文档视界 最新最全的文档下载
当前位置:文档视界 › AM及SSB调制与解调详解

AM及SSB调制与解调详解

AM及SSB调制与解调详解
AM及SSB调制与解调详解

通信原理课程设计

设计题目:AM及SSB调制与解调及抗噪声性能分析班级:

学生姓名:

学生学号:

指导老师:

目录

一、引言 (3)

1.1 概述 (3)

1.2 课程设计的目的 (3)

1.3 课程设计的要求 (3)

二、AM调制与解调及抗噪声性能分析 (4)

2.1 AM调制与解调 (4)

2.1.1 AM调制与解调原理 (4)

2.1.2调试过程 (6)

2.2 相干解调的抗噪声性能分析 (9)

2.2.1抗噪声性能分析原理 (9)

2.2.2 调试过程 (10)

三、SSB调制与解调及抗噪声性能分析 (12)

3.1 SSB调制与解调原理 (12)

3.2 SSB调制解调系统抗噪声性能分析 (13)

3.3 调试过程 (15)

四、心得体会 (19)

五、参考文献 (19)

一、引言

1.1 概述

《通信原理》是通信工程专业的一门极为重要的专业基础课,但内容抽象,基本概念较多,是一门难度较大的课程,通过MATLAB仿真能让我们更清晰地理解它的原理,因此信号的调制与解调在通信系统中具有重要的作用。本课程设计是AM及SSB调制解调系统的设计与仿真,用于实现AM及SSB信号的调制解调过程,并显示仿真结果,根据仿真显示结果分析所设计的系统性能。在课程设计中,幅度调制是用调制信号去控制高频载波的振幅,使其按调制信号的规律变化,其他参数不变。同时也是使高频载波的振幅载有传输信息的调制方式。

1.2 课程设计的目的

在此次课程设计中,我需要通过多方搜集资料与分析:

(1) 掌握模拟系统AM和SSB调制与解调的原理;

(2) 来理解并掌握AM和SSB调制解调的具体过程和它在MATLAB中的实现方法;

(3) 掌握应用MATLAB分析系统时域、频域特性的方法,进一步锻炼应用MATLAB进行编程

仿真的能力。

通过这个课程设计,我将更清晰地了解AM和SSB的调制解调原理,同时加深对MATLAB这款《通信原理》辅助教学操作的熟练度。

1.3 课程设计的要求

(1) 熟悉MATLAB的使用方法,掌握AM信号的调制解调原理,以此为基础用MATLAB编程

实现信号的调制解调;

(2) 设计实现AM调制与解调的模拟系统,给出系统的原理框图,对系统的主要参数进行设

计说明;

(3) 采用MATLAB语言设计相关程序,实现系统的功能,要求采用一种方式进行仿真,即直

接采用MATLAB语言编程的静态方式。要求采用两种以上调制信号源进行仿真,并记录各个输出点的波形和频谱图;

(4) 对系统功能进行综合测试,整理数据,撰写课程设计论文。

二、AM调制与解调及抗噪声性能分析

2.1 AM调制与解调

2.1.1 AM调制与解调原理

幅度调制是由调制信号去控制高频载波的幅度,使正弦载波的幅度随着调制信号而改变的调制方案,属于线性调制。

AM信号的时域表示式:

频谱:

调制器模型如图所示:

c t

图1-1 调制器模型AM的时域波形和频谱如图所示:

时域 频域

图1-2 调制时、频域波形

AM 信号的频谱由载频分量、上边带、下边带三部分组成。它的带宽是基带信号带宽的2倍。在波形上,调幅信号的幅度随基带信号的规律而呈正比地变化,在频谱结构上,它的频谱完全是基带信号频谱在频域内的简单搬移。

所谓相干解调是为了从接受的已调信号中,不失真地恢复原调制信号,要求本地载波和接收信号的载波保证同频同相。相干载波的一般模型如下:

将已调信号乘上一个与调制器同频同相的载波,得

t w t m A t m A t

w t m A S c c AM 2cos )]([21

)]([21cos )]([t cosw t)(0020c +++=+=?

由上式可知,只要用一个低通滤波器,就可以将第1项与第2项分离,无失真的恢复出原始的调

制信号

)]

([21

)(00T M A T M +=

相干解调的关键是必须产生一个与调制器同频同相位的载波。如果同频同相位的条件得不到满

足,则会破坏原始信号的恢复。

cos c c t t

ω=

2.1.2调试过程

t=-1:0.00001:1; %定义时长

A1=6; %调制信号振幅

A2=10; %外加直流分量

f=3000; %载波频率

w0=2*f*pi; %角频率

Uc=cos(w0*t); %载波信号

subplot(5,2,1);

plot(t,Uc); %画载波信号

title('载波信号');

axis([0,0.01,-1,1]); %坐标区间

T1=fft(Uc); %傅里叶变换

subplot(5,2,2);

plot(abs(T1));%画出载波信号频谱

title('载波信号频谱');

axis([5800,6200,0,200000]); %坐标区间

mes=A1*cos(0.002*w0*t); %调制信号

subplot(5,2,3);

plot(t,mes);%画出调制信号

title('调制信号');

