文档视界 最新最全的文档下载
当前位置:文档视界 › 物理选修3-3热力学定律与能量守恒

物理选修3-3热力学定律与能量守恒

物理选修3-3热力学定律与能量守恒
物理选修3-3热力学定律与能量守恒

第3讲热力学定律与能量守恒

知识一热力学第一定律

1.改变物体内能的两种方式

(1)做功;(2)热传递.

2.热力学第一定律

(1)内容:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和.

(2)表达式:ΔU=Q+W.

3.ΔU=W+Q中正、负号法则

物理量

W Q ΔU

意义

符号

+外界对物体做功物体吸收热量内能增加

-物体对外界做功物体放出热量内能减少

(1)内能的变化与做功和热传递有关,只确定一个因素不能判断内能增加或减少.

(2)应用热力学第一定律,一定要弄清各物理量的符号.

知识二热力学第二定律及微观意义

1.热力学第二定律的两种表述

(1)克劳修斯表述:热量不能自发地从低温物体传到高温物体.

(2)开尔文表述:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响.或表述为“第二类永动机是不可能制成的.”

2.用熵的概念表示热力学第二定律

在任何自然过程中,一个孤立系统的总熵不会减小(填“增大”或“减小”).

3.热力学第二定律的微观意义

一切自发过程总是沿着分子热运动的无序性增大的方向进行.

知识三能量守恒定律和两类永动机

1.能量守恒定律

能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.2.能源的利用

(1)存在能量耗散和品质下降.

(2)重视利用能源时对环境的影响.

(3)要开发新能源(如太阳能、生物质能、风能、水流能等).

3.两类永动机

(1)第一类永动机:不消耗任何能量,却源源不断地对外做功的机器.

违背能量守恒定律,因此不可能实现.

(2)第二类永动机:从单一热源吸收热量并把它全部用来对外做功,而不引起其他变化的机器.

违背热力学第二定律,不可能实现.

考点一热力学第一定律的理解和应用

一、在ΔU=Q+W中,W表示做功情况,说明内能和其他形式的能可以相互转化;Q表示吸热或放热的情况,说明内能可以从一个物体转移到另一个物体,而ΔU=Q+W是能量守恒定律的具体体现.

二、三种特殊情况

1.若过程是绝热的,则Q=0,W=ΔU,外界对物体做的功等

于物体内能的增加.

2.若过程中不做功,即W=0,Q=ΔU,物体吸收的热量等于物体内能的增加.

3.若过程的始、末状态物体的内能不变,即ΔU=0,则W+Q=0或W=-Q,外界对物体做的功等于物体放出的热量.

————————————

(2013·北京高考)下列说法正确的是()

A.液体中悬浮微粒的无规则运动称为布朗运动

B.液体分子的无规则运动称为布朗运动

C.物体从外界吸收热量,其内能一定增加

D.物体对外界做功,其内能一定减少

【解析】布朗运动是颗粒的无规则运动,反映了液体分子的无规则运动,故A正确,B错误;根据热力学第一定律ΔU=W+Q,物体从外界吸收热量,其内能不一定增加,物体对外界做功,其内能也不一定减少,故C、D错误.

【答案】 A

————————————

一定质量的气体,在从状态1变化到状态2的过程中,吸收热量280 J,并对外做功120 J,试问:

(1)这些气体的内能发生了怎样的变化?

(2)如果这些气体又返回原来的状态,并放出了240 J热量,那么在返回的过程中是气体对外界做功,还是外界对气体做功?做功多少?

【解析】(1)由热力学第一定律可得ΔU=W+Q=-120 J+280 J=160 J,气体的内能增加了160 J.

(2)由于气体的内能仅与状态有关,所以气体从状态2回到状态1的过程中内能的变化应等于从状态1到状态2的过程中内能的变化,则从状态2到状态1的内能应减少160 J,即ΔU′=-160 J,又Q′=-240 J,根据热力学第一定律得:

ΔU′=W′+Q′,所以W′=ΔU′-Q′=-160 J-(-240 J)=80 J,即外界对气体做功80 J.

【答案】(1)增加了160 J(2)外界对气体做功80 J

考点二热力学第二定律的理解和应用

一、在热力学第二定律的表述中,“自发地”、“不产生其他影响”的含义

1.“自发地”指明了热传递等热力学宏观现象的方向性,不需要借助外界提供能量的帮助.

2.“不产生其他影响”的含义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响.如吸热、放热、做功等.

二、热力学第二定律的实质

热力学第二定律的每一种表述,都揭示了大量分子参与宏观过程的方向性,进而使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性.

三、热力学过程方向性实例

1.高温物体

热量Q能自发传给

热量Q不能自发传给

低温物体.

2.功

能自发地完全转化为

不能自发地且不能完全转化为

热.

3.气体体积V1

能自发膨胀到

不能自发收缩到

气体体积V2(较大).

4.不同气体A和B

能自发混合成

不能自发分离成

混合气体AB.

————————————

如图11-3-1所示中汽缸内盛有定量的理想气体,汽缸壁是导热的,缸外环境保持恒温,活塞与汽缸壁的接触是光滑的,但不漏气.现将活塞杆与外界连接,使其缓慢地向右移动,这样气体将等温膨胀并通过杆对外做功.若已知理想气体的内能只与温度有关,则下列说法正确的是()

图11-3-1

A.气体是从单一热源吸热,全用来对外做功,因此此过程违反热力学第二定律

B.气体从单一热源吸热,但并未全用来对外做功,所以此过程不违反热力学第二定律C.气体是从单一热源吸热,全用来对外做功,但此过程不违反热力学第二定律

D.A、B、C三种说法都不对

【解析】热力学第二定律从机械能与内能转化过程的方向性来描述是:不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化.本题中如果没有外界的帮助,比如外力拉动活塞杆使活塞向右移动,使气体膨胀对外做功,导致气体温度略微降低,是不可能从外界吸收热量的,即这一过程虽然是气体从单一热源吸热,全用来对外做功,但引起了其他变化,所以此过程不违反热力学第二定律.

【答案】C

————————————

(多选)(2012·新课标全国高考)关于热力学定律,下列说法正确的是() A.为了增加物体的内能,必须对物体做功或向它传递热量

B.对某物体做功,必定会使该物体的内能增加

C.可以从单一热源吸收热量,使之完全变为功

D.不可能使热量从低温物体传向高温物体

E.功转变为热的实际宏观过程是不可逆过程

【解析】根据热力学第一定律ΔU=Q+W,A正确,B错误.根据热力学第二定律,C、E正确,D错误.

【答案】ACE

考点三 热力学定律与气体实验定律的综合应用

————————————

图11-3-2

(2012·山东高考)如图11-3-2所示,粗细均匀、导热良好、装有适量水银的U 型管竖直放置,右端与大气相通,左端封闭气柱长l 1=20 cm(可视为理想气体),两管中水银面等高.现将右端与一低压舱(未画出)接通,稳定后右管水银面高出左管水银面h =10 cm.(环境温度不变,大气压强p 0=75 cmHg)

(1)求稳定后低压舱内的压强(用“cmHg”作单位).

(2)此过程中左管内的气体对外界________(填“做正功”、“做负功”或“不做功”),气体将________(填“吸热”或“放热”).

