文档视界 最新最全的文档下载
当前位置:文档视界 › 【数字图像处理-贾永红】期末复习资料

【数字图像处理-贾永红】期末复习资料

【数字图像处理-贾永红】期末复习资料
【数字图像处理-贾永红】期末复习资料

第一章数字图像处理概论

*1.图像是对客观存在对象的一种相似性的、生动性的描述或写真。

*2.模拟图像

空间坐标和明暗程度都是连续变化的、计算机无法直接处理的图像

*3.数字图像

空间坐标和灰度均不连续的、用离散的数字(一般整数)表示的图像(计算机能处理)。是图像的数字表示,像素是其最小的单位。

*数字图像处理(Digital Image Processing)

利用计算机对数字图像进行(去除噪声、增强、复原、分割、特征提取、识别等)系列操作,从而获得某种预期的结果的技术。(计算机图像处理)

*数字图像处理的特点(优势)

(1)处理精度高,再现性好。(2)易于控制处理效果。(3)处理的多样性。(4)图像数据量庞大。(5)图像处理技术综合性强。

*数字图像处理的目的

(1)提高图像的视感质量,以达到赏心悦目的目的

a.去除图像中的噪声;

b.改变图像的亮度、颜色;

c.增强图像中的某些成份、抑制某些成份;

d.对图像进行几何变换等,达到艺术效果;

(2)提取图像中所包含的某些特征或特殊信息。

a.模式识别、计算机视觉的预处理

(3)对图像数据进行变换、编码和压缩,以便于图像的存储和传输。

**数字图像处理的主要研究内容

(1)图像的数字化

a.如何将一幅光学图像表示成一组数字,既不失真又便于计算机分析处理

b*.主要包括的是图像的采样与量化

(2*)图像的增强

a.加强图像的有用信息,消弱干扰和噪声

(3#)图像的恢复

a.把退化、模糊了的图像复原。模糊的原因有许多种,最常见的有运动模糊,散焦模糊等

(4#)图像的编码

a.简化图像的表示,压缩表示图像的数据,以便于存储和传输。

(5#)图像的重建

a.由二维图像重建三维图像(如CT)

(6*)图像的分析

a.对图像中的不同对象进行分割、分类、识别和描述、解释。

(7*)图像分割与特征提取

a.图像分割是指将一幅图像的区域根据分析对象进行分割。

b.图像的特征提取包括了形状特征、纹理特征、颜色特征等。

(8#)图像隐藏

a.是指媒体信息的相互隐藏。

b.数字水印。

c.图像的信息伪装。

(9#)图像通信

**4.图像工程的三个层次

*图像分析:图像分析主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息,从而建立对图像的描述。

*图像理解:图像理解的重点是在图像分析的基础上,进一步研究图像中各个目标的性质和他们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行动。

=================================

图像处理:【图像输入——(图像处理<增强、复原、编码、压缩等>)——图像输出)

图像识别:【图像输入——(图像预处理<增强、复原>)——(图像分割)——(特征提取)——(图像分类)——类别、识别结果】

图像理解:【图像输入——(图像预处理)——(图像描述)——(图像分析和理解)——图像解释】

*5.数字图像处理的应用领域:

通信:图象传输,电视电话等。

宇宙探测:星体图片处理。

遥感:地形、地质、矿藏探查,森林、水利、海洋、农业等资源调查,自然灾害预测,环境污染的监测,气象云图。

生物医学:CT,X射线成象,B超,红外图象,显微图象。

工业生产:产品质量检测,生产过程控制,CAD,CAM。

军事:军事目标侦察,制导系统,警戒系统,自动火器控制,反伪装等。

公安:现场照片,指纹,手迹,印章,人像等处理和鉴别。

档案:过期的文字、图片档案的修复和处理。

机器人视觉

娱乐:电影特技,动画,广告,MTV等

*6.数字图像处理的发展动向

(1)提高精度,提高处理速度(2)加强软件研究,开发新方法(3)加强边缘学科的研究工作(4)加强理论研究(5)图像处理领域的标准化问题

第二章数字图像处理基础

重点:图像数字化、图像灰度直方图和图像文件B M P格式

难点:图像数字化、直方图应用、图像分层结构数据

*1.连续图像的描述(模拟图像)

一幅图像可定义成一个二维函数f(x,y)。由于幅值f实质上反映了图像源的辐射能量,所以f(x,y)一定是非零且有限的,也即有: 0

设i(x,y)表示照射到观察景物表面(x,y)处的白光强度,r(x,y)表示观察景物表面(x,y)处的平均反射(或透射)系数,则有:

f(x,y)=i(x,y)r(x,y)

其中: 0 < i(x,y) < A1 (2.4)

0 ≤ r(x,y) ≤ 1

对于消色光图像(有些文献称其为单色光图像),f(x,y)表示图像在坐标点(x,y)的灰度值l,且:

l=f(x,y) (2.5)

这种只有灰度属性没有彩色属性的图像称为灰度图像。

由式(2.4),显然有:

Lmin≤l≤Lmxa (2.6)

区间[Lmin,Lmax]称为灰度的取值范围。

在实际中,一般取Lmin的值为0,这样,灰度的取值范围就可表示成[0,Lmax]。

*2.图像数字化

当一幅图像的x和y坐标及幅值f都为连续量时,称该图像为连续图像*。为了把连续图像转换成计算机可以接受的数字形式,必须先对连续的图像进行空间和幅值的离散化处理。

(1)图像的采样:对图像的连续空间坐标x和y的离散化。

(2)图像灰度级的量化:对图像函数的幅值f 的离散化。

*均匀采样:

对一幅二维连续图像f(x,y)的连续空间坐标x和y的均匀采样,实质上就是把二维图像平面在x方向和y方向分别进行等间距划分,从而把二维图像平面划分成M×N个网格,并使各网格中心点的位置与用一对实整数表示的笛卡尔坐标(I,j)相对应。二维图像平面上所有网格中心点位置对应的有序实整数对的笛卡尔坐标的全体就构成了该幅图像的采样结果。

*均匀量化:

对一幅二维连续图像f(x,y)的幅值f的均匀量化,实质上就是将图像的灰度取值范围[0,Lmax]划分成L个等级(L为正整数,Lmax=L-1),并将二维图像平面上M×N个网格的中心点的灰度值分别量化成与L个等级中最接近的那个等级

的值。

**采样、量化参数与数字化图像间关系P19

*数字图像的表示:为了描述上的方便,本书仍用f(x,y)表示数字图像。设x∈[0,M-1],y∈[0,N-1],f∈[0,L-1],则数字图像可表示成式(2.7)形式的一个M×N的二维数字阵列。

每个(x,y)对应数字图像中的一个基本单元,称其为图像元素(picture element),简称为像素(pixel);且一般取M、N和的灰度级L为2的整次幂,即:

M=2~m (2.8)

N=2~n (2.9)

L=2~k (2.10)

这里,m、n和k为正整数。

**空间分辨率

(1)空间分辨率是图像中可分辨的最小细节,主要由采样间隔值决定。

(2**)一种常用的空间分辨率的定义*是单位距离内可分辨的最少黑白线对数目(单位是每毫米线对数),比如每毫米80线对。另外,当简单地把矩形数字化仪的尺寸看作是“单位距离”时,就可把一幅数字图像的阵列大小M×N称为该幅数字图像的空间分辨率。

(3)对于一个同样大小的景物来说,对其进行采样的空间分辨率越高,采样间隔就越小,景物中的细节越能更好地在数字化后的图像中反映出来,也即反应该景物的图像的质量就越高。

(4)一幅数字图像的阵列大小(简称为图像大小)通常用M×N表示。在景物大小不变的情况下,采样的空间分辨率越高,获得的图像阵列M×N就越大;反之,采样的空间分辨率越低,获得的图像阵列M×N就越小。在空间分辨率不变的情况下,图像阵列M×N越大,图像的尺寸就越大;反之,图像阵列M×N越小,图像的尺寸就越小。