T2=fft(mes); %傅里叶变换

subplot(5,2,4);

plot(abs(T2)); %画出调制信号频谱

title('调制信号频谱');

axis([198000,202000,0,1000000]); %坐标区间

Uam1=A2*(1+mes/A2).*cos((w0).*t); %AM 已调信号subplot(5,2,5);

plot(t,Uam1);%画出已调信号

title('已调信号');

T3=fft(Uam1); %已调信号傅里叶变换

subplot(5,2,6);

plot(abs(T3)); ;%画出已调信号频谱

title('已调信号频谱');

axis([5950,6050,0,900000]); %坐标区间

sn1=20; %信噪比

db1=A1^2/(2*(10^(sn1/10))); %计算对应噪声方差

n1=sqrt(db1)*randn(size(t)); %生成高斯白噪声

Uam=n1+Uam1; %叠加噪声后的已调信号

Dam=Uam.*cos(w0*t); %对AM已调信号进行解调

subplot(5,2,7);

plot(t,Dam);% 滤波前的AM解调信号

title('滤波前的AM解调信号波形');

T4=fft(Dam); %求AM信号的频谱

subplot(5,2,8);

plot(abs(T4));% 滤波前的AM解调信号频谱

title('滤波前的AM解调信号频谱');

axis([187960,188040,0,600000]);

Ft=2000; %采样频率

fpts=[100 120]; %通带边界频率fp=100Hz 阻带截止频率fs=120Hz mag=[1 0];

dev=[0.01 0.05]; %通带波动1%,阻带波动5%

[n21,wn21,beta,ftype]=kaiserord(fpts,mag,dev,Ft);

%kaiserord估计采用凯塞窗设计的FIR滤波器的参数

b21=fir1(n21,wn21,Kaiser(n21+1,beta)); %由fir1设计滤波器

z21=fftfilt(b21,Dam); %FIR低通滤波

subplot(5,2,9);

plot(t,z21,'r');% 滤波后的AM解调信号

title('滤波后的AM解调信号波形');

axis([0,1,-1,10]);

T5=fft(z21); %求AM信号的频谱

subplot(5,2,10);

plot(abs(T5),'r');%画出滤波后的AM解调信号频谱

title('滤波后的AM解调信号频谱');

axis([198000,202000,0,500000]);

运行结果:

2.2 相干解调的抗噪声性能分析 2.2.1抗噪声性能分析原理

AM 线性调制系统的相干解调模型如下图所示。

图3.5.1 线性调制系统的相干解调模型

图中)(m t S 可以是AM 调幅信号,带通滤波器的带宽等于已调信号带宽[10]。下面讨论AM 调制系统的抗噪声性能[11]。

AM 信号的时域表达式为

t

cosw )]t (m [)t (c 0+=A S AM

通过分析可得AM 信号的平均功率为

2)t (m 2)(220i +=A S AM

又已知输入功率B

N 0i n =, 其中B 表示已调信号的带宽。

由此可得AM 信号在解调器的输入信噪比为

H

AM AM

A B A N S f n 4)t (m n 2)t (m )(02200220i i +=

+=

AM 信号经相干解调器的输出信号为

)

t (m 21)t (m 0=

因此解调后输出信号功率为

)

t (m 41)t (m )(22

00==AM S

在上图中输入噪声通过带通滤波器之后,变成窄带噪声)t (n i ,经乘法器相乘后的输出噪声为

p i c c c s c c c c c s c n (t)n (t)cosw t [n (t)cosw t-n (t)sinw t]cosw t

11

n (t)[n (t)cos2w t-n (t)sin2w t]22

===

+

经LPF 后,

)

t (n 21

)t (n c 0=

因此解调器的输出噪声功率为

i

2c 2

0041)t (n 41)t (n N N ===

可得AM 信号经过解调器后的输出信噪比为

H

AM

B N S f n 2)t (m n )t (m )(020200==

由上面分析的解调器的输入、输出信噪比可得AM 信号的信噪比增益为

)t (m )

t (m 22202i i 00+=

=A N S N S G AM

2.2.2 调试过程

clf; %清除窗口中的图形 t=0:0.01:2;

%定义变量区间

fc=50; %给出相干载波的频率 A=10; %定义输入信号幅度 fa=5; %定义调制信号频率 mt=A*cos(2*pi*fa.*t); %输入调制信号表达式 xzb=5; %输入小信躁比(dB)

snr=10.^(xzb/10);

db=A^2./(2*snr); %由信躁比求方差 nit=sqrt(db).*randn(size(mt));

%产生小信噪比高斯白躁声 psmt=(A+mt).*cos(2*pi*fc.*t); %输出调制信号表达式 psnt=psmt+nit;