【解析】 (1)设U 型管横截面积为S ,右端与大气相通时左管中封闭气体压强为p 1,右端与一低压舱接通后,左管中封闭气体的压强为p 2,气柱长度为l 2,稳定后低压舱内的压强为p .左管中封闭气体发生等温变化,根据玻意耳定律得

p 1V 1=p 2V 2①

p 1=p 0②

p 2=p +p h ③

V 1=l 1S ④

V 2=l 2S ⑤

由几何关系得h =2(l 2-l 1)⑥

联立①②③④⑤⑥式,代入数据得p =50 cmHg.⑦

(2)左管内气体膨胀,气体对外界做正功,温度不变,ΔU =0,根据热力学第一定律,ΔU =Q +W 且W <0,所以Q =-W >0,气体将吸热.

【答案】 (1)50 cmHg (2)做正功 吸热

————————————

如图11-3-3,体积为V 、内壁光滑的圆柱形导热汽缸顶部有一质量和厚度均可忽略的活塞;汽缸内密封有温度为2.4T 0、压强为1.2p 0的理想气体,p 0和T 0

图11-3-3

分别为大气的压强和温度.已知:气体内能U 与温度T 的关系为U =αT ,α为正的常量;容器内气体的所有变化过程都是缓慢的.求:

(1)汽缸内气体与大气达到平衡时的体积V 1;

(2)在活塞下降过程中,汽缸内气体放出的热量Q .

【解析】 (1)在气体由p =1.2p 0下降到p 0的过程中,气体体积不变,温度由T =2.4T 0变为T 1,

由查理定律得T 1T =p 0p

在气体温度由T 1变为T 0的过程中,体积由V 减小到V 1,气体压强不变,

由盖—吕萨克定律得V V 1=T 1T 0,解得?????

T 1=2T 0V 1=12

V (2)在活塞下降过程中,活塞对气体做的功为

W =p 0(V -V 1)

在这一过程中,气体内能的减少量为

ΔU =α(T 1-T 0)

由热力学第一定律得,汽缸内气体放出的热量为

Q =W +ΔU ,

解得Q =12

p 0V +αT 0 【答案】 (1)12V (2)12

p 0V +αT 0

(1)理想气体无分子势能,只有分子动能,一定质量的气体,其内能只取决于温度,而与体积无关.

(2)在气体状态变化过程中,三个状态参量(p 、V 、T )遵循理想气体状态方程p 1V 1T 1=p 2V 2T 2

(或pV T

=C 常数),判断气体的内能的变化只需分析气体的温度,温度升高(或降低),内能增大(或减小).

(3)由气体体积变化情况分析做功情况,气体体积增大,气体对外做功,气体体积减小,外界对气体做功.然后由热力学第一定律ΔU =Q +W 确定热量Q 的正、负,判断出吸热、放热.

1.物体的内能增加了20 J ,下列说法中正确的是( )

A .一定是外界对物体做了20 J 的功

B .一定是物体吸收了20 J 的热量

C .一定是物体分子动能增加了20 J

D .物体的分子平均动能可能不变

【解析】 做功和热传递都可以改变物体内能,物体内能改变20 J ,其方式是不确定的,因此A 、B 错误.而物体内能包括所有分子的平均动能和势能,内能由分子数、分子平均动能、势能三者决定,因此答案C 错误.物体内能增加20 J 温度可能不变,故平均动能可能不变,D 正确.

【答案】 D

2.(多选)关于第二类永动机,下列说法正确的是( )

A .没有冷凝器,只有单一的热源,能将从单一热源吸收的热量全部用来做功,而不引起其他变化的热机叫做第二类永动机

B .第二类永动机违反了能量守恒定律,所以不可能制成

C .第二类永动机不可能制成,说明机械能可以全部转化为内能,内能却不可能全部转化为机械能

D .第二类永动机不可能制成,说明机械能可以全部转化为内能,内能却不可能全部转化为机械能,同时不引起其他变化

【解析】 根据第二类永动机的定义可知A 选项正确,第二类永动机不违反能量守恒定律,而是违反热力学第二定律,所以B 选项错误.机械能可以全部转化为内能,内能在引起其他变化时可能全部转化为机械能,C 选项错误,D 选项正确.

【答案】 AD

3.若一气泡从湖底上升到湖面的过程中温度保持不变,则在此过程中关于气泡中的气体,下列说法中正确的是( )

A .气体分子间的作用力增大

B .气体分子的平均速率增大

C .气体分子的平均动能减小

D .气体组成的系统的熵增加

【解析】 考虑气体分子间作用力时,若分子力是引力,分子间距从r 0增大,则分子力先增大后减小,A 错误.气泡上升过程中温度不变,分子平均动能不变,分子平均速率也不变,B 、C 错误.气泡上升过程中体积膨胀,分子势能增加,内能增大,而对外做功,故气体一定吸收热量,又因为温度不变,故其熵必增加,D 正确.

【答案】 D

4.(2011·福建高考)一定量的理想气体在某一过程中,从外界吸收热量2.5×104 J ,气体对外界做功1.0×104 J ,则该理想气体的( )

A .温度降低,密度增大

B .温度降低,密度减小

C .温度升高,密度增大

D .温度升高,密度减小

【解析】 由ΔU =W +Q 可得理想气体内能变化ΔU =-1.0×104 J +2.5×104 J =

1.5×104 J>0,故温度升高,A 、B 两项均错.因为气体对外做功,所以气体一定膨胀,体积

变大,由ρ=m V

可知密度变小,故C 项错误,D 项正确. 【答案】 D

5.如图11-3-4是密闭的汽缸,外力推动活塞P 压缩气体,对缸内气体做功800 J ,若同时气体向外界放热200 J ,缸内气体的( )

图11-3-4 A .温度升高,内能增加600 J

B .温度升高,内能减少200 J

C .温度降低,内能增加600 J

D .温度降低,内能减少200 J

【解析】 对一定质量的气体,由热力学第一定律ΔU =W +Q 可知,ΔU =800 J +(-200 J)=600 J ,ΔU 为正表示内能增加了600 J ,对气体来说,分子间距较大,分子势能为零,内能等于所有分子动能的和,内能增加,气体分子的平均动能增加,温度升高,选项A 正确.

【答案】 A

6.(多选)(2011·大纲全国高考)关于一定量的气体,下列叙述正确的是( )

A .气体吸收的热量可以完全转化为功

B .气体体积增大时,其内能一定减少

C .气体从外界吸收热量,其内能一定增加

D .外界对气体做功,气体内能可能减少

【解析】 由热力学第二定律知吸收的热不能自发地全部转化为功,但通过其他方法可以全部转化为功,故A 正确;气体体积增大,对外做功,若同时伴随有吸热,其内能不一定减少,B 错误;气体从外界吸热,若同时伴随有做功,其内能不一定增加,C 错误;外界对气体做功,同时气体放热,其内能可能减少,D 正确.

