀粉、各种动植物蛋白质以及多糖等,它们具有多种功能基团,可通过化学、物理方法改性成为新材料,也可通过化学、物理及生物技术降解成单体或低聚物用作能源以及化工原料。因此,近年在该领域的基础和应用研究的优秀成果以及日益增强的全球环境法则的压力共同作用下已孵化出这一新兴行业。 2.天然高分子材料的研究进展以及运用 2.1 淀粉 天然淀粉资源十分丰富,如土豆、玉米、木薯、菱角、小麦等均有高含量的淀粉,据统

计,自然界中含淀粉的天然碳水化合物年产量达5000亿t,是人类可以取用的最丰富的有机资源。淀粉及其衍生物是一种多功能的天然高分子化合物,具有无毒、可生活降解等优点。它是一种六元环状天然高分子,含有许多羟基,通过这些羟基的化学反应生产改性淀粉,另外,淀粉还能与乙烯类单体如丙烯腈、丙烯酸、丙烯酰胺等通过接枝共聚反应生成共聚物。这些共聚物可用作絮凝剂、增稠剂、黏合剂、造纸助留剂等。近年来淀粉的接枝共聚研制新型絮凝剂在国内也取得长足进展,有人用淀粉与二甲基二烯丙基氯化铵接枝共聚制得阳离子淀粉,实验对炼油废水、生活废水有较好的处理效果,COD去除率可达70%以上,色度残留率低于20%,是一种较好的絮凝剂。淀粉-聚丙烯酰胺接枝共聚物作为有机高分子絮凝剂的研究早巳受到人们的重视,并有不少成果问世。我国尹华等以淀粉为基本原料,加入丙烯酰胺、三乙胺、甲醛和适量的盐酸进行接枝共聚反应,合成出一种阳离子型高分子絮凝剂FNQE,该药剂具有独特的分子结构和较高的相对分子质量分布。FNQE对高岭土悬浊液有良好的絮凝除浊效果,对城市污水在投药量为10mg/L时即能达到理想的净化效果,浊度、色度的去除率均在90%以上。 2.2 ,木质素 木质素与纤维素、半纤维素粘结在一起形成植物的主要结构,是植物界中非常丰富的天然高分子。相对于其它天然高分子,木质素具有更为复杂的组成及多级结构,是最难认识和应用的天然高分子之一。但是,木质素分子具有众多不同种类的活性官能基,兼具可再生、可降解、无毒等优点,而且工业木质素来源于造纸黑液,成本低廉,因而被视为优良的绿色化工原料,其综合利用备受关注。在应用和研究较为活跃的木质素高分子材料领域,可通过化学反应和物理共混将木质素与酚醛树脂、聚氨酯、聚烯烃、橡胶、聚酯、聚醚、淀粉、大豆蛋白等复合,提高材料的性能并降低成本。木质素是一种与工程塑料极为相似的,具有高

改性沥青的研究进展

改性沥青的研究进展 黄 彬,马丽萍,许文娟 (昆明理工大学环境科学与工程学院,昆明650093) 摘要 为了得到性能更优良的改性沥青,越来越多的材料被用作改性沥青改性剂,同时新的评价标准和方法及其他领域的新化学分析方法也被用来更完整准确地评价改性沥青的性能。总结了国内外改性沥青的研究现状及进展,从改性机理、性能影响因素及评价方法等方面来介绍各种改性沥青的概况,并概述了改性沥青的发展方向。 关键词 改性沥青 改性剂 机理 发展Rsearch Development of Modif ied Asphalt HUAN G Bin ,MA Liping ,XU Wenjuan (Faculty of Environmental Science and Engineering ,Kunming University of Science and Technology ,Kunming 650093) Abstract More materials ,as modifier ,are used to improve the properties of modified asphalt.Besides ,the new evaluation standards and methods ,new chemical analysis methods are used to evaluate the properties more com 2pletely and accurately.The situation and development of modified asphalt research at home and abroad are summa 2rized.From the aspcts of modification mechanism ,influencing factors and evaluation methods ,various modified as 2phalts are introduced ,and the development trend of modified asphalt technology is illustrated in the paper. K ey w ords modified asphalt ,modifier ,mechanism ,development  黄彬:女,1986年生,硕士研究生,主要研究方向为固体废物资源化 E 2mail :binbin_huang @https://www.docsj.com/doc/9614072370.html, 马丽萍:女,1966年生,教 授,主要研究方向为工业废气污染控制、固废综合开发利用 E 2mail :lipingma22@https://www.docsj.com/doc/9614072370.html, 0 前言 普通道路沥青由于自身的组成和结构决定了其感温性能差,弹性和抗老化性能差,高温易流淌,低温易脆裂。而且在过去的10年中,车轴负荷增加、车流量增加、气候条件恶劣,难以满足高级公路的使用要求,必须对其改性以改善使用性能。在沥青或沥青混合料中加入天然或合成的有机或无机材料,熔融或分散在沥青中与沥青发生反应或裹覆在沥青集料表面,可以改善或提高沥青路面性能。 1 改性沥青的分类 在沥青的改性材料中,高分子聚合物是应用最广泛、研究最集中的一种。其他改性材料还有两大类:矿物质填料和添加剂。矿物质填料,如硅藻土、石灰、水泥、炭黑、硫磺、木质素、石棉和炭棉等,对沥青进行物理改性,可提高沥青抗磨耗性、内聚力和耐候性。添加剂,包括抗氧化剂和抗剥落剂,如有机酸皂、胺型或酚型抗氧化剂或阴、阳离子型或非离子型表面活性剂,可提高沥青粘附性、耐老化或抗氧化能力。聚合物改性沥青(PMA 、PMB ),按照改性剂的不同一般可分为3类:①热塑性橡胶类,即热塑性弹性体,主要是嵌段共聚物,如SBS 、SIS 、SE/BS ,是目前世界上最为普遍使用的道路沥青改性剂,并以SBS 最多;②橡胶类,如NR 、SBR 、CR 、BR 、IR 、EP 2DM 、IIR 、SIR 及SR 等,以胶乳形式使用,其中SBR 应用最为广泛;③树脂类,如EVA 、PE 、PVC 、PP 及PS 。 2 各种改性沥青及其发展现状 通过SCI 和EI 分别检索近15年来改性沥青在交通、建筑、材料、能源及环境等学科方面研究的文献情况,检索结果如图1、图2及表1、表2所示。根据表1、表2数据和图1、图2情况可以看出,近几年国内外对改性沥青的研究越来越多,尤其以SBS 和胶粉最为突出,出现了多种新型改性剂。下面 将分别介绍各种改性沥青及其发展现状。 图1 SCI 检索统计表 Fig.1 SCI search results 2.1 矿物质材料改性沥青 矿物质材料作改性剂的研究较少,主要为硅藻土、纳米 碳酸钙、矿渣粉、白炭黑等,可与基质沥青形成均匀、稳定的 共混体系以改善沥青性能[1] 。