%输出叠加小信噪比已调信号波形

xzb1=30; %输入大信躁比(dB) snr1=10.^(xzb1/10);

db1=A^2./(2*snr1); %由信躁比求方差

nit1=sqrt(db1).*randn(size(mt) ); %产生大信噪比高斯白躁声 psnt1=psmt+nit1; %输出已调信号波形 subplot(2,2,1); %划分画图区间 plot(t,nit,'g'); %画出输入信号波形 title('小信噪比高斯白躁声'); xlabel(' t'); ylabel(' nit'); subplot(2,2,2); plot(t,psnt,'b');

title('叠加小信噪比已调信号波形');

xlabel('时间');

ylabel('输出调制信号');

subplot(2,2,3);

plot(t,nit1,'r'); %length用于长度匹配

title('大信噪比高斯白躁声'); %画出输入信号与噪声叠加波形

xlabel(' t');

ylabel('nit');

subplot(2,2,4);

plot(t,psnt1,'k');

title('叠加大信噪比已调信号波形'); %画出输出信号波形

xlabel('时间');

ylabel('输出调制信号');

运行结果:

由上图可见,当输入信号一定时,随着噪声的加强,接收端输入信号被干扰得越严重。而

非线性元件如滤波器等的存在。非线性失真也会随噪声加大而变大。

三、SSB 调制与解调及抗噪声性能分析

3.1 SSB 调制与解调原理

单边带调制信号是将双边带信号中的一个边带滤掉而形成的。根据方法的不同,产生SSB 信号的方法有:滤波法和相移法。

由于滤波法在技术上比较难实现,所以在此我们将用相移法对SSB 调制与解调系统进行讨论与设计。

相移法和SSB 信号的时域表示 设单频调制信号为 载波为

则其双边带信号DSB 信号的时域表示式为

若保留上边带,则有

若保留下边带,则有

将上两式合并得:

由希尔伯特变换

故单边带信号经过希尔伯特变换后得:

把上式推广到一般情况,则得到

式中

t

A t m m m ωcos )(=t t c c ωcos )(=t A t A t t A t s m c m m c m c m m DS

B )cos(2

1

)cos(21cos cos )(ωωωωωω-++==1()cos()2USB m C m s t A t ωω=+11

cos cos sin sin 22m m c m m c A t A t ωωωω=-11cos cos sin sin 22m m c m m c A t t A t t ωωωω=+1()cos()2LSB

m C m s t A t ωω=

-t A t A m m m m ωωsin s o ?c =的希尔伯特变换是)()(?t m t m

为的傅里叶变换)(?)(?ωM t

m

若M (ω)是m (t )的傅里叶变换,则

上式中的[-jsgn ω]可以看作是希尔伯特滤波器传递函数,即

移相法SSB 调制器方框图

相移法是利用相移网络,对载波和调制信号进行适当的相移,以便在合成过程中将其中的一个

边带抵消而获得SSB 信号。相移法不需要滤波器具有陡峭的截止特性,不论载频有多高,均可一次实现SSB 调制。

SSB 信号的解调

SSB 信号的解调不能采用简单的包络检波,因为SSB 信号是抑制载波的已调信号,它的包络不能直接反映调制信号的变化,所以仍需采用相干解调。

SSB 信号的性能

SSB 信号的实现比AM 、DSB 要复杂,但SSB 调制方式在传输信息时,不仅可节省发射功率,而且它所占用的频带宽度比AM 、DSB 减少了一半。它目前已成为短波通信中一种重要的调制方式。

3.2 SSB 调制解调系统抗噪声性能分析

噪声功率

这里,B = f H 为SSB 信号的带通滤波器的带宽。 信号功率 SSB 信号

[]ωωωsgn )()(?j M M

-?=ωωωωsgn )(/)(?)(j M M

H h -=

=o 01144i N N n B ==

与相干载波相乘后,再经低通滤波可得解调器输出信号

因此,输出信号平均功率

输入信号平均功率为

单边带解调器的输入信噪比为

单边带解调器的输出信噪比为

制度增益

因为在SSB 系统中,信号和噪声有相同表示形式,所以相干解调过程中,信号和噪声中的正交分量均被抑制掉,故信噪比没有改善。

o 1()()

4m t m t =2

2o o 1()()

16S m t m t =

=?()()m t m t 因与的幅度相同,所以具有相同的平均功率,故上式)

(412t m S i =B n t m B n t m N S i i 0202

4)()

(41=

=2

2o o 001()()

16144m t S m t N n B n B

==

o o /1/SSB i i

S N G S N ==

3.3 调试过程

先建立3个M文件

1. afd_butt

function [b,a] = afd_butt(Wp,Ws,Rp,As);

if Wp <= 0

error('Passband edge must be larger than 0')

end

if Ws <= Wp

error('Stopband edge must be larger than Passband edge')

end

if (Rp <= 0) | (As < 0)

error('PB ripple and/or SB attenuation ust be larger than 0') end

N = ceil((log10((10^(Rp/10)-1)/(10^(As/10)-1)))/(2*log10(Wp/Ws))); fprintf('\n*** Butterworth Filter Order = %2.0f \n',N)

