文档视界 最新最全的文档下载
当前位置:文档视界 › 概率论重点题

概率论重点题

概率论重点题
概率论重点题

概率统计重难点题

1.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男

孩的概率(小孩为男为女是等可能的).

【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故

()6/86()()

7/8

7

P AB P B A P A =

==

或在缩减样本空间中求,此时样本点总数为7.

6()7

P B A =

2.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此

人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).

【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式

()()

()()()

()()()()

P A P B A P AB P A B P B P A P B A P A P B A =

=

+

0.50.05

200.50.050.50.0025

21

?=

=

?+?

3.在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中

任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.

【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第

二次取出的3球均为新球} 由全概率公式,有

3

()()()

i i i P B P B

A P A ==

3

3

12

3

21

3

3

3

699689679633333333

1515

15

15

15

15

15

15

C C C C C C C C C C C

C

C

C

C

C

C

C =?

+

?

+

?

+

?

0.089=

4.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.

统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?

【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},

C ={该客户是“冒失的”},

D ={该客户在一年内出了事

故}

则由贝叶斯公式得

()()(|)

(|)()

()(|)()(|)()(|)

P AD P A P D A P A D P D P A P D A P B P D B P C P D C =

=

++

0.20.05

0.057

0.20.050.50.150.30.3

?=

=?+?+?31.设随机变量

X ~U (0,1),试求:

(1) Y =e X 的分布函数及密度函数; (2) Z =-2ln X 的分布函数及密度函数. 【解】(1)

(01)1P X <<= 故

(1e e )

1

X

P Y <=

<=

当1y ≤时()()0Y F y P Y y =≤=

当1

)(ln )X

Y F y P y P X y =

≤=≤

ln 0

d ln y x y

=

=?

当y ≥e 时()(e )1X Y F y P y =≤=

即分布函数

0,1()ln ,

1e 1,e

Y y F y y y y ≤??

=<

故Y 的密度函数为

11e ,

()0,Y y y f y ?<

=???

其他

(2) 由P (0

(0)1P Z >=

当z ≤0时,()()0Z F z P Z z =≤=

当z >0时,()()(2ln )Z F z P Z

z P X z =≤=-≤

/2

(ln )(e

)2

z z P X P X -=≤-

=≥

/2

1/2

e

d 1e

z z x --=

=-?

即分布函数

-/2

0,

0()1-e ,Z z z F z z ≤?=?>?

故Z 的密度函数为

/2

1e

,0()2

0,z Z z f z z -?>?=??≤?

5.设随机变量X 的密度函数为

f (x )=2

2,0π,π0,.

x

x ?<

??

其他

试求Y =sin X 的密度函数. 【解】(01)1P Y

<<=

当y ≤0时,()()0Y F y P Y

y =≤=

当0

Y F y P Y y P X y =≤=≤

(0arcsin )(πarcsin π)P X y P y X =<≤+-≤<

arcsin π

2

2

πarcsin 22d d π

π

y y

x x x x

-=+

?

?

222211arcsin 1πarcsin ππy y =

+--()() 2

arcsin π

y = 当y ≥1时,()1Y F y = 故Y 的密度函数为

6.设随机变量(X ,Y )的概率密度为

f (x ,y )=??

?<<<.

,

0,

10,,1其他x x y

求条件概率密度f Y |X (y |x ),f X |Y (x |y )

.

题11图

【解】()(,)d X f x f x y y

+∞

-∞=?

1d 2,

01,0,

.

x x

y x x -?=<

11

1d 1,10,()(,)d 1d 1,

01,0,.

y Y y x y y f y f x y x x y y -+∞-∞

?=+-<

==-≤

??

?其他

所以

|1

,||1,(,)(|)2()0,

.

Y X X y x f x y f y x x

f x ?<

=

=???

其他

|1, 1,1(,)1

(|),

1,()10,.

X Y Y y x y f x y f x y y x f y y

?<

?==-<

其他 7.设二维随机变量(X ,Y )在以(0,0),(0,1),(1,0)为顶点

的三角形区域上服从均匀分布,求Cov (X ,Y ),ρXY . 【解】如图,S D =1

2,故(X ,Y )的概率密度为

题18图

2,

(,),(,)0,

x y D f x y ∈?=?

?其他.

()(,)d d D

E X xf x y x y =

??

110

1d 2d 3

x x x y -=

=

??

2

2

()(,)d d D

E X x f x y x y =

??

112

1d 2d 6

x x x y -=

=

?

?

从而2

221

11

()()[()].6318

D X

E X E X ??=-=-= ?

??

同理11(),().3

18

E Y D Y ==

而 110

1()(,)d d 2d d d 2d .12

x D

D

E XY xyf x y x y xy x y x xy y -=

=

=

=

??

????

所以

1111C ov(,)()()()12

3

3

36

X Y E XY E X E Y =-=

-

?

=-

.

从而

1

C ov(,)1362

()()

1118

18

XY X Y D X D Y ρ-=

=

=-

?

8.某车间有同型号机床200部,每部机床开动的概率为0.7,假定各

机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因供电不足而影响生产.

【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床

数目最大值m ,而m 要满足200部机床中同时开动的机床数目不超过m 的概率为95%,于是我们只要供应15m 单位电能就可满足要求.令X 表同时开动机床数目,则X ~B (200,0.7),

()140,()42,E X D X ==

1400.95{0}().42m P X m P X m -??=≤≤=≤=Φ ??

? 查表知

140

1.64,42

m -= ,m =151.

所以供电能151×15=2265(单位).

9.某药厂断言,该厂生产的某种药品对于医治一种疑难的血液病的

治愈率为0.8.医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言,否则就拒绝这一断言. (1) 若实际上此药品对这种疾病的治愈率是0.8,问接受这一断言的概率是多少?

(2) 若实际上此药品对这种疾病的治愈率是0.7,问接受这一断言的概率是多少?

【解】1,

,1,2,,100.0,

.

i i X i ?==?

? 第人治愈其他

令100

1

.i i X

X ==

(1) X ~B (100,0.8),

100

1751000.8{75}1{75}11000.80.2i i P X P X =-???

