文档视界 最新最全的文档下载
当前位置:文档视界 › 第五章 大数定律及中心极限定理 与 第六章 样本及抽样分布课外习题

第五章 大数定律及中心极限定理 与 第六章 样本及抽样分布课外习题

第五章 大数定律及中心极限定理 与 第六章 样本及抽样分布课外习题
第五章 大数定律及中心极限定理 与 第六章 样本及抽样分布课外习题

第五章 大数定律及中心极限定理 与 第六章 样本及抽样分布课外习题

一. 填空与选择题

1. 设n μ是n 次独立重复试验中事件A 出现的次数,p 为A 在每次试验中出现的频率,

则对任意,0>ε 均有]|[|

lim εμ≥?∞

→p n

P n

n = .

2.设样本来自正态总体X~, ,1X ,,2L X N X ),(2

σμN 与分别表示样本的均值与样本

方差,

2S 则X ~ ,

n X /σμ?~ , n

S X /μ

? ~ .

3.设容量n=10的子样观察值为(8,7,6,5,7,9,8,5,9,6),子样均值及子样方差

的观察值记为X 和, 则2

n

S X = , = 2n S . 4. 母体X 服从正态分布)4,(μN ,子样()来自母体X ,n X X X ,,,21L X 是子样均值,

要使1.0||2≤?μX E ,则子样容量n 最小取值为 ,

5. 假设总体X 在[a,b]上均匀分布,来自X 的简单随机样本的密度函数

为 ,1X ,,2L X n X .

6. 在每次试验中事件A 发生的0.5, 利用契比雪夫不等式估计:在1000次独立试验中 事件A 发生的次数在400~600之间的概率为

7. 设是来自总体X 的样本,E(X)=,1X ,,2L X n X μ,D(X)=,2σX 和 分别是样本均值 2

n

S 与样本方差,则下列说法不正确的是( ) (A) μ=)(X E (B) 2)(σ=X D (C) (D)

2

2

)(σ=S E n

X /σμ

?~ N(0,1)

8.来自,

41,,x x L 2

2

212

)43()2(,)2,0(x x b x x a X N ?+?=则当 =a , =b 时,统计量X 服从分布,自由度为 2

χ。

9.设总体是n x x a N X ,,,)2.0,(~12

L X 的样本,x 是样本均值,若要使

{

}95.01.0≥

二、计算题

1. 母体X~N(0,1), 子样 () 来自母体X ,令

,1X ,,2L X n X 26542321)()(X X X X X X Y +++++=,

求 常数C ,使 CY 服从分布。

2

χ2. 母体X 服从参数λ的指数分布,子样()来自母体X , ,1X ,,2L X n X 求: 子样均值与子样方差的均值。

3. 母体X~ N(0,1),子样来自母体(), ,1X ,L 5X 求 常数C ,使统计量

25

24

23

21)(X

X X X X C +++服从t-分布.

4*. 独立同分布,服从[0,1]上的均匀分布, ,1X ,,2L X n X 证明 C X p n

k n

k ?→?Π=11)

( ,C 为常数,且求C 的值.

∞→n

5. 某班委会为学校主办一次周末晚会,并发出邀请书150张,按以往办会经验,接到邀书者约80%可来,求到会者的数量在110—130之间的概率。

6. 已知随机变量X 的概率分布为

X 1 2 3

P

0.2 0.3 0.5

试利用切比契夫不等式估计)5.1|)((|

7. 一电话小总机共有200个电话分机,设每个分机都有5%的时间使用外线电话,且是否使

用外线相互独立,要保证每个用户以95%的概率通外线,小总机至少要设多少条外线?

8. 一家保险公司有一万人参加人寿保险,每人每年交保险费12元,由经验知,该地区的人年死亡率为0.006 ,按规定,保险者一年内死亡家属向保险公司领取1000元,试求:保险公司亏本的概率。

9. 母体ξ~ ,),(2

σμN μ是已知参数,0>σ未知参数,),,(1n ξξL 是样本,

判断哪些是统计量?哪些不是? (1) 21ξσξ++ (2)

(3) ∑=?n

i i

1

)(μξ

),,min(321ξξξ (4)

221/)(σξξξn ++10. 母体ξ服从以0>λ为参数的指数分布,试写出样本),,(1n ξξL 的联合分布密度.

三. 证明题

1. 设随机变量序列{}n x 相互独立,其分布律为:

n x

- 0

n

2

n

2p

)12(2+?n

n 221??)12(2+?n 证明: 服从大数定律

{}n x 2. 设来自总体, 证明: n X X X ,.........,21)1,0(N 2

1

????

?

???????∑=n X n i i ~ )1(2χ3. 设来自正态总体X 的简单随机样本, 921,.........,X X X )........(616211X X X Y ++=

)(3

1

9872X X X Y ++= 2

297

2

)(21Y X S i i ?=∑= S

Y Y Z )(221?=

证明: 统计量 Z ~ )2(t

第五、六章 答案

一. 1、0 ; 2. ),

(2

n

N σμ N (0,1) t(n-1) ; 3. 7,

9

20

; 4. n=40; 5. ??

???≤<≤?=其它 0 )(1

),,(max min 1b x x a a b x x f i i n

n L 6. 40

39≥;

7. B 8. 20

1; 100

1

; 2 9. 80

二. 计算题

1.