OmegaC = Wp/((10^(Rp/10)-1)^(1/(2*N)));

[b,a]=u_buttap(N,OmegaC);

2. u_buttap

function [b,a] = u_buttap(N,Omegac);

[z,p,k] = buttap(N);

p = p*Omegac;

k = k*Omegac^N;

B = real(poly(z));

b0 = k;

b = k*B;

a = real(poly(p));

3. imp_invr

%脉冲响应不变法子程序

function [b,a]=imp_invr(c,d,T)

[R,p,k]=residue(c,d);

p=exp(p*T);

[b,a]=residuez(R,p,k);

b=real(b).*T;

a=real(a);

程序:

>> t0=0.1;fs=12000; %t0采样区间,fs采样频率

>> fc=1000;Vm0=2.5;ma=0.25; %fc载波频率,Vm0输出载波电压振幅,ma调幅度

>> n=-t0/2:1/fs:t0/2; %定义变量区间

>> N=length(n);

>> A=4; %定义调制信号幅度

>> x1=A*cos(150*pi*n); %调制信号

>> x2=hilbert(x1,N); %对x1做希尔伯特变换

>> y=(Vm0*x1.*cos(2*pi*fc*n)-Vm0*x2.*sin(2*pi*fc*n))/2; %保留上边带的已调波信号

>> xzb=2; %输入小信噪比(dB)

>> snr=10.^(xzb/10);

>> [h,l]=size(x1); %求调制信号的维度

>> fangcha=A*A./(2*snr); %由信噪比求方差

>> nit=sqrt(fangcha).*randn(h,l); %产生高斯白噪声

>> yn=y+nit; %叠加小信噪比噪声的已调波信号

>> xzb=10; %输入小信噪比(dB)

>> snr1=10.^(xzb/10);

>> [h,l]=size(x1); %求调制信号的维度

>> fangcha=A*A./(2*snr1); %由信噪比求方差

>> nit1=sqrt(fangcha).*randn(h,l); %产生高斯白噪声

>> yn1=y+nit1; %叠加小信噪比噪声的已调波信号

>> figure(1)

>> subplot(2,2,1) %划分画图区间

>> plot(n,x1) %画出调制信号的波形

>> title('调制信号');

>> subplot(2,2,2) %划分画图区间

>> plot(n,y) %画出已调波信号波形

>> title('已调波信号');

>> subplot(2,2,3) %划分画图区间

>> plot(n,yn) %画出叠加噪声的已调波信号波形

>> title('叠加小信噪比噪声的已调波信号');

>>subplot(2,2,4) %划分画图区间

>> plot(n,yn1) %画出叠加噪声的已调波信号波形

>> title('叠加大信噪比噪声的已调波信号');

>> X=fft(x1); %调制信号x1的傅里叶变换

>> Y=fft(y); %已调信号y的傅里叶变换

>> Yn=fft(yn); %叠加小信噪比噪声的已调信号yn的傅里叶变换

>> Yn1=fft(yn1); %叠加大信噪比噪声的已调信号yn的傅里叶变换

>> w=0:2*pi/(N-1):2*pi; %定义变量区间

>> figure(2)

>> subplot(2,2,1) %划分画图区间

>> plot(w,abs(X)) %画出调制信号频谱波形

>> axis([0,pi/4,0,3000]); %给出横纵坐标的范围

>> title('调制信号频谱');

>> subplot(2,2,2) %划分画图区间

>> plot(w,abs(Y)) %画出已调波信号频谱

>> axis([pi/6,pi/4,0,2500]); %给出横纵坐标的范围

>> title('已调波信号频谱');

>> subplot(2,2,3) %划分画图区间

>> plot(w,abs(Yn)) %画出叠加小信噪比噪声的已调波信号频谱

>> axis([pi/6,pi/4,0,2500]); %给出横纵坐标的范围

>> title('叠加小信噪比噪声的已调波信号频谱');

>> subplot(2,2,4) %划分画图区间

>> plot(w,abs(Yn1)) %画出叠加大信噪比噪声的已调波信号频谱

>> axis([pi/6,pi/4,0,2500]); %给出横纵坐标的范围

>> title('叠加大信噪比噪声的已调波信号频谱');

>> y1=y-2*cos(1500*pi*n);

>> y2=Vm0*y1.*cos(2*pi*fc*n); %将已调幅波信号的频谱搬移到原调制信号的频谱处>> wp=40/N*pi;ws=60/N*pi;Rp=1;As=15;T=1; %滤波器参数设计

>> OmegaP=wp/T;OmegaS=ws/T;

>> [cs,ds]=afd_butt(OmegaP,OmegaS,Rp,As);

>> [b,a]=imp_invr(cs,ds,T);

>> y=filter(b,a,y2);