>=-≤≈-Φ ?????

1( 1.25)(1.25)0.8944.=-Φ-=Φ=

(2) X ~B (100,0.7),

100

1751000.7{75}1{75}11000.70.3i i P X P X =-???>=-≤≈-Φ ?????

51(

)1(1.09)0.1379.21

=-Φ=-Φ=

10. 对于一个学生而言,来参加家长会的家长人数是一个随机变量,

设一个学生无家长、1 名家长、2名家长来参加会议的概率分别为0.05,0.8,0.15.若学校共有400名学生,设各学生参加会议的家长数相与独立,且服从同一分布.

(1) 求参加会议的家长数X 超过450的概率?

(2) 求有1名家长来参加会议的学生数不多于340的概率.

【解】(1) 以X i (i =1,2,…,400)记第i 个学生来参加会议的家长数.则X i 的分布律为 X i 0 1 2 P

0.05

0.8

0.15

易知E (X i =1.1),D (X i )=0.19,i =1,2,…,400. 而400

i

i

X

X =

,由中心极限定理得

400

400 1.1400 1.1~(0,1).4000.19

419

i i

X X N -?-?=??∑

近似地

于是450400 1.1{450}1{450}1419P X

P X -???

>=-≤≈-Φ ????

1(1.147)0.1357.=-Φ=

(2) 以Y 记有一名家长来参加会议的学生数.则Y ~B (400,0.8) 由拉普

拉斯中心极限定理得

3404000.8{340(2.5)0.9938.4000.80.2P Y -???≤≈Φ=Φ= ?????

11.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩法估计. 【解】1(),(),E X np E X A X ==

=因此

np =X

所以p 的矩估计量

?X p

n

=

12.设总体X 的密度函数

f (x ,θ

)=2

2

(),0,0,.

x x θθθ

?-<

其他

X 1,X 2,…,X n 为其样本,试求参数θ的矩法估计. 【解】23

2

20

2

2()()d ,233

x x E X x x x θ

θ

θθθθ

θ??

=

-=-= ?

??

?

令E (X )=A 1=X ,因此3

θ

=X

所以θ的矩估计量为

^

3.X θ=

13.设总体X 的密度函数为f (x ,θ),X 1,X 2,…,X n 为其样本,求θ的极大似然估计. (1) f (x ,θ)=,0,

0,0.e x x x θθ-?≥?

(2) f (x ,θ

)=1,

01,0,

.

x x θθ-?<

?其他

【解】(1) 似然函数1

1

1

(,)e

e

n

i

i

i n

n

x x n

n

i i i L f x θ

θθθ

θ=--==∑===∏

1

ln ln n

i

i g L n x θθ

===-∑

1

d d ln 0

d d n

i

i g L n

x

θ

θ

θ

==

=

-

=∑知

1

?n

i

i n

x

θ==∑

所以θ的极大似然估计量为1?X

θ=.

(2) 似然函数1

1,01n

n

i

i i L x x θθ-==<<∏

,i =1,2,…,n.

1

ln ln (1)ln n

i

i L n x θθ==+-∏

1

d ln ln 0d n

i i L n

x θ

θ

==

+=∏知

1

1

?ln ln n

n

i

i

i i n

n

x

x θ===-

=-

∑∏

所以θ的极大似然估计量为 1

?ln n

i

i n

x

θ==-

14. 已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N (4.55,0.1082).现在测了5炉铁水,其含碳量(%)分别为

4.28 4.40 4.42 4.35 4.37

问若标准差不改变,总体平均值有无显著性变化(α=0.05)? 【解】

0010/20.0250

0.025: 4.55;: 4.55.5,0.05, 1.96,0.1084.364,(4.364 4.55)

5 3.851,

0.108

/.

H H n Z Z x x Z n

Z Z αμμμμασμσ==≠=======--=

=

?

=->

所以拒绝H 0,认为总体平均值有显著性变化.

15. 某种矿砂的5个样品中的含镍量(%)经测定为:

3.24 3.26 3.24 3.27 3.25

设含镍量服从正态分布,问在α=0.01下能否接收假设:这批矿砂的含镍量为3.25. 【解】设

0010/20.00500.005: 3.25;: 3.25.5,0.01,(1)(4) 4.60413.252,0.013,(3.252 3.25)

50.344,

0.013

/

(4).

H H n t n t x s x t s n t t αμμμμαμ==≠===-====--=

=

?

=<

所以接受H 0,认为这批矿砂的含镍量为3.25.

16. 在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为 1.008(克),样本方差

s 2=0.1(g 2).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)

近似服从正态分布(取α=0.05). 【解】设

0010/20.0252

00.025: 1.1;: 1.1.

36,0.05,(1)(35) 2.0301,36,1.008,0.1,(1.008 1.1)

6 1.7456,

/

0.1

1.7456(35)

2.0301.

H H n t n t n x s x t s n t t αμμμμαμ==≠===-=====--=

=

?==<=

所以接受H 0,认为这堆香烟(支)的重要(克)正常.