**采样数(1、2)、空间分辨率(3)变化对图像视觉效果的影响:

(1)在图像的空间分辨率不变(这里指线对宽度不变)的情况下,采样越少,图像越小。

(2)在景物大小不变的情况下,图像阵列M*N越小,图像的尺寸越小。

(3)随着空间分辨率的降低,图像中的细节信息在逐渐损失,棋盘格似的粗颗粒像素点变得越来越明显。由此也说明,图像的空间分辨率越低,图像的视觉效果越差。

**灰度分辨率

灰度级分辨率是指在灰度级别中可分辨的最小变化,通常把灰度级级数L

称为图像的灰度级分辨率。

**灰度分辨率变化对图像视觉效果的影响:

随着灰度分辨率的降低,图像的细节信息在逐渐损失,伪轮廓信息在逐渐增加。图中由于伪轮廓信息的积累,图像已显现出了木刻画的效果。由此也说明:灰度

分辨率越低,图像的视觉效果越差。

**3.灰度直方图

图像的灰度直方图,是一种表示数字图像中各级灰度值及其出现频数的关系的函数。

设一幅数字图像的灰度级范围为[0,L-1],则该图像的灰度直方图可定义为:h(rk)=nk (r=0,1,2,…,L-1) (2.19)

其中,rk表示第k级灰度值,h(rk)和nk表示图像中灰度值为rk的像素个数。 **灰度直方图具有如下一些特征:

(1)直方图仅能描述图像中每个灰度级具有的像素个数,不能表示图像中每个像素的位置(空间)信息;

(2)任一特定的图像都有惟一的直方图,不同的图像可以具有相同的直方图;

(3)对于空间分辨率为M×N,且灰度级范围为[0,L-1]的图像,有关系:

(L-1)求和符(j=0)= M×N (2.20)(4)如果一幅图像由两个不连接的区域组成,则整幅图像的直方图等于两个不连接的区域的直方图之和。

*显示分辨率是指显示屏上能够显示的数字图像的最大像素行数和最大像素列数,取决于显示器上所能够显示的像素点之间的距离。

*图像分辨率反映了数字化图像中可分辨的最小细节,也即图像的空间分辨率。在这里将图像分辨率看成是图像阵列的大小。

同一显示器(或显示分辨率相同的不同显示器)显示的图像大小只与被显示的图像(阵列)的空间分辨率大小有关,与显示器的显示分辨率无关。

换句话说,具有不同空间分辨率的数字图像在同一显示器上的显示分辨率相同。

当同一幅图像(或图像分辨率相同的不同图像)显示在两个不同显示分辨率的显示器上时,显示的图像的外观尺寸与显示器的显示分辨率有关:显示分辨率越高,显示出的图像的外观尺寸越小;显示分辨率越低,显示出的图像的外观尺寸越大。

*光分辨率是指显示系统在每个像素位置产生正确的亮度或光密度的精度,部分地依赖于控制每个像素亮度的比特数。

*灰度分辨率是指在灰度级别中可分辨的最小变化,一般把灰度级数L称为数

字图像的灰度级分辨率。

**位映像,是指一个二维的像素阵列。

**位图,是指采用位映像方法显示和存储的图像。

**位映像设备,是指把位映像形式的二维像素阵列图像,按先行后列的顺序,通过逐像素地重复扫描的方式来显示位图的设备(显示器)。

*4.图像数据结构&文件格式

*常用的图像文件格式有:

BMP、GIF、TIFF、PCX、JPEG等。

*BMP文件(Bitmap File)是一种Windows采用的点阵式图像文件格式。

**BMP图像文件的组成:

(1)位图文件头(Bitmap File Header)标识名称:(BITMAPFILEHEADER):说明文件的类型和位图数据的起始位置等,共14个字节。

(2)位图信息头(Bitmap Information Header)(BITMAPINFORMATION):说明位图文件的大小、位图的高度和宽度、位图的颜色格式和压缩类型等信息。共40个字节。

(3)位图调色板(Bitmap Palette)(RGBOUAD):由位图的颜色格式字段所确定的调色板数组,数组中的每个元素是一个RGBQUAD结构,占4个字节。

(4)位图数据(Bitmap Data)(BYTE):位图数据,位图的压缩格式确定了该数据阵列是压缩数据或是非压缩数据。

*图像的位图数据表示的图像共有biWidth×biHeight个像素。

*图像的位图数据是按行存储的,每一行的字节数按照4字节边界对齐,也即每一行的字节数是4的倍数,不足的字节用0补齐。

*图像的位图数据是按行从下到上、从左到右排列的。也就是说,从图像的位图数据中最先读到的是图像最下面一行的最左边的像素,最后读到的是图像最上面一行的最右边的一个像素。

存储一幅M×N的数字图像,需要的存储位数为:

b = M × N × k (2.11)

字节数为:B=b/8

*5.几种具体算法

第四章图像增强

1. 熟悉基本概念、空间域图像增强的原理、方法及其特点;

2. 了解频率域图像增强的方法及其实现过程;

3.重点掌握直方图修正方法、特点及其应用;空间域平滑、锐化技术。

*图像增强的应用及其分类

像处理最基本的目的之一是改善图像,而改善图像最常用的技术就是图像增强*图像增强有两大类应用

改善图像的视觉效果,提高图像清晰度

突出图像的特征,便于计算机处理。

*图像增强按作用域分为两类,即空域处理和频域处理。

*频域处理则是在图像的某个变换域内,对图像的变换系数进行运算,然后通过逆变换获得图像增强效果。

*频域处理与时域处理的异同:同:都是一种图像处理方法;异:时域处理是根据图像的时间函数对图像的不同时间特进行处理,而频域处理是针对图像的频谱。

**图像增强的内容:

(1)消除噪声,改善图像的视觉效果(2)突出边缘,有利于识别和处理

*1.图像增强的点运算

对一副输入图像,经点运算将产生一副输出图像,后者的每个像素的灰度值仅由输入像素的值决定。

(1)对比度增强(2)对比度拉伸(3)灰度变换

*(1)灰度级校正:对每个像素的校正

*(2)灰度变换法:使图像动态范围增大,对比度扩展,图像更加清晰,特征明显,是图像增强重要手段之一。

<1>线性变换

<2>非线性变换

*(3)直方图修正法

**<1>直方图均衡化:P68-71通过对原图像进行某种变换使原图像的灰度直

方图修正为均匀的直方图的一种方法。

*图象均衡化处理后,图象的直方图是平直的,即各灰度级具有相同的出现频数,那么由于灰度级具有均匀的概率分布,图象看起来就更清晰了。

*直方图均衡化实质上是减少图象的灰度级以换取对比度的加大。

*在均衡过程中,原来的直方图上频数较小的灰度级被归入很少几个或一个灰度级内,故得不到增强。

*若这些灰度级所构成的图象细节比较重要,则需采用局部区域直方图均衡。 ***均衡化表格:书例1

*<2>直方图规定化(看书)

*2.图像的空间域平滑(重点是多幅图像平均法&中值滤波,其余的就是课上的) *目的:通过积分使图像边缘变得模糊

**中值滤波法

用局部中值代替局部平均值

令[f(x,y)]--原始图象阵列,

[g(x,y)]--中值滤波后图象阵列,

f(x,y) --灰度级,

g(x,y) --以f(x,y)为中心的窗口内各象素的灰度中间值。

**中值滤波的特性

(1)对离散阶约信号、斜升信号不产生影响(2)连续个数小于窗口长度一半的离散脉冲将被平滑(3)三角函数的顶部平坦化(4)中值滤波后,信号频率谱基本不变

(2)优点:1、在平滑脉冲噪声方面非常灵敏,同时可以保护图像尖锐的边缘。

2、不影响阶跃信号、斜坡信号,连续个数小于窗口长度一半的脉冲受到抑制,三角波信号顶部变平。

(3)缺点:1、对于高斯噪声不如均值滤波。2、图像中点、线、尖角等细节较多,则不宜采用中值滤波。

#均值滤波:

(1)优点:把每个像素都用周围的8个像素做均值操作,平滑图像速度快、算法简单。

(2)缺点:1、在降低噪声的同时,使图像产生模糊,特别是边缘和细节处,而且模糊尺寸越大,图像模糊程度越大。2、对椒盐噪声的平滑处理效果不理想。

**3.图像的锐化(看书):通过微分突出边缘和轮廓信息。

*图像的锐化之微分法

*常用的梯度算子

(1)Roberts(0* -1//1 0),(-1* 0//0 1);各向同性;对噪声敏感;模板尺寸为偶数,中心位置不明显。

(2)Prewitt(-1 0 1//-1 0* 1//-1 0 1),(-1 -1 -1//0 0* 0//1 1 1);引入了平均因素,对噪声有抑制作用;操作简便。

(3)Sobel(-1 0 1//-2 0* 2//-1 0 1),(-1 -2 -1//0 0* 0//1 2 1);引入了平均因素,增强了最近像素的影响,噪声抑制效果比Prewitt好。

(4)Krisch(-3 -3 5//-3 0* 5//-3 -3 5);(-3 -3 -3//-3 0* -3//5 5 5);噪声抑制作用较好;需求出8个方向的响应(这里只给出2个模板)

(5)Isotropic Sobel(-1 0 1//-根2 0* 根2//-1 0 1),(-1 –根2 -1//0 0* 0//1 根2 1);权值反比于邻点与中心店的距离,检测沿不用方向边缘时梯度幅度一致,即具有各向同性。

#4.频率域增强(书)

*5.彩色增强技术

**彩色图像增强:

在得到的彩色图像中,有时会存在对比度低、颜色偏暗、局部细节不明显等问题,为了改善图像的视觉效果、突出图像的特征,利于进一步的处理,需要对图像进行增强处理。

**彩色图像增强分类:

对于彩色图像的增强依据处理对象的不同可分为:真彩色增强(分为亮度增强、色调增强和饱和度增强三种)、伪彩色增强和假彩色增强三类。

**伪彩色增强:

(1)伪彩色增强的处理对象是灰度图像。

(2)定义:伪彩色增强就是将一幅具有不同灰度级的图像通过一定的映射转变为彩色图像,来达到增强人对图像的分辨能力。

(3)分类:伪彩色增强可分为空域增强和频域增强两种,在这两种算法中,密度分层法、灰度级-彩色变换法和频率滤波法是三种较为常用的算法。

*假彩色增强:

(1)定义:假彩色增强是从一幅初始的彩色图像或者从多谱图像的波段中生成增强的彩色图像的一种方法,其实质是从一幅彩色图像映射到另一幅彩色图像,由于得到的彩色图像不再能反映原图像的真实色彩,因此称为假彩色增强。(2)其意义在于:1、把图像中的景物赋以与现实不同的颜色,以达到引人注目的目的。2、对于一些细节特征不明显的彩色图像,可以利用假彩色增强将这些细节赋以人眼敏感的颜色,以达到辨别图像细节的目的。适应人眼对颜色的灵敏度,提高鉴别能力。如人眼对绿色亮度响应最灵敏,可把细小物体映射成绿色。人眼对蓝光的强弱对比灵敏度最大。可把细节丰富的物体映射成深浅与亮度不一的蓝色3、在遥感技术中,利用假彩色图像可以将多光谱图像合成彩色图像,使图像看起来逼真、自然,有利于对图像进行后续的分析与解译。

**伪彩色与假彩色处理:

伪彩色(pseudocolor)处理:把黑白图象处理成伪彩色图象。

假彩色(false color)处理:把真实的自然彩色图象或遥感多光谱图象处理成假彩色图象。

***伪彩色与假彩色的区别和联系:

(1)伪彩色,相当于假彩色的一个特例,也就是指定某灰度为某种彩色。(2)通常这种指定最多为16级左右,最高也不超过30级,否则指定彩色太多无法记忆和区分。

(3)当每个像元可指定的彩色数目对红、绿、蓝分别达到256种时,也就是变为模拟自然彩色的假彩色了。

(4)因此假彩色和伪彩色指定是很难严格区分的。通常把黑白图像作少量彩色

映射时叫伪彩色指定。

#6.图像代数运算:

相加:C(x,y)=A(x,y)+B(x,y),其中C(x,y)为输出图像,A(x,y)、B(x,y)为输入图像。对同一场景的多幅图像求平均,常常用来减少图像的随机噪声减运算:又称为减影技术,指对同一景物在不同时间拍摄的图像或同一景物在不同波段的图像进行相减。提供图像间的差异信息,能用以动态监测、运动目标监测和跟踪、图像背景消除及目标识别等。

乘运算:可用来遮掉图像的某些部分。使用一掩模图像(对需要被完整保留下来的区域,掩模图像上的值为1,而对被抑制掉的区域则值为0),去乘图像,可抹去图像的某些部分,即该部分值为0。

除运算:图像相除又称比值处理,是遥感图像处理中常用的方法。可以利用比值图像使图像中各类地物均值拉开,方差缩小,从而易于区别各类。

第七章图像分割(以书为主)

**图像分析:是一种通过对图像中不同对象进行分割(把图像分为不同区域或目标物)来对图像中目标进行分类和识别的技术。

**图像分割:图像分割就是依据图像的灰度、颜色、纹理、边缘等特征,把图像分成各自满足某种相似性准则或具有某种同质特征的连通区域的集合的过程。

**图像分割的依据和方法:

(1)图像分割的依据是各区域具有不同的特性,这些特性可以是灰度、颜色、纹理等。而灰度图像分割的依据是基于相邻像素灰度值的不连续性和相似性。也即,子区域内部的像素一般具有灰度相似性,而在区域之间的边界上一般具有灰度不连续性。

(2)灰度图像分割是图像分割研究中最主要的内容,其本质是按照图像中不同区域的特性,将图像划分成不同的区域。

*基于边缘检测的图像分割方法的基本思路是先确定图像中的边缘像素,然后就可把它们连接在一起构成所需的边界。

*图像边缘:图像的边缘是指图像灰度发生空间突变的象素的集合。

*图像中的边缘可以通过对它们求导数来确定,而导数可利用微分算子来计算。对于数字图像来说,通常是利用差分来近似微分。

**图像边缘的两个特征:方向和幅度

(1)沿边缘走向,像素值变化比较平缓;

(2)沿垂直于边缘的走向,像素值则变化比较剧烈。

(3)一般常用一阶和二阶导数来描述和检测边缘。

(4)上升阶跃边缘、下降阶跃边缘、脉冲状边缘、屋顶边缘。

**Hogh(哈夫)变换的基本思想:

是将图像空间X-Y变换到参数空间P-Q,利用图像空间X-Y与参数空间P-Q的点-线对偶性,通过利用图像空间X-Y中的边缘数据点去计算参数空间P-Q中的参考点的轨迹,从而将不连续的边缘像素点连接起来,或将边缘像素点连接起来组成封闭边界的区域,从而实现对图像中直线段、圆和椭圆的检测。

**最小误差分割(最佳阈值)

**在假定p1(Z)和p2(Z)均为正态分布函数时,进行最佳阈值的计算

**图像特征提取

(1)图像特征提取是图像处理研究中的重要内容,而图像特征提取的关键则是图像特征的描述和定义。

(2)图像的人工特征是指人们为了便于对图像进行处理和分析而人为认定的特

征,比如图像直方图和图像频谱等。

(3)自然特征是指图像固有的特征,比如图像中的边缘、纹理、形状和颜色等。

**图像分类的概念

物体识别从根本上讲就是为物体标明类别,更通用的说法就是图像分类,是一种将图像中的所有像元或区域按其性质分为若干类别中的一类,或若干专题要素中的一种的技术过程。

**图像分类的技术层次:

(1)人工目视解译方法。也即凭借成像机理、光谱规律、地学规律、生物学规律和人的知识和经验,从影像的亮度、色调、位置、时间、纹理、结构等特征推断出图像中景物的类型。