>> yn=y+nit;

>> figure(3)

>> subplot(2,1,1) %划分画图区间 >> plot(n,y) %画出解调波波形 >> title('解调波');

>> Y=fft(y); %解调波y 的傅里叶变换 >> subplot(2,1,2) %划分画图区间 >> plot(w,abs(Y)) %画出解调信号频谱

>> axis([0,pi/6,0,2500]); %给出横纵坐标的范围 >> title('解调信号频谱');

运行结果:

*** Butterworth Filter Order = 6

-0.05

0.05

-4-202

4调制信号

-0.05

0.05

-10-505

10已调波信号

-0.05

0.05

-20-10010

20叠加小信噪比噪声的已调波信号-0.05

0.05

-10-505

10叠加大信噪比噪声的已调波信号

0.2

0.4

0.6

1000

2000

3000调制信号频谱

0.55

0.60.650.70.75

0500

100015002000

2500已调波信号频谱

0.55

0.6

0.65

0.7

0.75

0500100015002000

2500叠加小信噪比噪声的已调波信号频谱0.55

0.6

0.65

0.7

0.75

0500100015002000

2500叠加大信噪比噪声的已调波信号频谱

-0.05

-0.04

-0.03

-0.02

-0.01

0.01

0.02

0.03

0.04

0.05

-10-505

10解调波

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0500100015002000

2500解调信号频谱

可以清晰地看出,加大噪声后,信号的波形杂乱无章,起伏远大于加小噪声时的波形。 造成此现象的原因是当信噪比较小时,噪声的功率在解调信号中所占比重较大,所以会造成杂

波较多的情况;而信噪比很大时,噪声的功率在解调信号中所占比重就很小了,噪声部分造成的杂乱波形相对就不是很明显,甚至可以忽略。

综上所述,叠加噪声会造成解调信号的失真,信噪比越小,失真程度越大。所以当信噪比低于一定大小时,会给解调信号带来严重的失真,导致接收端无法正确地接收有用信号。所以在解调的实际应用中,应该尽量减少噪声的产生。

四、心得体会

这次的课程设计时间虽短但收获很多。我们用MATLAB进行了AM及SSB调制与解调的研究。不但又加深了课本的知识,而且也对matlab的基本知识有了一定掌握。

本次课程设计中实现了通信基本知识与MATLAB的结合,并在实际中设计并仿真AM及SSB调制与解调的过程。

这次课程设计中我们不得不对AM原理以及SSB原理进行更深一层次的理解,对书中原来学到的只知其果不懂其因的理论,在设计中也有了更深刻的认识。

这次程序需要自己写而我们MATLAB的基础不是很好。这次课程设计虽然很简单,由于没有基础,查找了很多相关的资料,而且我们在编译和调试过程中除了很多次错误,这是过程,学习就是在过程中进行的,经过自己几天的劳动,再加上同学们和老师的帮助,不仅对读程序有了很大提高,而且自己的编译水平也上了一个新台阶,更加熟系了MATLAB的应用,也对其中的函数有了大概的了解

总之这次课程设计收获很大,是一场难得的锻炼机会。

五、参考文献

[1]樊昌信,曹丽娜。通信原理(第六版)。国防工业出版社。

[2]仲麟,王峰。 MATLAB仿真技术与应用教程[M]。北京:国防工业出版社。2004

[3] 陶亚雄,刘南平,王坚。现代通信原理[M](第三版)。北京:电子工业出版社,2009.4

[4] 解相吾,解文博。通信电子电路[M]。北京:人民邮电出版社 2010.6

[5] 陈磊,唐晓辉。现代通信原理实验指导书。桂林:桂林航天工业高等专科学校,电子工程系。2009.7

AM及SSB调制与解调

通信原理课程设计 设计题目:AM及SSB调制与解调及抗噪声性能分析班级: 学生: 学生学号: 指导老师:

1.1概述 ......... 1.2课程设计的目的 1.3课程设计的要求 、AM 调制与解调及抗噪声性能分析 2.1 AM 调制与解调 ........ 2.1.1 AM 调制与解调原理 2.1.2调试过程 ........................................................................ 6 .............. 2.2相干解调的抗噪声性能分析 .. (10) 2.2.1抗噪声性能分析原理 .................................................................... 10 2.2.2调试过程 .. (11) 三、SSB 调制与解调及抗噪声性能分析 .......................................... 13 ......... 3.1 SSB 调制与解调原理 .......................................................................... 13 3.2 SSB 调制解调系统抗噪声性能分析 . (14) 3.3调试过程 (16) 四、心得体会 ................................................................. 20. .............. 、引言 (3) .................... 五、参考文献 (21) ................ 3 ................ 3 .............. 3 .............. 4. 4