概率论与数理统计发展史

概率论与数理统计发展简史 姓名:苗壮学号:1110810513 班级:1108105 指导教师:曹莉 摘要:在这里,我们将简略地回顾一下概率论与数理统计的发展史,包括发展过程中所经历的一些大事,以及对这门学科的创立和发展有特别重大影响的那些学者的贡献. 关键词:概率论、数理统计、发展史 正文: 1.概率论的发展 17世纪,正当研究必然性事件的数理关系获得较大发展的时候,一个研究偶然事件数量关系的数学分支开始出现,这就是概率论. 早在16世纪,赌博中的偶然现象就开始引起人们的注意.数学家卡丹诺(Cardano)首先觉察到,赌博输赢虽然是偶然的,但较大的赌博次数会呈现一定的规律性, 卡丹诺为此还写了一本《论赌博》的小册子,书中计算了掷两颗骰子或三颗骰子时,在一切可能的方法中有多少方法得到某一点数.据说,曾与卡丹诺在三次方程发明权上发生争论的塔尔塔里亚,也曾做过类似的实验. 促使概率论产生的强大动力来自社会实践.首先是保险事业.文艺复兴后,随着航海事业的发展,意大利开始出现海上保险业务.16世纪末,在欧洲不少国家已把保险业务扩大到其它工商业上,保险的对象都是偶然性事件.为了保证保险公司赢利,又使参加保险的人愿意参加保险,就需要根据对大量偶然现象规律性的分析,去创立保险的一般理论.于是,一种专门适用于分析偶然现象的数学工具也就成为十分必要了. 不过,作为数学科学之一的概率论,其基础并不是在上述实际问题的材料上形成的.因为这些问题的大量随机现象,常被许多错综复杂的因素所干扰,它使难以呈“自然的随机状态”.因此必须从简单的材料来研究随机现象的规律性,这种材料就是所谓的“随机博弈”.在近代概率论创立之前,人们正是通过对这种随机博弈现象的分析,注意到了它的一些特性, 比如“多次实验中的频率稳定性”等,然后经加工提炼而形成了概率论. 荷兰数学家、物理学家惠更斯(Huygens)于1657年发表了关于概率论的早期著作《论赌博中的计算》.在此期间,法国的费尔马(Fermat)与帕斯卡(Pascal)也在相互通信中探讨了随机博弈现象中所出现的概率论的基本定理和法则.惠更斯等人的工作建立了概率和数学期望等主要概念,找出了它们的基本性质和演算方法,从而塑造了概率论的雏形.18世纪是概率论的正式形成和发展时期.1713年,贝努利(Bernoulli)的名著《推想的艺术》发表.在这部著作中,贝努利明确指出了概率论最重要的定律之一――“大数定律”,并且给出了证明,这使以往建立在经验之上的频率稳定性推测理论化了,从此概率论从对特殊问题的求解,发展到了一般的理论概括. 继贝努利之后,法国数学家棣谟佛(Abraham de Moiver)于1781年发表了《机遇原理》.书中提出了概率乘法法则,以及“正态分”和“正态分布律”的概念,为概率论的“中心极限定理”的建立奠定了基础. 1706年法国数学家蒲丰(Comte de Buffon)的《偶然性的算术试验》完成,他把概率和几何结合起来,开始了几何概率的研究,他提出的“蒲丰问题”就是采取概率的方法来求圆周率π的尝试.

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P Y . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()()((Y X X F y P Y y P X y P X F F =≤=≤==- 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率论复习题及答案

概率论与数理统计复习题 一.事件及其概率 1. 设,,A B C 为三个事件,试写出下列事件的表达式: (1) ,,A B C 都不发生;(2),,A B C 不都发生;(3),,A B C 至少有一个发生;(4),,A B C 至多有一个发生。 解:(1) ABC A B C =?? (2) ABC B =?? (3) A B C ?? (4) BC AC AB ?? 2. 设B A ,为两相互独立的随机事件,4.0)(=A P ,6.0)(=B P ,求(),(),(|)P A B P A B P A B ?-。 解:()()()()()()()()0.76P A B P A P B P AB P A P B P A P B ?=+-=+-=; ()()()()0.16,(|)()0.4P A B P AB P A P B P A B P A -=====。 3. 设,A B 互斥,()0.5P A =,()0.9P A B ?=,求(),()P B P A B -。 解:()()()0.4,()()0.5P B P A B P A P A B P A =?-=-==。 4. 设()0.5,()0.6,(|)0.5P A P B P A B ===,求(),()P A B P AB ?。 解:()()(|)0.3,()()()()0.8,P AB P B P A B P A B P A P B P AB ==?=+-= ()()()()0. 2P A B P A B P A P A B = -=-=。 5. 设,,A B C 独立且()0.9,()0.8,()0.7,P A P B P C ===求()P A B C ??。 解:()1()1()1()()()0.994P A B C P A B C P ABC P A P B P C ??=-??=-=-=。 6. 袋中有4个黄球,6个白球,在袋中任取两球,求 (1) 取到两个黄球的概率; (2) 取到一个黄球、一个白球的概率。 解:(1) 24210215C P C ==;(2) 11462 108 15 C C P C ==。 7. 从0~9十个数字中任意选出三个不同的数字,求三个数字中最大数为5的概率。 解:12153 101 12 C C P C ==。

概率论习题及答案()

概率论习题 一、填空题 1、掷21n +次硬币,则出现正面次数多于反面次数的概率是 . 2、把10本书任意的放到书架上,求其中指定的三本书放在一起的概率. 3、一批产品分一、二、三级,其中一级品是二级品的两倍,三级品是二级品的一半,从这批产品中随机的抽取一件,试求取到二级品的概率 . 4、已知()0.7,()0.3,P A P A B =-= 则().P AB = 5、已知()0.3,()0.4,()0.5,P A P B P AB === 则(|).P B A B ?= 6、掷两枚硬币,至少出现一个正面的概率为.. 7、设()0.4,()0.7,P A P A B =?= 若,A B 独立,则().P B = 8、设,A B 为两事件,11()(),(|),36 P A P B P A B === 则(|).P A B = 9、设123,,A A A 相互独立,且2(),1,2,3,3i P A i == 则123,,A A A 最多出现一个的概率是. 10、某人射击三次,其命中率为0.8,则三次中至多命中一次的概率为 . 11、一枚硬币独立的投3次,记事件A =“第一次掷出正面”,事件B =“第二次掷出反面”,事件C =“正面最多掷出一次”。那么(|)P C AB = 。 12、已知男人中有5%是色盲患者,女人中有0.25%是色盲患者.今从男女人数相等的人群中随机地 表示为互不相容事件的和是 。15、,,A B C 中不多于两个发生可表示为 。 二、选择题 1、下面四个结论成立的是( ) 2、设()0,P AB =则下列说法正确的是( ) 3、掷21n +次硬币,正面次数多于反面次数的概率为( ) 4、设,A B 为随机事件,()0,(|)1,P B P A B >= 则必有( ) 5、设A 、B 相互独立,且P (A )>0,P (B )>0,则下列等式成立的是( ) .A P (AB )=0 .B P (A -B )=P (A )P (B ) .C P (A )+P (B )=1 .D P (A |B )=0 6、设事件A 与B 互不相容,且P (A )>0,P (B ) >0,则有( ) .A P (AB )=l .B P (A )=1-P (B ) .C P (AB )=P (A )P (B ) .D P (A ∪B )=1