31

; 2. 221)( ; 1)(λλ==S E X E ; 3. 2

3

=c ; 4. ; 5. 0.9586 ; 6. 0.73; 7. k=16; 8. 1?e ≈ 0;

9. (1) (4)不是,(2) (3)是; 10、

∑==?n

i i

x n

n e x x x P 1

),,,(21λ

λL 三. 证明 (略)

样本及抽样分布知识讲解

第六章 样本及抽样分布 【内容提要】 一、简单随机样本与统计量 1. 总体 用来表征某一随机试验的数量指标X ,其概率分布称为总体的分布。 2. 简单随机样本 在相同条件下,对总体X 进行n 次独立的重复观察,将所得结果12,,...,n X X X 称为从总体X 中抽取的容量为n 的简单随机样本,试验结束后,可得一组数值12,,...,n x x x ,称其为 12,,...,n X X X 的观察值。 注:若12,,...,n X X X 为总体X 的简单随机样本,则12,,...,n X X X 相互独立,且与总体X 同分布。 3. 统计量 设12,,...,n X X X 为总体X 的简单随机样本,12(,,...,)n T g X X X =为样本12,,...,n X X X 的实值函数,且不含任何未知参数,则称12(,,...,)n T g X X X =为一个统计量,将样本值12,,...,n x x x 代入后算出的函数值12(,,...,)n t g x x x =称为该统计量的值。 注:设12,,...,n X X X 为总体X 的简单随机样本,12,,...,n x x x 为相应的样本值,则常用的统计量有: 4. 经验分布函数 设12,,...,n X X X 为总体X 的简单随机样本,12,,...,n x x x 为相应的样本值,将样本值 按由小到大的顺序重新编号12,1r x x x r n ***<

统计量及其抽样分布练习题

第六章 统计量及其抽样分布 练习题 一、填空题(共10题,每题2分,共计20分) 1.简单随机抽样样本均值X 的方差取决于_________和_________,要使X 的标准差降低到原来的50%,则样本容量需要扩大到原来的_________倍。 2. 设1217,,,X X X 是总体(,4)N μ的样本,2S 是样本方差,若2()0.01P S a >=,则a =____________。 3.若(5)X t ,则2X 服从_______分布。 4.已知0.95(10,5) 4.74F =,则0.05(5,10)F 等于___________。 5.中心极限定理是说:如果总体存在有限的方差,那么,随着_________的增加,不论这个总体变量的分布如何,抽样平均数的分布趋近于_____________。 6. 总体分布已知时,样本均值的分布为_________抽样分布;总体分布未知,大样本情况下,样本均值的分布为_________抽样分布。 7. 简单随机样本的性质满足_________和_________。 8.若(2,4)X N ,查分布表,计算概率(X 3)P ≥=_________。若(X )0.9115P a ≤=,计算a =_________。 9. 若12~(0,2),~(0,2),X N X N 1X 与2X 独立,则2212X X +()/2服从______分布。 10. 若~(16,4)X N ,则5X 服从___________分布。 二、选择题(共10题,每题1分,共计10分)

1.中心极限定理可保证在大量观察下 ( ) A . 样本平均数趋近于总体平均数的趋势 B . 样本方差趋近于总体方差的趋势 C . 样本平均数分布趋近于正态分布的趋势 D. 样本比例趋近于总体比例的趋势 2.设随机变量()(1)X t n n >,则21/Y X =服从 ( ) 。 A. 正态分布 B.卡方分布 C. t 分布 D. F 分布 3.某品牌袋装糖果重量的标准是(500±5)克。为了检验该产品的重量是否符合标准,现从某日生产的这种糖果中随机抽查10袋,测得平均每袋重量为498克。下列说法中错误的是( ) A. 样本容量为10 B .抽样误差为2 C. 样本平均每袋重量是统计量 D. 498是估计值 4.设总体均值为100,总体方差为25,在大样本情况下,无论总体的分布形式如何,样本平均数的分布都是服从或近似服从( ) A. (100/,25)N n B. N C. (100,25/)N n D. (100,N 5、设2(0,1),(5),X N Y χ且X 与Y 独立,则随机变量_________服从自由度为5的t 分布。 ( ) A. /X Y B. 5/Y X C. /X /

样本及抽样分布

第六章样本及抽样分布 【基本要求】1、理解总体、个体和样本的概念; 2、理解样本均值、样本方差和样本矩的概念并会计算; 3、理解统计量的概念,掌握几种常用统计量的分布及其结论; 4、理解分位数的概念,会计算几种重要分布的分位数。 【本章重点】样本均值、样本方差和样本矩的计算;抽样分布——2 分布,t分布, F分布;分位数的理解和计算。 【本章难点】对样本、统计量及分位数概念的理解;样本矩的计算。 【学时分配】4学时 【授课内容】 §6.0 前言 前面五章我们研究了概率论的基本内容,从中得知:概率论是研究随机现象统计规律性的一门数学分支。它是从一个数学模型出发(比如随机变量的分布)去研究它的性质和统计规律性;而我们下面将要研究的数理统计,也是研究大量随机现象的统计规律性,并且是应用十分广泛的一门数学分支。所不同的是数理统计是以概率论为理论基础,利用观测随机现象所得到的数据来选择、构造数学模型(即研究随机现象)。其研究方法是归纳法(部分到整体)。对研究对象的客观规律性做出种种合理性的估计、判断和预测,为决策者和决策行动提供理论依据和建议。数理统计的内容很丰富,这里我们主要介绍数理统计的基本概念,重点研究参数估计和假设检验。 §6.1 随机样本 1

一、总体与样本 1.总体、个体 在数理统计学中,我们把所研究的全部元素组成的集合称为总体;而把组成总体的每个元素称为个体。 例如:在研究某批灯泡的平均寿命时,该批灯泡的全体就组成了总体,而其中每个灯泡就是个体;在研究我校男大学生的身高和体重的分布情况时,该校的全体男大学生组成了总体,而每个男大学生就是个体。 但对于具体问题,由于我们关心的不是每个个体的种种具体特性,而仅仅是它的某一项或几项数量指标X(可以是向量)和该数量指标X在总体的分布情况。在上述例子中X是表示灯泡的寿命或男大学生的身高和体重。在试验中,抽取了若干个个体就观察到了X的这样或那样的数值,因而这个数量指标X是一个随机变量(或向量),而X的分布就完全描写了总体中我们所关心的那个数量指标的分布状况。由于我们关心的正是这个数量指标,因此我们以后就把总体和数量指标X可能取值的全体组成的集合等同起来。 定义1:把研究对象的全体(通常为数量指标X可能取值的全体组成的集合)称为总体;总体中的每个元素称为个体。 我们对总体的研究,就是对相应的随机变量X的分布的研究,所谓总体的分布也就是数量指标X的分布,因此,X的分布函数和数字特征分别称为总体的分布函数和数字特征。今后将不区分总体与相应的随机变量,笼统称为总体X。根据总体中所包括个体的总数,将总体分为:有限总体和无限总体。 例1:考察一块试验田中小麦穗的重量: X=所有小麦穗重量的全体(无限总体);个体——每个麦穗重x 2