1.辐照交联透明质酸的降解特性研究

第36卷增刊2009年北京化工大学学报(自然科学版) Journal of Beijing University of Chemical Technology (Natural Science ) Vol.36,Sup. 2009 辐照交联透明质酸的降解特性研究 张 丽 张丽叶3 (北京化工大学生命科学与技术学院,北京 100029) 摘 要:用甲基丙烯酸缩水甘油酯(GM )对透明质酸(HA )进行接枝改性,制备交联透明质酸衍生物(GMHA ),通过辐照获得透明质酸凝胶。分光光度计测定吸光度表明所制备的HA 凝胶是一种可降解的生物材料。其稳定性受到制备条件和环境条件的影响:如HA 的分子量为70万时在相对长时间内比分子量为10万时表现的相对稳定;当分子量相同,辐照剂量为1k Gy 时降解明显,辐照剂量为5k Gy 时表现出较好的稳定性;HA 凝胶在中性环境条件下容易引起降解,在p H =4时表现的相对稳定;中低温度有利于HA 凝胶的稳定,在高温50℃时降解迅速。关键词:透明质酸;交联;透明质酸凝胶;稳定性中图分类号:TQ0501425 收稿日期:2009202225 第一作者:女,1978年生,硕士生3通讯联系人 E 2mail :lyzhang @https://www.docsj.com/doc/9614072370.html, 引 言 透明质酸(HA )是一种线型聚阴离子黏多糖,是人和动物皮肤、玻璃体、软骨组织和关节滑液的重要组成成分。天然的HA 除具有高度粘弹性、可塑性、渗透性以外,还具有良好的生物相容性。但是,天然HA 水溶性极强、在组织中易扩散和降解,体内存留 时间较短,所以在应用上受到限制[122]。 近年来,为了使HA 能够更好更广泛的应用于医药保健等领域,可以通过对HA 进行化学修饰或者交联,从而改善它的水溶性和降解特性[3]。有文献报道HA 及其交联衍生物已被用作类固醇类药物、多肽和蛋白类药物及各种抗癌药物的运送载体。这类新型药物载体能够明显延长药物在用药部位的存留时间,降低生物降解率,提高生物利用度,减少其不良反应[425]。 陈森军等[6]利用甲基丙烯酸缩水甘油酯(GM )接枝到HA 链上的方法,通过将改性生成的GMHA 产物用γ射线辐照获得交联的方法,无需引发剂或者催化剂就获得纯度高且无毒的交联HA 凝胶衍生物。在此实验结果的基础上,本文通过测定葡萄糖醛酸的方法综合考察了该方法制备得到的HA 凝胶的降解稳定性,并且分别在分子量、辐照剂量、 GMHA 浓度等制备条件和p H 、温度、NaCl 浓度等 环境条件下对HA 凝胶稳定性的影响进行了研究。 1 实验部分 111 材料和仪器 透明质酸(分子量100万,400万,700万),山东福瑞达公司;三乙胺,分析纯,天津市福晨化学试剂厂;甲基丙烯酸缩水甘油酯,分析纯,日本三菱公司;四丁基溴化铵,分析纯,天津市津科精细化工研究所;咔唑,分析纯,北京化学试剂公司;四硼酸钠,分析纯,北京北化精细化学品有限责任公司。 Co 60源,北京原子高科金辉辐射技术有限公司;DHG 29076A 真空干燥箱,上海申立玻璃仪器有限公 司;722S 分光光度计,上海菁华科技仪器有限公司。112 交联HA 凝胶的制备 取HA 0105g ,放入20mL 去离子水中,待溶解均匀后依次添加1mL 三乙胺,1mL 甲基丙烯酸缩水甘油酯,01054g 四丁基溴化铵等,旋转搅拌24h ,60℃恒温培养30min 。将反应液用丙酮立即沉淀, 并将沉淀物洗涤2次后干燥至恒重。将干燥后的白色固体配制成不同浓度的溶液,在不同辐照剂量下进行γ射线辐照,剂量率为20G y/min ,即得交联HA 凝胶。 113 HA 凝胶降解性测定 通过测定葡萄糖醛酸含量来表征HA 凝胶的降解情况[728]。将样品试管置于冰水浴中,用酸式滴定管缓慢的向每管中加入01025mol/L 四硼酸钠硫酸(使用之前在4℃冰箱内贮存至少2h )5mL ,将其

qb2246-96 食品添加剂-瓜尔胶

中华人民共和国轻工行业标准 食品添加剂 瓜尔胶 QB 2246-96 前言 本标准等效采用FAO/WHO1992年瓜尔胶的标准。其中,鉴别试验、酸不溶物、硼酸盐、蛋白质、淀粉试验、砷、铅、重金属的指标均采用FAO/WHO标准;干燥减量、总灰分指标略优于FAO/WHO标准。此外还增加了粘度和细度指标。 本标准的具体检验方法采用经试验确认可靠的方法和其他标准中的检验方法,采用的标准包括FAO/WHO1992年瓜尔胶的标准和中华人民共和国国家标准。 本标准由中国轻工总会食品造纸部提出。 本标准由全国食品发酵标准化中心、卫生部食品卫生监督检验所技术归口。 本标准由中国石油天然气油田化学公司、中国食品发酵工业研究所负责起草。 本标准主要起草人:郑立凯、单齐梅、方军、吴玉宏。