概率论与数理统计题库及答案

概率论与数理统计题库及答案 一、单选题 1. 在下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 51,41,31,21 (B) 81,81,41,21 (C) 2 1,21,21,21- (D) 16 1, 8 1, 4 1, 2 1 2. 下列数组中,( )中的数组可以作为离散型随机变量的概率分布. (A) 4 1414121 (B) 161814121 (C) 16 3 16 14 12 1 (D) 8 18 34 12 1- 3. 设连续型随机变量X 的密度函数 ???<<=, ,0, 10,2)(其他x x x f 则下列等式成立的是( ). (A) X P (≥1)1=- (B) 21)21(==X P (C) 2 1)21(= < X P (D) 2 1)21(= > X P 4. 若 )(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成 立. (A) X a P <(≤?∞ +∞-=x x F b d )() (B) X a P <(≤? = b a x x F b d )() (C) X a P <(≤? = b a x x f b d )() (D) X a P <(≤? ∞+∞ -= x x f b d )() 5. 设 )(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有 X a P <(≤=)b ( ). (A) ? b a x x F d )( (B) ? b a x x f d )( (C) ) ()(a f b f - (D) )()(b F a F - 6. 下列函数中能够作为连续型随机变量的密度函数的是( ).

概率论期末复习试题二

概率论与数理统计试题 11级计算机大队二区队 一、选择题: 1、假设事件A与事件B互为对立,则事件AB( )。 (A) 是不可能事件(B) 是可能事件 (C) 发生的概率为1 (D) 是必然事件 答案:A。这是因为对立事件的积事件是不可能事件。 2、某人睡午觉醒来,发现表停了,他打开收音机想听电台整点报时,则他等待的时间小于10分钟的概率是()。 A、1 6 B、 1 12 C、 1 60 D、 1 72 答案:A。以分钟为单位,记上一次报时时刻为0,则下一次报时时刻为60,于是,这个人打开收音机的时间必在(0,60),记“等待时间短于分 钟”为事件A。则有S=(0,60),A=(50,60)所以P(A)=A S = 10 60 = 1 6 。 3、设连续型随机变量(X,Y)的两个分量X和Y相互独立,且服从同一分布,问P{X≤Y}=()。 A、0 B、1 2 C、 1 4 D、1 答案:B。利用对称性,因为X,Y独立同分布,所以有P{X≤Y}=P{Y≤X}, 而P{X≤Y}+ P{Y≤X}=1,所以P{X≤Y}=1 2 4、设二维随机变量(X,Y)的分布函数为F(x,y),分布律如下:

则F (2,3)=()。 A 、0 B 、14 C 、716 D 、916 答案:D 。 F (2,3)=P {X ≤2,Y ≤3} =P {X=1,Y=1}+P {X=1,Y=2}+ P {X=1,Y=3}+ P {X=2,Y=1}+ P {X=2.Y=2} + P {X=2,Y=3} =14+0+0+116+1 4+0 =9 16 5、下列命题中错误的是( )。 (A)若X p (λ),则()()λ==X D X E ; (B)若X 服从参数为λ的指数分布,则()()λ 1 ==X D X E ; (C)若X b (θ,1),则()()()θθθ-==1,X D X E ; (D)若X 服从区间[b a ,]上的均匀分布,则() 3 222 b ab a X E ++=. 答案:B 。 ()()2,λλ==X D X E 6、设()Y X ,服从二维正态分布,则下列条件中不是Y X ,相互独立的充分必要条 件是( )。 (A) Y X ,不相关 (B) ()()()Y E X E XY E = (C) ()0,cov =Y X (D) ()()0==Y E XY E

概率论习题全部

习题一 1. 用集合的形式写出下列随机试验的样本空间与随机事件A : (1)掷两枚均匀骰子,观察朝上面的点数,事件A 表示“点数之和为7”; (2)记录某电话总机一分钟内接到的呼唤次数,事件A 表示“一分钟内呼唤次数不超过3次”; (3)从一批灯泡中随机抽取一只,测试它的寿命,事件A 表示“寿命在2 000到2 500小时之间”. 2. 投掷三枚大小相同的均匀硬币,观察它们出现的面. (1)试写出该试验的样本空间; (2)试写出下列事件所包含的样本点:A ={至少出现一个正面},B ={出现一正、二反},C ={出现不多于一个正面}; (3)如记i A ={第i 枚硬币出现正面}(i =1,2,3),试用123,,A A A 表示事件A ,B ,C . 3. 袋中有10个球,分别编有号码1~10,从中任取1球,设A ={取得球的号码是偶数},B ={取得球的号码是奇数},C ={取得球的号码小于5},问下列运算表示什么事件: (1)A B U ;(2)AB ;(3)AC ;(4)AC ;(5)C A ;(6)B C U ;(7)A C -. 4. 在区间上任取一数,记112A x x ??=<≤????,1 34 2B x x ??=≤≤????,求下列事件的表 达式:(1)A B U ;(2)AB ;(3)AB ,(4)A B U . 5. 用事件A ,B ,C 的运算关系式表示下列事件: (1)A 出现,B ,C 都不出现; (2)A ,B 都出现,C 不出现; (3)所有三个事件都出现; (4)三个事件中至少有一个出现; (5)三个事件都不出现; (6)不多于一个事件出现; (7)不多于二个事件出现; (8)三个事件中至少有二个出现. 6. 一批产品中有合格品和废品,从中有放回地抽取三个产品,设表示事件“第次抽到废品”,试用的运算表示下列各个事件: (1)第一次、第二次中至少有一次抽到废品; (2)只有第一次抽到废品; (3)三次都抽到废品; (4)至少有一次抽到合格品; (5)只有两次抽到废品. 7. 接连进行三次射击,设={第i 次射击命中}(i =1,2,3),试用表示下述事件: (1)A ={前两次至少有一次击中目标}; (2)B ={三次射击恰好命中两次}; ]2,0[i A i i A i A 321,,A A A

