文档视界 最新最全的文档下载
当前位置:文档视界 › 锅炉各种工况的代称

锅炉各种工况的代称

锅炉各种工况的代称
锅炉各种工况的代称

ECR表示额定工况,目前上锅引进ALSTOM技术的超临界锅炉热力计算书和技术协议均用BRL表示额定工况,以前引进CE技术的常用ECR表示;北京巴威锅炉厂用汽机THA工况(热耗考核或称热耗保证工况)来表示ECR, VWO(汽机调门全开工况)来表示BMCR.

机组热耗率验收工况-------THA

机组的铭牌工况-----------TRL

机组的最大连续出力工况---T-MCR

N3F热电技术联盟:机组调门全开工况---------VWO

高加切除工况-------------PHO

BMCR 锅炉最大蒸发量,主要是在满足蒸汽参数,炉膛安全情况下的最大出力。

在设计时往往在热力计算中输入该值,看看热力参数是否合理,来确定锅炉各受热面,含炉膛的面积,管子规格,材料等。往往锅炉的实际最大蒸发量大于合同要求的蒸发量。一般锅炉厂都留有一定裕度。

锅炉BRL对应于汽机TRL工况,即ECR额定工况,目前上锅引进ALSTOM技术的超临界锅炉热力计算书和技术协议均用BRL表示额定工况,以前引进CE技术的常用ECR表示;北京巴威锅炉厂用汽机THA工况(热耗考核或称热耗保证工况)来表示ECR,VWO (汽机调门全开工况)来表示BMCR。其它锅炉厂如哈锅、东锅、武锅根据引进技术流派的不同表示方法也会不同,但主要是这几种。TRL 工况是指汽轮机的能力工况,TMCR是汽轮机的最大出力工况,VWO是阀门全开工况,THA是汽轮机额定出力工况。把T换成B 就是锅炉的。

ECR其实可以包括两种工况:THA和BRL。THA代表汽轮机在补水率为0、给水温度额定,且背压达到设计值的情况下,达到发电机铭牌出力的工况,即汽轮机热耗考核工况,60万kW机组发600MW,有的锅炉厂直接引用该缩写代表ECR工况;锅炉BRL对应于汽机TRL,代表汽机在一定补水率和高背压的情况下发600MW的工况,60万kW机组也发600MW。目前锅炉厂热力计算书和技术协议越来越准确了,已标明这两种工况的区别,对于调试单位和性能试验单位更注重的是THA工况,它的蒸汽量小于BRL工况,是考核锅炉设计、制造、调试、安装、辅机设备等水平的重要工况。区别:THA代表了汽轮机最大效率的额定工况,是理想工况,在性能考核试验中能短暂维持;TRL(BRL)代表了机组运行寿命内平均效率的额定工况,即补水率不为零,真空有所下降。TMCR是用等于TRL工况下的蒸汽量在THA工况下发电,看能发多少;VWO是汽机调门不截流,可着锅炉烧,整个汽轮发电机组所能发的最大功率。THA:turbine heat acceptance汽机热耗验收工况,一般都是设计背压下,额定功率工况TRL:turbine rated load汽机额定负载工况,考察夏季高背压下,额定功率下,补水率3%,VWO:valve wide open汽机阀门全开工况,设计背压下,105%THA流量下出力最大工况TMCR:turbine maximum continue rate汽机最大连续出力工况,与BMCR相对应,设计背压下,额定流量下的出力,与TRL流量相同工况。

最新大容量锅炉变工况运行研究49465404

大容量锅炉变工况运行研究49465404

大容量锅炉变工况运行研究 摘要 大容量锅炉变工况运行研究是一个重要的课题,热力计算是变工况研究的基础。对于大容量锅炉机组,若采用我国以前的传统计算方法,会出现计算数据和实际运行数据有较大误差的情况。本文以辐射换热理论为基础,建立了新的大容量锅炉传热模型,并采用了新的热力计算标准对本课题选取的机组进行计算。新的分区段传热模型,将燃烧区域按实际运行时燃烧器的投运方式细分,并计算出燃烧器区域的温度分布和沿炉膛高度方向上的温度分布。辐射式过热器和屏式过热器的计算新方法更符合实际运行规律。本课题以现有的锅炉和传热学理论为基础,以实际运行数据为依据,对计算结果进行比较、分析,为大容量锅炉变工况运行提供了参考。 关键词:锅炉、变工况运行、传热模型

ABSTRACT Variant operation research of the high-capacity boiler is an important subject, and the heat calculation is the foundation of variant wok condition research. If we use old calculation ways to analyze the high-capacity boiler, there will be remarkable inaccuracy between calculation results and real operational data. This paper based the radiant theory establishes a new model of the high-capacity boiler heat transfer . And the new criterion of heat calculation is used to the selected unit. The new fragment model subdivides the combustor zone across the operation. So the temperature along the furnace are obtained. Radiant and platen super heater’s new method are more agree with the practice law. The paper is based on boiler knowledge and heat transfer theory and depends on practical operation data. The analysis on calculation results can provide reference for operation of the high-capacity boiler. KEY WORDS: boiler, variant operation, heat transfer model

锅炉燃烧调整

锅炉燃烧调整 一、燃烧调整的目的和任务 锅炉燃烧工况的好坏,不但直接影响锅炉本身的运行工况和参数变化,而且对整个机组运行的安全、经济均将有着极大的影响,因此无论正常运行或是启停过程,均应合理组织燃烧,以确保燃烧工况稳定、良好。锅炉燃烧调整的任务是: l、保证锅炉参数稳定在规定范围并产生足够数量的合格蒸汽以满足外界负荷的需要; 2、保证锅炉运行安全可靠; 3、尽量减少不完全燃烧损失,以提高锅炉运行的经济性; 4、使NOxSOx及锅炉各项排放指标控制在允许范围内。 燃烧工况稳定、良好,是保证锅炉安全可靠运行的必要条件。燃烧过程不稳定不但将引起蒸汽参数发生波动,而且还将引起未燃烬可燃物在尾部受热面的沉积,以致给尾部烟道带来再燃烧的威胁。炉膛温度过低不但影响燃料的着火和正常燃烧,还容易造成炉膛熄火。炉膛温度过高、燃烧室内火焰充满程度差或火焰中心偏斜等,将引起水冷壁局部结渣,或由于热负荷分布不均匀而使水冷壁和过热器、再热器等受热面的热偏差增大,严重时甚至造成局部管壁超温或过热器爆管事故。 燃烧工况的稳定和良好是提高机组运行经济性的可靠保证。只有燃烧稳定了,才能确保锅炉其它运行工况的稳定;只有锅炉运行工况稳定了,才能保持蒸汽的高参数运行。此外,锅炉燃烧工况的稳定、良好,是采用低氧燃烧的先决条件,采用低氧燃烧,对降低排烟热损失、提高锅炉热效率,减少NOx和SOx的生成都是极为有效的。 提高燃烧的经济性,就要求保持合理的风、粉配合,一、二次风配比,送、吸风配合和保持适当高的炉膛温度。合理的风、粉配合就是要保持炉膛内最佳的过剩空气系数;合理的二、二次风配比就是要保证着火迅速,燃烧完全;合理的送、吸风配合就是要保持适当的炉膛负压。无论在稳定工况或变工况下运行时,只要这些配合、比例调节得当,就可以减少燃烧损失,提高锅炉效率。对于现代火力发电机组,锅炉效率每提高l%,整个机组效率将提高约0.3—0.4%,标准煤耗可下降3—4g/(kW?h)。 要达到上述目的,在运行操作时应注意保持适当的燃烧器一、二次风配比,即保持适当的一、二次风的出口速度和风率,以建立正常的空气动力场,使风粉均匀混合,保证燃烧良好着火和稳定燃烧。此外,还应优化燃烧器的组合方式和进行各燃烧器负荷的合理分配,加强锅炉风