(2)计算机识别分类方法。也即根据图像中地物信息和数据特征的差异和变化,通过计算机对图像的处理和定量分析,实现对图像中地物属性的识别和分类,以便给出图像中地物的识别分类结果。

**一般情况下提到的图像分类概念就是指基于计算机的图像识别分类方法。

**图像分割与图像分类

(1)图像分割是一种依据图像中各区域的灰度、颜色、纹理等特征,将图像划分成不同区域的技术。其目的或是通过分割出的某些区域的形状来识别目标(比如可根据区域的形状判别出某些区域是飞机,或是铁路等),或是进而在分割成的区域中进行特征提取,再根据提取的特征或结构信息进行物体识别。可见,图像分割强调从地物边界和形状信息中进行物体识别。

(2)图像分类则着眼于从地物的光谱特征出发对地物类别进行区分,图像分类的结果通常是给人工目视解译提供定量信息,而不是提供简单的形状结构信息。

第八章二值图像处理与形状分析

1. 二值图像的几何概念;

2. 二值图像连接成分的各种变形算法;

3. 二值图像特征提取与描述的各种方法。

数字图像处理课后参考答案

数字图像处理 第一章 1、1解释术语 (2) 数字图像:为了便于用计算机对图像进行处理,通过将二维连续(模拟)图像在空间上离散化,也即采样,并同时将二维连续图像的幅值等间隔的划分成多个等级(层次)也即均匀量化,以此来用二维数字阵列并表示其中各个像素的空间位置与每个像素的灰度级数的图像形式称为数字图像。 (3)图像处理:就是指对图像信息进行加工以满足人的视觉或应用需求的行为。 1、7 包括图像变化、图像增强、图像恢复、图像压缩编码、图像的特征提取、形态学图像处理方法等。彩色图像、多光谱图像与高光谱图像的处理技术沿用了前述的基本图像处理技术,也发展除了一些特有的图像处理技术与方法。 1、8基本思路就是,或简单地突出图像中感兴趣的特征,或想方法显现图像中那些模糊了的细节,以使图像更清晰地被显示或更适合于人或及其的处理与分析。 1、9基本思路就是,从图像退化的数学或概率模型出发,研究改进图像的外观,从而使恢复以后的图像尽可能地反映原始图像的本来面目,从而获得与景物真实面貌相像的图像。 1、10基本思路就是,,在不损失图像质量或少损失图像质量的前提下,尽可能的减少图像的存储量,以满足图像存储与实时传输的应用需求。 1、11基本思路就是,通过数学方法与图像变换算法对图像的某种变换,以便简化图像进一步处理过程,或在进一步的图像处理中获得更好的处理效果。 1、12基本目的就是,找出便于区分与描述一幅图像中背景与目标的方法,以方便图像中感兴趣的目标的提取与描述。 第二章 2、1解释下列术语 (18)空间分辨率:定义为单位距离内可分辨的最少黑白线对的数目,用于表示图像中可分辨的最小细节,主要取决于采样间隔值的大小。 (19)灰度分辨率:就是指在灰度级别中可分辨的最小变化,通常把灰度级数L称为图像的灰度级分辨率。 (20)像素的4邻域:对于图像中位于(x,y)的像素p来说,与其水平相邻与垂直相邻的4个像素称为该像素的4邻域像素,她们的坐标分别为(x-1,y)(x,y-1)(x,y+1)(x+1,y)。 (21)像素的8邻域:对于图像中位于(x,y)的像素p来说,与其水平相邻与垂直相邻的8个像素称为该像素的8邻域像素,她们的坐标分别为(x-1,y-1)(x-1,y)(x-1,y+1)(x,y-1)(x,y+1)(x+1,y-1)(x+1,y)(x+1,y+1)。 (28)欧氏距离:坐标分别位于(x,y)与(u,v)处的像素P与像素q之间的欧氏距离定义为:D e(p,q)=[(x-u)2+(y-v)2]1/2 (29)街区距离:欧氏距离:坐标分别位于(x,y)与(u,v)处的像素P与像素q之间的街区距离定义为:D4(p,q)=|x-u|+|y-v|。 (30)棋盘距离:欧氏距离:坐标分别位于(x,y)与(u,v)处的像素P与像素q之间的欧氏距离定义为:D8(p,q)=max(|x-u|,|y-v|)。 (33)调色板:就是指在16色或者256色显示系统中,将图像中出现最频繁的16种或者256种颜色组成的一个颜色表,并将她们分别编号为0~15或0~255,这样就使每一个4位或者8位的颜色编号或者颜色表中的24位颜色值相对应。这种4位或者8位的颜色编号称为颜色的索引号,由颜色索引号及对应的24位颜色值组成的表称为颜色查找表,即调色板。 2、7对图像进行描述的数据信息一般应至少包括: (1)图像的大小,也即图像的宽与高 (2)表示每个像素需要的位数,当其值为1时说明就是黑白图像,当其值为4时说明就是16色或16灰度级图像,当其值为8时说明就是256色或256灰度级图像,当其值为24就是说明就是真彩色图像。 同时,根据每个像素的位数与调色板的信息,可进一步指出就是16色彩色图像还就是16灰度级图像;就是256色彩色图像还就是256灰度级图像。 (3)图像的调色板信息。 (4)图像的位图数据信息。 对图像信息的描述一般用某种格式的图像文件描述,比如BMP等。在用图像文件描述图像信息时,相应的要

数字图像处理 课程设计报告

数字图像处理 课程设计报告 姓名: 学号: 班级: 设计题目:图像处理 教师:赵哲老师 提交日期: 12月29日

一、设计内容: 主题:《图像处理》 详细说明:对图像进行处理(简单滤镜,模糊,锐化,高斯模糊等),对图像进行处理(上下对称,左右对称,单双色显示,亮暗程度调整等),对图像进行特效处理(反色,实色混合,色彩平衡,浮雕效果,素描效果,雾化效果等), 二、涉及知识内容: 1、二值化 2、各种滤波 3、算法等 三、设计流程图 四、实例分析及截图效果: 运行效果截图: 第一步:读取原图,并显示 close all;clear;clc; % 清楚工作窗口clc 清空变量clear 关闭打开的窗口close all I=imread(''); % 插入图片赋给I imshow(I);% 输出图I I1=rgb2gray(I);%图片变灰度图 figure%新建窗口 subplot(321);% 3行2列第一幅图 imhist(I1);%输出图片

title('原图直方图');%图片名称 一,图像处理模糊 H=fspecial('motion',40); %% 滤波算子模糊程度40 motion运动 q=imfilter(I,H,'replicate');%imfilter实现线性空间滤波函数,I图经过H滤波处理,replicate反复复制q1=rgb2gray(q); imhist(q1); title('模糊图直方图'); 二,图像处理锐化 H=fspecial('unsharp');%锐化滤波算子,unsharp不清晰的 qq=imfilter(I,H,'replicate'); qq1=rgb2gray(qq); imhist(qq1); title('锐化图直方图'); 三,图像处理浮雕(来源网络) %浮雕图 l=imread(''); f0=rgb2gray(l);%变灰度图 f1=imnoise(f0,'speckle',; %高斯噪声加入密度为的高斯乘性噪声 imnoise噪声污染图像函数 speckle斑点 f1=im2double(f1);%把图像数据类型转换为双精度浮点类型 h3=1/9.*[1 1 1;1 1 1;1 1 1]; %采用h3对图像f2进行卷积滤波 f4=conv2(f1,h3,'same'); %进行sobel滤波 h2=fspecial('sobel'); g3=filter2(h2,f1,'same');%卷积和多项式相乘 same相同的 k=mat2gray(g3);% 实现图像矩阵的归一化操作 四,图像处理素描(来源网络) f=imread(''); [VG,A,PPG] = colorgrad(f); ppg = im2uint8(PPG); ppgf = 255 - ppg; [M,N] = size(ppgf);T=200; ppgf1 = zeros(M,N); for ii = 1:M for jj = 1:N if ppgf(ii,jj)