1 范围 本标准规定了食品添加剂—瓜尔胶的技术要求、试验方法、检验规则以及关于包装、标志、贮存和运输的各项要求。 本标准适用于从热带豆科草本植物—瓜尔豆〖Cyamops tetragonoloba(L·)Taub〗种子经破碎,去其种皮、子叶(胚芽)后取其胚乳加工精制而成的天然植物胶。其主要成分为半乳甘露聚糖,在食品工业生产中用作增稠剂、稳定剂等。 2 引用标准 下列标准所包含的条文,通过在标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB 5009.4-85 食品中灰分的测定方法 GB 6284-86 化工产品中水分含量测定的通用方法重量法 GB 8449-87 食品添加剂中铅的测定方法 GB 8450-87 食品添加剂中砷的测定方法 GB 8451-87 食品添加剂中重金属的限量试验法 GB/T 14771-93 食品中蛋白质的测定方法 3 结构式、分子量 结构式: 分子量:22万道尔顿。 4 技术要求 4.1 外观 乳白色可自由流动粉末。 4.2 理化指标 食品添加剂瓜尔胶的质量应符合表1要求。 表1

改性沥青现状及发展前景

改性沥青现状及发展前景 1、改性沥青应用现状 普通道路石油沥青,由于原油成分及炼制:工艺等原因,其含蜡量较高,导致其具有温度敏感性强,与石料的粘附性差,低温延度小等缺点。用其铺筑的沥青路面,夏季较软,易出现明显车辙壅包等病害;冬季较脆,易出现低温开裂等病害;混合料的抗疲劳性能,抗老化性能较差。同时,由于经济的快速发展,普通沥肯混合料已不能满足高等级道路和特殊地点的重交通,大轴载,快速安全运输的需要。 1.1 改性沥青的应用背景和现状 据相关资料,20世纪60年代以前,沥青路面仅用于城市道路和专用公路,沥青材料主要是煤沥青和用进口原油提炼的石油沥青。20世纪70年代前后,在全国范围内曾采用渣油吹氧稠化,掺配特立尼达(TLA)或阿尔巴尼亚稠沥青等改性的方法,提高结合料稠度,配制成200号沥青铺筑以表面处治为主的沥青面层。1985年国内开展 了沥青中掺丁苯,氯丁橡胶,废轮胎粉等改性沥青和掺金属皂等改善混合料性能的研究试验工作,取得了成功的经验。1992年NovophaltPE现场改性技术的引入,对改性沥青的推广应用起到了促进作用,使改性沥青从研究试验逐步发展到生产应用。 1.2影响改性沥青应用的因素 生产施工工艺在聚合物改性沥青的大规模应用中起到了关

键性的作用。无论是聚合物改性,物理改性还是采用不同的沥青加工工艺都会增加较大的工程成本,在国内经济不发达地区的应用会受到一定的制约。 2、改性沥青的研究现状 目前国内的研究重点在新的改性剂和沥青改性剂的加工工艺上还有一部分研究是面向工程应用的,即研究在沥青集料改性剂确定的情况下,找出合适的级配,最佳沥青用量和改性剂用量以满足实际工程的要求。我国研究改性沥青已有多年的历史,也取得了丰富的成果,但至今仍有两个问题没有很好地解决: (1)没有形成对改性沥青和改性性能统一的评价标准; (2)国内没有形成统一的研究体系。 改性沥青的研究是一项长期的复杂的系统工作,要想取得突破性成果必须综合各研究机构的优势,形成统一的研究体系,比如美国l987年~l992年的大型系统工程SHRP计划等等。而相对于国内,研究工作往往由各高等院校,科研院所独立完成,没有统一的研究规划,配套工作滞后。另外由于各部门的利益关系,沥青改性的关键技术往往是秘而不宣的,在一定程度上造成人财物的巨大浪费。 3、改性沥青的应用前景 由于普通沥青已不能适应现代化路面的要求,性能良好的改性沥青必将在高等级路面中起到越来越重要的作用 3.1 SBS改性沥青将获得更广泛的应用 研究表明,SBS改性的优越性突出表现在具有双向改性作用,

甲壳素_壳聚糖的化学改性及其衍生物应用研究进展

综述 甲壳素、壳聚糖的化学改性及其衍生物应用研究进展 X 汪玉庭X X , 刘玉红, 张淑琴 (武汉大学资源与环境科学学院环境科学系,湖北武汉 430072)摘 要: 简要评述了甲壳素和壳聚糖化学改性的研究进展,讨论了酰化、醚化、酯化、接枝和交联等化学改性 方法,简要介绍甲壳素衍生物在化妆品、医学和环保方面的应用,并提出了其发展过程中存在的一些问题,对 其发展趋势作了预测。 关键词: 甲壳素;壳聚糖;化学改性 中图分类号: O63 文献标识码: A 文章编号: 1008-9357(2002)01-0107-08 甲壳素(chitin)是自然界中大量存在的唯一的氨基多糖,其化学命名为B -(1y 4)-2-乙酰氨基-2-脱氧-D-葡萄糖。壳聚糖(chitosan)是甲壳素的脱乙酰基产物,也叫脱乙酰甲壳素,简称(CTS)。它们的结构式112分别为 : 甲壳素结构与纤维素类似,分子中含有H-OH 和H-NH 键,还含有分子间氢键。甲壳素的这种有序的大分子结构,在一般的溶剂中不容易溶解。壳聚糖的分子结构中含有游离氨基,溶解性能有了一些改观,但也只能溶于某些稀酸,如盐酸、醋酸、乳酸、苯甲酸、甲酸等,不溶于水及碱溶液。甲壳素与壳聚糖无毒,无害,易于生物降解,不污染环境,而且在自然界中含量仅次于纤维素,并以相同的循环速率产生和消失。近年来,国内外学者对甲壳素或壳聚糖的化学改性开展了研究,拓宽了壳聚糖及其衍生物的应用领域。现结合我们的研究工作,对甲壳素或壳聚糖的化学改性及其衍生物的应用予以简要评述。Vo l.152002年3月 功 能 高 分 子 学 报Journal of Functional Polymers No.1M ar.2002X XX 作者简介:汪玉庭(1942-),男,湖北鄂州人,教授,博士生导师,研究方向:环境友好材料的合成及应用。E -mail:hxxzls @w hu. https://www.docsj.com/doc/9614072370.html,. 收稿日期:2001-10-11 基金项目:教育部博士学科点专项研究基金资助项目(2000048615)