抽样分布习题与答案

第 4 章抽样分布自测题选择题 1.抽样分布是指() A. 一个样本各观测值的分布C. 样本统计量的分布 B. 总体中各观测值的分布D. 样本数量的分布 2.根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的均值为() 2 A. B. x C.2 D. n 3.根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的方差为() 2 A. B.x C.2 D. n 4.从均值为,方差为2 n 的样本,则()的任意一个总体中抽取大小为 A.当 n 充分大时,样本均值x 的分布近似服从正态分布 B.只有当 n<30 时,样本均值x的分布近似服从正态分布 C.样本均值 x 的分布与n无关 D. 无论 n 多大,样本均值x 的分布都是非正态分布 5.假设总体服从均匀分布,从该总体中抽取容量为 36 的样本,则样本均值的抽样分布() A. 服从非正态分布 B. 近似正态分布 C. 服从均匀分布 D. 服从 2 分布 6. 从服从正态分布的无限总体中分别抽取容量为4,16,36的样本,则当样本容量增大时,样 本均值的标准差() A. 保持不变 B. 增加 C.减小 D.无法确定 7. 某大学的一家快餐店记录了过去 5 年每天的营业额,每天营业额的均值为2500 元,标准差为 400 元。由于在某些节日的营业额偏高,所以每日营业额的分布是右偏的,假设从这5年中随机抽取100 天,并计算这100 天的平均营业额,则样本均值的抽样分布是() A. 正态分布,均值为250 元,标准差为40 元 B. 正态分布,均值为2500 元,标准差为40 元 C.右偏,均值为2500 元,标准差为400 元 D. 正态分布,均值为2500 元,标准差为400 元 8. 在一个饭店门口等待出租车的时间是左偏的,均值为12 分钟,标准差为 3 分钟。如果从饭店门口随机抽取 81 名顾客并记录他们等待出租车的时间,则样本均值的抽样分布是() A. 正态分布,均值为12 分钟,标准差为0.33 分钟 B. 正态分布,均值为12 分钟,标准差为 3 分钟 C. 左偏分布,均值为12 分钟,标准差为 3 分钟

通信原理实验四 实验报告 抽样定理与PAM系统实训

南昌大学实验报告 学生姓名:学号:专业班级: 实验类型:■验证□综合□设计□创新实验日期:实验成绩:实验四抽样定理与PAM系统实训 一、实验目的 1.熟通过对模拟信号抽样的实验,加深对抽样定理的理解; 2.通过PAM调制实验,使学生能加深理解脉冲幅度调制的特点; 3.通过对电路组成、波形和所测数据的分析,了解PAM调制方式的优缺点。 二、实验原理 1.取样(抽样、采样) (1)取样 取样是把时间连续的模拟信号变换为时间离散信号的过程。 (2)抽样定理 一个频带限制在(0,f H) 内的时间连续信号m(t),如果以≦1/2f H每秒的间隔对它进行等间隔抽样,则m(t)将被所得到的抽 样值完全确定。 (3)取样分类 ①理想取样、自然取样、平顶取样; ②低通取样和带通取样。 2.脉冲振幅调制电路原理(PAM) (1)脉冲幅度调制系统 系统由输入电路、高速电子开关电路、脉冲发生电路、解调滤波电路、功放输出电路等五部分组成。 图 1 脉冲振幅调制电路原理框图 (2)取样电路 取样电路是用4066模拟门电路实现。当取样脉冲为高电位时,

取出信号样值;当取样脉冲为低电位,输出电压为0。 图 2 抽样电路 图 3 低通滤波电路 三、实验步骤 1.函数信号发生器产生2KHz(2V)模拟信号送入SP301,记fs; 2.555电路模块输出抽样脉冲,送入SP304,连接SP304和SP302,记fc; 3.分别观察fc>>2fs,fc=2fs,fc<2fs各点波形; 4.连接SP204 与SP301、SP303H 与SP306、SP305 与TP207,把扬声 器J204开关置到1、2 位置,触发SW201 开关,变化SP302 的输入 时钟信号频率,听辨音乐信号的质量. 四、实验内容及现象 1.测量点波形 图 4 TP301 模拟信号输入 图 5 TP302 抽样时钟波形(555稍有失真) fc=38.8kHz ①fc>>2fs,使fs=5KHz: 图 6 TP303 抽样信号输出1 图7 TP304 模拟信号还原输出1 ②fc=2fs,使fs=20KHz: 图8 TP303 抽样信号输出2 图9 TP304 模拟信号还原输出2 ③fc<2fs,使fs=25KHz: 图10 TP303 抽样信号输出3 图11 TP304 模拟信号还原输出3 2.电路Multisim仿真 图12 PAM调制解调仿真电路 图13 模拟信号输入 图14 抽样脉冲波形 图15 PAM信号 图16 低通滤波器特性 图17 还原波形 更多学习资料请见我的个人主页:

习题六 样本及抽样分布.