锅炉原理课程设计

课程设计报告 ( –年度第学期) 名称:锅炉课程设计 题目:WGZ670/140-Ⅱ型锅炉 变工况热力计算 院系:能源与动力工程学院班级: 学号: 学生姓名: 同组人员: 指导教师: 设计周数:两周 成绩: 日期:

《锅炉原理》课程设计 任务书 一、目的与要求 1.目的 锅炉课程设计是《锅炉原理》课程的重要教学环节。通过课程设计可以达到如下目的: 1)使学生对锅炉原理课程的知识得以巩固、充实和提高; 2)掌握锅炉机组的热力计算方法,并学会使用热力计算标准和具有综合考虑机组设计 与布置的初步能力; 3)培养学生查阅资料、合理选择和分析数据的能力,提高学生运算、制图等基本技能; 4)培养学生对工程技术问题的严肃认真和负责的态度。 2.要求 1)熟悉所设计锅炉的结构和特点,包括主要工况参数、烟气流程、蒸汽流程等; 2)掌握锅炉热力计算方法,如烟气焓的计算、炉膛热力计算、对流受热面热力计算等; 3)各个计算环节要达到相应误差要求,如排烟温度校核、对流受热面传热量校核等; 4)计算过程合理、结果可信; 5)提交的报告格式规范,有条理。 二、主要内容 按照本组选定的工况参数(煤种、负荷、冷空气温度),结合《锅炉课程设计相关资料》中提供的结构等数据,完成WGZ670/140-2型锅炉的变工况热力计算。 序号设计(实验)内容完成时间备注 1 熟悉设计要求和锅炉的结构 2 完成烟气焓的计算、炉膛计算 3 完成各对流受热面计算 4 提交报告并答辩 四、设计成果要求 学生须提交热力设计计算书,正文格式为宋体,五号字,行间距为21,图表、公式及其标注清楚,数据可靠。 五、考核方式 提交报告并以组为单位进行答辩。 学生姓名(签名): 指导教师(签名):

锅炉燃烧调整

[分享]锅炉燃烧的监视与调整 锅炉燃烧, 调整 锅炉燃烧的监视与调整 1. 燃烧调整的任务炉内燃烧调整的任务可归纳为四点: (1)保证燃烧供热量适应外界负荷的需要,以维持蒸汽压力、温度在正常范围内。 (2)保证着火和燃烧稳定,燃烧中心适当,火焰分布均匀,不烧坏燃烧器,不引起水冷壁、过热器等结渣和超温爆管。(燃烧的安全性) (3)燃烧完全,使机组运行处于最佳经济状况。提高燃烧的经济性,减少对环境的污染。(经济性) (4)对于平衡通风的锅炉来说,应维待一定的炉膛负压。 2. 燃烧火焰监视煤粉的正常燃烧,应具有光亮的金黄色火焰,火色稳定、均匀,火焰中心在燃烧室中部,不触及四周水冷壁;火焰下部不低于冷灰斗一半的深度,火焰中不应有煤粉分离出来,也不应有明显的星点,烟囱的排烟应呈淡灰色。 ① 火焰亮白刺眼:风量偏大,这时炉膛温度较高; ② 火焰暗红:风量过小、煤粉太粗、漏风多,此时炉膛温度偏低; ③ 火焰发黄、无力:煤的水分偏高或挥发分低。 3. 燃料量的调整由于直吹式制粉系统出力的大小直接与锅炉蒸发量相匹配,当负荷变化时,通过①调节给煤机的转速或②启停制粉系统来适应负荷变化的需要。 (1)负荷变动大,即需启动或停止一套制粉系统。 在确定制粉系统启、停方案时,必须考虑到燃烧工况的合理性,如投运燃烧器应均衡、保证炉膛四角都有燃烧器投入运行等。以韩二600MW锅炉为例: ① 75%~100%B-MCR时,运行五台磨; ② 55%~75%B-MCR时,运行四台磨; ③ 40%~55%B-MCR,只有三台磨煤机运行。

④ 40%B-MCR以下时,两台磨运行。 而当锅炉负荷小于50%B-MCR时,应投入油枪稳定燃烧。同时为了保持低负荷时燃烧的经济性,在停用制粉系统时,应注意先停上层燃烧器所对应的磨煤机,而保持下层燃烧器的运行。 (2)负荷变化不大,可通过调节运行中的制粉系统出力来解决。 1) 锅炉负荷增加,要求制粉系统出力增加,应: ① 先增加磨煤机的通风量(开大磨煤机进口风量挡板),利用磨煤机内的少量存粉作为增负荷开始时的缓冲调节; ② 然后增大给煤量(加大给煤机的转速); ③ 同时开大相应的二次风门,使燃煤量适应负荷。 2) 锅炉负荷降低时,则减少给煤量和磨煤机通风量以及二次风量。 4. 风量的调整锅炉的负荷变化时,送入炉内的风量必须与送入炉内的燃料量相适应,同时也必须对引风量进行相应的调整。 入炉的总风量包括一次风和二次风,以及少量的漏风。单元制机组通常配有一、二次风机各两台。一次风机负责将煤粉送入炉内,故运行中的一次风量按照一定的风煤比来控制;二次风机就是送风机,燃烧所需要的助燃空气主要是送风机送入炉膛的,所以入炉总风量主要是通过调节二次风量来调节的。而调节的目标就是在不同负荷下维持相应的氧量设定值(锅炉氧量定值设为锅炉负荷的函数)。 (1) 总风量的调节方法1) 送风大小的判断 ① 锅炉控制盘上装有O2量表,运行人员根据表计的指示值,通过控制烟气中的CO2和O2含量,从而控制炉内过量空气系数的大小。使其尽可能保持为最佳值,以获得较高的锅炉效率。 ② 锅炉在运行中,除了用表计分析判断之外,还要注意分析飞灰、灰渣中的可燃物含量,观察炉内火焰及排烟颜色等,综合分析炉内工况是否正常。如前所述:火焰炽白刺眼,风量偏大,O2量表计的指示值偏高,可能是送风量过大,也可能是锅炉漏风严重,送风调整时应予以注意;火焰暗红不稳,风量偏小时,O2量表计值偏小,此时火焰末端发暗且有黑色烟怠,烟气中含有CO并伴随有烟囱冒黑烟等。 2) 总风量的调节 ①是通过电动执行机构操纵送风机进口导向挡板或动叶倾角,改变其开度来实现的。