概率论

一 1、若事件A 出现,事件B 和事件C 都不出现,则可表示为 。 2、已知,6.0)(,4.0)(,==?B P A P B A 则)(A B P -= 。 3、皮尔逊做掷一枚均匀硬币的试验,观察“正面朝上”这一事件A ,在12000次试验中,事件A 出现了6019次,则事件A 出现的频率是 。 4、已知随机变量A 的概率,5.0)(=A P 随机事件B 的概率,6.0)(=B P 条件概率 ,8.0)|(=A B P 则=?)(B A P 。 5、某工厂有甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂的%,40%,35%,25各个车间产品的次品率分别为%,2%,4%,5则该厂产品的次品率为 。 6、假设X 是连续型随机变量,其概率密度函数为???<<=. 030)(2其它,; ,x cx x f ,则 =c 。 7、设二维随机变量 ) ,(Y X 的联合分布函数为 ),arctan )(arctan (),(y C x B A y x F ++=则=A ,=B ,=C 。 8、设Y 服从)4,5.1(N ,则=>}2{X P 。 9、设随机变量)16,1(~),4,1(~N Y N X ,则=+)(Y X E 。 10、设X 和Y 是相互独立,X 服从标准正态分布,Y 服从自由度为n 的卡方分布,称随机变量:n Y X T = 的分布为自由度为 的 分布。 二、设有一批量为50的同型号产品,其中次品10件,现按以下两种方式随机抽取2件产品:(1)有放回抽取,即先任取一件,观察后放回批中,再从中任取一件;(2)不放回抽取,即先任取一件,观察后不放回批中,从剩余的产品中再任取一件。试分别按这两种抽取方式,求 (a)、两件都是次品的概率? (b)、第一件是次品,第二件是正品的概率?

概率统计试题库及答案

、填空题 1、设 A 、B 、C 表示三个随机事件,试用 A 、B 、C 表示下列事件:①三个事件都发生 ____________ ;__②_ A 、B 发生,C 3、 设 A 、 B 、C 为三个事件,则这三个事件都不发生为 ABC; A B C.) 4、 设 A 、B 、C 表示三个事件,则事件“A 、B 、C 三个事件至少发生一个”可表示为 ,事件“A 、B 、 C 都发生”可表 示为 , 5、 设 A 、 B 、 C 为三事件,则事件“A 发生 B 与 C 都不发生”可表示为 ________ 事__件; “A 、B 、C 不都发生”可表 示为 ____________ ;_事_ 件“A 、B 、C 都不发生”可表示为 ____ 。_(_ABC ,A B C ;A B C ) 6、 A B ___________ ;__ A B ___________ ;__A B ___________ 。_(_ B A , A B , A B ) 7、 设事件 A 、B 、C ,将下列事件用 A 、B 、C 间的运算关系表示:(1)三个事件都发生表示为: _______ ;_(_ 2)三 个 事件不都发生表示为: ________ ;_(_ 3)三个事件中至少有一个事件发生表示为: _____ 。_(_ ABC , A B C , A B C ) 8、 用 A 、B 、C 分别表示三个事件,试用 A 、B 、C 表示下列事件: A 、B 出现、C 不出现 ;至少有一 个 事 件 出 现 ; 至 少 有 两 个 事 件 出 现 。 ( ABC,A B C,ABC ABC ABC ABC ) 9、 当且仅当 A 发生、 B 不发生时,事件 ________ 发_生_ 。( A B ) 10、 以 A 表 示 事 件 “甲 种 产 品 畅 销 , 乙 种 产 品 滞 销 ”, 则 其 对 立 事 件 A 表 示 。(甲种产品滞销或乙种产品畅销) 11、 有R 1, R 2 , R 3 三个电子元件,用A 1,A 2,A 3分别表示事件“元件R i 正常工作”(i 1,2,3) ,试用 A 1,A 2,A 3表示下列事件: 12、 若事件 A 发生必然导致事件 B 发生,则称事件 B _____ 事_件 A 。(包含) 13、 若 A 为不可能事件,则 P (A )= ;其逆命题成立否 。(0,不成立) 14、 设A、B为两个事件, P (A )=0 .5, P (A -B )=0.2,则 P (A B ) 。(0.7) 15、 设P A 0.4,P A B 0.7,若 A, B 互不相容,则P B ______________ ;_若 A, B 相互独立,则P B _______ 。_(_0.3, 概率论与数理统计试题库 不发生 _________ ;__③三个事件中至少有一个发生 2、 设 A 、B 、C 为三个事件,则这三个事件都发生为 _______________ 。_(__A_BC , ABC , A B C ) ;三个事件恰有一个发生 为 ABC; ABC ABC ABC )。 ;三个事件至少有一个发生为 事件“A 、 B 、C 三事件中至少有两个发生”可表示为 。( A B C , ABC , AB BC AC ) 三个元件都正常工作 ;恰有一个元件不正常工作 至少有一个元件 正常工作 。( A 1 A 2 A 3, A 1A 2 A 3 A 1 A 2A 3 A 1A 2A 3,A 1 A 2 A 3)

概率论期末考试复习题及答案()