数字图像处理四个实验报告,带有源程序

数字图像处理 实验指导书 学院:通信与电子工程学院 专业:电子信息工程 班级: 学号: 姓名: XX理工大学

实验一 MATLAB数字图像处理初步 一、实验目的与要求 1.熟悉及掌握在MATLAB中能够处理哪些格式图像。 2.熟练掌握在MATLAB中如何读取图像。 3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。 4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。 5.图像间如何转化。 二、实验原理及知识点 1、数字图像的表示和类别 一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。 图像关于x和y坐标以及振幅连续。要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。将坐标值数字化成为取样;将振幅数字化成为量化。采样和量化的过程如图1所示。因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。 作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。 图1 图像的采样和量化 根据图像数据矩阵解释方法的不同,MA TLAB把其处理为4类: 亮度图像(Intensity images) 二值图像(Binary images) 索引图像(Indexed images) RGB图像(RGB images)

数字图像处理复习资料

1.在程控交换机工程设计中BHCA值的计算方法赵睿*在程控交换机工程设计中,呼叫处理能力的确定是很重要的,而呼叫处理能力是以忙时最大试呼次数值(BHCA)来表征的。因此可用下列换算公 6)图像分类(识别):图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。 由于被处理图像的数据量非常大且许多运算在本质上是并行的,所以图像并行处理结构和图像并行处理算法也是图像处理中的主要研究方向。

4.按照量化级的划分方式分,数字图像的量化有均匀量化和非均匀量化。 均匀量化:ADC输入动态范围被均匀地划分为2^n份。 非均匀量化:ADC输入动态范围的划分不均匀,一般用类似指数的曲线进行量化。 非均匀量化是针对均匀量化提出的,因为一般的语音信号中,绝大部分是小幅度的信号,且人耳听觉遵循指数规律。为了保证关心的信号能够被更精确的还原,我们应该将更多的bit用于表示小信号。 常见的非均匀量化有A律和μ率等,它们的区别在于量化曲线不同。 4.

如何用MATLAB让图像进行对数变换。要源代码,比如图像名字为ST.JPG >>x=imread('sar.bmp'); >>x1=double(x)+1; >>x2=log(x1); >>y=uint8(x2)-1; >>t=im2uint8(mat2gray(y)); >>imshow(t); 灰度直方图(histogram)是灰度级的函数,它表示图象中具有每种灰度级的象素的个数,反映图象中每种灰度出现的频率。 它是多种空间域处理技术的基础。直方图操作能够有效用于图像增强;提供有用的图像统计资料,其在软件中易于计算,适用于商用硬件设备。 灰度直方图性质:1)表征了图像的一维信息。只反映图像中像素不同灰度值出现的次数(或频数)而未反映像素所在位置。2)与图像之间的关系是多对一的映射关系。一幅图像唯一确定出与之对应的直方图,但不同图像可能有相同的直方图。3)子图直方图之和为整图的直方图

数字图像处理参考教材

数字图像处理参考教材 (Digital Image Processing ,Computer Image Processing)I.通用教材 I.1 容观澳,清华讲义,计算机图像处理, 2000年版, Pages 351 这是清华一本较早的教材,针对基本概念和方法,系统知识。 特点:1)着重本领域的基本概念、基本方法和系统知识。 2)理论结合实验,避开过多数学推导, 3) 重点介绍算法,免编程。这也是我们本科采取的策略。 内容:1)基本内容(有关图像数学、视觉、光学以及二维变换的基本理论2)图像改善:重点介绍图像增强,图像复原,还有图像重建 3)图像的上网、传输、压缩 4)图像的理解、分割、描述 5)图像的硬件系统设计 I.2 李介谷等,上海交大版,88年版,数字图像处理Pages 278 较早。全面介绍了图像处理的一些模型和算法,主要内容;数字图像的特征、品质及视觉;图像的增强处理;图像修复;图像重建;图像分析和理解;图像信息的编码和压缩。 对基本理论和基本技术介绍全面。 I.3 阮秋琦,电子工业版,01年版,数字图像处理学 Pages 562 主要内容:图像处理中的正交变换、图像增强、图像编码、图像复原、图像重建、图像分析、模式识别等。偏重于基本理论和方法。这本书强调了编码的内容。 全书强调基本理论和基本技术,有较多习题,附一套实验演示软件。 北方交大教材。 I.4 黄贤武等,电子科技大学版,2000年,数字图像处理与压缩编码技术, Pages538 主要加重了图像数据压缩技术的份量-这是多媒体处理技术的关键技术之一。对图形模式识别技术、无损压缩编码技术、预测编码、图像的变换编码、神

武汉科技大学 数字图像处理实验报告

二○一四~二○一五学年第一学期电子信息工程系 实验报告书 班级:电子信息工程(DB)1102班姓名 学号: 课程名称:数字图像处理 二○一四年十一月一日

实验一图像直方图处理及灰度变换(2学时) 实验目的: 1. 掌握读、写、显示图像的基本方法。 2. 掌握图像直方图的概念、计算方法以及直方图归一化、均衡化方法。 3. 掌握图像灰度变换的基本方法,理解灰度变换对图像外观的改善效果。 实验内容: 1. 读入一幅图像,判断其是否为灰度图像,如果不是灰度图像,将其转化为灰度图像。 2. 完成灰度图像的直方图计算、直方图归一化、直方图均衡化等操作。 3. 完成灰度图像的灰度变换操作,如线性变换、伽马变换、阈值变换(二值化)等,分别使用不同参数观察灰度变换效果(对灰度直方图的影响)。 实验步骤: 1. 将图片转换为灰度图片,进行直方图均衡,并统计图像的直方图: I1=imread('pic.jpg'); %读取图像 I2=rgb2gray(I1); %将彩色图变成灰度图 subplot(3,2,1); imshow(I1); title('原图'); subplot(3,2,3); imshow(I2); title('灰度图'); subplot(3,2,4); imhist(I2); %统计直方图 title('统计直方图'); subplot(3,2,5); J=histeq(I2); %直方图均衡 imshow(J); title('直方图均衡'); subplot(3,2,6); imhist(J); title('统计直方图');

原 图 灰度图 01000 2000 3000统计直方图 100200直方图均衡 0统计直方图 100200 仿真分析: 将灰度图直方图均衡后,从图形上反映出细节更加丰富,图像动态范围增大,深色的地方颜色更深,浅色的地方颜色更前,对比更鲜明。从直方图上反应,暗部到亮部像素分布更加均匀。 2. 将图片进行阈值变换和灰度调整,并统计图像的直方图: I1=imread('rice.png'); I2=im2bw(I1,0.5); %选取阈值为0.5 I3=imadjust(I1,[0.3 0.9],[]); %设置灰度为0.3-0.9 subplot(3,2,1); imshow(I1); title('原图'); subplot(3,2,3); imshow(I2); title('阈值变换'); subplot(3,2,5); imshow(I3); title('灰度调整'); subplot(3,2,2); imhist(I1); title('统计直方图'); subplot(3,2,4);