BPSK调制及解调实验报告

实验五BPSK调制及解调实验 一、实验目的 1、掌握BPSK调制和解调的基本原理; 2、掌握BPSK数据传输过程,熟悉典型电路; 3、了解数字基带波形时域形成的原理和方法,掌握滚降系数的概念; 4、熟悉BPSK调制载波包络的变化; 5、掌握BPSK载波恢复特点与位定时恢复的基本方法; 二、实验器材 1、主控&信号源、9号、13号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、BPSK调制解调(9号模块)实验原理框 PSK调制及解调实验原理框图 2、BPSK调制解调(9号模块)实验框图说明 基带信号的1电平和0电平信号分别与256KHz载波及256KHz反相载波相乘,叠加后得到BPSK调制输出;已调信号送入到13模块载波提取单元得到同步载波;已调信号与相干载波相乘后,经过低通滤波和门限判决后,解调输出原始基带信号。 四、实验步骤 实验项目一 BPSK调制信号观测(9号模块) 概述:BPSK调制实验中,信号是用相位相差180°的载波变换来表征被传递的信息。本项目通过对比观测基带信号波形与调制输出波形来验证BPSK调制原理。 1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【BPSK/DBPSK数字调制解调】。将9号模块的S1拨为0000,调节信号源模块W3使256 KHz载波信号峰峰值为3V。 3、此时系统初始状态为:PN序列输出频率32KHz。 4、实验操作及波形观测。 (1)以9号模块“NRZ-I”为触发,观测“I”; (2)以9号模块“NRZ-Q”为触发,观测“Q”。 (3)以9号模块“基带信号”为触发,观测“调制输出”。 思考:分析以上观测的波形,分析与ASK有何关系? 实验项目二 BPSK解调观测(9号模块) 概述:本项目通过对比观测基带信号波形与解调输出波形,观察是否有延时现象,并且验证BPSK解调原理。观测解调中间观测点TP8,深入理解BPSK解调原理。 1、保持实验项目一中的连线。将9号模块的S1拨为“0000”。 2、以9号模块测13号模块的“SIN”,调节13号模块的W1使“SIN”的波形稳定,即恢复出载波。 3、以9号模块的“基带信号”为触发观测“BPSK解调输出”,多次单击13号模块的“复位”按键。观测“BPSK解调输出”的变化。 4、以信号源的CLK为触发,测9号模块LPF-BPSK,观测眼图。 思考:“BPSK解调输出”是否存在相位模糊的情况?为什么会有相位模糊的情况? 五、实验报告 1、分析实验电路的工作原理,简述其工作过程; 输入的基带信号由转换开关转接后分成两路,一路经过差分编码控制256KHz的载频,另一路经倒相去控制256KHz的载频。???解调采用锁相解调,只要在设计锁相环时,使它锁定在FSK的一个载频上此时对应的环路滤波器输出电压为零,而对另一载频失锁,则对应的环路滤波器输出电压不为零,那末在锁相环路滤波器输出端就可以获得原基带信号的信息。? 2、分析BPSK调制解调原理。 调制原理是:基带信号先经过差分编码得到相对码,再根据相对码进行绝对调相, 即将相对码的1电平和0电平信号分别与256K载波及256K反相载波相乘,叠加后得到DBPSK 调制输出。?

AM调制与解调

高频电子线路 振幅调制电路(AM,DSB,SSB)调制与解调 目录

摘要 (3) 引言 (4) 原理说明 (5) 实验分析 (10) 总结 (20) 参考文献 (21) 摘要

解调是调制的逆过程,它的作用是从已调波信号中取出原来的调制信号。对于幅度调制来说,解调是从它的幅度变化提取调制信号的过程。对于频率调制来说,解调是从它的频率变化提取调制信号的过程。而在在实际应用当中大型、复杂的系统直接实验是十分昂贵的,而采用仿真实验,可以大大降低实验成本。在实际通信中,很多信道都不能直接传送基带信号,必须用基带信号对载波波形的某些参量进行控制,使载波的这些参量随基带信号的变化而变化,即所谓正弦载波调制。利用仿真软件对系统进行仿真可以弥补真实的实验设备所不能满足的条件,减少实验成本。

引言 调制在通信系统中有十分重要的作用。通过调制,不仅可以进行频谱搬移,把调制信号的频谱搬移到所希望的位置上,从而将调制信号转换成适合于传播的已调信号,而且它对系统的传输有效性和传输的可靠性有着很大的影响,调制方式往往决定了一个通信系统的性能。 振幅调制的方法分为包络检波和同步检波,本文选用乘积型同步检波。

原理说明 AM 调制与解调 首先讨论单频信号的调制情况。如果设单频调制信号 ,载 波 ,那么调幅信号(已调波)可表示为 式中,为已调波的瞬时振幅值。由于调幅信号的瞬时振幅与调制信号成线性关系,即 有 = 由以上两式可得 包络检波是指检波器的输出电压直接反应输入高频调幅波包络变化规律的一种检波方式。由于AM 信号的包络与调制信号成正比,因此包络检波只适用与AM 波的解调,其原理方框图如图1: 图1 包络检波器的输入信号为振幅调制信号,其频谱由载频和 边频,组成,载频与上下边频之差就是。因而它含有调制信号的信息。 非线性电路 低通滤波器