锅炉专业考试题库(答案)

锅炉专业考试题库 理论部分: —、填空题: 1、振动给煤机主要由与组成。(给煤槽、电磁振动器) 2、粗、细粉分离器的工作原理是依靠旋转产生的进行分离的。(煤粉气流、离心力) 3、轴承轴向间隙的测量可以用和进行。(塞尺、百分表) 4、筒式磨煤机的破碎原理是和。(撞击、挤压) 5、钢球磨煤机筒体直径,则临界转速低。(大) 6、#45钢常用来制作转动机械中的和。(轴、齿轮) 7、轴承一般分为轴承和轴承,轴承主要承受的向和向的载荷。(滚动、滑动、转子、径、轴) 8、滑动轴承常见的故障象征有,,。(轴承温度高、润滑油温度高、振动加剧) 9、一般滑动轴承的轴瓦可能会出现:、、、。(脱皮剥落、轴瓦剥落、过热变色、裂纹或破碎) 10、换热分为三种基本形式,即:、、。(导热、热对流、热辐射) 11、离心式风机按吸风口的数目可分为和两种。(单吸式、双吸式) 12、风机按其工作特点有和两大类。(轴流式、离心式) 13、基本尺寸相同的相互结合的孔与轴公差之间的关系称为。(配合) 14、在液压传动中,凡是把机械能转变成能的装置都称为泵。(压力) 15、机械强度是指金属材料材料在受外力作用时抵抗和的能力。(变形、破坏) 16、有送、引风机的锅炉通风方式是通风。(平衡) 17、基准制分为和两种。(基轴制、基孔制) 18、锅炉停炉后防腐一般可分为和两种。(湿式防腐、干式防腐) 19、锅炉机组额定参数停炉一般分为和。(正常、事故停炉) 20、省煤器用的护铁应弧形,对管子的包复角为。(120°---180°) 21、热弯管子时的加热温度不得超过℃,其最低温度对碳素钢是℃,对合金钢是℃。(1050、700、800)

锅炉燃烧调整总结

锅炉燃烧调整总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

#2 炉优化调整 机组稳定运行已有3个多月,但在调试结束后我厂#2机组在3月份前在满负荷时床温在960℃左右,总风量大,风机电流大,厂用电率居高不下,一直困扰着我们。通过三个月的分析、调整,近期床温整体回落,总结出主要原因有以下两点: 一、煤颗粒度的差异。前一段时间负荷300MW时床温高炉膛差压在1.5KPa,下部压力2.6KPa,近期炉膛差压在2.1KPa,下部压力3.6KPa,这说明锅炉外循环更好了,分离器能捕捉更多的物料返回炉膛,同时也减少了飞灰含碳量,否则小于1mm的煤粒份额太多分离器使分离效率下降,小于1mm细颗粒太多就烧成煤粉炉的样子,从而导致高床温细颗粒全给飞灰含碳量做贡献了,大于10mm煤粒太多就烧成鼓泡床了,导致水冷壁磨损加剧爆管、冷渣器不下渣和燃烧恶化等一系列问题,所以控制好入炉煤粒度(1—9mm)是保证燃烧的前提,当煤颗粒度不合适时只能通过加大风量使床温下降,在煤颗粒度不合适时加负荷一定要先把风量加起来,否则负荷在300MW时床温会上升到接近980℃,甚至会因床温高被迫在高负荷时解床温高MFT保护,如果处理不当造成结焦造成非停。所以循环流化床锅炉控制煤粒度是决定是否把锅炉烧成真正循环流化床最为重要的因素,可以说粒度问题解决了,锅炉90%的问题都解决了,国内目前最好的煤破碎系统为三级筛分两级破碎。 二、优化燃烧调整。3月份以来#2炉床温虽然整体下降,但仍不够理想,由于我厂AGC投入运行中加减负荷频繁,所以在负荷变

化时锅炉床温变化幅度较大,在最大出力和最小出力时床温相差接近200℃,不断的调整风煤配比使其达到最优燃烧工况,保证床温维持在850℃-900℃。负荷150MW时使总风量维持32万NM3/h左右,一次流化风量21万NM3/h,二次风量11万NM3/h左右,同时关小下二次风小风门(开度20%左右,减小密相区燃烧,提高床温)和开大上二次小风门(开度40%左右,增强稀相区燃烧,提高循环倍率),可使床温维持850℃左右,正常运行中低负荷时一次风量保证最小临界流化风量的前提下尽可能低可使床温维持高一点,以保证最佳炉内脱硫脱硝温度。负荷300MW时总风量维持62万NM3/h左右,一次风量27万NM3/h左右,二次风量35万NM3/h左右,同时开大下二次小风门(开度80%左右,增强密相区扰动,降低床温),关小上二次小风门(开度60%左右,使稀相区进入缺氧燃烧状态),因为东锅厂设计原因,二次上下小风门相同开度情况下上二次风是下二次风风量的三倍,所以加减负荷时根据负荷及时调整二次小风门开度对床温影响较大。高负荷时在床温不高的情况下尽量减小一次风,以达到减少磨损的目的,二次风用来维持总风量,高负荷时床温尽量接近900℃,以达到最佳炉内脱硫脱硝温度,同时加负荷时停止部分或全部冷渣器,床压高一点增强蓄热量可降低床温,减负荷相反,稳定负荷后3台左右冷渣器可保证床压稳定。 在优化燃烧调整基本成熟的基础上,配合锅炉主管薛红军进行全负荷低氧量燃烧运行,全负荷使床温尽量靠近900℃。根据#2炉目前脱硝系统运行情况,负荷150MW时根据氧量及时减减小二次