习题六样本及抽样分布 一、填空题 1.设来自总体的一个样本观察值为:2.1,5.4,3.2,9.8,3.5,则样本均值 = 4.8 ,样本方差 =; 2.在总体中随机地抽取一个容量为 36 的样本,则均值落在4与6之间的概率 = 0.9332 ; 3.设某厂生产的灯泡的使用寿命 (单位:小时,抽取一容量为9的样本,得到 ,则; 4.设为总体的一个样本,则 0.025 ; 5.设为总体的一个样本,且服从分布,这里, ,则1/3 ; 6.设随机变量相互独立,均服从分布且与分别是来自总体的简单随机样本,则统计量服从参数为 9 的 t 分布。 7.设是取自正态总体的简单随机样本且 ,则 0.05 , 0.01 时,统计量服从分布,其自由度为 2 ;

8.设总体 X 服从正态分布,而是来自总体的简单随机样 本,则随机变量 服从 F 分布,参数为 10,5 ; 9.设随机变量则 F(n,1 ; 10.设随机变量且,A为常数,则 0.7 二、选择题 1.设是来自总体的简单随机样本,是样本均值, 记 则服从自由度的分布的随机变量是( A ); A. B. C. D. 2.设是经验分布函数,基于来自总体的样本,而是总体的分布函数,则下列命题错误的为,对于每个给定的( B ) A.是分布函数 B.依概率收敛于 C.是一个统计量 D.其数学期望是

3.设总体服从0-1分布,是来自总体的样本,是样本均值,则下列各选项中的量不是统计量的是( B ) A. B. C. D. 4.设是正态总体的一个样本,其中已知而未知,则下列各选项中的量不是统计量的是( C )。 A. B. C. D. 5.设和分别来自两个正态总体和的样本,且相互独立,分别为两个样本的样本方差,则服从的统计量是( B ) A. B. C. D. 6.设是正态总体的一个样本,和分别为样本均值和样本方差,则下面结论不成立的有( D ) A.相互独立; B.与相互独立; C.与相互独立D.与相互独立。

matlab验证时域采样定理实验报告

通信原理实验报告实验名称:采样定理 实验时间: 201211日年12月 指导老师:应娜 学院:计算机学院 级:班 学号: 姓名:

通信原理实验报告 一、实验名称 MATLAB验证低通抽样定理 二、实验目的 1、掌握抽样定理的工作原理。 2、通过MATLAB编程实现对抽样定理的验证,加深抽样定理的理解。同时训练应用计算机分析问题的能力。 3、了解MATLAB软件,学习应用MATLAB软件的仿真技术。它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。 4、计算在临界采样、过采样、欠采样三种不同条件下恢复信号的误差,并由此总结采样频率对信号恢复产生误差的影响,从而验证时域采样定理。 三、实验步骤 1、画出连续时间信号的时域波形及其幅频特性曲线,信号为 f(x)=sin(2*pi*80*t)+ cos(2*pi*30*t); 2、对信号进行采样,得到采样序列,画出采样频率分别为80Hz,110 Hz,140 Hz时的采样序列波形; 3、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。 4、对信号进行谱分析,观察与3中结果有无差别。 5、由采样序列恢复出连续时间信号,画出其时域波形,对比与原连续时间信号的时域波形。 四、数据分析 (1)部分程序分析: f=[fs0*k2/m2,fs0*k1/m1]; %设置原信号的频率数组 axis([min(t),max(t),min(fx1),max(fx1)]) %画原信号幅度频谱 f1=[fs*k2/m2,fs*k1/m1]; %设置采样信号的频率数组 fz=eval(fy); %获取采样序列 FZ=fz*exp(-j*[1:length(fz)]'*w); %采样信号的离散时间傅里叶变换 TMN=ones(length(n),1)*t-n'*T*ones(1,length(t)); 由采样信号恢复原信号fh=fz*sinc(fs*TMN); %. (2)原信号的波形与幅度频谱:

中心极限定理

中心极限定理 中心极限定理(Central Limit Theorems) 什么是中心极限定理 大数定律揭示了大量随机变量的平均结果,但没有涉及到随机变量的分布的问题。而中心极限定理说明的是在一定条件下,大量独立随机变量的平均数是以正态分布为极限的。 中心极限定理是概率论中最著名的结果之一。它提出,大量的独立随机变量之和具有近似于正态的分布。因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释为什么有很多自然群体的经验频率呈现出钟形(即正态)曲线这一事实,因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使正态分布有了广泛的应用。 中心极限定理的表现形式 中心极限定理也有若干个表现形式,这里仅介绍其中四个常用定理: (一)辛钦中心极限定理 设随机变量相互独立,服从同一分布且有有限的数学期望a和方差σ2,则 随机变量,在n无限增大时,服从参数为a和的正态分布即n→∞时, 将该定理应用到抽样调查,就有这样一个结论:如果抽样总体的数学期望a和方差σ2是有限的,无论总体服从什么分布,从中抽取容量为n的样本时,只要n足够大,其样本平均数的分布就趋于数学期望为a,方差为σ2 / n的正态分布。 (二)德莫佛——拉普拉斯中心极限定理 设μ n是n次独立试验中事件A发生的次数,事件A在每次试验中发生的概率为P,则当n 无限大时,频率设μ n / n趋于服从参数为的正态分布。即:

该定理是辛钦中心极限定理的特例。在抽样调查中,不论总体服从什么分布,只要n充分大,那么频率就近似服从正态分布。 (三)李亚普洛夫中心极限定理 设是一个相互独立的随机变量序列,它们具有有限的数学期望和方 差:。 记,如果能选择这一个正数δ>0,使当n→∞时, ,则对任意的x有: 该定理的含义是:如果一个量是由大量相互独立的随机因素影响所造成的,而每一个别因素在总影响中所起的作用不很大,则这个量服从或近似服从正态分布。 (四)林德贝尔格定理 设是一个相对独立的随机变量序列,它们具有有限的数学期望和方差满足林德贝尔格条件,则当n→∞时,对任意的x,有 。 中心极限定理案例分析 案例一:中心极限定理在商业管理中的应用 水房拥挤问题:假设西安邮电学院新校区有学生5000人,只有一个开水房,由于每天傍晚打开水的人较多,经常出现同学排长队的现象,为此校学生会特向后勤集团提议增设水龙头。假