【答案】 AD

7.(2013·山东高考)下列关于热现象的描述正确的一项是( )

A .根据热力学定律,热机的效率可以达到100%

B .做功和热传递都是通过能量转化的方式改变系统内能的

C.温度是描述热运动的物理量,一个系统与另一个系统达到热平衡时两系统温度相同D.物体由大量分子组成,其单个分子的运动是无规则的,大量分子的运动也是无规律的

【解析】根据热力学第二定律可知,热机不可能从单一热源吸收热量全部用来做功而不引起其他变化,因此,热机的效率不可能达到100%,选项A错误;做功是通过能量的转化改变系统的内能,热传递是通过能量转移改变系统的内能,选项B错误;温度是表示热运动的物理量,热传递过程中达到热平衡时,温度相同,选项C正确;单个分子的运动是无规则的,大量分子的运动表现出统计规律,选项D错误.

【答案】 C

8.(2012·广东高考)景颇族的祖先发明的点火器如图11-3-5所示,用牛角做套筒,木制推杆前端粘着艾绒,猛推推杆,艾绒即可点燃.对筒内封闭的气体,在此压缩过程中()

图11-3-5

A.气体温度升高,压强不变

B.气体温度升高,压强变大

C.气体对外界做正功,气体内能增加

D.外界对气体做正功,气体内能减少

【解析】筒内封闭气体被压缩过程中,外界对气体做正功.由热力学第一定律ΔU=W

+Q知,气体内能增加,温度升高.由理想气体状态方程pV

T=C知,气体压强增大.选项

A、C、D错误,选项B正确.

【答案】 B

9.(多选)(2013·新课标全国卷Ⅱ)关于一定量的气体,下列说法正确的是()

A.气体的体积指的是该气体的分子所能到达的空间的体积,而不是该气体所有分子体积之和

B.只要能减弱气体分子热运动的剧烈程度,气体的温度就可以降低

C.在完全失重的情况下,气体对容器壁的压强为零

D.气体从外界吸收热量,其内能一定增加

E.气体在等压膨胀过程中温度一定升高

【解析】气体的体积指的是该气体的分子所能到达的空间的体积,因为气体分子之间有很大的空隙,不是所有分子体积之和,选项A正确;温度是大量气体分子平均动能的标志,反映了物体内分子热运动的剧烈程度,选项B正确;气体压强是大量分子无规则热运动对器壁的碰撞产生的,与失重无关,选项C错误;气体从外界吸收热量,如果气体对外做功,其内能可能减小,选项D错误;根据pV/T=常量可知,在等压膨胀过程中,温度一定升高,选项E正确.

【答案】ABE

10.如图11-3-6所示,A、B两个汽缸中装有体积均为10 L、压强均为1 atm(标准大气压)、温度均为27 ℃的空气,中间用细管连接,细管容积不计.细管中有一绝热活塞,现将B汽缸中的气体升温到127 ℃,若要使细管中的活塞仍停在原位置.(不计摩擦,A汽缸中的气体温度保持不变,A汽缸截面积为500 cm2)

图11-3-6

(1)求A中活塞应向右移动的距离;

(2)A中气体是吸热还是放热,为什么?

【解析】(1)对B:由p B

T B=p′B T′B

p ′B =T ′B T B p B =400300p B =43

p B 对A :由p A V A =p ′A V ′A 得V ′A =p A V A p ′A

且:p A =P B ,p ′A =p ′B 解得:V ′A =43

V A 所以Δl =14V A S

=5 cm. (2)放热,在向右推活塞过程中,A 中气体温度不变,气体内能不变;体积减小,外界对气体做功,由热力学第一定律ΔU =W +Q 可知气体应放热.

【答案】 (1)5 cm (2)见解析

(完整word版)大学物理气体动理论热力学基础复习题及答案详解

第12章 气体动理论 一、 填空题: 1、一打足气的自行车内胎,若在7℃时轮胎中空气压强为4.0×510pa .则在温度变为37℃,轮胎内空气的 压强是 。(设内胎容积不变) 2、在湖面下50.0m 深处(温度为4.0℃),有一个体积为531.010m -?的空气泡升到水面上来,若湖面的 温度为17.0℃,则气泡到达湖面的体积是 。(取大气压强为50 1.01310p pa =?) 3、一容器内储有氧气,其压强为50 1.0110p pa =?,温度为27.0℃,则气体分子的数密度 为 ;氧气的密度为 ;分子的平均平动动能为 ;分子间的平均 距离为 。(设分子均匀等距排列) 4、星际空间温度可达 2.7k ,则氢分子的平均速率为 ,方均根速率为 ,最概然速率 为 。 5、在压强为51.0110pa ?下,氮气分子的平均自由程为66.010cm -?,当温度不变时,压强 为 ,则其平均自由程为1.0mm 。 6、若氖气分子的有效直径为82.5910cm -?,则在温度为600k ,压强为21.3310pa ?时,氖分子1s 内的 平均碰撞次数为 。 7、如图12-1所示两条曲线(1)和(2),分别定性的表示一定量的 某种理想气体不同温度下的速率分布曲线,对应温度高的曲线 是 .若图中两条曲线定性的表示相同温 度下的氢气和氧气的速率分布曲线,则表示氧气速率分布曲线的 是 . 8、试说明下列各量的物理物理意义: (1) 12kT , (2)32 kT , (3)2i kT , (4)2 i RT , (5)32RT , (6)2M i RT Mmol 。 参考答案: 1、54.4310pa ? 2、536.1110m -? 3、25332192.4410 1.30 6.2110 3.4510m kg m J m ----???? 4、21 21121.6910 1.8310 1.5010m s m s m s ---?????? 图12-1

大学物理物理知识点总结

y 第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r ==v 运动方程 ()r r t =r r 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △,r =r △路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t u u u D D = =+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x ??????+=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x ????ρ ?2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ??+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x ? 二.抛体运动 运动方程矢量式为 2 012 r v t gt =+ r r r

大学物理热学总结

大学物理热学总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

大学物理热学总结 (注:难免有疏漏和不足之处,仅供参考。 ) 教材版本:高等教育出版社《大学物理学》热力学基础 1、体积、压强和温度是描述气体宏观性质的三个状态参量。 ①温度:表征系统热平衡时宏观状态的物理量。摄氏温标,t表示,单位摄氏度(℃)。热力学温标,即开尔文温标,T表示,单位开尔文,简称开(K)。 热力学温标的刻度单位与摄氏温标相同,他们之间的换算关系: T/K=273.15℃+ t 温度没有上限,却有下限,即热力学温标的绝对零度。温度可以无限接近0K,但永远不能达到0K。 ②压强:气体作用在容器壁单位面积上指向器壁的垂直作用力。单位帕斯卡,简称帕(Pa)。其他:标准大气压(atm)、毫米汞高(mmHg)。 1 atm =1.01325×105 Pa = 760 mmHg ③体积:气体分子运动时所能到达的空间。单位立方米(m3)、升(L) 2、热力学第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡,则这两个系统也必处于热平衡。 该定律表明:处于同一热平衡状态的所有热力学系统都具有一个共同的宏观特征,这一特征可以用一个状态参量来表示,这个状态参量既是温度。3、平衡态:对于一个孤立系统(与外界不发生任何物质和能量的交换)而言,如果宏观性质在经过充分长的时间后保持不变,也就是系统的状态参量不再岁时间改变,则此时系统所处的状态称平衡态。 通常用p—V图上的一个点表示一个平衡态。(理想概念) 4、热力学过程:系统状态发生变化的整个历程,简称过程。可分为: ①准静态过程:过程中的每个中间态都无限接近于平衡态,是实际过程进行的无限缓慢的极限情况,可用p—V图上一条曲线表示。 ②非准静态过程:中间状态为非平衡态的过程。