聚酰胺特性

1.聚酰胺特性 聚酰胺(PA)具有品种多、产量大、应用广泛的特点,是五大工程塑料之一。但是,也由于聚酰胺品种繁多,在应用领域方面有些产品具有相似性,有些又有相当大的 差别,需要仔细区分。 聚酰胺(Polyamide)俗称尼龙,是分子主链上含有重复酰胺基团-[-NHCO-]-的热塑 性树脂总称。 尼龙中的主要品种是PA6和PA66,占绝对主导地位;其次是PA11、PA12、PA610、PA612,另外还有PA1010、PA46、PA7、PA9、PA13。新品种有尼龙6I、尼龙9T、特殊尼龙MXD6(阻隔性树脂)等;改性品种包括:增强尼龙、单体浇铸尼龙(MC尼龙)、反应注射成型(RIM)尼龙、芳香族尼龙、透明尼龙、高抗冲(超韧)尼龙、电镀尼龙、导电尼龙、阻燃尼龙、尼龙与其他聚合物共混物和合金等。 1.1.性能指标 尼龙为韧性角状半透明或乳白色结晶性树脂,作为工程塑料的尼龙分子量一般 为15000-30000。尼龙具有很高的机械强度,软化点高,耐热,摩擦系数低,耐磨损,具有自润滑性、吸震性和消音性,耐油,耐弱酸,耐碱和一般溶剂;电绝缘性好, 有自熄性,无毒,无臭,耐候性好等。尼龙与玻璃纤维亲合性十分良好,因而容易 增强。但是尼龙染色性差,不易着色。尼龙的吸水性大,影响尺寸稳定性和电性能,纤维增强可降低树脂吸水率,使其能在高温、高湿下工作。其中尼龙66的硬度、刚性最高,但韧性最差。尼龙的燃烧性为UL94V2级,氧指数为24-28。尼龙的分解温度﹥299℃,在449℃-499℃会发生自燃。尼龙的熔体流动性好,故制品壁厚可小到1mm。

1.2.性能特点与用途 1.2.1.PA6 物性:乳白色或微黄色透明到不透明角质状结晶性聚合物;可自由着色,韧性、耐磨性、自润滑性好、刚性小、耐低温,耐细菌、能慢燃,离火慢熄,有滴落、起泡现象。最高使用温度可达180℃,加抗冲改性剂后会降至160℃;用15%-50%玻纤增强,可提高至199℃,无机填充PA能提高其热变形温度。 加工:成型加工性极好,可注塑、吹塑、浇塑、喷涂、粉末成型、机加工、焊 接、粘接。 PA6是吸水率最高的PA,尺寸稳定性差,并影响电性能(击穿电压)。 应用:轴承、齿轮、凸轮、滚子、滑轮、辊轴、螺钉、螺帽、垫片、高压油管、 储油容器等。 1.2.2.PA66 物性:半透明或不透明的乳白色结晶聚合物,受紫外光照射会发紫白色或蓝白色光,机械强度较高,耐应力开裂性好,是耐磨性最好的PA,自润滑性优良,仅次于聚四氟乙烯和聚甲醛,耐热性也较好,属自熄性材料,化学稳定性好,尤其耐油性极佳,但易溶于苯酚,甲酸等极性溶剂,加碳黑可提高耐候性;吸水性大,因而 尺寸稳定性差。 加工:成型加工性好,可用于注塑、挤出、吹塑、喷涂、浇铸成型、机械加工、 焊接、粘接。 应用:与尼龙6基本相同,还可作把手、壳体、支撑架等。

SBS改性沥青的性能与应用

SBS改性沥青的性能与应用 摘要:我国高速公路建设自改革开放以来,经历了从无到有,从起步到建设成高速公路网的翻天覆地变化。与此同时,传统的普通沥青已经很难适应现代对公路的高标准要求,而改性沥青的研制与应用则较好地解决了这一问题。本文主要通过介绍SBS改性沥青在高温、低温条件下的抗车辙、抗裂性能,与水稳定性,抗滑能力等内容,比较得出其对于传统沥青在工程、经济、社会各方面的优越性,探究了加强对SBS改性沥青的学习,开展对SBS改性沥青深入的研究与推广其广泛应用的长远意义。 关键词:SBS改性沥青;改性沥青性能;改性沥青应用;沥青施工;工程效益;应用前景 1 前言 随着交通流量的增长、车载质量的增加以及高温和低温的作用,为适应道路路面的使用性能的要求,保证路面良好的使用状态,延长路面的使用寿命,就必须探寻更高性能的路面材料。SBS改性沥青混凝土具有很好的高温抗车辙能力,低温抗裂能力,改善了沥青的水稳定性,提高了路面的抗滑能力,增强了路面的承载能力,提高了沥青的抗氧化能力,是比较优良的路面材料。自上世纪40年代以来,国内外学者对各类改性沥青的性能进行了大量的研究工作,改性沥青技术得到了越来越多的重视。现有研究结果表明,与其他改性沥青相比,SBS(苯乙烯一丁二烯一苯乙烯)改性沥青的综合性能[1]更为突出,SBS改性沥青必将在未来很长的一段时间内得到更深入的研究和更广泛的应用。 2 SBS改性沥青简介 SBS属于苯乙烯类热塑性弹性体,是苯乙烯—丁二烯—苯乙烯三嵌段共聚物,SBS改性沥青是以基质沥青为原料,加入一定比例的SBS改性剂,通过剪切、搅拌等方法使SBS均匀地分散于沥青中,同时,加入一定比例的专属稳定剂,形成SBS共混材料,利用SBS良好的物理性能对沥青做改性处理。在良好的设计配合比和施工条件下,用SBS改性沥青铺筑的沥青混凝土路面有着传统沥青路面无法比拟的优越性能,具有很好的耐高温、抗低温能力以及较好的抗车辙能力和抗疲劳能力,并极大地改善沥青的水稳定性,提高了路面的抗滑性能。