(完整版)样本及抽样分布.doc

第六章样本及抽样分布 【基本要求】 1、理解总体、个体和样本的概念; 2、理解样本均值、样本方差和样本矩的概念并会计算; 3、理解统计量的概念,掌握几种常用统计量的分布及其结论; 4、理解分位数的概念,会计算几种重要分布的分位数。 【本章重点】样本均值、样本方差和样本矩的计算;抽样分布—— 2 分布,t分布, F分布;分位数的理解和计算。 【本章难点】对样本、统计量及分位数概念的理解;样本矩的计算。 【学时分配】 4 学时 【授课内容】 §6.0前言 前面五章我们研究了概率论的基本内容,从中得知:概率论是研究随机现象统计规律性的一 门数学分支。它是从一个数学模型出发(比如随机变量的分布)去研究它的性质和统计规律性; 而我们下面将要研究的数理统计,也是研究大量随机现象的统计规律性,并且是应用十分广泛的 一门数学分支。所不同的是数理统计是以概率论为理论基础,利用观测随机现象所得到的数据来 选择、构造数学模型(即研究随机现象)。其研究方法是归纳法(部分到整体)。对研究对象的客观规律性做出种种合理性的估计、判断和预测,为决策者和决策行动提供理论依据和建议。数理 统计的内容很丰富,这里我们主要介绍数理统计的基本概念,重点研究参数估计和假设检验。 § 6.1随机样本 1

一、总体与样本 1.总体、个体 在数理统计学中,我们把所研究的全部元素组成的集合称为总体;而把组成总体的每个元素称为个体。 例如:在研究某批灯泡的平均寿命时,该批灯泡的全体就组成了总体,而其中每个灯泡就是 个体;在研究我校男大学生的身高和体重的分布情况时,该校的全体男大学生组成了总体,而每 个男大学生就是个体。 但对于具体问题,由于我们关心的不是每个个体的种种具体特性,而仅仅是它的某一项或几 项数量指标 X ( 可以是向量 ) 和该数量指标X在总体的分布情况。在上述例子中 X 是表示灯泡的寿命或男大学生的身高和体重。在试验中,抽取了若干个个体就观察到了X 的这样或那样的数值,因而这个数量指标X 是一个随机变量(或向量),而 X 的分布就完全描写了总体中我们所关心的那个数量指标的分布状况。由于我们关心的正是这个数量指标,因此我们以后就把总体和数量指标 X 可能取值的全体组成的集合等同起来。 定义 1:把研究对象的全体(通常为数量指标X 可能取值的全体组成的集合)称为总体;总体中的每个元素称为个体。 我们对总体的研究,就是对相应的随机变量X 的分布的研究,所谓总体的分布也就是数量指 标 X 的分布,因此, X 的分布函数和数字特征分别称为总体的分布函数和数字特征。今后将不区分总体与相应的随机变量,笼统称为总体 X 。根据总体中所包括个体的总数,将总体分为:有限总体 和无限总体。 例 1:考察一块试验田中小麦穗的重量: X =所有小麦穗重量的全体(无限总体);个体——每个麦穗重x 2

通信原理抽样定理及其应用实验报告

实验1 抽样定理及其应用实验 一、实验目的 1.通过对模拟信号抽样的实验,加深对抽样定理的理解; 2.通过PAM 调制实验,使学生能加深理解脉冲幅度调制的特点; 3.学习PAM 调制硬件实现电路,掌握调整测试方法。 二、实验仪器 1.PAM 脉冲调幅模块,位号:H (实物图片如下) 2.时钟与基带数据发生模块,位号:G (实物图片见第3页) 3.20M 双踪示波器1台 4.频率计1台 5.小平口螺丝刀1只 6.信号连接线3根 三、实验原理 抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽 样速率达到一定数值时,那么根据这些抽样值就能准确地还原原信号。这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。 PAM 实验原理:它采用模拟开关CD4066实现脉冲幅度调制。抽样脉冲序列为高电平时, 模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开, 无信号输出 图1-2 PAM 信道仿真电路示意图 32W01 C1 C2 32P03 R2 32TP0

四、可调元件及测量点的作用 32P01:模拟信号输入连接铆孔。 32P02:抽样脉冲信号输入连接铆孔。 32TP01:输出的抽样后信号测试点。 32P03:经仿真信道传输后信号的输出连接铆孔。 32W01:仿真信道的特性调节电位器。 五、实验内容及步骤 1.插入有关实验模块: 在关闭系统电源的条件下,将“时钟与基带数据发生模块”、“PAM脉冲幅度调制模块”,插到底板“G、H”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。 2.信号线连接: 用专用铆孔导线将P03、32P01;P09、32P02;32P03、P14连接(注意连接铆孔的箭头指向,将输出铆孔连接输入铆孔)。 3.加电: 打开系统电源开关,底板的电源指示灯正常显示。若电源指示灯显示不正常,请立即关闭电源,查找异常原因。