配联合循环的余热锅炉性能特点

补充 2004年5月4日,摘自焦树建《燃气-蒸汽联合循环》 1.余热锅炉设计时节点温差和接近点温差的选择 节点温差的选择关系到余热功率的效率和投资费用,要加以权衡。 减小节点温差,锅炉效率提高,可以更多的回收热量。但是,投资费用增加,并且锅炉换热面积的增加还会使燃气轮机排气阻力增加,减少燃气轮机的功率,这就会导致联合循环效率有下降的趋势。因此,必须从整个联合循环的效率和经济性两方面加以全面考虑。 当进入余热锅炉的燃气温度随燃气轮机负荷的减少而降低时,接近点温差将随之减少。如果在设计时接近点温差取得过小或未加考虑,则在部分负荷工况下,省煤器内就会发生部分水的汽化,这将导致省煤器管壁过热和故障。另外,接近点温差的选择也关系到省煤器和蒸发器换热面积的设计。这样,必然存在合理的选择接近点温差的问题。 图12.4和12.5给出了当接近点温差选定后,随着节点温差的变化,余热锅炉相对总换热面积、相对排气温度、相对蒸汽产量、相对总投资和相对单位热回收费用的变化规律。这些相对值都是以节点温差选为10℃时的数值作为比较标准。 图12.6给出了余热锅炉的相对总换热面积随接近点温差的变化关系。 图12.7给出了“单压的汽水发生系统”的余热锅炉的当量热效率与节点温差以及相对总换热面积之间的变化关系。 图12.4 的关系 图12.5 相对总投资费用和相对单位 热回收费用随节点温差的变化关系 不言而喻,倘若有意识地增大余热锅炉内燃气侧的流动速度,必然可以因换热效应的强化而使总换热面积有所减小,但是,这个措施却会导致燃气侧流阻损失的增大。图12.8中给出了相对燃气流阻与相对总换热面积之间的变化关系。 通过对上述图12.4至图12.8的分析,我们可以得到以下一些有益的结论: (1)由图12.4可知:当节点温差减小时,余热锅炉的排气温度会下降,燃气的放热量将加大,蒸汽产量会增加,而总的换热面积要增大。计算表明:传热系数基本上是不变的, 但省煤器与蒸发器的对数平均温差将大幅度地减小,致使余热锅炉的总换热面积会增大。余() x s g t f G T A ?=,,5

锅炉汽温调整的方法和注意事项

锅炉汽温调整的方法和注意事项汽温是机、炉安全经济运行所必须监视与调整的主要参数之一,由于影响汽温的因素多,影响过程复杂多变,调节过程惯性大,这就要求汽温调节应勤分析、多观察,树立起超前调节的思想。在机组工况发生变化时,应加强对汽温的监视与调整,分析其影响因素与变化的关系,摸索出汽温调节的一些经验,来指导我们的调整操作。下面,我们对一些典型工况进行分析,并提出一些指导性措施。由于汽温变化的复杂性,大家在应用过程中要结合实际遇到的情况学会灵活变通,不可生搬硬套。 一、机组正常运行中的汽温调节 汽温调节可以分为烟气侧调整、蒸汽侧的调整,烟气侧的调节过程惯性大,通常情况下需要3-5分钟左右温度才会开始变化;而蒸汽侧的调节相对比较灵敏。因此正常运行过程中,应保持减温水调整门具有一定的开度,一般应大于7%;如果减温器已经关完或开度很小时,由于阀门的特性原因它的调节能力减弱,也就是减温水流量变化相对较小,此时应观察同侧另一级减温水流量是否偏大,并及时对其的减温水流量进行重新分配,另外还可以对燃烧进行调整(在炉膛氧量允许时可适当加大风量,或调整风门使火焰中心上移),使汽温回升、减温器开启。如果各级减温器开度均比较大时(若大于60%),

同时也应从燃烧侧调整,或对炉膛进行吹灰,以达到关小各级减温器,使其具有足够的调节余量。 总之,在机组正常运行时,各级减温后的蒸汽温度在不同工况下是不相同的。应加强对各级减温器后蒸汽温度的监视,并做到心中有数,以便在汽温异常时作为调整的参考。建议在负荷发生变化时应将减温水且为手动调整,避免汽温大幅度波动。 二、变工况时汽温的调节。 变工况时汽温波动大,影响因素众多,值班员应在操作过程中分清主次因素,对症下药,及早动手,提前预防.必要时采取过调手段处理,不可贻误时机,酿成超温事故。变工况时汽温的变化主要是锅炉的燃烧负荷与汽轮机的机械负荷不匹配所造成的。一般情况下,当锅炉的热负荷大于汽轮机的机械负荷时,汽温为上升趋势,两者的差值越大,汽温的上升速度越快。目前机组在投入BLR方式下运行时,机组负荷变化频繁且幅度较大。下面对几种常见情况分析如下: 1、正常加减负荷时的汽温调节。 正常加负荷时,在汽轮机调门开度增加,锅炉压力下降自调系统开始增加燃料量、风量。而汽温的变化要滞后于燃烧侧的热负荷的增加。对于过热器来说,由于蒸发量的增加,对过热汽温有一定的补偿能力,所以过热汽温的变化是滞后与负荷变化速度的(它随着负荷的增加燃料量、蒸汽压力、蒸汽流量的增加而增快的)。也就是说负荷