高分子论文综述(聚酰胺)

摘要 聚酰胺6的结构与性能之间存在相互关系,其加工方式多种多样,成型方式也多种多样,其加工工艺有六个方面需要注意。聚酰胺主要采用注塑和挤出。由于聚酞胺具有机械强度高、耐热性、耐磨性和耐油性优异等特点,已广泛应用于国民经济的许多领域。但由于其尚存在吸水性大、干态和低温冲击强度低等缺陷而限制了它在某些方面的应用。为此,国内外广泛开展了PA6的改性研究。 目前增强改性PA6主要研究有玻璃纤维、晶须、碳纳米管和热致液晶高分子材料增强改性聚酰胺6(PA6)的方法,并对其影响因素进行了分析。结果表明:4种增强材料均可提高PA6的力学性能;玻璃纤维是最常用的PA6增强材料,而短切玻纤因其易加工、成本低及良好的力学性能而被广泛应用。 PA6的应用市场广泛,未来PA6的研究方向将围绕低成本和高性能化、功能化不断发展。 关键词:聚酰胺6(PA6);加工工艺;增强改性;玻璃纤维;晶须;碳纳米管;热致液晶高分子材料;应用;低成本;功能化

目录 摘要 (2) 绪论 (4) 引言 (4) 一、PA6的结构与性能 (4) 二、PA6的加工 (6) 三、PA6的改性研究 (7) (一)改性研究的背景与意义 (7) (二)改性方向 (10) (三)增强改性PA6的研究进展 (11) 四、PA6的应用市场 (18) 五、PA6的发展展望 (21) 参考文献 (22)

绪论 引言 聚酰胺俗称尼龙(Nylon),英文名称Polyamid eP,它是大分子主链重复单元中含有酰胺基团的高聚物的总称。聚酰胺可由内酸胺开环聚合制得,也可由二元胺与二元酸缩聚等得到的。是美国DuPont 公司最先开发用于纤维的树脂,于1939年实现工业化。20世纪50年代开始开发和生产注塑制品,以取代金属满足下游工业制品轻量化、降低成本的要求。PA具有良好的综合性能,包括力学性能、耐热性、耐磨损性、耐化学药品性和自润滑性,且摩擦系数低,有一定的阻燃性,易于加工,适于用玻璃纤维和其它填料填充增强改性,提高性能和扩大应用范围。PA的品种繁多,有PA6、PA66、PAll、PAl2、PA46、PA610、PA612、PAl010等,以及近几年开发的半芳香族尼龙PA6T和特种尼龙等新品种。 而聚酰胺 6 ( PA6) 是由德国 Farben 公司的 P.Schlack 开发,并于 1943 年实现工业化生产的,因其具备优良的耐热性、机械性、耐磨性、耐化学性、易加工等特点,被普遍用于机械设备、化工设备、航空设备、冶金设备等制造业中,成为工程塑料中用量最大的材料。 一、PA6的结构与性能 聚酰胺PA6是部分结晶性聚合物。PA6的结晶密度1.24g/cm3,结晶度约20%一30%,Tg约48℃。聚酰胺分子间通过酰氨基形成氢键,这是其物性优秀的重要因素。PA6化学结构式如图1-1.

聚酰胺改性的意义

聚酰胺改性的意义,现状与发展趋势 摘要:聚酰胺(PA,俗称尼龙)是美国DuPont公司最先开发用于纤维的树脂,于1939年实现工业化。20世纪50年代开始开发和生产注塑制品,以取代金属满足下游工业制品轻量化、降低成本的要求。PA具有良好的综合性能,包括力学性能、耐热性、耐磨损性、耐化学药品性和自润滑性,且摩擦系数低,有一定的阻燃性,易于加工,适于用玻璃纤维和其它填料填充增强改性,提高性能和扩大应用范围。 关键词:聚酰胺树脂综合性能加工增强改性性能 引言 聚酰胺是通用工程塑料中产量最大、品种最多、用途最广、性能优良的基础树脂。具有很高的机械强度、熔点高、耐磨、耐油、耐热性能优良等优点,广泛应用于汽车、电子电气、机械等领域。但由于聚酰胺的吸水性较大,造成产品尺寸稳定性差,干态或低温下冲击强度低等缺点,也限制了其更广泛的应用。对其进行改性可以得到性能多样的产品,拓宽其应用领域。为此,人们对聚酰胺的改性进行了大量研究。 正文 聚酰胺由二元酸与二元胺或由氨基酸经缩聚而得,是分子链上含有重复酰胺基团-CONH-的树脂总称。在用作纤维时,我国称为锦纶。PA品种繁多,有PA6、PA66、PA11、PA12、PA46、PA610、PA1010、PA612和近几年开发的新品种PA6T,PA9T,特殊尼龙MXD6等,其中PA6和PA66占主导地位,占总量的80%以上。PA属于结晶型塑料,在相对宽的温度和湿度范围内具有良好的综合性能,如拉伸强度高、耐摩擦、耐化学性(油、脂肪、脂肪族和芳香族烃类)、良好的冲击强度和阻隔性,而在此范围内,也有其不足的方面就是吸湿性大、吸水率高。 未改性前,在20℃、65%RH下,PA6吸水率约3.5%,PA66为2.5%左右,PA610为1.5%~2.0%,PA12约为1%;但改性后,PA吸水率非常小,如PA6T、9T在水中饱和吸水率仅为3%;未改性PA在干态和低温下冲击强度低,韧性差,除PA11和PA12外,其余经紫外辐照后性能将大大下降。填充、增强是改性PA 最常用的方法,可以提高冲击性能、尺寸稳定性、耐热性、阻燃性,PA可通过填料、增强剂或添加增韧剂、润滑剂、热稳定剂、加工助剂和着色剂来改进和提高性能,或同时使用添加剂和改性剂进行改性。 由于尼龙具有很多的特性,因此,在汽车、电气设备、机械部构、交通器材、纺织、造纸机械等方面得到广泛应用。随着汽车的小型化、电子电气设备的高性能化、机械设备轻量化的进程加快,对尼龙的需求将更高更大。特别是尼龙作为结构性材料,对其强度、耐热性、耐寒性等方面提出了很高的要求。尼龙的固有缺点也是限制其应用的重要因素,特别是对于PA6、PA66两大品种来说,与PA46、PAl2等品种比具有很强的价格优势,虽某些性能不能满足相关行业发展的要求。因此,必须针对某一应用领域,通过改性,提高其某些性能,来扩大其应用领域。主要在以下几方面进行改性: ①改善尼龙的吸水性,提高制品的尺寸稳定性。 ②提高尼龙的阻燃性,以适应电子、电气、通讯等行业的要求。