中心极限定理

中心极限定理 从总体中抽取容量为n的一个样本时,当样本容量足够大时,样本均值x的抽样分布近似服从于正态分布。 eg:用R从0-10的均匀分布中产生100个样本量为n=2的随机样本,对每个样本计算,并画出100个的频数分布,对于n=5,10,30,50,重复这一个过程。 a=matrix(rep(0,200),nrow=100,byrow=T) set.seed(200) for(i in 1:100) a[i,]=runif(2,0,10) b=matrix(rep(0,100),nrow=100) for(t in 1:100) b[t]=b[t]+mean(a[t,]) hist(b,freq=FALSE,density=20,main="100 个样本量n=2的随机样本",xlab="x的均值") sd=sd(b) mean=mean(b) x=seq(min(b),max(b),by=0.1) y=dnorm(x,mean,sd) lines(x,y,col="red",lwd=2) a=matrix(rep(0,1000),nrow=100,byrow=T) set.seed(1000) for(i in 1:100) a[i,]=runif(10,0,10) b=matrix(rep(0,100),nrow=100) for(t in 1:100) b[t]=b[t]+mean(a[t,]) hist(b,freq=FALSE,density=20,main="100个样本量n=10的随机样本",xlab="x的均值") sd=sd(b) mean=mean(b) x=seq(min(b),max(b),by=0.1) y=dnorm(x,mean,sd) lines(x,y,col="red",lwd=2) a=matrix(rep(0,3000),nrow=100,byrow=T) set.seed(3000) for(i in 1:100) a[i,]=runif(30,0,10) b=matrix(rep(0,100),nrow=100) for(t in 1:100) b[t]=b[t]+mean(a[t,]) hist(b,freq=FALSE,density=20,main="100个样本量n=30的随机样本",xlab="x的均值") sd=sd(b) mean=mean(b) x=seq(min(b),max(b),by=0.1) y=dnorm(x,mean,sd) lines(x,y,col="red",lwd=2) a=matrix(rep(0,5000),nrow=100,byrow=T) set.seed(3000) for(i in 1:100) a[i,]=runif(50,0,10) b=matrix(rep(0,100),nrow=100) for(t in 1:100) b[t]=b[t]+mean(a[t,]) hist(b,freq=FALSE,density=20,main="100个样本量n=50的随机样本",xlab="x的均值") sd=sd(b) mean=mean(b) x=seq(min(b),max(b),by=0.1) y=dnorm(x,mean,sd) lines(x,y,col="red",lwd=2)

统计学抽样与抽样分布练习题

第6章 抽样与抽样分布 练习题 6.1 从均值为200、标准差为50的总体中,抽取100=n 的简单随机样本,用样本均值x 估计总体均值。 (1) x 的数学期望是多少? (2) x 的标准差是多少? (3) x 的抽样分布是什么? (4) 样本方差2 s 的抽样分布是什么? 6.2 假定总体共有1000个单位,均值32=μ,标准差5=σ。从中抽取一个样本量为30的简单随机样本用于获得总体信息。 (1)x 的数学期望是多少? (2)x 的标准差是多少? 6.3 从一个标准差为5的总体中抽出一个样本量为40的样本,样本均值为25。样本均值的抽样标准差x σ等于多少? 6.4 设总体均值17=μ,标准差10=σ。从该总体中抽取一个样本量为25的随机样本,其均值为25x ;同样,抽取一个样本量为100的随机样本,样本均值为100x 。 (1)描述25x 的抽样分布。 (2)描述100x 的抽样分布。 6.5 从10=σ的总体中抽取样本量为50的随机样本,求样本均值的抽样标准差: (1)重复抽样。 (2)不重复抽样,总体单位数分别为50000、5000、500。 6.6 从4.0=π的总体中,抽取一个样本量为100的简单随机样本。 (1)p 的数学期望是多少? (2)p 的标准差是多少? (3)p 的分布是什么? 6.7 假定总体比例为55.0=π,从该总体中分别抽取样本量为100、200、500和1000的样本。

(1) 分别计算样本比例的标准差p σ。 (2) 当样本量增大时,样本比例的标准差有何变化? 6.8 假定顾客在超市一次性购物的平均消费是85元,标准差是9元。从中随机抽取40个顾 客,每个顾客消费金额大于87元的概率是多少? 6.9 在校大学生每月的平均支出是448元,标准差是21元。随机抽取49名学生,样本均值 在441~446之间的概率是多少? 6.10 假设一个总体共有8个数值:54,55,59,63,64,68,69,70。从该总体中按重复 抽样方式抽取2=n 的随机样本。 (1) 计算出总体的均值和标准差。 (2) 一共有多少个可能的样本? (3) 抽出所有可能的样本,并计算出每个样本的均值。 (4) 画出样本均值的抽样分布的直方图,说明样本均值分布的特征。 (5) 计算所有样本均值的平均数和标准差,并与总体的均值和标准差进行比较,得 到的结论是什么? 6.11 从均值为5.4=μ,方差为25.82=σ的总体中,抽取50个由5=n 个观测值组成的 随机样本,结果见Book6.11。 (1) 计算每一个样本的均值。 (2) 构造50个样本均值的相对频数分布,以此代表样本均值x 的抽样分布。 (3) 计算50个样本均值的平均值和标准差x σ。 6.12 来自一个样本的50个观察值见Book6.12。 (1) 用组距为10构建频数分布表,并画出直方图。 (2) 这组数据大概是什么分布?

PAM实验报告

信息工程学院实验报告 实验课名称通信原理实验实验内容 PAM编译码器系统成绩 班级、专业 09级通信工程一班姓名兰慧敏学号 0938033 组别 实验日期 2011 年11月 23日实验时间 18:30—21:30 指导教师雷老师合作者吴迪

的低通滤波器;当K702设置在NF 位置时(右端),信号不经过抗混迭滤波器直接送到抽样电路,其目的是为了观测混迭现象。 设置在交换模块内的跳线开关KQ02为抽样脉冲选择开关:设置在H 位置为平顶抽样(左端),平顶抽样是通过采样保持电容来实现的,且τ=Ts ;设置在NH 为自然抽样(右端),为便于恢复出的信号观测,此抽样脉冲略宽,只是近似自然抽样。平顶抽样有利于解调后提高输出信号的电平,但却会引入信号频谱失真 2 /) 2/(ωτωτSin , τ为抽样脉冲宽度。通常在实际设备里,收端必须采用频率响应为) 2/(2 /ωτωτSin 的滤波器来进行频谱校准,抵消 失真。这种频谱失真称为孔径失真。 该电路模块各测试点安排如下: 1、 TP701:输入模拟信号 2、 TP702:经滤波器输出的模拟信号 3、 TP703:抽样序列 TP704:恢复模拟信号 四、实验内容 准备工作:将交换模块内的抽样时钟模式开关KQ02设置在NH 位置(右端),将测试信号选择开关KQ01设置在外部测试信号输入2_3位置(右端)。 1. 近似自然抽样脉冲序列测量 (1) 首先将输入信号选择开关K701设置在T (测试状态)位置,将低通滤波器选择开关K702设置在F (滤波位置),为便于观测,调整函数信号发生器正弦波输出频率为200~1000Hz 、输出电平为2Vp-p 的测试信号送入信号测试端口J005和J006(地)。 (2) 用示波器同时观测正弦波输入信号(J005)和抽样脉冲序列信号(TP703),观测时以TP703做同步。 调整示波器同步电平和微调调整函数信号发生器输出频率,使抽样序列与输入测试信号基本同步。测量抽样脉冲序列信号与正弦波输入信号的对应关系。 2. 重建信号观测 TP704为重建信号输出测试点。保持测试信号不变,用示波器同时观测重建信号输出测试点和正弦波输入信