数字图像处理实验指导书模板

《数字图像处理》实验指导书 编写: 罗建军 海南大学三亚学院 10月

目录 一、概述 ....................................................................... 错误!未定义书签。 二、建立程序框架 ....................................................... 错误!未定义书签。 三、建立图像类 ........................................................... 错误!未定义书签。 四、定义图像文档实现图像读/写.............................. 错误!未定义书签。 五、实现图像显示 ....................................................... 错误!未定义书签。 六、建立图像处理类................................................... 错误!未定义书签。 七、实现颜色处理功能............................................... 错误!未定义书签。 (一) 亮度处理................................................................. 错误!未定义书签。 (二) 对比度处理............................................................. 错误!未定义书签。 (三) 色阶处理................................................................. 错误!未定义书签。 (四) 伽马变换................................................................. 错误!未定义书签。 (五) 饱和度处理............................................................. 错误!未定义书签。 (六) 色调处理................................................................. 错误!未定义书签。 八、实现几何变换功能............................................... 错误!未定义书签。 (一) 图像缩放................................................................. 错误!未定义书签。 (二) 旋转......................................................................... 错误!未定义书签。 (三) 水平镜像................................................................. 错误!未定义书签。 (四) 垂直镜像................................................................. 错误!未定义书签。 (五) 右转90度................................................................. 错误!未定义书签。 (六) 左转90度................................................................. 错误!未定义书签。 (七) 旋转180度............................................................... 错误!未定义书签。 九、实现平滑锐化功能............................................... 错误!未定义书签。 十、图像处理扩展编程............................................... 错误!未定义书签。

数字图像处理期末复习

遥感与数字图像处理基础知识 一、名词解释: 数字影像图像采样灰度量化像素 数字影像:数字影像又称数字图像,即数字化的影像。基本上是一个二维矩阵,每个点称为像元。像元空间坐标和灰度值均已离散化,且灰度值随其点位坐标而异。 图像采样:指将在空间上连续的图像转换成离散的采样点集的操作。 灰度量化:将各个像素所含的明暗信息离散化后,用数字来表示。 像素:像素是A/D转换中的取样点,是计算机图像处理的最小单元 二、填空题: 1、光学图像是一个连续的光密度函数。 2、数字图像是一个_离散的光密度_函数。 3、通过成像方式获取的图像是连续的,无法直接进行计算机处理。此外,有些遥感图像是通过摄影方式获取的,保存在胶片上。只有对这些获取的图像(或模拟图像)进行数字化后,才能产生数字图像。数字化包括两个过程:___采样___和__量化___。 4、一般来说,采样间距越大,图像数据量____小____,质量____低_____;反之亦然。 5、一幅数字图像为8位量化,量化后的像素灰度级取值范围是________的整数。设该数字图像为600行600列,则图像所需要的存储空间为________字节。 6、设有图像文件为200行,200列,8位量化,共7个波段,则该图像文件的大小为________。 三、不定项选择题:(单项或多项选择) 1、数字图像的________。 ①空间坐标是离散的,灰度是连续的②灰度是离散的,空间坐标是连续的 ③两者都是连续的④两者都是离散的 2、采样是对图像________。 ①取地类的样本②空间坐标离散化③灰度离散化 3、量化是对图像________。 ①空间坐标离散化②灰度离散化③以上两者。 4、图像灰度量化用6比特编码时,量化等级为________。

数字图像处理技术应用课程报告

集中稀疏表示的图像恢复 董伟胜中国西安电子科技大学电子工程学院wsdong@https://www.docsj.com/doc/933702235.html, 张磊香港理工大学计算机系cslzhang@https://www.docsj.com/doc/933702235.html,.hk 石光明中国西安电子科技大学电子工程学院gmshi@https://www.docsj.com/doc/933702235.html, 摘要 本文对于图像恢复任务提出了一种新的称为集中稀疏表示(CSR)的稀疏表示模型。为了重建高还原度的图像,通过给定的字典,退化图像的稀疏编码系数预计应该尽可能接近那些未知的原始图像。然而,由于可用的数据是原始图像的退化版本(如噪声、模糊和/或者低采样率),正如许多现有的稀疏表示模型一样,如果只考虑局部的稀疏图像,稀疏编码系数往往不够准确。为了使稀疏编码更加准确,通过利用非局部图像统计,引入一个集中的稀疏性约束。为了优化,局部稀疏和非局部稀疏统一到一个变化的框架内。大量的图像恢复实验验证了我们的CSR模型在以前最先进的方法之上取得了令人信服的改进。 1、介绍 图像恢复(IR)目的是为了从,比如说通过一个低端摄像头或者在有限条件下得到图像的图像退化版本(例如噪声、模糊和/或者低采样率),来恢复一副高质量的图像。对于观察的图像y,IR问题可以表示成: y = Hx + v (1) 其中H是一个退化矩阵,x是原始图像的矢量,v是噪声矢量。由于IR的病态特性,尝试把观察模型和所需解决方案的先验知识合并到一个变分公式的正则化技术,已经被广泛地研究。对于正则方法,对自然图像适当的先验知识进行寻找和建模是最重要的关注点之一,因此学习自然图像先验知识的各种方法已经被提出来了【25,5,6,12】。 近年来,对于图像恢复基于建模的稀疏表示已经被证明是一种很有前途的模型【9,5,13,20,16,21,27,15,14】。在人类视觉系统【23,24】的研究中,已经发现细胞感受区域使用少量的从一个超完备的编码集中稀疏选出的结构化基元来编码自然图像。在数学上,一个x ∈ R N的信号可以表示为一个字典Φ中的几个原子的线性组合,例如,X ≈Φα,用|0 最小化:

数字图像处理程序

数字图像处理程序

数字图像处理实验 图像处理实验(一)直方图 灰度变换是图像增强的一种重要手段,使图像对比度扩展,图像更加清晰,特 征更加明显。 灰度级的直方图给出了一幅图像概貌的描述,通过修改灰度直方图来得到图像 增强。 1、灰度直方图 (1)计算出一幅灰度图像的直方图 clear close all I=imread('004.bmp'); imhist(I) title('实验一(1)直方图'); (2)对灰度图像进行简单的灰度线形变换, figure subplot(2,2,1) imshow(I); title('试验2-灰度线性变换'); subplot(2,2,2) histeq(I); (3)看其直方图的对应变化和图像对比度的变化。 原图像 f(m,n) 的灰度范围 [a,b] 线形变换为图像 g(m,n),灰度范围[a’,b’]公式:g(m,n)=a’+(b’-a’)* f(m,n) /(b-a) figure subplot(2,2,1) imshow(I) J=imadjust(I,[0.3,0.7],[0,1],1); title(' 实验一(3)用g(m,n)=a’+(b’-a’)* f(m,n) /(b-a)进行变换 '); subplot(2,2,2) imshow(J) subplot(2,2,3) imshow(I) J=imadjust(I,[0.5 0.8],[0,1],1); subplot(2,2,4) imshow(J) (4) 图像二值化(选取一个域值,(5) 将图像变为黑白图像) figure subplot(2,2,1)