第一章 1.设P (A )=3 1,P (A ∪B )=2 1,且A 与B 互不相容,则P (B )=____6 1_______. 2. 设P (A )=3 1,P (A ∪B )=2 1,且A 与B 相互独立,则P (B )=______4 1_____. 3.设事件A 与B 互不相容,P (A )=0.2,P (B )=0.3,则P (B A ?)=___0.5_____. 4.已知P (A )=1/2,P (B )=1/3,且A ,B 相互独立,则P (A B )=________1/3________. A 与B 相互独立 5.设P (A )=0.5,P (A B )=0.4,则P (B|A )=___0.2________. 6.设A ,B 为随机事件,且P(A)=0.8,P(B)=0.4,P(B|A)=0.25,则P(A|B)=____ 0.5______. 7.一口袋装有3只红球,2只黑球,今从中任意取出2只球,则这两只恰为一红一黑的概率是________ 0.6________. 8.设袋中装有6只红球、4只白球,每次从袋中取一球观其颜色后放回,并再放入1只同 颜色的球,若连取两次,则第一次取得红球且第二次取得白球的概率等于____12/55____. 9.一袋中有7个红球和3个白球,从袋中有放回地取两次球,每次取一个,则第一次取得红球且第二次取得白球的概率p=___0.21_____. 10.设工厂甲、乙、丙三个车间生产同一种产品,产量依次占全厂产量的45%,35%,20%,且各车间的次品率分别为4%,2%,5%.求:(1)从该厂生产的产品中任取1件,它是次品的概率; 3.5% (2)该件次品是由甲车间生产的概率. 35 18 第二章 1.设随机变量X~N (2,22),则P {X ≤0}=___0.1587____.(附:Φ(1)=0.8413) 设随机变量X~N (2,22),则P{X ≤0}=(P{(X-2)/2≤-1} =Φ(-1)=1-Φ(1)=0.1587 2.设连续型随机变量X 的分布函数为???≤>-=-,0, 0;0,1)(3x x e x F x

概率论的那些事儿

概率论的那些事 院系:自动化测试与控制系姓名:XXX 学号:1130110XXX 导师:XXXX

摘要:概率史是一门研究随机现象规律的数学分支。它起源于十七世纪中叶,当时在误差分析、人口统计等范筹中,有大量的随机数据资料需要整理和研究,从而孕育出一种专门研究随机现象的规律性的数学。 关键字:概率论博弈发展生活 发展史 概率史是一门研究随机现象规律的数学分支。它起源于十七世纪中叶,当时在误差分析、人口统计等范筹中,有大量的随机数据资料需要整理和研究,从而孕育出一种专门研究随机现象的规律性的数学。另一方面,由于数学家参与讨论分赌本问题导致惠根斯完成了《论赌博中的计算》一书,由此奠定了古典概率论的基础。使概率论成为数学一个分支的另一奠基人是瑞士数学家雅各布伯努利。他的主要贡献是建立了概率论中的第一个极限定理《伯努利大数定理》。之后,法国数学家棣莫弗在他的著作《分析杂论》中提出了著名的《棣莫弗—拉普拉斯定理》。接着拉普拉斯在1812年出版了《概率的分析理论》,首先明确地对概率作了古典的定义。经过高斯和泊松等数学家的努力,概率论在数学中地位基本确立。到了20世纪的30年代,通过俄国数学家柯尔莫哥洛夫在概率论发展史上的杰出贡献,完全使概率论成为了一门严谨的数学分支。近代又出现了理论概率及应用概率论的分支,概率论被广泛的应用到了不同范筹和不同的学科。今天概率论已经成为一个非常庞大的数学分支。研究事物发生究数字重复的几率. 随着18、19世纪科学的发展,人们注意到在某些生物、物理和社会现象与机会游戏之间有某种相似性,从而由机会游戏起源的概率论被应用到这些领域中;同时这也大大推动了概率论本身的发展。使概率论成为数学的一个分支的奠基人是瑞士数学家j.伯努利,他建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事件的频率稳定于它的概率。随后棣莫弗和p.s.拉普拉斯又导出了第二个 基本极限定理(中心极限定理)的原始形式。拉普拉斯在系统总结前人工作的基础上写出了《分析的概率理论》,明确给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。19世纪末,俄国数 学家p.l.切比雪夫、a.a.马尔可夫、a.m.李亚普诺夫等人用分析方法建立了大数定律及中心极限定理的一般形式,科学地解释了为什么实际中遇到的许多随机变量近似服从正态分布。20世纪初受物理学的刺激,人们开始研究随机过程。这方 面a·n·柯尔莫哥洛夫、n.维纳、a·a·马尔可夫、a·r·辛钦、p·莱维及w·费勒等人作了杰出的贡献。在总体上,概率论是一门研究事情发生的可能性的学问,但是最初概率论的起源与赌博问题有关。16世纪,意大利的学者吉罗拉莫·卡 尔达诺(Girolam oCardano,1501——1576)开始研究掷骰子等赌博中的一些 简单问题。17世纪中叶,当时的法国宫廷贵族里盛行着掷骰子游戏,游戏规则 是玩家连续掷4 次骰子,如果其中没有 6 点出现,玩家赢,如果出现一次 6 点,则庄家(相当于赌场)赢。按照这一游戏规则,从长期来看,庄家扮演赢家的角色,而玩家大部分时间是输家,因为庄家总是要靠此为生的,因此当时人们也就接受了这种现象。后来为了使游戏更刺激,游戏规则发生了些许变化,玩家这回用2 个骰子连续掷24 次,不同时出现2个6点,玩家赢,否则庄家赢。当时人们普遍认为,2 次出现 6 点的概率是一次出现 6 点的概率的 1 / 6 ,因此 6 倍于前一种规则的次数,也既是24 次赢或输的概率与以前是相等的。然而事实却刚好相反,从长期来看,这回庄家处于输家的状态,于是他们去请教当时的数

考研概率论与数理统计题库-题目

概率论与数理统计 第一章 概率论的基本概念 1. 写出下列随机试验的样本空间 (1)记录一个小班一次数学考试的平均分数(以百分制记分) (2)生产产品直到得到10件正品,记录生产产品的总件数。 (3)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 2. 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1)A 发生,B 与C 不发生 (2)A ,B 都发生,而C 不发生 (3)A ,B ,C 中至少有一个发生 (4)A ,B ,C 都发生 (5)A ,B ,C 都不发生 (6)A ,B ,C 中不多于一个发生 (7)A ,B ,C 中不多于二个发生 (8)A ,B ,C 中至少有二个发生。 3. 设A ,B 是两事件且P (A )=0.6,P (B )=0.7. 问(1)在什么条件下P (AB )取到最大值,最 大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少? 4. 设A ,B ,C 是三事件,且0)()(,4/1)()()(=====BC P AB P C P B P A P ,8 1 )(= AC P . 求A ,B ,C 至少有一个发生的概率。 5. 在电话号码薄中任取一个电话号码,求后面四个数全不相同的概率。(设后面4个数 中的每一个数都是等可能性地取自0,1,2……9)