浅谈锅炉的燃烧调节方式

浅谈锅炉的燃烧调节方式 摘要:锅炉燃烧工况的好坏直接影响着锅炉机组及整个发电厂运行的安全和效益。燃烧过程是否稳定直接关系到锅炉运行的可靠性;锅炉燃烧的好坏直接影响 锅炉运行的经济性,燃烧过程的经济性要求合理的风与煤粉的配合,及保证适当 的炉膛温度。 关键词:锅炉燃烧调节方式 1 燃料量的调节 燃料量的调节是燃烧调节的重要一环。不同的燃烧设备和不同的燃料种类, 燃料量的调节方法也各不相同。 中间储仓式制粉系统的特点之一是制粉系统运行工况变化与锅炉负荷并不存 在直接的关系。当锅炉负荷发生变化时,需要调节进入炉内的燃料量,它通过投 入(或停止)喷燃器只数或改变给粉机转数、调节给粉机下粉挡板开度来实现的。当锅炉负荷变化较小时,只需改变给粉机转速就可以达到调节的目的;改变给粉 机的转数是通过平型控制器的加减完成的。当锅炉负荷变化较大时,用改变给粉 机的转数不能满足调节幅度的要求,则在不破坏内燃工况的前提下,可先以投、 停给粉机只数进行调节,而后再调节给粉机转数,弥补调节幅度大的矛盾。若上 述手段仍不能满足调节需要时,可用调节给粉机挡板开度的方法加以辅助调节。 投、停喷燃器(相应的给粉机)运行方式的调节,由于喷燃器布置方式和类 型的不同,投运方式也不相同。当需投入备用的喷燃器和给粉机时,应先开启一 次风门至所需开度,对一次风管进行吹扫;待风压正常时启动给粉机给粉,并开 启喷燃器助燃的二次风,观察着火情况是否正常。反之,在停用喷燃器时,则先 停给粉机并关闭二次风,一次风吹扫数分钟后再关闭,以防一次风管内煤分沉积。为防止停用的喷燃器受热烧坏,有时对其一、二次风门保持适当开度,以冷却喷口。给粉机转数调节的范围不宜太大,若调至过高,则不但会因煤粉浓度过大堵 塞一次风管,而且容易使给粉机超负荷和引起煤粉燃烧不完全。若转数调至过低,则在炉膛温度不太高的情况下,由于煤粉浓度不足,着火不稳,容易发生炉膛灭火。单只增加给粉机转数时,应先将转数低的给粉机增加转数,使各给粉机出力 力求均衡;减低给粉机转数时,应先减转数高的。 对于喷燃器布置在侧墙的锅炉,可先增加中间位置的喷燃器来粉,对四角布 置的喷燃器锅炉,需要相对称的增加给粉机转数。用投入或停止喷燃器运行的方 法进行燃烧调节,尚需考虑对气温的影响。在气温偏低时,投用靠炉膛后侧墙的 喷燃器或上排喷燃器。气温偏高时则停用靠炉膛后侧的喷燃器或上排喷燃器。有 时由煤粉仓死角处煤粉的堆积或煤粉自流等原因将给个别给粉机的给粉量调节带 来一定的困难。此时,对来粉量的调节将是一个细致而麻烦的工作。这就需要反 复的开、停给粉机,或开关给粉机下粉挡板,用木锤敲打、振动给粉机上部空间,促使煤粉仓内沉积的煤粉进行流动或迫使流动较大的煤粉沉积下来。这种调节操 作较为笨拙、繁重,但能达到调节要求。 2 锅炉风量的调节 当外界负荷变化需要调节锅炉出力时,随着燃料量的改变,对锅炉的风量也 需做相应的调解。 在实际运行中,从运行的经济方面来看,在一定的范围内,随着炉内过剩空 气系数的增加,可以改变燃料与空气的接触和混合,有利于完全燃烧,使化学未 完全燃烧损失和机械未完全燃烧损失降低。但是,当过剩空气系数过大时,则炉

锅炉燃烧反应热力特性参数

锅炉燃烧反应热力特性参数 在锅炉炉膛中,参加炉免烧烧化学反应的物质就是燃料(煤、油、气等)和燃烧所需的空气(或氧气)。所以,对锅炉这样一个特定的对象,可以用反应物释热功率的特性参数炉膛容积热负荷(热强度)及炉排面积热负荷(热强度)来表征锅炉燃烧化学反应的速度。 锅炉炉膛容积热负荷是锅炉设计和运行中的最重要的热力特性参数之一。特别对于锅炉火室燃烧来说,尤其重要。在锅炉设计中,总是根据经验性的qv值去确定锅炉炉膛的大小V。对于一个确定参数的锅炉,qv值的大小取决于燃料的燃烧特性及燃烧方式。炉膛容积热负荷愈高,说明炉膛容积v相对较小,炉子比较紧凑。另一方面,在炉膛内停留时间,其中vr为实际烟气量)减少,即意味着在单位炉膛容积内,单位时间里要燃烧更多的燃料,放出更多的热量。显然热负荷愈高的锅炉炉内温度水平愈高。如果设计中确定的qv值与燃料特性、锅炉容量、燃烧方式的实际情况不相符合,出现理论值与实践的脱离。如果qv过大,则在锅炉投入运行后就可能因为炉膛容积v过小,燃料在炉内停留时间太短而来不及燃尽,造成较大的不完全燃烧热损失,使锅炉经济性下降;在锅炉投入运行以后,由于锅炉负荷的变化(升或降负荷运行时)或燃料的改变等因素都会引起锅炉实际的容积热负荷的改变,要注意实际qv值对锅炉安全、经济运行的影响。为了保证锅炉的正常运行,实际的qv是不允许有过大的变化的。因此,锅炉一旦设计制成,投入运行之后,从燃烧的观点来看,锅炉的负荷和燃料品种不允许有过大幅度的变化。 容积热负荷qv是锅炉设计很重要的综合性指标,其数值的大小与炉型、煤种、容量及燃烧方式、燃烧工况有关。 Qv的选取一般有两个基本原则,即燃烧和烟气在锅炉炉膛内的冷却条件。根据我国的实践,对于锅炉容量的固态除渣煤粉炉,按上述两方面原则选用的qv值计算决定,随着容量的增加,从燃烧的角度,炉膛容积v随锅炉容量大致成比例地相应增加,但是炉膛冷却壁面积大致只随锅炉容量2/3次方的比例增长。显然,燃烧和冷却两个基本原则不再相一致了。此时,可以先按推荐的统计值qv估算炉膛容积v,然后以取决于炉膛冷却条件的炉膛出口烟气温度校核最后确定;对于D》2000吨/时的锅炉,qv随锅炉容量的变化不大。 对于火床炉,qv仅是一个参考性指标。因为燃煤绝大部分是在火床上完成燃烧过程的,所以炉膛容积v的大小对燃气来说并不是主要的控制参量。燃煤主要不在空间燃烧,故炉膛容积完全可以设计小一些。因此,qv值反而比煤粉炉高。考虑到火订炉qv值中的放热量BQ不是炉膛空间放热量的真正值,所以对炉膛容积热负荷qv这一个参数指标已不能完全反映出炉膛的热力工作状况,通常引入炉膛截面热负荷QF来核定炉膛燃烧器区域的截面积F。有时还要引入燃烧器区域壁面热负荷Q,作为qv和qf的补充热力特性指标。 锅炉炉膛截面热负荷QF是指炉燃烧器区域单位锅炉炉膛截面积上燃料燃烧放热的热功率式中F—燃烧器区域的炉膛栱截面积,F 是炉膛宽度B与深度A的乘积。很显然,对确定参数的锅炉,qf愈大,则燃燃器区域炉膛截面积相对较小,该区燃烧化学反应强烈,温度水平高。它直接影响到燃烧火焰的稳定性和炉膛面的结渣状况。我国220吨/时的锅炉炉膛截面积相对偏大,一般不以qf 来核定炉膛截面积F。但对大容量锅炉和液态除渣炉,总是以qr值来确定炉膛的截的截面积F。 一般来说,当燃用劣质煤时,为保证炉内有足够高的温度水平,促成燃烧的稳定和强化,在炉膛内不结渣的前提下,qr和qf应选用较高的值为好。