数字图像处理复习重点整理

《数字图像处理》复习 第一章绪论 数字图像处理技术的基本内容:图像变换、图像增强、图象恢复、图像压缩编码、图像分割、图像特征提取(图像获取、表示与描述)、彩色图像处理和多光谱及高光谱图像处理、形态学图像处理 第二章数字图像处理基础 2-1 电磁波谱与可见光 1.电磁波射波的成像方法及其应用领域: 无线电波(1m-10km)可以产生磁共振成像,在医学诊断中可以产生病人身体的横截面图像☆微波(1mm-1m)用于雷达成像,在军事和电子侦察领域十分重要 红外线(700nm-1mm)具有全天候的特点,不受天气和白天晚上的影响,在遥感、军事情报侦察和精确制导中广泛应用 可见光(400nm-700nm)最便于人理解和应用最广泛的成像方式,卫星遥感、航空摄影、天气观测和预报等国民经济领域 ☆紫外线(10nm-400nm)具有显微镜方法成像等多种成像方式,在印刷技术、工业检测、激光、生物学图像及天文观测 X射线(1nm-10nm)应用于获取病人胸部图像和血管造影照片等医学诊断、电路板缺陷检测等工业应用和天文学星系成像等 伽马射线(0.001nm-1nm)主要应用于天文观测 2-2 人眼的亮度视觉特征 2.亮度分辨力——韦伯比△I/I(I—光强△I—光照增量),韦伯比小意味着亮度值发生较小变化就能被人眼分辨出来,也就是说较小的韦伯比代表了较好的亮度分辨力 2-3 图像的表示 3. 黑白图像:是指图像的每个像素只能是黑或白,没有中间的过渡,一般又称为二值图像 (黑白图像一定是二值图像,二值图像不一定是黑白图像) 灰度图像:是指图像中每个像素的信息是一个量化了的灰度级的值,没有彩色信息。 彩色图像:彩色图像一般是指每个像素的信息由R、G、B三原色构成的图像,其中的R、B、G是由不同的灰度级来描述的。 4.灰度级L、位深度k L=2^k 5.储存一幅M×N的数字图像所需的比特 b=M×N×k 例如,对于一幅600×800的256灰度级图像,就需要480KB的储存空间(1KB=1024Byte 1Byte=8bit) 2-4 空间分辨率和灰度级分辨率 6.空间分辨率是图像中可分辨的最小细节,主要由采样间隔值决定,反映了数字化后图像的实际分辨率。一种常用的空间分辨率的定义是单位距离内可分辨的最少黑白线对数目(单位是每毫米线对数),比如每毫米80线对。对于一个同样大小的景物来说,对其进行采样的空间分辨率越高,采样间隔就越小,图片的质量就越高。 7.灰度级分辨率是指在灰度级别中可分辨的最小变化,通常把灰度级级数L称为图像的灰度级分辨率(灰度级通常是2的整数次幂) 8.在图像空间分辨率不变的情况下,采样数越少,图像越小。同时也证实了,在景物大小不变的情况下,图像阵列M×N越小,图像的尺寸就越小; 随着空间分辨率的降低,图像大小尺寸不变,图像中的细节信息在逐渐损失,棋盘格似的粗颗粒像素点变得越来越明显。由此也说明,图像的空间分辨率越低,图像的视觉效果越差;随着灰度分辨率的降低,图像的细节信息在逐渐损失,伪轮廓信息在逐渐增加。由于伪轮

1数字图像处理在指纹识别方面的应用

数字图像处理课程考试论文 论文题目:数字图像处理在指纹识别中的应用 学院地理与环境科学学院 专业: 地理科学 姓名郑凯鹏 学号: 10280235 提交时间: 2013-1-4 短号: 662126 成绩:

数字图像处理在指纹识别中的应用 郑凯鹏 (地理与环境科学学院地理102班 10280235) 摘要:图像处理(image processing)对图像进行一系列的操作,以达到预期目的技术。图像处理分为模拟图像处理和数字图像处理两助攻方式。所谓数字图像处理,就是利用计算机对数字图像进行系列操作,从而达到某种预期目的的技术。由于指纹具有终身的稳定性和惊人的特殊性,很早以来在身份鉴别方面就得到了应用,且被尊为“证物之首”。 关键词:数字图像、图像处理、指纹识别 Abstract:image processingconducted a series of operations on an image, and technology to achieve the desired purpose. Image processing is divided into two Dunks analog image processing and digital image processing. The so-called digital image processing is to use computers to manipulate the digital image series, so as to achieve a certain desired technology. Due to stability and alarming specificity of the fingerprint has a life, an early identification has been applied since, and was hailed as "exhibits". Keywords:digital images, image processing and fingerprint recognition 引言 在网络化时代的今天,我们每个人都拥有大量的认证密码,比如开机密码、邮箱密码、银行密码、论坛登陆密码等等;并配备了各种钥匙,如门锁钥匙,汽车钥匙,保险柜钥匙等。这些都是传统的安全系统所采用的方式,随着社会的发展,其安全性越来越脆弱。而我们的生活随时都需要进行个人身份的确认和权限的认定,尤其是在信息社会,人们对于安全性的要求越来越高,同时希望认证的方式简单快速。为了解决这一问题,人们把目光转向了生物识别技术,希望能借助人体的生理特征或行为动作来进行身份识别。这样您可以不必携带大串钥匙,也不用费心去记各种密码。另外,生物特征具有唯一性,不可复制性,例如指纹,有学者推论:以全球 60 亿人口计算,300 年内都不会有两个相同的指纹出现。以电子商务、电子银行的安全认证为例,目前在电子商务中他人会假冒当事人的身份,如果通过生物特征进行论证,就可有效防止此类事件的发生。另外,网络、数据库和关键文件等的安全控制,机密计算机的登陆认证,银行 ATM、POS 终端等的安全认证,蜂窝电话,PDA 的使用认证等等,都离不开可靠安全的生物特征识别。可见,生物特征识别不但有可观的经济效益,还有不可估量的国家信息安全效益。 一、指纹识别技术概述 1.1 概述

2013数字图像处理课程设计报告

数字图像处理 课程设计报告 课设题目:彩色图像增强软件学院:信息科学与工程学院专业:电子与信息工程 班级: 1002501 姓名:曾小路 学号: 100250131 指导教师:赵占峰 哈尔滨工业大学(威海) 2013 年12月27日

目录 目录 .......................................................................................................................... I 一. 课程设计任务 (1) 二. 课程设计原理及设计方案 (2) 2.1 彩色图像基础 (2) 2.2 彩色模型 (2) 三. 课程设计的步骤和结果 (6) 3.1 采集图像 (6) 3.2 图像增强 (7) 3.3 界面设计 (9) 四. 课程设计总结 (12) 五. 设计体会 (13) 六. 参考文献 (14)

哈尔滨工业大学(威海)课程设计报告 一. 课程设计任务 1.1设计内容及要求: (1)、独立设计方案,根据所学知识,对由于曝光过度、光圈过小或图像亮度不均匀等情况下的彩色图像进行增强,提高图像的清晰度(通俗地讲,就是图像看起来干净、对比度高、颜色鲜艳)。 (2)、参考photoshop 软件,设计软件界面,对处理前后的图像以及直方图等进行对比显示; (3)、将实验结果与处理前的图像进行比较、分析。总结设计过程所遇到的问题。 1.2参考方案 1、实现图像处理的基本操作 学习使用matlab 图像处理工具箱,利用imread()语句读入图像,例如image=imread(flower.jpg),利用彩色图像模型转换公式,将RGB 类型图像转换为HSI 类型图像,显示各分量图像(如imshow(image)),以及计算和显示各分量图像直方图。 2、彩色图像增强实现 对HSI彩色模型图像的I分量进行对比度拉伸或直方图均衡化等处理,提高亮度图像的对比度。对S分量图像进行适当调整,使图像色彩鲜艳或柔和。 H 分量保持不变。将处理后的图像转换成RGB 类型图像,并进行显示。分析处理图像过程和结果存在的问题。 3、参照“photoshop”软件,设计图像处理软件界面 可设计菜单式界面,在功能较少的情况下,也可以设计按键式界面,视 功能多少而定;参考matlab 软件中GUI 设计,学习软件界面的设计 - 1 -

数字图像处理实验报告

数字图像处理实验报告

实验一数字图像处理编程基础 一、实验目的 1. 了解MA TLAB图像处理工具箱; 2. 掌握MA TLAB的基本应用方法; 3. 掌握MA TLAB图像存储/图像数据类型/图像类型; 4. 掌握图像文件的读/写/信息查询; 5. 掌握图像显示--显示多幅图像、4种图像类型的显示方法; 6. 编程实现图像类型间的转换。 二、实验内容 1. 实现对图像文件的读/写/信息查询,图像显示--显示多幅图像、4种图像类型的显示方法、图像类型间的转换。 2. 运行图像处理程序,并保存处理结果图像。 三、源代码 I=imread('cameraman.tif') imshow(I); subplot(221), title('图像1'); imwrite('cameraman.tif') M=imread('pout.tif') imview(M) subplot(222), imshow(M); title('图像2'); imread('pout.bmp') N=imread('eight.tif') imview(N) subplot(223), imshow(N); title('图像3'); V=imread('circuit.tif') imview(V) subplot(224), imshow(V); title('图像4');