大学物理习题第4单元 能量守恒定律

第四章 能量守恒定律 序号 学号 姓名 专业、班级 一 选择题 [ D ]1. 如图所示,一劲度系数为k 的轻弹簧水平放置,左端固定,右端与桌面上一质量 为m 的木块连接,用一水平力F 向右拉木块而使其处于静止状态,若木块与桌面间的静摩擦系 数为μ,弹簧的弹性势能为 p E ,则下列关系式中正确的是 (A) p E = k mg F 2)(2 μ- (B) p E =k mg F 2)(2 μ+ (C) K F E p 22 = (D) k mg F 2)(2μ-≤p E ≤ k mg F 2)(2 μ+ [ D ]2.一个质点在几个力同时作用下的位移为:)SI (654k j i r +-=? 其中一个力为恒力)SI (953k j i F +--=,则此力在该位移过程中所作的功为 (A )-67 J (B )91 J (C )17 J (D )67 J [ C ]3.一个作直线运动的物体,其速度 v 与时间 t 的关系曲线如图所示。设时刻1t 至2t 间 外力做功为1W ;时刻2t 至3t 间外力作的功为2W ;时刻3t 至4t 间外力做功为3W ,则 (A )0,0,0321<<>W W W (B )0,0,0321><>W W W (C )0,0,0321><=W W W (D )0,0,0321<<=W W W [ C ]4.对功的概念有以下几种说法: (1) 保守力作正功时,系统内相应的势能增加。 (2) 质点运动经一闭合路径,保守力对质点作的功为零。 (3) 作用力和反作用力大小相等、方向相反,所以两者所作的功的代数和必然为零。 在上述说法中: (A )(1)、(2)是正确的 (B )(2)、(3)是正确的 (C )只有(2)是正确的 (D )只有(3)是正确的。 [ C ]5.对于一个物体系统来说,在下列条件中,那种情况下系统的机械能守恒? (A )合外力为0 (B )合外力不作功 (C )外力和非保守内力都不作功 (D )外力和保守力都不作功。 二 填空题 1.质量为m 的物体,置于电梯内,电梯以 2 1 g 的加速度匀加速下降h ,在此过程中,电梯对物体的作用力所做的功为 mgh 2 1 - 。 2.已知地球质量为M ,半径为R ,一质量为m 的火箭从地面上升到距地面高度为2R 处,在此过程中,地球引力对火箭作的功为)1 31(R R GMm -。 3.二质点的质量各为1m 、2m ,当它们之间的距离由a 缩短到b 时,万有引力所做的功为 )1 1(21b a m Gm --。 4.保守力的特点是 ________略__________________________________;保守力的功与势能的关系式为______________________________略_____________________. 5.一弹簧原长m 1.00=l ,倔强系数N/m 50=k ,其一端固定在半径 为R =0.1m 的半圆环的端点A ,另一端与一套在半圆环上的小环相连,在把小环由半圆环中点B 移到另一端C 的过程中,弹簧的拉力对小环所作的功为 -0.207 J 。 6.有一倔强系数为k 的轻弹簧,竖直放置,下端悬一质量为m 的小球。先使弹簧为原长,而小球恰好与地接触。再将弹簧上端缓慢地提起,直到小球刚能脱离地面为止。在此过程中外力所作的功 A B C R v O 1 t 2t 3 t 4 t

第3讲热力学定律与能量守恒

第3讲热力学定律与能量守恒 考点一热力学第一定律的理解及应用 1.热力学第一定律的理解 不仅反映了做功和热传递这两种方式改变内能的过程是等效的,而且给出了内能的变化量和做功与热传递之间的定量关系。 2.对公式ΔU=Q+W符号的规定 符号W Q ΔU +外界对物体做功物体吸收热量内能增加 -物体对外界做功物体放出热量内能减少 三种特殊的状态变化过程 (1)如图所示的绝热过程:有Q=0,则W=ΔU,外界对系统做的功等于系统内能的增加。 (2)不做功过程:即W=0,则Q=ΔU,系统吸收的热量等于系统内能的增加。 (3)内能不变过程:即ΔU=0,则W+Q=0或W=-Q,外界对系统做的功等于系统放出的热量。 [思维诊断] (1)物体吸收热量,同时对外做功,内能可能不变。() (2)绝热过程中,外界压缩气体,对气体做功,气体的内能可能减少。() (3)自由摆动的秋千摆动幅度越来越小,能量并没有消失。() (4)热传递和做功的实质不相同。() 答案:(1)√(2)×(3)√(4)√ [题组训练] 1.[热力学第一定律与热学知识的组合](多选)下列说法中正确的是() A.尽管技术不断进步,但热机的效率仍不能达到100%,而制冷机却可以使温度降到

热力学零度 B.雨水没有透过布雨伞是液体表面张力的作用导致的 C.气体温度每升高1 K所吸收的热量与气体经历的过程有关 D.空气的相对湿度定义为水的饱和蒸汽压与相同温度时空气中所含水蒸气压强的比值E.悬浮在液体中的微粒越大,在某一瞬间撞击它的液体分子数越多,布朗运动越不明显 解析:热力学零度只能接近而不能达到,A错误;雨水没有透过布雨伞是液体表面张力的作用导致的,B正确;由热力学第一定律ΔU=Q+W知,温度每升高1 K,内能增加,但既可能是吸收热量,也可能是对气体做功使气体的内能增加,C正确;空气的相对湿度是指空气中所含水蒸气的压强与同温度下的饱和蒸汽压的比值,故D错误;微粒越大,某一瞬间撞击它的分子数越多,受力越容易平衡,布朗运动越不显著,E正确。 答案:BCE 2.[应用热力学第一定律定量计算] 如图所示,一定质量的理想气体由状态a沿a→b→c变化到状态c时,吸收了340 J的热量,并对外做功120 J。若该气体由状态a沿a→d→c变化到状态c时,对外做功40 J,则这一过程中气体________(填“吸收”或“放出”)________J热量。 解析:一定质量的理想气体由状态a沿a→b→c变化到状态c,吸收了340 J的热量,并对外做功120 J,由热力学第一定律有ΔU=Q1+W1=340 J-120 J=220 J,即从状态a到状态c,理想气体的内能增加了220 J;若该气体由状态a沿a→d→c变化到状态c时,对外做功40 J,此过程理想气体的内能增加还是220 J,所以可以判定此过程是吸收热量,由热力学第一定律有ΔU=Q2+W2,得Q2=ΔU-W2=220 J+40 J =260 J 答案:吸热260 J 3.[热力学第一定律与气体实验定律的综合应用]一定质量的理想气体经历如图A→B→C→D→A所示循环过程,该过程每个状态视为平衡态。已知A态的温度为27 ℃。求:

大学物理热力学论文[1]