SSB单边带信号调制

SSB单边带信号调制 由双边带过渡 双边带信号虽然抑制了载波,提高了调制效率,但调制后的频带宽度仍是基带信号带宽的2倍,而且上、下边带是完全对称的,它们所携带的信息完全相同。因此,从信息传输的角度来看,只用一个边带传输就可以了。我们把这种只传输一个边带的调制方式称为单边带抑制载波调制,简称为单边带调制(SSB)。 原理部分 采用单边带调制,除了节省载波功率,还可以节省一半传输频带,仅传输双边带信号的一个边带(上边带或下边带)。因此产生单边带信号的最简单方法,就是先产生双边带。然后让它通过一个边带滤波器,只传送双边带信号中的一个边带,这种产生单边带信号的方法称为滤波法。由于理想的滤波器特性是不可能作到的,实际的边带滤波器从带通到带阻总是有一个过渡带,随着载波频率的增加,采用一级载波调制的滤波法将无法实现。这时可采用多级调制滤波的办法产生单边带信号。即采用多级频率搬移的方法实现:先在低频处产生单边带信号,然后通过变频将频谱搬移到更高的载频处。产生SSB 信号的方法还有:相移形成法,混合形成法。 SSB移相法原理图

SSB移相法的形成的SystemView仿真 SSB移相法的形成上边带下边带 数学表达式 为简便起见,设调制信号为单频信号f(t)=Amcosωmt,载波为c(t)=cosωct,则调制后的双边带时域波形为:SDSB(t)=Amcosωmtcost=[Amcos(ωc+ωm)t+Amcos(ωc-ωm)t]/2 保留上边带,波形为:SUSB(t)=[Amcos(ωc+ωm)t]/2=Am(cosωctcosωmt-sinωctsinωmt)/2 保留下边带,波形为:SLSB(t)=[Amcos(ωc-ωm)t]/2=Am(cosωctcosωmt+sinωctsinωmt)/2 上两式中的第一项与调制信号和载波信号的乘积成正比,称为同相分量;而第二项的乘积则是调制信号与载波信号分别移相90°后相乘的结果,称为正交分量。由此可以

抽样定理和PCM调制解调实验报告

《通信原理》实验报告 实验一:抽样定理和PAM调制解调实验 系别:信息科学与工程学院 专业班级:通信工程1003班 学生姓名:陈威 同组学生:杨鑫 成绩: 指导教师:惠龙飞 (实验时间:2012 年 12 月 7 日——2012 年 12 月28日) 华中科技大学武昌分校

1、实验目的 1对电路的组成、波形和所测数据的分析,加深理解这种调制方法的优缺点。 2.通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。 2、实验器材 1、信号源模块 一块 2、①号模块 一块 3、60M 双踪示波器 一台 4、连接线 若干 3、实验原理 3.1基本原理 1、抽样定理 图3-1 抽样与恢复 2、脉冲振幅调制(PAM ) 所谓脉冲振幅调制,即是脉冲载波的幅度随输入信号变化的一种调制方式。如果脉冲载波是由冲激脉冲组成的,则前面所说的抽样定理,就是脉冲增幅调制的原理。 自然抽样 平顶抽样 ) (t m ) (t T

图3-3 自然抽样及平顶抽样波形 PAM方式有两种:自然抽样和平顶抽样。自然抽样又称为“曲顶”抽样,(t)的脉冲“顶部”是随m(t)变化的,即在顶部保持了m(t)变已抽样信号m s 化的规律(如图3-3所示)。平顶抽样所得的已抽样信号如图3-3所示,这里每一抽样脉冲的幅度正比于瞬时抽样值,但其形状都相同。在实际中,平顶抽样的PAM信号常常采用保持电路来实现,得到的脉冲为矩形脉冲。 四、实验步骤 1、将信号源模块、模块一固定到主机箱上面。双踪示波器,设置CH1通道为同步源。 2、观测PAM自然抽样波形。 (1)将信号源上S4设为“1010”,使“CLK1”输出32K时钟。 (2)将模块一上K1选到“自然”。 (3)关闭电源,连接 表3-1 抽样实验接线表 (5)用示波器观测信号源“2K同步正弦波”输出,调节W1改变输出信号幅度,使输出信号峰-峰值在1V左右。在PAMCLK处观察被抽样信号。CH1接PAMCLK(同步源),CH2接“自然抽样输出”(自然抽样PAM信号)。