纤维改性沥青混合料研究进展

龙源期刊网 https://www.docsj.com/doc/9614072370.html, 纤维改性沥青混合料研究进展 作者:刘哲 来源:《中国科技纵横》2015年第24期 【摘要】通过对纤维改性沥青混合料研究历史及现状的调研,总结了纤维改性沥青混合 料的主要影响因素以及纤维改性沥青混合料的作用机理;阐述了纤维种类、长度、添加量以及界面粘结对沥青混合料性能的影响情况,不同因素的变化会影响沥青混合料的不同性能;总结了纤维在沥青混合料中的吸附、稳定、桥接以及加筋作用。 【关键词】纤维改性沥青混合料作用机理 1 概述 纤维作为一种新型的增强材料,被广泛的用作复合材料增强体,应用于航空航天、电子机械等尖端领域[1-3],由于纤维具有高模量、高强度、高长径比以及较强的吸附能力,在道路沥青及沥青混合料中也多有应用。多年来,国内外对纤维改善沥青及其混合料性能进行了大量研究,并根据实际需求,开发出了一系列适用于道路沥青改性的路用纤维,主要包括木质素纤维、矿物纤维、聚合物纤维以及新兴的玄武岩纤维等。本文主要针对道路纤维在沥青混合料中的应用进行调研,分析了纤维对混合料性能影响的主要作用机理及影响因素,对其未来发展进行了展望。 2纤维改性沥青混合料的主要影响因素 2.1 纤维种类及性能 按处理方式划分,纤维可分为天然纤维和化学合成纤维,不同种类的纤维具有不同的性能,包括强度、模量、吸持沥青量、长径比以及表面形貌等等,而这些因素都会对沥青混合料性能产生影响。李智慧[4]等考察了聚丙烯腈纤维、聚酯纤维以及木质素纤维等三类不同的增 强体对沥青混合料性能的影响,同时分析了三类纤维的常规技术性能,建立了纤维性能与外掺纤维沥青混合料路用性能之间的关系。结果表明,掺加聚丙烯腈纤维和聚酯纤维的沥青混合料性能相当,而木质素纤维混合料性能稍差;纤维的种类还影响着其对沥青混合料的主要作用机理。对外掺纤维沥青混合料路用性能影响程度最大的纤维性质因素是抗拉强度与极限拉伸应变,其次是熔融温度,吸持沥青量也有一定程度影响,纤维直径影响最小,在纤维形状特征因素中纤维长度的影响程度大于纤维直径与长径比。T.Serkan[5]采用聚酯纤维对石油沥青进行改性处理,石油沥青混合料的马歇尔稳定度增加而流值降低,同时抗车辙及抗疲劳性能增加,表明聚酯纤维有效提高了石油沥青混合料的路用性能;F.M.Nejad等[6]使用碳纤维增强沥青混凝土,结果显示,碳纤维的加入有效提升了沥青混凝土的强度和抗老化性能。此外,有不少学者采用不同种类的纤维对沥青混合料进行混杂改性,取得了良好的效果[7-8]。