《大学物理》课程论文 热力学基础 摘要: 热力学第一定律其实是包括热现象在内的能量转换与守恒定律。热力学第二定律则是指明过程进行的方向与条件的另一基本定律。热力学所研究的物质宏观性质,特别是气体的性质,经过气体动理论的分析,才能了解其基本性质。气体动理论,经过热力学的研究而得到验证。两者相互补充,不可偏废。人们同时发现,热力学过程包括自发过程和非自发过程,都有明显的单方向性,都是不可逆过程。但从理想的可逆过程入手,引进熵的概念后,就可以从熵的变化来说明实际过程的不可逆性。因此,在热力学中,熵是一个十分重要的概念。关键词: (1)热力学第一定律(2)卡诺循环(3)热力学第二定律(4)熵 正文: 在一般情况下,当系统状态变化时,作功与传递热量往往是同时存在的。如果有一个系统,外界对它传递的热量为Q,系统从内能为E1 的初始平衡状态改变到内能为E2的终末平衡状态,同时系统对外做功为A,那么,不论过程如何,总有: Q= E2—E1+A 上式就是热力学第一定律。意义是:外界对系统传递的热量,一部分

是系统的内能增加,另一部分是用于系统对外做功。不难看出,热力学第一定律气其实是包括热量在内的能量守恒定律。它还指出,作功必须有能量转换而来,很显然第一类永动机违反了热力学第一定律,所以它根本不可能造成的。 物质系统经历一系列的变化过程又回到初始状态,这样的周而复始的变化过程称为循环过程,或简称循环。经历一个循环,回到初始状态时,内能没有改变,这是循环过程的重要特征。卡诺循环就是在两个温度恒定的热源(一个高温热源,一个低温热源)之间工作的循环过程。在完成一个循环后,气体的内能回到原值不变。卡诺循环还有以下特征: ①要完成一次卡诺循环必须有高温和低温两个热源: ②卡诺循环的效率只与两个热源的温度有关,高温热源的温 度越高,低温热源的温度越低,卡诺循环效率越大,也就 是说当两热源的温度差越大,从高温热源所吸取的热量Q1 的利用价值越大。 ③卡诺循环的效率总是小于1的(除非T2 =0K)。 那么热机的效率能不能达到100%呢?如果不可能到达100%,最大可能效率又是多少呢?有关这些问题的研究就促进了热力学第二定律的建立。 第一类永动机失败后,人们就设想有没有这种热机:它只从一个热源吸取热量,并使之全部转变为功,它不需要冷源,也没有释放热量。这种热机叫做第二类永动机。经过无数的尝试证明,第二类永动

第3讲 热力学定律与能量守恒定律

第3讲热力学定律与能量守恒定律 知识要点 一、热力学第一定律 1.改变物体内能的两种方式 (1)做功;(2)热传递。 2.热力学第一定律 (1)内容:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和。 (2)表达式:ΔU=Q+W。 (3)ΔU=Q+W中正、负号法则: 物理量 意义 W Q ΔU 符号 +外界对物体做功物体吸收热量内能增加 -物体对外界做功物体放出热量内能减少 1.热力学第二定律的两种表述 (1)克劳修斯表述:热量不能自发地从低温物体传到高温物体。 (2)开尔文表述:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响。 2.用熵的概念表示热力学第二定律 在任何自然过程中,一个孤立系统的总熵不会减小。 3.热力学第二定律的微观意义 一切自发过程总是沿着分子热运动的无序性增大的方向进行。 4.第二类永动机不可能制成的原因是违背了热力学第二定律。 三、能量守恒定律 1.内容

能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者是从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变。 2.条件性 能量守恒定律是自然界的普遍规律,某一种形式的能是否守恒是有条件的。 3.第一类永动机是不可能制成的,它违背了能量守恒定律。 基础诊断 1.(多选)下列说法正确的是() A.外界压缩气体做功20 J,气体的内能可能不变 B.电冰箱的工作过程表明,热量可以从低温物体向高温物体传递 C.科技的进步可以使内燃机成为单一热源的热机 D.对能源的过度消耗将使自然界的能量不断减少,形成能源危机 E.一定量100 ℃的水变成100 ℃的水蒸气,其分子之间的势能增加 答案ABE 2.(多选)下列说法正确的是() A.分子间距离增大时,分子间的引力减小,斥力增大 B.当分子间的作用力表现为斥力时,随分子间距离的减小分子势能增大 C.一定质量的理想气体发生等温膨胀,一定从外界吸收热量 D.一定质量的理想气体发生等压膨胀,一定向外界放出热量 E.熵的大小可以反映物体内分子运动的无序程度 解析分子间距离增大时,分子间的引力、斥力都减小,A错误;当分子间的作用力表现为斥力时,随分子间距离的减小,斥力做负功,分子势能增大,B正确;等温膨胀,温度不变,气体内能不变,体积增大,对外做功,要保持内能不变,所以需要从外界吸收热量,C正确;等压膨胀,压强不变,体积增大,根据公式 pV =C可得温度升高,内能增大,需要吸收热量,故D错误;熵的物理意义反T 映了宏观过程对应的微观状态的多少,标志着宏观状态的无序程度,即熵是物体内分子运动无序程度的量度,E正确。

高考经典课时作业11-3 热力学定律与能量守恒

高考经典课时作业11-3 热力学定律与能量守恒 (含标准答案及解析) 时间:45分钟分值:100分 1.下列叙述和热力学定律相关,其中正确的是() A.第一类永动机不可能制成,是因为违背了能量守恒定律 B.能量耗散过程中能量不守恒 C.电冰箱的制冷系统能够不断地把冰箱内的热量传到外界,违背了热力学第二定律D.能量耗散是从能量转化的角度反映出自然界中的宏观过程具有方向性 2.根据热力学第二定律,下列说法中正确的是() A.热量能够从高温物体传到低温物体,但不能从低温物体传到高温物体 B.热量能够从高温物体传到低温物体,也可能从低温物体传到高温物体 C.机械能可以全部转化为内能,但内能不可能全部转化为机械能 D.机械能可以全部转化为内能,内能也可能全部转化为机械能 3.关于一定量的气体,下列叙述正确的是() A.气体吸收的热量可以完全转化为功 B.气体体积增大时,其内能一定减少 C.气体从外界吸收热量,其内能一定增加 D.外界对气体做功,气体内能可能减少 4.(2013·东北三校二模)一个气泡从湖底缓慢上升到湖面,在上升的过程中温度逐渐升高,气泡内气体可视为理想气体,在此过程中,关于气泡内气体下列说法正确的是() A.气体分子平均动能变小 B.气体吸收热量 C.气体对外做功 D.气体内能增加 5.(2012·高考广东卷)景颇族的祖先发明的点火器如图所示,用牛角做套筒,木制推杆前端粘着艾绒,猛推推杆,艾绒即可点燃,对筒内封闭的气体,在此压缩过程中() A.气体温度升高,压强不变 B.气体温度升高,压强变大 C.气体对外界做正功,气体内能增加 D.外界对气体做正功,气体内能减少 6.(2011·高考重庆卷)某汽车后备箱内安装有撑起箱盖的装置,它主要由汽缸和活塞组成.开箱时,密闭于汽缸内的压缩气体膨胀,将箱盖顶起,如图所示.在此过程中,若缸内气体与外界无热交换,忽略气体分子间相互作用,则缸内气体() A.对外做正功,分子的平均动能减小 B.对外做正功,内能增大 C.对外做负功,分子的平均动能增大 D.对外做负功,内能减小