调节锅炉燃烧工况降低烟尘排放浓度

planed hig h spped railw ay,the subject of railw ay noise control is increasing ly significant.In this paper,a few calculating methods about diffracted attenuation and the acoustic design pr inciple about no ise barrier are m ainly discussed,co mbined the important co ntents in the a-coustic desig n of the railw ay noise barr ier. Key w ords:Railw ay noise barrier, Insert loss, Diffracted attenuatio n 调节锅炉燃烧工况 降低烟尘排放浓度 乌鲁木齐铁路分局卫生防疫站(830023) 杨洪泽 蔡江涛 游本虎 任存勇 摘要: 通过对煤层、鼓引风机风量的调节、合理配风,把过量空气系数调节到一个合适的水平,能够减少燃料消耗,有效地降低锅炉烟尘排放浓度和排放总量。我们对某局4台锅炉的燃烧工况进行了调节,烟尘排放浓度降低了15%,烟尘排放量降低了30%以上,燃料消耗减少10%左右。表明这是一种实用可行的方法。 关键词: 锅炉燃烧 过量空气 烟尘浓度 过量空气是直接影响锅炉燃烧效果和热损失的主要原因之一,是锅炉烟尘测试的重要参数。目前,锅炉在运行中过量空气系数( ,即锅炉排烟中实际的空气量与燃料燃烧理论上需要的空气量的比值)较高是一个严重的问题。通过对煤层、鼓引风机风量的调节、合理配风,把过量空气系数调节到一个合适的水平,并控制CO量在100~200ml/m3内[1],提高了锅炉热效率,有效地降低了锅炉烟尘浓度。 1 实验部分 1.1 主要设备、仪器、材料 KM-9003型燃烧效率测定仪(南京分析仪器厂)。JYP-Ⅱ型静压平衡烟尘仪(上海红宇电子设备厂)。空盒气压表(长春气象仪器厂)。以上仪器使用前均经计量校准。无胶滤筒(山东省武城消声器材分厂)。 1.2 烟尘测试方法 锅炉负荷测量采用量水箱法、流量计法。烟尘测试按文献[2]规定的方法进行。1.3 锅炉燃烧工况调节方法 (1)调节鼓引风量,使 在1.55左右,本文选择控制 在1.7~1.8之间。一般情况下, > 1.8,此时根据 的大小,可适当调小鼓引风量。并使炉膛负压保持在10~20Pa 之间。 (2)合理配风,使CO值保持在100~200m l/m3之间。 (3)煤层厚度在8~12cm之间调节。使燃尽区保持在0.5~0.8m之间,CO值在100~200m l/m3之间。 1.4 锅炉燃烧工况调节步骤 (1)密封烟道、炉膛,修理、更换质量不好的炉门、看火门。 (2)在正常负荷下,炉排速度使用慢档快速(4m/h)。 (3)用KM-9003型燃烧效率测定仪测量锅炉出口处氧量、CO量、EFF值。计算 值( =21/(21-O2)),根据 值、CO值按调节方法调节锅炉燃烧工况。 (4)半小时后重复步骤(3),直至控制 在1.7~1.8之间,CO值在100~200ml/m3之间。记录鼓引风风门开启位置,及配风风挡开启位置。 (5)在较低负荷下,煤层厚度保持不变,炉排速度使用慢档慢速(2m/h),重复步骤(3)~(4)。 1.5 锅炉调节、测试及测试数据 对某局4台锅炉按调节方法及步骤进行

锅炉运行调整

锅炉运行调整 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

锅炉运行调整 1.锅炉运行调整的主要任务和目的是什么 1) 保持锅炉燃烧良好,提高锅炉效率。 2) 保持正常的汽温、汽压和汽包水位。 3) 保持蒸汽的品质合格。 4) 保持锅炉蒸发量,满足汽机及热用户的需要。 5) 保持锅炉机组的安全、经济运行。 锅炉运行调整的目的就是通过调节燃料量、给水量、减温水量、送风量和引风量来保持汽温、汽压、汽包水位、过量空气系数、炉膛负压等稳定在额定值或允许值范围内。 2.机组协调控制系统运行方式 单元机组有五种控制方式:基本模式(BM)、炉跟机方式(BF)、机跟炉方式(TF)、机炉协调方式(CCS)、自动发电控制(AGC)。 3.基本模式(BM) 1) 基本模式是一种比较低级的控制模式,其适用范围:机组启动及低负荷阶段;机组给水控制手动或异常状态。 2) 控制策略:汽机主控和锅炉主控都在手动运行方式。在该方式下,单元机组的运行由操作员手动操作,机组的目标负荷指令跟踪机组的实发功率,为投入更高级的控制模式做准备。机组功率变化通过手动调整汽机调阀控制;主汽压力设定值接受机组滑压曲线设定,实际主汽压力和设定值的偏差做为被调量,由燃料、给水以及旁路系统共同调节。在任何控制模式下,只要给水主控从自动切换为手动,则机组的控制模式都将强制切换为基本模式控制。 4.炉跟机方式(BF) 1) 控制策略:锅炉主控自动,调节主汽压力;汽机主控调节机组功率,可以自动也可以手动。主汽压力设定值接受滑压曲线设定,锅炉主控根据实际主汽压力和主汽压力设定值的偏差进行调节。 2) 当汽机主控在手动时,机组功率通过操作员手动调节或由DEH自动调节;可称之为BF1方式。适用范围:锅炉运行正常,汽机部分设备工作异常或机组负荷受到限制。 3) 当汽机主控在自动时,可称之为协调的炉跟机方式BF2。此时锅炉主控和汽机主控同时接受目标负荷的前馈信号,机组功率由汽机调节,目标负荷由操作员手动给定。适用范围:锅炉汽机都运行正常,需要机组参与调峰运行。 5.机跟炉方式(TF) 1) 控制策略:汽机主控自动,调节主汽压力;主汽压力接受机组滑压曲线设定;锅炉主控调节机组功率,可以自动也可以手动。 2) 当锅炉主控在手动,机组功率决定于锅炉所能提供的输出负荷,不接受任何负荷要求指令,可称之为TF1方式。适用范围:汽机运行正常,锅炉不具备投入自动的条件。 3) 当锅炉主控在自动,可称之为协调的机跟炉方式TF2。此时汽机主控和锅炉主控都接受目标负荷的前馈信号,机组功率由锅炉调节,目标负荷由操作员手动给定。适用范围:汽机锅炉都运行正常,带基本负荷;当锅炉运行不稳定或发生异常工况(如RB)时。 6.机炉协调方式(CCS) 1) 控制策略:机炉协调方式实际是机跟炉协调方式和炉跟机协调方式的合成,要求汽机主控和锅炉主控都为自动。按照所依赖的控制方式不同,可分为两种控制策略。 2) 以炉跟机为基础的机炉协调方式:在该方式下,锅炉主控调节主汽压力,主汽压力设定值接受机组滑压曲线设定;汽机主控即调节机组功率又调节主汽压力,但其调功系数大于调压系数,即调功为主、调压为辅。目标负荷为操作员手动给定,锅炉主控和汽机主控同时接受目标负荷的前馈信号,可以参与电网一次调频。目