N=imread('C:\Users\Administrator\Desktop\1.jpg') imshow(N); I=rgb2gary(GRB) [X.map]=gary2ind(N,2) RGB=ind2 rgb(X,map) [X.map]=gary2ind(I,2) I=ind2 gary(X,map) I=imread('C:\Users\dell\Desktop\111.jpg'); subplot(231),imshow(I); title('原图'); M=rgb2gray(I); subplot(232),imshow(M); [X,map]=gray2ind(M,100); subplot(233),imshow(X); RGB=ind2rgb(X,map); subplot(234),imshow(X); [X,map]=rbg2ind(I); subplot(235),imshow(X); 四、实验效果

数字图像处理复习资料补充的答案

遥感与数字图像处理复习题 一、名词解释: 数字影像:物体光辐射能量的数字记录形式或像片影像经采样量化后的二维数字灰度序列 图像采样:将空间上连续的图像变换成离散点的操作称为采样 灰度量化:将像素灰度转换成离散的整数值的过程叫量化 像素:将地面信息离散化而形成的格网单元 辐射误差:传感器接受到的电磁波能量与目标本身辐射的能量是不一致的 辐射校正:消除图像数据中依附在图亮度中的各种失真的过程 灰度直方图: 以每个像元为单位,表示 线性拉伸:采用线性或分段线性的函数改善图像对比度 平滑:为抑制噪声,改善图像质量所做的处理 锐化:通过微分使图像中的地物边缘,轮廓或线状目标突出 滤波:将信号中特定波段频率部分滤除的操作,是抑制和防止干扰的一项重要措施 高通滤波:保留图像的高频部分而消弱低频部分的处理 低通滤波:保留图像的低频部分而抑制高频部分的处理 植被指数:根据地物光谱反射率的差异作比值可以突出图像中植被的特征、提取植被类别或估算绿色生物量,能够提取植被的算法称为植被指数 伪彩色合成:将一个波段或单一的黑白图像变换为彩色图像,从而把人眼不能区分的微小的灰度差别显示为明显的色彩差异,更便于解译和提取有用信息。 真彩色合成:根据彩色合成原理,可选择同一目标的单个多光谱数据合成一幅彩色图像,当合成图像的红绿蓝三色与三个多光谱段相吻合,这幅图像就再现了地物的彩色原理,就称为真彩色合成。 假彩色合成:根据加色法或减色法,将多波段单色影像合成为假彩色影像的一种彩色增强技术。 密度分割法:对单波段黑白遥感图像按灰度分层,对每层赋予不同的色彩,使之变为一幅彩色图像 直方图均衡化:将原图像的直方图通过变换函数变为各亮度级均匀分布的直方图,然后按均匀直方图像修改原图像的像元亮度值,从而获得一幅亮度分布均匀的新图像。 监督分类: 事先已经知道类别先验知识,对未知类别的样本进行分类的方法 非监督分类:在事先不知道类别特征,主要根据像元间相似度的大小进行归类合并(将相 似度大的像元归为一类)的方法 特征空间:以各波段图像的亮度分布为坐标轴组成的空间 训练区:在监督分类中,从图像上选取的已知其地物属性或物体特性的图像区域或像元,用于 进行分类的学习和训练,以建立分类模型或分类函数(即感兴趣区)。 二、填空题: 1、光学图像是一个连续的光密度函数。 2、数字图像是一个离散的光密度函数。 3、通过成像方式获取的图像是连续的,无法直接进行计算机处理。此外,有些遥感图像是 通过摄影方式获取的,保存在胶片上。只有对这些获取的图像(或模拟图像)进行数字化后,

数字图像处理课后题答案

1. 图像处理的主要方法分几大类 答:图字图像处理方法分为大两类:空间域处理(空域法)和变换域处理(频域法)。 空域法:直接对获取的数字图像进行处理。 频域法:对先对获取的数字图像进行正交变换,得到变换系数阵列,然后再进行处理,最后再逆变换到空 间域,得到图像的处理结果 2. 图像处理的主要内容是什么 答:图形数字化(图像获取):把连续图像用一组数字表示,便于用计算机分析处理。图像变换:对图像进 行正交变换,以便进行处理。图像增强:对图像的某些特征进行强调或锐化而不增加图像的相关数据。图 像复原:去除图像中的噪声干扰和模糊,恢复图像的客观面目。图像编码:在满足一定的图形质量要求下 对图像进行编码,可以压缩表示图像的数据。图像分析:对图像中感兴趣的目标进行检测和测量,从而获 得所需的客观信息。图像识别:找到图像的特征,以便进一步处理。图像理解:在图像分析的基础上得出 对图像内容含义的理解及解释,从而指导和规划行为。 3. 名词解释:灰度、像素、图像分辨率、图像深度、图像数据量。 答:像素:在卫星图像上,由卫星传感器记录下的最小的分立要素(有空间分量和谱分量两种)。通常,表 示图像的二维数组是连续的,将连续参数 x,y ,和 f 取离散值后,图像被分割成很多小的网格,每个网格 即为像素 图像分辨率:指对原始图像的采样分辨率,即图像水平或垂直方向单位长度上所包含的采样点 数。单位是“像素点/单位长度” 图像深度是指存储每个像素所用的位数,也用于量度图像的色彩分辨率.图像深度确定彩色图像的每个像素 可能有的颜色数,或者确定灰度图像的每个像素可能有的灰度级数.它决定了彩色图像中可出现的最多颜色 数,或灰度图像中的最大灰度等级(图像深度:位图图像中,各像素点的亮度或色彩信息用二进制数位来表 示,这一数据位的位数即为像素深度,也叫图像深度。图像深度越深,能够表现的颜色数量越多,图像的 色彩也越丰富。) 图像数据量:图像数据量是一幅图像的总像素点数目与每个像素点所需字节数的乘积。 4. , 5. 什么是采样与量化 答:扫描:按照一定的先后顺序对图像进行遍历的过程。采样:将空间上连续的图像变成离散点的操作。 采样过程即可看作将图像平面划分成网格的过程。量化:将采样得到的灰度值转换为离散的整数值。灰度 级:一幅图像中不同灰度值的个数。一般取0~255,即256个灰度级 5.说明图像函数 的各个参数的具体含义。 答:其中,x 、y 、z 是空间坐标,λ是波长,t 是时间,I 是像素点的强度。它表示活动的、彩色的、三维 的视频图像。对于静止图像,则与时间t 无关;对于单色图像,则波长λ为常数;对于平面图像,则与坐 标z 无关。 1.请解释马赫带效应,马赫带效应和同时对比度反映了什么共同的问题 答:马赫带效应:基于视觉系统有趋向于过高或过低估计不同亮度区域边界值的现象。同时对比度现象: 此现象表明人眼对某个区域感觉到的亮度不仅仅依赖它的强度,而与环境亮度有关 共同点: 它们都反映了人类视觉感知的主观亮度并不是物体表面照度的简单函数。 2. 色彩具有那几个基本属性描述这些基本属性的含义。 答:色彩是光的物理属性和人眼的视觉属性的综合反映。色彩具有三个基本属性:色调、饱和度和亮度 色调是与混合光谱中主要光波长相联系的(红绿蓝)饱和度表示颜色的深浅程度,与一定色调的纯度有关, 纯光谱色是完全饱和的,随着白光的加入饱和度逐渐减少。(如深红、浅红等)亮度与物体的反射率成正比。 颜色中掺入白色越多就越明亮,掺入黑色越多亮度越小。 { 3.什么是视觉的空间频率特性什么是视觉的时间特性 答:视觉的空间频率特性:空间频率是指视像空间变化的快慢。明亮的图像(清晰明快的画面)意味着有 ),,,,(t z y x f I λ=

相关文档
相关文档 最新文档