高中物理考试热力学定律与能量守恒定律

选修3-3 第3讲 一、选择题 1.有关“温度”的概念,下列说法中正确的是( ) A.温度反映了每个分子热运动的剧烈程度 B.温度是分子平均动能的标志 C.一定质量的某种物质,内能增加,温度一定升高 D.温度较高的物体,每个分子的动能一定比温度较低的物体分子的动能大 [答案] B [解析] 温度是分子平均动能的标志,但不能反映每个分子的运动情况,所以A、D错误,由ΔU=Q+W可知C错,故选项B正确. 2.第二类永动机不可能制成,这是因为( ) A.违背了能量守恒定律 B.热量总是从高温物体传递到低温物体 C.机械能不能全部转变为内能 D.内能不能全部转化为机械能,同时不引起其他变化 [答案] D [解析] 第二类永动机的设想虽然符合能量守恒定律,但是违背了能量转化中有些过程是不可逆的规律,所以不可能制成,选项D正确. 3.(2010·重庆)给旱区送水的消防车停于水平地面.在缓慢放水过程中,若车胎不漏气,胎内气体温度不变,不计分子间势能,则胎内气体( ) A.从外界吸热B.对外界做负功 C.分子平均动能减小D.内能增加 [答案] A [解析] 该题考查了热力学定律,由于车胎内温度保持不变,故分子的平均动能不变,内能不变,放水过程中体积增大对外做功,由热力学第一定律可知,胎内气体吸热.A选项正确. 4.如图所示,两相同的容器装同体积的水和水银,A、B两球完全 相同,分别浸没在水和水银的同一深度,A、B两球用同一种特殊的材料 制成,当温度稍升高时,球的体积会明显变大.如果开始时水和水银的 温度相同,且两液体同时缓慢地升高同一值,两球膨胀后,体积相等, 则( ) A.A球吸收的热量较多 B.B球吸收的热量较多

浙江省大学物理试题库204-热力学第一定律、典型的热力学过程

浙江工业大学学校 204 条目的4类题型式样及交稿式样 热力学第一定律、典型的热力学过程 一. 选择题 题号:20412001 分值:3分 难度系数等级:2 1 如图所示,一定量理想气体从体积V1,膨胀到体积V2分别经历的过程是:A→B等压过程,A→C等温过程;A→D绝热过程,其中吸热量最多的过程 (A) 是A→B. (B) 是A→ C. (C) 是A→D. (D) 既是A→B也是A→C, 两过程吸热一样多。 [ ] 答案:A 题号:20412002 分值:3分 难度系数等级:2 2 质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加一倍.那么气体温度的改变(绝对值)在 (A) 绝热过程中最大,等压过程中最小. (B) 绝热过程中最大,等温过程中最小. (C) 等压过程中最大,绝热过程中最小. (D) 等压过程中最大,等温过程中最小.[] 答案:D 题号:20412003 分值:3分 难度系数等级:2 V

3 一定量的理想气体,从a 态出发经过①或②过程到达b 态,acb 为等温线(如图),则①、②两过程中外界对系统传递的热量Q 1、Q 2是 (A) Q 1>0,Q 2>0. (B) Q 1<0,Q 2<0. (C) Q 1>0,Q 2<0. (D) Q 1<0,Q 2>0. [ ] 答案:A 题号:20413004 分值:3分 难度系数等级:3 4 一定量的理想气体分别由初态a 经①过程ab 和由初态a ′经 ②过程a ′cb 到达相同的终态b ,如p -T 图所示,则两个过程中 气体从外界吸收的热量 Q 1,Q 2的关系为: (A) Q 1<0,Q 1> Q 2. (B) Q 1>0,Q 1> Q 2. (C) Q 1<0,Q 1< Q 2. (D) Q 1>0,Q 1< Q 2. [ ] 答案:B 题号:20412005 分值:3分 难度系数等级:2 5. 理想气体向真空作绝热膨胀. (A) 膨胀后,温度不变,压强减小. (B) 膨胀后,温度降低,压强减小. (C) 膨胀后,温度升高,压强减小. (D) 膨胀后,温度不变,压强不变. [ ] 答案:A 题号:20412006 分值:3分 难度系数等级:2 6. 一定量的理想气体,从p -V 图上初态a 经历(1)或(2)过程到达末态b ,已知a 、b 两 态处于同一条绝热线上(图中虚线是绝热线),则气体在 (A) (1)过程中吸热,(2) 过程中放热. (B) (1)过程中放热,(2) 过程中吸热. (C) 两种过程中都吸热. (D) 两种过程中都放热. [ ] 答案:B 题号:20412007 分值:3分 p p p V

【精品】高中物理(人教版)选修3-1 优秀教案--2.5《焦耳定律》

选修3-1 第二章 2.5焦耳定律 一、教材分析 焦耳定律是重要的物理定律,它是能量守恒定律在电能和热能转换中的体现,本节在电学中是重要的概念之一。 二、教学目标 (一)知识与技能 1、理解电功的概念,知道电功是指电场力对自由电荷所做的功, 理解电功的公式,能进行有关的计算。 2、理解电功率的概念和公式,能进行有关的计算。 3、知道电功率和热功率的区别和联系。 (二)过程与方法 通过推导电功的计算公式和焦耳定律,培养学生的分析、推理能力。 (三)情感、态度与价值观 通过电能与其他形式能量的转化和守恒,进一步渗透辩证唯物主义观点的教育。 三、教学重点难点

【教学重点】电功、电功率的概念、公式;焦耳定律、电热功率的概念、公式。 【教学难点】电功率和热功率的区别和联系。 四、学情分析 学生学好这节知识是非常必要的, A.重点:理解电功和电功率和焦耳定律。B.难点:帮助学生认识电流做功和电流通过导体产生热量之间的区别和联系是本节的教学难点,防止学生乱套用公式。C.关键:本节的教学关键是做好通电导体放出的热量与哪些因素有关的实验。在得出了焦耳定律以后介绍焦耳定律公式及其在生活、生产上的应用 五、教学方法 等效法、类比法、比较法、实验法 六、课前准备 灯泡(36 V,18 W)、电压表、电流表、电源、滑动变阻器、电键、导线若干、投影仪、投影片、玩具小电机 七、课时安排 八、教学过程 (一)预习检查、总结疑惑 (二)情景引入、展示目标 教师:用电器通电后,可以将电能转化成其他形式的能量,请同学们列举生活中常用的用电器,并说明其能量的转化情况。

学生:(1)电灯把电能转化成内能和光能; (2)电炉把电能转化成内能; (3)电动机把电能转化成机械能; (4)电解槽把电能转化成化学能。 教师:用电器把电能转化成其他形式能的过程,就是电流做功的过程。电流做功的多少及电流做功的快慢与哪些因素有关呢?本节课我们学习关于电功和电功率的知识。 (三)合作探究、精讲点播 1、电功和电功率 教师:请同学们思考下列问题 (1)电场力的功的定义式是什么? (2)电流的定义式是什么? 学生:(1)电场力的功的定义式W=qU q (2)电流的定义式I= t 教师:投影教材图2.5-1(如图所示) 如图所示,一段电路两端的电压为U,由

大学物理物理知识点总结!!!!!!