锅炉课程设计报告个人总结

课程设计报告 ( 2017 – 2018 年度第 1 学期) 名称:锅炉课程设计个人总结题目:WGZ670/140-Ⅱ型锅炉 变工况热力计算 院系:能源与动力工程学院班级:能动1510 姓名:木溪 学号: 同组学生: 指导教师: 设计周数:两周 成绩: 日期:2018年9月13日

课程设计总结分析 (比较所计算工况与锅炉说明书中相应工况的不同之处,并分析原因,同组人员分析也要不同,自己写自己的。也可以写一些对通过课程设计对锅炉课程的新的理解和收获,可以手写) 在这次锅炉课程设计中,通过老师的教导以及和同组同学的探讨及不断试错,我进一步巩固了课程知识,掌握了热力计算的方法,同时也培养了我对热力问题分析处理的能力,收获良多。 本次锅炉课程设计,我们的题目是70%工况、有暖风器,所使用的煤种是淮南谢一矿,相比于锅炉说明书中的设计工况,我们的再热蒸汽温度压力较小,因为再热蒸汽压力温度随负荷变化而改变。对比于锅炉的设计煤种,淮南谢一矿灰的变形温度高很多,具有不易结渣的优点。 对于锅炉的设计来说,选用较低的排烟温度会使锅炉效率提高,但另一方面,使尾部受热面的烟气侧与工质侧的温差减少,增加了受热面的金属消耗量,。如果排烟温度过低,还会引起空气预热器的低温腐蚀。同时,燃料中硫燃烧产生的硫酸蒸汽会使壁面金属腐蚀,。同时,排烟温度过高或者过低会直接影响到后面计算结果及误差的大小,所以排烟温度的选取非常重要。 在本次锅炉课程设计中,我们按照要求,认真熟悉所设计锅炉的结构和特点,包括主要工况参数、烟气流程、蒸汽流程等;掌握锅炉热力计算方法,如烟气焓的计算、炉膛热力计算、对流受热面热力计算等;各个计算环节要达到相应误差要求,如排烟温度校核、对流受热面传热量校核等;尽力做到计算过程合理、结果可信。 此外,计算过程中也要认真细心,我们组在计算过程中由于没有注意到保热系数用在公式中需要将百分数换算成小数,出了比较大的误差,检查了好久才发现。相信以后再遇到这种事情不会再犯类似的错误。 两周的课程设计,繁忙而又充实,虽然很累,而且还有许多暂时没有弄明白的地方,但是我收获了对热力问题分析处理的能力,以及不断探索的态度。 学生签名: 日期:

锅炉燃烧调整

锅炉燃烧调整 一、燃料量调整: 1、负荷增加时,相应增加风量及进入炉膛燃料量;负荷减少时,相应减少风量及进入炉膛燃料量。 2、当锅炉负荷变化不大时,可通过调整运行制粉系统的出力来调整燃料量。若锅炉负荷增加,要求制粉系统出力增大时,应先开磨煤机进口的风量,利用磨煤机内的存粉作为增负荷开始的缓冲调整,然后增加给煤量,同时相应开大二次风门。反之,当锅炉负荷降低时,则应减少给煤量,磨煤机通风量以及二次风量。 3、当锅炉负荷变化较大时,需要通过启停制粉系统来调整燃料量。其原则是: (1)保证磨煤机在合适的负荷下运行。 (2)保证燃烧器的运行方式尽量集中、同层和对角投入,能保证燃烧工况良好,火焰分布均匀,以防止热负荷过于集中造成水冷壁运行工况恶化。燃烧器应尽量避免缺角运行,保持磨煤机料位稳定,但防止过低或过高运行,保持炉内燃烧工况经常处于最佳状态。当发现燃烧不稳时,应迅速投入油枪稳定燃烧。 (3)在启动制粉系统时,应及时调整一、二次风及炉膛压力,并及时调整运行制粉系统的出力,保持燃烧稳定,防止负荷骤增骤减。燃油系统要处于循环备用状态,定期对油枪进行试投,发现缺陷要及时联系检修处理。 4、磨煤机运行中,通风量应保持在规定范围内。磨煤机通风量过小,一次风速过低,煤粉在炉膛内着火过早会烧坏燃烧器喷嘴,严重时造成一次风管堵塞及磨煤机满煤。磨煤机通风量过大,会造成煤粉细度大,使煤粉在炉膛内着火推迟,引起燃烧不稳,并加剧一次风管磨损。 5、锅炉低负荷运行或燃用劣质煤时,炉膛温度较低,燃烧不稳定时应及时投入油枪助燃稳定燃烧。 6、切换制粉系统时,应先启动备用制粉系统,再停运准备检修的制粉系统。停运的燃烧器要保持一定量的周界风冷却,以防止烧坏燃烧器喷口。 7、投运备用磨煤机时,应先开启清扫风门,对一次风管逐个进行吹扫,启动磨煤机,建立料位后,逐渐开大容量风,并调整相应的二次风挡板,观察着火情况是否正常,正常情况下控制磨煤机分离器出口一次风压在2.0~4.0KPa左右,以确保一次风粉均匀性及燃烧器出口风速及风率合理性。 8、停运磨煤机时,应先关闭对应给煤机入口挡板,将给煤机走空后停止,然后将磨煤机内煤粉吹空,一次风管吹扫完毕后,停运磨煤机。对停用的燃烧器应保持少量周界风通风冷却,以防喷口烧坏。注意监视磨煤机出口温度≯80℃。 9、锅炉在低负荷运行时,尽量投下层燃烧器。 10、任何情况下,必须保证至少有相邻两层煤火嘴投运,否则应投油助燃。 二、送风量调整: 1、当锅炉负荷发生变化时,随着燃料量的改变,必须同时对送风量进行相应的调整。 2、炉膛风量正常时,炉膛火焰颜色呈金黄色,火焰中无明显火星,均匀地充满炉膛,着火点应在燃烧器出口0.5m处,不直接冲刷水冷壁,火焰无脉动现象,各燃烧器无结焦和烧坏现象;烟气含氧量3~5%;当炉膛内火焰炽白刺眼,烟气含氧量过大时,应适当减少送风量;当炉膛内火焰暗黄色,烟气含氧量小时,应适当增加送风量。 3、两台送风机运行时,其入口动叶、电流、出力应基本一致,同时调整。正常情