习题六__样本及抽样分布解答

样本及抽样分布 一、填空题 1 ?设来自总体X的一个样本观察值为:2.1, 5.4, 3.2, 9.8, 3.5,则样本均值= 4.8 ,样本方差=2.7161 2; 2. 在总体X ~ N (5,16)中随机地抽取一个容量为36的样本,则均值X落在4 与6之间的概率=0.9332 ; 3. 设某厂生产的灯泡的使用寿命X~N(1000,二2)仲位:小时),抽取一容量为 9 的样本,得到殳=940,s =100 ,则P(X ::: 940) = ___________ ; 7 4. 设X1,X2,?., X7 为总体X ~ N(0,0.52)的一个样本,则Pr X i24^ 0.025 : i=1 5. 设X1,X2,...,X6为总体X ~ N(0,1)的一个样本,且CY服从2分布,这里, Y =(X1 X2 X3)2(X4 X5 X6)2,则C=血_ ; 6?设随机变量X,Y相互独立,均服从N(0,32)分布且X1,X2,...,X9与Y,Y2,...,Y分 别是来自总体X ,Y的简单随机样本,则统计量U= X1... X9服从参数为—9 H2+...+Y2 的_L_分布。 7. 设X11X21X31X4是取自X ~ N(0,22)正态总体的简单随机样本且 ^a(X^2X2)2b(3X^4X4)2,,则a = 0.05 , 0.01 时,统计量Y 服从 2分布,其自由度为一2_; 1 9. 设随机变量X ~t(n)(n 1),Y 2,则Y~ —; X 1 10. 设随机变量X~F(n,n)且P(X∣>A) = 0.3 , A 为常数,则P(XA—)= 0.7 A

8. 设总体X服从正态分布X ~ N(0,22),而X1,X2,...,X15是来自总体的简单随机 X 2十+X2 样本,则随机变量Y X1 2... 利服从F 分布,参数为10,5 ; 2(X11 +...+X15)

频谱分析与采样定理

数字信号处理实验报告实验一:频谱分析与采样定理 班级:10051041 姓名: 学号:

一实验目的 1.观察模拟信号经理想采样后的频谱变化关系。 2.验证采样定理,观察欠采样时产生的频谱混叠现象 3.加深对DFT算法原理和基本性质的理解 4.熟悉FFT算法原理和FFT的应用 二、实验原理 根据采样定理,对给定信号确定采样频率,观察信号的频谱 奈奎斯特抽样定律:为了避免发生混叠现象,能从抽样信号无失真的恢复出原信号,抽样频率必须大于或等于信号频谱最高频率的2倍。 三、实验内容 在给定信号为: 1.x(t)=cos(100*π*at) 2.x(t)=exp(-at) 3.x(t)=exp(-at)cos(100*π*at) 其中a为实验者的学号,记录上述各信号的频谱,表明采样条件,分析比较上述信号频谱的区别。 四、实验步骤 1.复习采样理论、DFT的定义、性质和用DFT作谱分析的有关内容。 2.复习FFT算法原理和基本思想。 3.确定实验给定信号的采样频率,编制对采样后信号进行频谱分析的程序五、实验设备 计算机、Matlab软件 六、实验程序和结果 1、学号为57,原信号频率为2850Hz,根据抽样定理,取采样频率大于2倍的原最大频率,即大于5700Hz,采样间隔小于0.00018s,取T=0.0002s进行抽样,程序为: %实验一:频谱分析与采样定理 %褚耀欣 T=0.00001; %采样间隔T=0.00001 F=1/T; %采样频率为F=1/T L=0.001 %记录长度L=0.001 N=L/T; t=0:T:L; a=57; f1=0:F/N:F; f2=-F/2:F/N:F/2; %%%%%%%%%%%%%%%%%%%%%%%%%

样本与抽样分布

第六章样本与抽样分布 §6.1 数理统计的基本概念 一.数理统计研究的对象 例:有一批灯泡,要从使用寿命这个数量指标来看其质量,设寿命用X表示。 (1)若规定寿命低于1000小时的产品为次品。此问题是求P(X 1000)=F(10000),求F(x)? (2)从平均寿命、使用时数长短差异来看其质量,即求E(x)?、D(x)?。 要解决二个问题

1.试验设计抽样方法。 2.数据处理或统计推断。 方法具有“从局部推断总体”的特点。 二.总体(母体)和个体 1.所研究对象的全体称为总体,把组成总体的每一个对象成员(基本单元)称为个体。 说明: (1)对总体我们关心的是研究对象的某一项或某几项数量指标(或属性指标)以及他们在整体中的分布。所以总体是个体的数量指标的全体。 (2)为研究方便将总体与一个R.V X

对应(等同)。 a.总体中不同的数量指标的全体, 即是R.V.X的全部取值。 b.R.V X的分布即是总体的分布 情况。 例:一批产品是100个灯泡,经测试其寿命是: 1000小时1100小时 1200小时 20个30个50个 X 1000 1100 1200 P 20/100 30/100