B r ? A r B r y r ? 第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 2r r x y ==+运动方程 ()r r t = 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?△,2r x =?+△路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?、r ?、s ?的含义(?≠?≠?r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x +=+==,2222y x v v dt dy dt dx dt r d v +=??? ??+??? ??== ds dr dt dt = 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=? 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?△ a 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x 2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ? ?+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x 二.抛体运动

大学物理练习题3((角)动量与能量守恒定律)

大学物理练习题3:“力学—(角)动量与能量守恒定律” 一、填空题 1、一个质量为10kg 的物体以4m/s 的速度落到砂地后经0.1s 停下来,则在这一过程中物体对砂地的平均作用力大小为 。 2、t F x 430+=(式中x F 的单位为N ,t 的单位为s )的合外力作用在质量为kg m 10=的物体上,则:(1)在开始s 2内,力x F 的冲量大小为: ;(2)若物体的初速度1110-?=s m v ,方向与x F 相同,则当力x F 的冲量s N I ?=300时,物体的速度大小为: 。 3、一质量为kg 1、长为m 0.1的均匀细棒,支点在棒的上端点,开始时棒自由悬挂。现以100N 的力打击它的下端点,打击时间为0.02s 时。若打击前棒是静止的,则打击时棒的角动量大小变化为 ,打击后瞬间棒的角速度为 。 4、某质点最初静止,受到外力作用后开始运动,该力的冲量是100.4-??s m kg ,同时间内该力作功4.00J ,则该质点的质量是 ,力撤走后其速率为 。 5、设一质量为kg 1的小球,沿x 轴正向运动,其运动方程为122-=t x ,则在时间s t 11=到s t 32=内,合外力对小球的功为 ;合外力对小球作用的冲量大小为 。 6、一个力F 作用在质量为 1.0 kg 的质点上,使之沿x 轴运动。已知在此力作用下质点的运动 学方程为3 243t t t x +-= (SI)。则在0到4 s 的时间间隔内,力F 的冲量大小I = ,力F 对质点所作的功W = 。 7、设作用在质量为 2 kg 上的物体上的力x F x 6=(式中x F 的单位为N ,x 的单位为m )。若物体由静止出发沿直线运动,则物体从0=x 运动到m x 2=过程中该力作的功=W ,m x 2=时物体的速率=v 。 8、已知质量kg 2=m 物体在一光滑路面上作直线运动,且0=t 时,0=x ,0=ν。若该物体受力为x F 43+=(式中F 的单位为N ,x 的单位为m ),则该物体速率ν随 x 的函数关系=)(x ν ;物体从0=x 运动到2=x m 过程中该力作的功=W 。 9、一质量为10kg 的物体,在t=0时,物体静止于原点,在作用力i x F )43(+=作用下,无摩

11、第3讲 热力学定律与能量守恒定律 (3).pdf

[随堂巩固提升] 1.关于一定量的气体,下列叙述正确的是( ) A .气体吸收的热量可以完全转化为功 B .气体体积增大时,其内能一定减少 C .气体从外界吸收热量,其内能一定增加 D .外界对气体做功,气体内能可能减少 解析:选AD 由热力学第二定律知吸收的热不能自发地全部转化为功,但通过其他方法可以全部转化为功,故A 正确;气体体积增大,对外做功,若同时伴随有吸热,其内能不一定减少,B 错误;气体从外界吸热,若同时伴随有做功,其内能不一定增加,C 错误;外界对气体做功,同时气体放热,其内能可能减少,D 正确。 2.一定量的理想气体在某一过程中,从外界吸收热量 2.5×104J ,气体对外界做功1.0×104 J ,则该理想气体的( ) A .温度降低,密度增大 B .温度降低,密度减小 C .温度升高,密度增大 D .温度升高,密度减小 解析:选D 由ΔU =W +Q 可得理想气体内能变化ΔU =-1.0×104 J +2.5×104 J = 1.5×104 J >0,故温度升高,A 、B 两项均错;因为气体对外做功,所以气体一定膨胀,体 积变大,由ρ=m V 可知密度变小,故C 项错误,D 项正确。 3.(2011·新课标全国卷)对于一定量的理想气体,下列说法正确的是( ) A .若气体的压强和体积都不变,其内能也一定不变 B .若气体的内能不变,其状态也一定不变 C .若气体的温度随时间不断升高,其压强也一定不断增大 D .气体温度每升高1 K 所吸收的热量与气体经历的过程有关 E .当气体温度升高时,气体的内能一定增大 解析:选ADE 一定质量的理想气体,pV T =常量,p 、V 不变,则T 不变,分子平均动能不变,又理想气体分子势能为零,故气体内能不变,A 项正确;理想气体内能不变,则温 度T 不变,由pV T =常量知,p 及V 可以变化,故状态可以变化,B 错误;等压变化过程,温度升高、体积增大,故C 错误;由热力学第一定律ΔU =Q +W 知,温度每升高1 K ,内能增量ΔU 一定,而外界对气体做的功W 与经历的过程可能有关(如体积变化时),因此吸收的热量与气体经历的过程也有关,D 项正确;温度升高,平均动能增大,分子势能不变,内能

大学物理第九章热力学基础历年考题

第9章热力学基础 一、选择题 1. 对于准静态过程和可逆过程, 有以下说法.其中正确的是 [] (A>准静态过程一定是可逆过程 (B>可逆过程一定是准静态过程 (C>二者都是理想化的过程 (D>二者实质上是热力学中的同一个概念 2. 对于物体的热力学过程, 下列说法中正确的是 [] (A>内能的改变只决定于初、末两个状态, 与所经历的过程无关 (B>摩尔热容量的大小与所经历的过程无关 (C>在物体内, 若单位体积内所含热量越多, 则其温度越高 (D>以上说法都不对 3. 有关热量, 下列说法中正确的是 [](A>热是一种物质 (B>热能是物质系统的状态参量 (C>热量是表征物质系统固有属性的物理量 (D>热传递是改变物质系统内能的一种形式 4. 关于功的下列各说法中, 错误的是 [](A>功是能量变化的一种量度 (B>功是描写系统与外界相互作用的物理量 (C>气体从一个状态到另一个状态, 经历的过程不同, 则对外作的功也不一样 (D>系统具有的能量等于系统对外作的功 5. 理想气体状态方程在不同的过程中有不同的微分表达式, 式表示 [](A>等温过程(B>等压过程 (C>等体过程(D>绝热过程 6. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式表示 [](A>等温过程(B>等压过程 (C>等体过程(D>绝热过程 7. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式表示 [](A>等温过程(B>等压过程 (C>等体过程(D>绝热过程 8. 理想气体状态方程在不同的过程中可以有不同的微分表达式,

则式表示 [](A>等温过程(B>等压过程 (C>等体过程(D>任意过程 9. 热力学第一定律表明: [](A>系统对外作的功不可能大于系统从外界吸收的热量 (B>系统内能的增量等于系统从外界吸收的热量 (C>不可能存在这样的循环过程, 在此过程中, 外界对系统所作的功 不等于系统传给外界的热量 (D>热机的效率不可能等于1 10. 对于微小变化的过程, 热力学第一定律为d Q= d E d A.在以下过程中, 这三者同时为正的过程是 [](A>等温膨胀(B>等容膨胀 (C>等压膨胀(D>绝热膨胀 11. 对理想气体的等压压缩过程,下列表述正确的是 [](A> d A>0, d E>0, d Q>0 (B> d A<0, d E<0, d Q<0 (C> d A<0, d E>0, d Q<0 (D> d A = 0, d E = 0, d Q = 0 12. 功的计算式适用于 [](A>理想气体(B>等压过程 (C>准静态过程(D>任何过程 13. 一定量的理想气体从状态出发, 到达另一状态.一次是等温压缩到, 外界作功A;另一次为绝热压缩到, 外界作功W.比较这两个功值的大小是 [](A>A>W(B>A = W(C>A<W (D>条件不够,不能比较 14. 1mol理想气体从初态(T1、p1、V1 >等温压缩到体积V2, 外界对气体所作的功为 [](A>(B> (C>(D> 15. 如果W表示气体等温压缩至给定体积所作的功, Q表示在此过程中气体吸收的热量, A表示气体绝热膨胀回到它原有体积所作的功, 则整个过程中气体内能的变化为 [](A>W+Q-A(B>Q-W-A (C>A-W-Q(D>Q+A-W