6. 在房间里有10人。分别佩代着从1号到10号的纪念章,任意选3人记录其纪念章的 号码。 (1)求最小的号码为5的概率。 (2)求最大的号码为5的概率。 7. 某油漆公司发出17桶油漆,其中白漆10桶、黑漆4桶,红漆3桶。在搬运中所标笺 脱落,交货人随意将这些标笺重新贴,问一个定货4桶白漆,3桶黑漆和2桶红漆顾客,按所定的颜色如数得到定货的概率是多少? 8. 在1500个产品中有400个次品,1100个正品,任意取200个。 (1)求恰有90个次品的概率。 (2)至少有2个次品的概率。 9. 从5双不同鞋子中任取4只,4只鞋子中至少有2只配成一双的概率是多少? 10. 将三个球随机地放入4个杯子中去,问杯子中球的最大个数分别是1,2,3,的概 率各为多少? 11. 已知)|(,5.0)(,4.0)(,3.0)(B A B P B A P B P A P ?===求。 12. )(,2 1 )|(,31)|(,41)(B A P B A P A B P A P ?=== 求。 13. 设有甲、乙二袋,甲袋中装有n 只白球m 只红球,乙袋中装有N 只白球M 只红球, 今从甲袋中任取一球放入乙袋中,再从乙袋中任取一球,问取到(即从乙袋中取到)白球的概率是多少? (2) 第一只盒子装有5只红球,4只白球;第二只盒子装有4只红球,5只白球。先从第一盒子中任取2只球放入第二盒中去,然后从第二盒子中任取一只球,求取到白球的概率。 14. 已知男人中有5%是色盲患者,女人中有0.25%是色盲患者。今从男女人数相等的人 群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少? 15. 一学生接连参加同一课程的两次考试。第一次及格的概率为P ,若第一次及格则第 二次及格的概率也为P ;若第一次不及格则第二次及格的概率为2/P

大学概率论习题五详解(1)

正文: 概率论习题五详解 1、设X 为离散型的随机变量,且期望EX 、方差DX 均存在,证明对任意0>ε,都有 ()2 εεDX EX X P ≤ ≥- 证明 设()i i p x X P == ,...2,1=i 则 ()()∑≥ -==≥-ε εEX x i i x X P EX X P ()i EX x i p EX x i ∑≥ --≤εε2 2 ()i i i p EX x ∑ -≤2 2ε=2 εDX 2、设随机变量X 和Y 的数学期望都是2,方差分别为1和4,而相关系数为0.5,请利用切比 雪夫不等式证明: ()12 16≤ ≥-Y X P 。 证 ()0=-Y X E ()1,cov ==DXDY Y X ρ ()()325,cov 2=-=-+=-Y X DY DX Y X D ()()()()()12 1 6662= -≤≥---=≥-Y X D Y X E Y X P Y X P 3、一枚均匀硬币要抛多少次才能使正面出现的频率与0.5之间的偏差不小于0.04的概率不 超过0.01? 解设n X 为 n 次抛硬币中正面出现次数,按题目要求,由切比雪夫不等式可得 01.004.05.05.004.05.02≤??≤??? ? ??≥-n n X P n 从而有 1562504.001.025 .02 =?≥n 即至少连抛15625次硬币,才能保证正面出现频率与0.5的偏差不小于0.04的概率不超过0.01。 4、每名学生的数学考试成绩X 是随机变量,已知80=EX ,25=DX ,(1)试用切比雪夫不等式估计该生成绩在70分到90分之间的概率范围;(2)多名学生参加数学考试,要使他们的平均分数在75分到85分之间的概率不低于90%,至少要有多少学生参加考试? 解 (1)由切比雪夫不等式 () 2 1ε εDX EX X P - ≥<- ()0>ε 又 ()()()101090709070≤-≤-=-≤-≤-=≤≤EX X P EX EX X EX P X P =()75.0100 25 11080=-≥≤-X P 即该生的数学考试成绩在70分到90分之间的概率不低于75% (2)设有n 个学生参加考试(独立进行),记第i 个学生的成绩为i X ()n i i ...2,=,则平均成绩

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

概率论与数理统计期末应用题专项训练

概率论与数理统计期末应用题专项训练

应用题专项训练 1. 一工厂生产化学制品的日产量(以吨计)近似服从正态分布,当设备正常时一天产800吨, 现测得最近 5 天的产量分别 为:785,805,790,790,802,问是否可以认为日产量显著不为800吨。(取05.0=α),此题中 7764 .2)4(025.0=t 。 2. 设温度计制造厂商的温度计读数近似服从正态分布 未知 u u N ,),,(22σσ,现他声称他的温度计读数 的标准差为不超过0.5, 现检验了一组16只温度计,得标准0。7度,试检验制造商的言是否正确(取05.0=α),此题中996.24)15(2 05.0=χ。 3. 某人钥匙丢了,他估计钥匙掉在宿舍里、教室里以及路上的概率分别为0.4、0.35和0.25,而钥匙在上述三个地方被找到的概率分别为0.5、0.65和0.45.如果钥匙最终被找到,求钥匙是在路上被找到的概率. 4. 某加油站每周补给一次汽油,如果该加油站每周汽油的销售量X (单位:千升)是一随机变量,其密度函数为 ()?? ???<

6.