联合循环机组余热锅炉、汽机的运行调整交稿

第二节联合循环机组运行调整 一、联合循环机组汽机、锅炉运行调整目的 燃机—蒸汽联合循环发电机组在运行中,若其进、排气参数、流量、转速、和功率都与热力设计时作为的数值相等,这种工况称为设计工况。但由于电网所需的负载随着外界需求的变化而变化,使得燃气轮机和联合循环发电机组的输出功率随之而变,这是导致机组在变工况下工作的一个重要因素。 在燃机—蒸汽联合循环中,燃气轮机负荷总是在不断的变化,又常运行在温度变化范围很大的大气环境中,因此燃气轮机排气温度和流量都发生着很大的变化。这样,余热锅炉热力特性也随之变动,其产汽量、蒸汽温度和压力等都会发生变化。 燃气轮机处于变工况下工作时,联合循环必然也在变工况下工作。联合循环中蒸汽侧某些因素变化后,也将使联合循环工况发生变化。 余热锅炉型联合循环的变工况,是指在燃气轮机起主导作用下,燃气轮机、余热锅炉与汽轮机的平衡运行。就联合循环控制调节的目的来说,就是要使机组的某些参数在运行过程中基本保持不变,或者是按某个预先给定的规律进行变化。显然,作为一个发电设备,联合循环的首要调节任务是根据外界电负荷或热负荷的要求来调整机组的功率;另一个任务则是使其他某些重要的运行参数,保持在某些预先确定的允许范围之内变化,确保机组安全、经济运行。 鉴于目前大多数余热锅炉型联合循环由单轴燃气轮机组成,且用于发电,余热锅炉不补燃,以下的联合循环运行调整以这类联合循环机组为运行调整作为叙述重点。 余热锅炉启动投运后必须进行监视和调整,以维护锅炉正常运行,满足汽轮机的工作要求。监视和调整内容包括:保持正常的汽压和汽温;保持正常水位;保持合格的蒸汽品质;保证锅炉机组安全运行、工况稳定。 对余热锅炉运行总的要求是既要安全又要经济。运行中对余热锅炉的运行进行监视和调整的主要任务和目的是: 1.使锅炉的蒸发量随时适应外界负荷的需要。 2.均衡给水并维持汽包正常水位。 3.汽压、汽温稳定在规定的范围内。 4.保证合格的蒸汽品质。 5.尽量减少热损失,提高锅炉效率。

余热锅炉组成及工作过程

余热锅炉组成及工作过程 通常余热锅炉由省煤器、蒸发器、过热器以及联箱和汽包等换热管组和容器等组成,在有再热器的蒸汽循环中,可以加设再热器。在省煤器中锅炉的给水完成预热的任务,使给水温度升高到接近饱和温度的水平;在蒸发器中给水相变成为饱和蒸汽;在过热器中饱和蒸汽被加热升温成为过热蒸汽;在再热器中再热蒸汽被加热升温到所设定的再热温度. 过热器的作用是将蒸汽从饱和温度加热到一定的过热温度。它位于温度最高的烟气区,而管内工质为蒸汽,受热面的冷却条件较差,从而在余热锅炉各部件中最高的金属管壁温度。 省煤器的作用是利用尾部低温烟气的热量来加热余热锅炉给水,从而降低排气温度,提高余热锅炉以及联合循环的效率,节约燃料消耗量。常规锅炉的省煤器分为沸腾式和非沸腾式两种,前者允许产生蒸汽而后者不允许。通常不希望联合循环中的余热锅炉在省煤器中产生蒸汽,因为蒸汽可能导致水击或局部过热,在机组刚起动以及低负荷时,省煤器管内工质流动速度很低,此时较容易产生蒸汽。采用省煤器再循环壁可以增加省煤器中水的质量流量,从而解决这个问题。还有些用户布置烟气旁路系统,在部分负荷时将部分省煤器退出运行,这样也可以增加省煤器的工质流速 在蒸发器内,水吸热产生蒸汽。通常情况下只有部分水变成蒸汽,所以管内流动的是汽水混合物。汽水混合物在蒸发器中向上流动,进入对应压力的汽包。 在自然循环和强制循环的余热锅炉中,汽包是必不可少的重要部件。汽包除了汇集省煤器给水和汇集从蒸发器来的汽、水混合物外,还要提供合格的饱和蒸汽进入过热器或供给用户。汽包内装有汽水分离设备,来自蒸发器的汽水混合物进行分离,水回到汽包的水空间与省煤器的来水混合后从新进入蒸发器,而蒸汽从汽包顶部引出。汽包的尺寸要大到足以容纳必需的汽水分离器装置,并能适应锅炉符合变化时所发生的水位变化,因此是很大的储水容器,从而具有较大的水容量和较多热惯性,对负荷变化不敏感。汽包通常不受热,因为在接近饱和温度下运行时抗拉和屈服强度是关键的。 减温器通常位于过热器或再热器出口管组的进口处,比如一、二级过热器之间。减温水一般来自锅炉给水泵,为了能够正常的工作,它的压力要比蒸汽压力高2.76Mpa左右。减温水通过喷口雾化后喷入湍流强烈的蒸汽中,蒸汽的速度和雾化的水滴尺寸是确定减温效果的两个最重要因素。一个好的过热器或再热器设计,在额定负荷稳定运行时需要很少的喷水量。 余热锅炉主要特性参数 NG-901FA-R型余热锅炉设计参数如下所示: 1

相关文档
相关文档 最新文档