高考物理一轮总复习第十三章第三讲热力学定律与能量守恒定律教案

第三讲热力学定律与能量守恒定律 一、热力学第一定律 1.改变物体内能的两种方式 (1)做功;(2)热传递. 2.热力学第一定律 (1)内容:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和. (2)表达式:ΔU=Q+W. (3)ΔU=Q+W中正、负号法则: 二、能量守恒定律 1.内容 能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者是从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变. 2.条件性 能量守恒定律是自然界的普遍规律,某一种形式的能是否守恒是有条件的. 3.第一类永动机是不可能制成的,它违背了能量守恒定律. 三、热力学第二定律 1.热力学第二定律的两种表述 (1)克劳修斯表述:热量不能自发地从低温物体传到高温物体. (2)开尔文表述:不可能从单一热源吸收热量,使之完全变成功,而不产生其他影响或表述为“第二类永动机是不可能制成的”. 2.用熵的概念表示热力学第二定律 在任何自然过程中,一个孤立系统的总熵不会减小. 3.热力学第二定律的微观意义 一切自发过程总是沿着分子热运动的无序性增大的方向进行. 4.第二类永动机不可能制成的原因是违背了热力学第二定律. [小题快练]

1.判断题 (1)为了增加物体的内能,必须对物体做功或向它传递热量,做功和热传递的实质是相同的.( × ) (2)绝热过程中,外界压缩气体做功20 J,气体的内能可能不变.( × ) (3)在给自行车打气时,会发现打气筒的温度升高,这是因为打气筒从外界吸热.( × ) (4)可以从单一热源吸收热量,使之完全变成功.( √ ) 2.一定质量的理想气体在某一过程中,外界对气体做功7.0×104J,气体内能减少1.3×105 J,则此过程( B ) A.气体从外界吸收热量2.0×105 J B.气体向外界放出热量2.0×105 J C.气体从外界吸收热量6.0×104 J D.气体向外界放出热量6.0×104 J 3.(多选)对热力学第二定律,下列理解正确的是( BD ) A.自然界进行的一切宏观过程都是可逆的 B.自然界进行的涉及热现象的宏观过程都具有方向性,是不可逆的 C.热量不可能由低温物体传递到高温物体 D.由热力学第二定律可知热量从低温物体传向高温物体是可能的,从单一热源吸收热量,完全变成功也是可能的 考点一热力学第一定律 (自主学习) 1.热力学第一定律不仅反映了做功和热传递这两种方式改变内能的过程是等效的,而且给出了内能的变化量和做功与热传递之间的定量关系,即ΔU=Q+W. 2.三种特殊情况 (1)若过程是绝热的,则Q=0,W=ΔU,外界对物体做的功等于物体内能的增加量. (2)若过程中不做功,即W=0,则Q=ΔU,物体吸收的热量等于物体内能的增加量. (3)若过程的始末状态物体的内能不变,即ΔU=0,则W+Q=0或W=-Q,外界对物体做的功等于物体放出的热量. 1-1.[热力学第一定律的理解] (多选)(2015·广东卷)图为某实验器材的结构示意图,金属内筒和隔热外筒间封闭了一定体积的空气,内筒中有水,在水加热升温的过程中,被封闭的空气( )

热力学定律与能量守恒(教案)汇总

热力学定律与能量守恒 考纲解读 1.知道改变内能的两种方式,理解热力学第一定律. 1.[热力学第一定律的理解]一定质量的理想气体在某一过程中,外界对气体做功7.0×104 J,气体内能减少1.3×105 J,则此过程 () A.气体从外界吸收热量2.0×105 J B.气体向外界放出热量2.0×105 J C.气体从外界吸收热量6.0×104 J D.气体向外界放出热量6.0×104 J 答案 B 解析根据热力学第一定律,W+Q=ΔU,所以Q=ΔU-W=-1.3×105 J-7.0×104 J =-2.0×105 J,即气体向外界放出热量2.0×105 J. 2.[能量守恒定律的应用]木箱静止于水平地面上,现在用一个80 N的水平推力推动木箱前进10 m,木箱受到的摩擦力为60 N,则转化为木箱与地面系统的内能U和转化为木箱的动能E k分别是() A.U=200 J,E k=600 J B.U=600 J,E k=200 J C.U=600 J,E k=800 J D.U=800 J,E k=200 J 答案 B 解析由于木箱在推动中受到滑动摩擦力,其与相对位移的乘积为系统的内能的大小,即U=60×10 J=600 J,由能量守恒定律可得E k=W总-U=80×10 J-600 J=200 J.故正确答案为B. 考点梳理 1.物体内能的改变 (1)做功是其他形式的能与内能的相互转化过程,内能的改变量可用做功的数值来量度. (2)热传递是物体间内能的转移过程,内能的转移量用热量来量度. 2.热力学第一定律

(1)内容:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的 和. (2)表达式:ΔU=Q+W. 3.能量守恒定律 (1)内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形 式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量不变,这就是能量守恒定律. (2)任何违背能量守恒定律的过程都是不可能的,不消耗能量而对外做功的第一类永动 机是不可能制成的. 3. [热力学定律与理想气体状态方程的综合应用](2010·福建·28(2))如图1 所示,一定质量的理想气体密封在绝热(即与外界不发生热交换)容器 中,容器内装有一可以活动的绝热活塞.今对活塞施以一竖直向下的 压力F,使活塞缓慢向下移动一段距离后,气体的体积减小.若忽略图1 活塞与容器壁间的摩擦力,则被密封的气体________.(填选项前的字母) A.温度升高,压强增大,内能减少 B.温度降低,压强增大,内能减少 C.温度升高,压强增大,内能增加 D.温度降低,压强减小,内能增加 答案 C 解析向下压活塞,力F对气体做功,气体的内能增加,温度升高,对活塞受力分析可得出气体的压强增大,故选项C正确. 4.(1)下列说法中正确的是________. A.水可以浸润玻璃,水银不能浸润玻璃 B.热管是利用升华和汽化传递热量的装置 C.布朗运动是指在显微镜下直接观察到的液体分子的无规则运动 D.一般来说物体的温度和体积变化时它的内能都要随之改变 (2)如图2所示,一定质量的某种理想气体由状态A变为状态B,A、B两状态的相关参 量数据已标于压强—体积图象上.该气体由A→B过程中对外做功400 J,则此过程中气体内能增加了________ J,从外界吸收了________ J热量.

相关文档
相关文档 最新文档