7. (1)抽到次品的概率为: ; (2)若发现该件是次品,则该次品为甲厂生产的概率为: . 8. 某体育彩票设有两个等级的奖励,一等奖为4元,二等奖2元,假设中一、二等奖的概率分别为0.3和0.5, 且每张彩票卖2元。如果你是顾客,你对于是否购买此彩票的明智选择为: (买,不买或无所谓)。 9. 甲、乙、丙三个工厂生产同一种零件,设甲厂、乙厂、丙厂的次品率分别为0.2,0.1,0.3.现从由甲厂、乙厂、丙厂的产品分别占15%,80%,5%的一批产品中随机抽取一件,发现是次品, 求该次品为甲厂生产的概率. 10. 某人寿保险公司每年有10000人投保,每人每 年付12元的保费,如果该年内投保人死亡,保险公司应付1000元的赔偿费,已知一个人一年内死亡的概率为0.0064。用中心极限定理近似计算该保险公司一年内的利润不少于48000元的概率。已知8413.0)1(=φ,9772.0)2(=φ。 11. 某地区参加外语统考的学生成绩近似服从正 态分布未知22 ,),,(σσu u N ,该校校长声称学生 平均成绩为70分,现抽取16名学生的成绩,得平均分为68分,标准差为3分,请在显著水平05.0=α下,检验该校长的断言是否正确。(此题中1315.2)15(025 .0=t ) 12. 某工厂要求供货商提供的元件一级品率为90% 以上,现有一供应商有一大批元件,经随机抽取100件,经检验发现有84件为一级品,试以

概率论的起源和发展

概率论的起源和发展 概率论是一门既古老又年轻的学科。说它古老,是因为产生概率的重要因素---赌博游戏已经存在了几千年,概率思想早在文明早期就己经开始萌芽了。而说它年轻,则是因为它在十八世纪以前的发展极为缓慢,现代数学家和哲学家们往往忽略了那段历史,他们更愿意把1654年帕斯卡(Pasac)l和费马(Fomrat)之间的七封通信看作是概率论的开端。这样,概率论的“年龄”就比数学大家族中的其它多数成员小很多。一般认为,概率论的历史只有短短的三百多年时间。虽然在早期概率论的发展非常缓慢,但是十八世纪以后,由于社会学,天文学等其它学科的研究需要,使得概率本身的理论得到了迅速发展,它的思想和方法也逐渐受到了其它学科的重视和借鉴。在当代,随着概率论本身的发展和学科之间的交叉融合,囊括了概率理论和统计理论两大部分的广义概率论已经成为一门应用非常广泛的学科,概率方法与统计方法逐渐渗透到了其它学科的研究工作当中。无论是在自然科学领域还是社会科学领域,各门学科中都能看到概率论的身影。概率论已经成为一种重要的工具,在社会发展中发挥着巨大的作用。 1、机会的早期计算 古希腊人从航海实践中发现了许多概率经验规律, 古犹太人在纪元之初就有概率加法定律和乘法定律的应用记录。但是由于结果不确定的特点, 人们一直认为随机现象好似运气都由天神决定, 其规则是世俗不可想象的。能够刺激人们思考概率的事情很多, 但最终孕育概率论的却是庸俗的骰子赌博。公元 960 年左右, 怀特尔德大主教计算出掷三个骰子时不计次序所能出现的不同组合有 56 种。十三世纪左右拉丁诗歌《维图拉》指出这 56 种组合出现的机会不是相同的: 3 枚骰子点数一样, 每个点数只有一种方式; 2 枚骰子点数一样而另一枚不一样, 则有 3 种方式; 如果 3 枚都不一样就有 6 种方式。但是这些经验并没有引起更多的思考, 机会的计算仍处于直觉的、散乱的经验水平上。 卡尔扎诺是一位医学博士, 曾在米兰讲授数学, 写过多部医学、数学等方面的著作。他认为赌博是一种社会病, 也有理由作为可以医治的疾病来研究。约在1564 年, 他集中了自己的智慧和赌博经验, 用拉丁文写出著名的《论机会游戏》, 揭示了赌博中的不确定性原理, 成为概率论前史的重要人物。书中, 卡尔扎诺强调赌博的基本原则是同等条件,“如果它们有利于对手, 那么你是傻瓜, 如果有利于自己, 那么你就不公平”。骰子应该是“诚实的”, 几个诚实的骰子联合起来仍然是诚实的, 下注应该根据这种诚实性。等可能思想的提出是卡尔扎诺的贡献之一, 为理解和解决复杂的赌博问题提供了依据。他定义了胜率(有利结果数与不利结果数之比) 表示机会的大小, 计算出了多种赌博的全部可能结果数和有利结果数, 由于当时组合数学还很贫乏, 他的计算在方法上与《维图拉》基本相同。卡尔扎诺还思考了独立事件的乘法法则, 在一番错误推理后他发现了正确方法, 例如一次的胜率是 3:1, 连续两次的胜率是 9:7。卡尔扎诺是第一个深入讨论概率问题的人, 他提出了考虑随机问题的基本原则, 建立了胜率概念和一些运算法则, 对概率理论的形成具有开创性贡献。但是他也犯了不少错误, 例如他认为在掷两个骰子时, 36 次投掷有 1 次机会出现双 6, 平均起来 18次投掷中, 出现双 6 的机会是 50%。这种推理意味着36 次投掷中必定出现一次双 6, 他没有意识到自己的错误。由于该书只有很少部分讨论机会计算, 其等可能思想

概率论与数理统计试题库及答案(考试必做)

<概率论>试题A 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A U = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,U 则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和 0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===???则A=______________ 7. 已知随机变量X 的密度为()f x =? ? ?<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________ 8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率

为8081 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<= 14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。 15.已知)4.0,2(~2-N X ,则2(3)E X += 16.设)2,1(~),6.0,10(~N Y N X ,且X 与Y 相互独立,则(3)D X Y -= 17.设X 的概率密度为2 ()x f x -=,则()D X = 18.设随机变量X 1,X 2,X 3相互独立,其中X 1在[0,6]上服从均匀分 布,X 2服从正态分布N (0,22),X 3服从参数为λ=3的泊松分布,记Y=X 1-2X 2+3X 3,则D (Y )= 19.设()()25,36,0.4xy D X D Y ρ===,则()D X Y += 20.设12,,,,n X X X ??????是独立同分布的随机变量序列,且均值为μ,方差为2σ,那么当n 充分大时,近似有X ~ 或 X ~ 。特别是,当同为正态分布时,对于任意的n ,都精确有 X ~ 或~ . 21.设12,,,,n X X X ??????是独立同分布的随机变量序列,且i EX μ=,

相关文档
相关文档 最新文档