二聚酸型聚酰胺热熔胶的应用与改性研究进展

万方数据

万方数据

万方数据

万方数据

万方数据

二聚酸型聚酰胺热熔胶的应用与改性研究进展 作者:祝爱兰, 孙静, 施才财, ZHU Ai-lan, SUN Jing, SHI Cai-cai 作者单位:上海轻工业研究所有限公司研发中心,上海,200031 刊名: 中国胶粘剂 英文刊名:CHINA ADHESIVES 年,卷(期):2008,17(12) 被引用次数:4次 参考文献(32条) 1.殷锦捷;马海云聚酰胺热熔胶牯剂的应用及发展趋势[期刊论文]-中国胶粘剂 2003(01) 2.高国生改性010聚酰胺树脂合成聚酰胺热熔胶的研究 2004 3.钟明强;徐立新;王先进热熔胶的开发与应用进展[期刊论文]-浙江化工 2000(04) 4.潘耀民二聚酸聚酰胺树脂的合成及其在制鞋工业中的应用 1997(01) 5.曹建平二聚酸聚酰胺包头胶的研制[期刊论文]-中国胶粘剂 1997(05) 6.杜郢改性聚酰胺树脂的合成及其在热熔胶领域的应用[期刊论文]-江苏石油化工学院学报 2002(01) 7.杜郢;蔡华兵;杨恩华废弃PET聚酯/二聚酸聚酰胺共聚物的合成及过程分析[期刊论文]-化工进展 2007(12) 8.金旭东;杨云峰;胡国胜聚酰胺热熔胶性能研究及其应用[期刊论文]-中国胶粘剂 2007(11) 9.牛丽红;王桂香;李春归汽车灯用热熔胶的研究及性能表征[期刊论文]-粘接 2005(01) 10.杨秀云;刘晓秋新型车灯热熔胶的研制[期刊论文]-长春理工大学学报 2007(03) 11.张彰热熔胶在电缆和光缆中的应用[期刊论文]-现代有限传播 1997(02) 12.孟宪铎热熔胶在油气管道接头密封上的应用[期刊论文]-粘接 1999(06) 13.李(足翟)亨;杨燕龙;吴宏聚酰胺与聚脂酰胺热熔胶及其制造方法 2002 14.LEONI R;GRUBER W;ROSSINI A Polyamide resin from dimer/trimer acid and N-alkyl diamine 1988 15.LEONI R;GRUBER W;WICHELHAUS J Adhesive composition comprising thermoplastic polyamide from dimer acid and N-substituted aliphatic diamine 1990 16.LEONI R;GRUBER W;WICHELHAUS J Adhesive composition comprising polyamide from dimer acid and Nalkyl diamine 1989 17.LEONI R;GRUBER W;ROSSINI A Polyamide of dimerized fatty acids and polyether urea diamines and their use as adhesives 1990 18.陈续明;贾兰琴;李瑞霞用于热熔胶的聚酰胺树脂合成组成与性能关系的研究[期刊论文]-中国胶粘剂 2000(01) 19.梁子材;李(足翟)亨;杨燕龙具有聚酰胺或聚酯酰胺结构的热态高强度热熔胶 1999 20.HEUCHER R;WICHELHAUS J;SCHUELLER K Hotmelt adhesive 1996 21.WICHELHAUS J;GRUBER W;ANDRES J Polymeric hotmelt adhesive 1988 22.DOUCET JOS Adhesive composition 1983 23.MATSUBA Y;TERADA N;OSAKO T Hot-melt polyamide adhesive and polyamide resin sheet-shaped molded product 2002 24.张华明;罗顺忠;赵鹏骥耐温保气型热熔胶的研制[期刊论文]-中国胶粘剂 1995(04) 25.张秀斌油气管道接口热收缩带用固定片及热熔胶的研制[期刊论文]-沈阳化工学院学报 2001(03) 26.陈续明;钟华;贾兰琴聚酯酰胺/EEA共混体组成与性能[期刊论文]-高分子材料科学与工程 2001(06) 27.陈续明;贾兰琴;李瑞霞聚酯酰胺/SIS共混体系的组成与性能[期刊论文]-石油化工 2001(01)

瓜尔胶

天然增稠剂之————瓜尔胶 1958年8月25日,日清食品公司的创始人安藤百福(已故,原名吴百福,日籍台湾人)销售了全球第一袋方便面——袋装“鸡汤拉面”以后,方便面得到了极大的发展,2007年方便面的全球销售量大约为979亿包,全世界平均每人消费15包。公司预测,如果消费量继续保持增长,10年后方便面的全球销量有望翻一番,达到2000亿包。目前消费方便面最多的国家是中国,其后依次为印度尼西亚、日本和美国。速食方便面给我们的生活带来了极大的方便,其中的配料也是数不胜数,本篇文章主要介绍其中的食品添加剂之一,公认的天然增稠剂之一——瓜尔胶 瓜尔胶:瓜尔胶从产于印度、巴基斯坦等地的瓜尔豆(瓜尔豆在民间,其果实作为缓泻剂,并使用于因胆汁而引起的疾病。叶子可治夜盲症;煮熟的种子作成膏药用于治疗头胀痛、肝大以及骨折而引起的肿胀。瓜尔豆全草烧成灰,与油混合,调匀涂敷治疗烫伤。)种子的胚乳中提取得到,主要成分为半乳甘露聚糖,我们通常所说的瓜尔胶指的是瓜尔糖,其结构是由D甘露糖通过β-1,4甙键连接形成主链,在某些甘露糖上D-半乳糖通过α-1,6甙键形成侧链而构成多分枝的聚糖,从整个分子来看,半乳糖在主链上呈无规分布,但以两个或三个一组居多。这种基本呈线形而具有分支的结构决定了瓜尔胶的特性与那些无分支、不溶于水的葡甘露聚糖有明显的不同。因来源不同,瓜尔胶的分子量及单糖比例不同于其它的半乳甘露聚糖。瓜尔胶的分子量约为100万~200万,甘露糖与半乳糖之比约为1.5一2/1。 瓜尔胶的主要成分: 瓜尔胶的性质 瓜尔胶为白色或浅黄色,可自由流动的粉末,略微带有豆腥味,易吸潮。瓜尔胶在水溶液中表现出典型的缠绕生物聚合物的性质,一般而言,0.5%以上的瓜尔胶溶液已呈非牛顿流体的假塑性流体特性,没有屈服应力。瓜尔胶在冷水中就能充分水化(一般需要2h),能分散在热水或冷水中形成粘稠液,具体粘度取决于粒度、制备条件及温度,瓜尔胶为天然胶中粘度最高者。 瓜尔胶是一种溶胀高聚物,水是它的通用溶剂,不过也能以有限的溶解度溶解于与水混溶的溶剂中,如乙醇溶液中。此外由于瓜尔胶的无机盐类兼容性能,其水溶液能够对大多数一价盐离子(Na+、K+、Cl-等)表现出较强的耐受性,如食盐的浓度可高达60%;但高价金属离子的存在可使溶解度下降。 瓜尔胶分子主链上每个糖残基都有两个顺式羟基,在控制溶液pH值的条件下,将会通过极性键和配位键与游离的硼酸盐、金属离子进行交联,生成具有一定弹性的水凝胶,此外还能形成一定强度的水溶性薄膜。瓜尔胶与大多数合成的或天然的多糖具有很好的配伍和协同增效作用,如瓜尔胶与黄原胶、海藻酸钠、魔芋