50/100 (设X表示灯泡的寿命)可知R.V.X的分布律, 就是总体寿命的分布,反之亦然。 常称总体X,若R.VX~F(x),有时也用F(x)表示一个总体。 (3)我们对每一个研究对象可能要观测两个或多个数量指标,则可用多维随机向量(X,Y,Z, …)去描述总体。 2.总体的分类 有限总体 无限总体

三.简单随机样本. 1.定义6.1 :从总体中抽得的一部分个体组成的集合称为子样(样本),取得的个体叫样品,样本中样品的个数称为样本容量(也叫样本量)。每个样品的测试值叫观察值。 取得子样的过程叫抽样。 样本的双重含义: (1)随机性: 用(X 1,X 2, ……X n) n维随机向量表 示。 X i表示第i个被抽到的个体,是随机变量。(i=1,2,…n)

system_view抽样定理、PCM实验报告

信息学院 现代交换实验报告 姓名:王磊 学号: 2012080331140 专业:通信工程 2015年6月30日

实验一:抽样定理仿真 一、实验目的 1、掌握Systemview 软件的使用 2、熟练使用软件的图符库,能够构建简单系统 二、实验内容 1、熟悉软件的工作界面; 2、用Systemview 软件建立仿真电路 3、进行参数设置 4、观测过程中各关键点波形 5、对仿真结果进行分析 三、实验原理 所谓抽样。就是对时间连续的信号隔一定的时间间隔T抽取一个瞬时幅度值(样值),抽样是由抽样门完成的。 在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。或者说,如果一个连续信号f(t)的频谱中最高频率不超过f h,这种信号必定是个周期性的信号,当抽样频率f S≥2 f h 时,抽样后的信号就包含原连续信号的全部信息,而不会有信息丢失,当需要时,可以根据这些抽样信号的样本来还原原来的连续信号。根据这一特性,可以完成信号的模-数转换和数-模转换过程。 四、实验结果

结果没有还原。

结果还原。 参数: 1.幅度 2.频率 3.相位 功能: 产生一个正弦波:y(t)=Asin(2PIfct+*) 参数: 1.幅度 2.频率(HZ) 3.脉冲宽度(秒) 4.偏置 5.相位 功能: 产生具有设定幅度和频率的周期性脉冲串,脉宽由设置决定。 y(t)=+-A*PT(t)+Bias 有方波选项。 实时显示 Real Time 功能: 能在系统仿真运行同时,实时地在系统窗口显示接收到的波形。 加法器 Adder 参数: 1.寄存器大小N 2.分数大小F 3.指数大小K 4.输出类型T 5.整型数转换选择 功能: 将输入的一个或多个值求和,并给出适当的标志。 结论:由此证明了证明了抽样定理的正确性,抽样信号在fs>=2fh时可以还原,抽样频率越 高效果越好。

中心极限定理的发展

中心极限定理的创立和发展 1141010113 万帅 关键词:中心极限定理,创立,严格证明,新的发展,三阶段。 引言:这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 中心极限定理,是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 “中心极限定理”这一名称的来源有两种说法。波利亚认为这个定理十分重要,在概率论中具有中心地位,所以他加上了“中心”这一名称,于1920年引入这一术语。另一种说法是,现代法国概率论学派认为极限定理描述了分布函数中心的情况,而不是尾部的情况。 历史上有不少数学家对中心极限定理的研究做出了贡献。中心极限定理的发展主要分为三个阶段。 创立阶段:1733-----1853年 人们通常认为,法国数学家隶莫弗在1733年首次证明了,二项发布近似正态分布。然而,当时正态发布的概念,隶莫弗并不知道自己本质上证明了“中心极限定理” 法国数学家拉普拉斯写了很多论文,想推广棣莫弗的工作。他意识到需要一种新的数学技巧,并在1785年成功地发明了这个技巧:特征函数的简单形式和反演公式。拉普拉斯把他的两个主要研究方向结合起来得到了这个方法-----母函数和积分的监禁展开。通过把母函数中的t换成it e ,就得到了特征函数。然而,直到1810年他才发表了特征函数与反演公示的一般理论,并证明了中心极限定理。他之所以推迟到1810年,有一种解释是,从1786年开始,他就专注于《天体力学》的写作,这本书1805年才完成。1810年,拉普拉斯证明了中心极限定理,先是服从均匀发布的连续随机变量的情形,接着是服从任意分布的随机变量。拉普拉斯的证明显然对独立有界的随机变量和成立,证明过程使用了现在所谓的特征函数,或傅里叶变换,即itXEe(t为实数)。在1812年,他先后考虑了对称的、离散的均匀分布,对称的连续分布,任意分布情形。最后,拉普拉斯在他的名著《概率的分析理论》中对任意的p证明了如下中心极限定理:【1】 泊松完善和推广了拉普拉斯关于中心极限定理的证明。在所有考虑的情况里,都假设随机变量是独立的。泊松证明了服从相同分布的随机变量的情况,还推广到服从不同分布的随机变量的情况。1824年,泊松证明了连续随机变量的中心极限定理,并给出了三个反例,其中包括服从柯西分布的随机变量和,这时中心极限定理不成立。受当时传统的影响,泊松没有明确阐明中心极限定理成立的条件。但是,从他的证明和例子中,可以看到,他假设每个变量的方差都是有界的,且不等于零。其他数学家也做了这方面工作,比如贝塞尔和柯西。拉普拉斯等人给出证明的前提假设是,和的分布是有限的,因此所有的矩都存在。他们把结果推广到无限情形,但没有给出证明,并隐含假定了矩的存在。以现在的观点来看,只要沿着拉普拉斯的方向继续下去,法国数学家们是可以给出中心极限定理的严格证明的,比如柯西,他知道特征函数和稳定率。 从当时环境来看,大约1870年代,概率学家还处于心理上的劣势,苦于自己的研究领

相关文档
相关文档 最新文档