蒙脱土DK

纳米塑料中用作纳米无机相材料的蒙脱土(MMT),是我国丰产的一类天然粘土矿物,是一种层状硅酸盐。其结构片层是纳米尺度的,包含有三个亚层,在两个硅氧四面体亚层中间加含一个铝氧八面体亚层,亚层之间通过共用氧原子以共价键连接,结合极为牢固。整个结构片层厚约1NM,长宽约100NM,由于铝氧八面体亚层中的部分铝原子被低价原子取代,片层带有负电荷,过剩的负电荷靠游离于层间的NA+、CA2+和MG2+等阳离子平衡,因此容易与烷基季胺盐或其他有机阳离子进行离子交换反应生成有机化蒙脱土,有机化蒙脱土成亲油性,并且层间的距离增大,因此有机蒙脱土能进一步与单体或聚合物熔体反应,在单体聚合或聚合物熔体混合的过程中剥离为纳米尺度的结构片层,均匀分散到聚合物基体中,从而形成纳米塑料。 一种纳米蒙脱土水相插层的制备方法,包括:将纳米蒙脱土在水中高速搅拌,超声,形成稳定的悬浮体系后静置水化;然后在50~85℃下搅拌,加入插层剂的 水溶液,高速搅拌,再超声;加入水溶性高分子表面活性剂——聚乙烯醇,在50~85℃下搅拌;离心,冷冻干燥,得到疏松装的层间距大于1.9纳米的蒙脱土?本发明提供的方法是在水相中,使用水溶性高分子表面活性剂——聚乙烯醇(PVA)对蒙脱土进行插层的新方法?该方法摈弃了现有技术中使用的DMF(N,N-二甲基甲酰胺(DMF))够直接得到疏松的粉末,从而改善了产品的储存性能,以及再次使用时的分散性能,便于批量生产?储存和运输;而且本发明的方法更为简单,成本也进一步降低? X射线衍射特征: 表面亲水性: DK5>DK2> DK1N>DK3>DK1>DK4

实验室DK3:DK3纳米有机化蒙脱土(采用十六烷基二甲基苄基溴化铵对蒙脱土进行有机改性,DK3-OMMT),浙江丰虹黏土化工有限公司;

SBS改性沥青机理研究进展

S BS改性沥青机理研究进展 李双瑞,林 青,董声雄 (福州大学化学化工学院,福州 350002) 摘要:介绍了沥青的特性、苯乙烯2丁二烯2苯乙烯三嵌段共聚物(S BS)的性能,分析了S BS与基质沥青之间 的溶胀性和相容性问题,着重论述了S BS改性沥青机理的研究进展,指出机理主要分为物理共混和化学改性两 类:物理共混———S BS微粒受到沥青组分中油分的作用发生溶胀而均匀分散在沥青中,S BS与沥青之间没有发 生化学作用,只是一种分子间作用力;化学改性———加入添加剂使沥青和S BS之间发生加成、交联或接枝等化 学反应,形成较强的共价键或离子键,改善沥青的化学性质。提出化学改性是提高S BS改性沥青路用性能的重 要手段。 关键词:苯乙烯-丁二烯-苯乙烯嵌段共聚物;S BS改性沥青;改性机理 采用聚合物对道路沥青进行改性是提高和改善沥青混合料路用性能的一种重要措施[1~6]。近年来,在聚合物改性材料中,苯乙烯2丁二烯2苯乙烯三嵌段共聚物(S BS)以其优异的性能,成为世界上使用最为广泛的沥青改性剂[7~12]。对S BS改性沥青路用性能的研究[13~17]表明:采用S BS对沥青改性后,改性沥青的低温柔性和高温性能明显提高,温度敏感性大大降低。关于S BS改性沥青的机理,国内外科技人员进行了大量的研究,但并没有形成统一的理论。本文根据国内外相关文献,介绍了沥青和S BS的性能以及S BS在沥青中的溶胀性和相容性问题,着重论述了S BS改性沥青机理的研究进展。 1 沥青的特性 沥青是由多种化学成分极其复杂的烃类所组成。这些烃类为一些带有不同长短侧链的高度缩合的环烷烃和芳香烃,以及这些烃类的非金属元素衍生物[18]。按生产来源划分,沥青主要可分为地沥青(包括天然沥青与石油沥青)、焦油沥青、煤沥青、页岩沥青等。道路中各国目前生产和最常用的是石油沥青。石油沥青是原油加工的重质产品[19]。石油沥青的组分极为复杂,通常用溶剂将沥青通过色层分析法分成饱和分、芳香分、胶质和沥青质四个组分[18]。Hubbard2Stanfield法将沥青划分为油分、树脂和沥青质3个组分[19]。 油分是石油沥青中最轻的馏分,含量在45%~60%。油分是石油沥青可以流动的主要原因,其含量越多,软化点越低,粘度越小,使沥青具有柔软性和抗裂性。树脂的含量在15%~30%。树脂的存在使石油沥青有一定的可塑性、可流动性和粘结性,直接决定着石油沥青的延伸度和粘结力。沥青质是固体无定形物质,含量在5%~30%。沥青质是高分子化合物,它是石油沥青中分子量最高的组分,决定着石油沥青的塑性状态界限、自固态变为液态的程度、粘滞性、温度稳定性、硬度和软化点。此外,石油沥青中还含有一定数量的沥青酸、沥青酸酐、碳化物和似碳物。 沥青的主要结构为胶体结构,即以沥青质为核,表面层被树脂浸润包裹,而树脂又溶于油分中,形成沥青胶团,无数胶团彼此通过油质结合成胶体结构。当沥青中沥青质含量适当,并有较多的树脂作为保护物质时,它所组成的胶团之间有一定的吸引力,这种结构称之为溶胶-凝胶结构。大多数优质的路用沥青都属于这种胶体结构,具有粘弹性和触变性。当沥青质含量较高时,胶粒相互缠结,粘度大、塑性小、 基金项目:中法先进科技合作项目(PRAMX02208); 作者简介:李双瑞(1977-),女,河南南阳人,博士研究生,从事沥青材料改性的研究; 联系人,E2mail:sxdong2004@https://www.docsj.com/doc/9614072370.html,.

相关文档