AM调制解调电路的设计与仿真报告

AM调制解调电路的设计仿真与实现 1.Proteus 软件简介 Proteus软件是英国LABCENTERELECTRONICS公司出版的EDA工具软件。它不仅具有其它EDA工具软件的仿真功能,还能仿真单片机及外围器件。它是目前最好的仿真单片机及外围器件的工具。Proteus是世界上著名的EDA工具(仿真软件),从原理图布图、代码调试到单片机与外围电路协同仿真,一键切换到PCB设计,真正实现了从概念到产品的完整设计。 Proteus软件具有4大功能模块:智能原理图设计、完善的电路仿真功能、独特的单片机协同仿真功能、实用的PCB设计平台。由于Proteus软件界面直观、操作方便、仿真测试和分析功能强大,因此非常适合电子类课程的课堂教学和实践教学,是一种相当好的电子技术实训工具,同时也是学生和电子设计开发人员进行电路仿真分析的重要手段。 Proteus软件具有其它EDA工具软件(例:multisim)的功能。这些功能是: (1)原理布图 (2)PCB自动或人工布线 (3)SPICE电路仿真 革命性的特点 (1)互动的电路仿真 用户甚至可以实时采用诸如RAM,ROM,键盘,马达,LED,LCD,AD/DA,部分SPI器件,部分IIC器件。 (2)仿真处理器及其外围电路 可以仿真51系列、AVR、PIC、ARM、等常用主流单片机。还可以直接在基于原理图的虚拟原型上编程,再配合显示及输出,能看到运行后输入输出的效果。配合系统配置的虚拟逻辑分析仪、示波器等,Proteus建立了完备的电子设计开发环境。 本次Proteus课程设计实现AM调制解调电路的原理图绘制以及电路的仿真。运用由三极管组成的乘法器调制出AM信号,再经非线性元件二极管与电容等组成的包络检波电路解调得到解调信号。

AM,DSB,SSB调制和解调电路的设计。

东北大学分校电子信息系 综合课程设计 基于Multisim的调幅电路的仿真 专业名称电子信息工程 班级学号5081411 学生曹翔 指导教师王芬芬 设计时间2011/6/22

基于Multisim的调幅电路的仿真 1.前言 信号调制可以将信号的频谱搬移到任意位置,从而有利于信号的传送,并且是频谱资源得到充分利用。调制作用的实质就是使相同频率围的信号分别依托于不同频率的载波上,接收机就可以分离出所需的频率信号,不致相互干扰。而要还原出被调制的信号就需要解调电路。调制与解调在高频通信领域有着广泛的应用,同时也是信号处理应用的重要问题之一,系统的仿真和分析是设计过程中的重要步骤和必要的保证。论文利用Multisim提供的示波器模块,分别对信号的调幅和解调进行了波形分析。 AM调制优点在于系统结构简单,价格低廉,所以至今仍广泛应用于无线但广播。与AM信号相比,因为不存在载波分量,DSB调制效率是100%。我们注意到DSB信号两个边带中任意一个都包含了M(w)的所有频谱成分,所以利用SSB调幅可以提高信道的利用率,所以选择SSB调制与解调作为课程设计的题目具有很大的实际意义。 论文主要是综述现代通信系统中AM ,DSB,SSB调制解调的基本技术,并分别在时域讨论振幅调制与解调的基本原理, 以及介绍分析有关电路组成。此课程设计的目的在于进一步巩固高频、通信原理等相关专业课上所学关于频率调制与解调等相关容。同时加强了团队合作意识,培养分析问题、解决问题的综合能力。 本次综合课设于2011年6月20日着手准备。我团队四人:曹翔、婷婷、赖志娟、少楠分工合作,利用两天时间完成对设计题目的认识与了解,用三天时间完成了本次设计的仿真、调试。 2.基本理论 由于从消息转换过来的调制信号具有频率较低的频谱分量,这种信号在许多信道中不宜传输。因此,在通信系统的发送端通常需要有调制过程,同时在接受端则需要有解调过程从而还原出调制信号。 所谓调制就是利用原始信号控制高频载波信号的某一参数,使这个参数随调制信号的变化而变化,最常用的模拟调制方式是用正弦波作为载波的调幅(AM)、调频(FM)、调相 (PM)三种。解调是与调制相反的过程,即从接收到的已调波信号中恢复原调制信息的过程。与调幅、调频、调相相对应,有检波、鉴频和鉴相[1]。 振幅调制方式是用传递的低频信号去控制作为传送载体的高频振荡波(称为

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告

一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1

DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 码变换相乘 载波 s(t)e o(t)

4FSK调制和解调

%--------------------------------------------------- %>>>>>>>>>>>>>>>>>>初始化数据>>>>>>>>>>>>>>>>>>>>> %--------------------------------------------------- clc,clear,close all; fs = 30000; Time_Hold_On = 0.1; Num_Unit = fs * Time_Hold_On; one_Level = zeros ( 1, Num_Unit ); two_Level = ones ( 1, Num_Unit ); three_Level = 2*ones ( 1, Num_Unit ); four_Level = 3*ones ( 1, Num_Unit ); A = 1; % the default ampilitude is 1 w1 = 300; %初始化载波频率 w2 = 600; w3=900; w4=1200; %--------------------------------------------------- %>>>>>>>>>>>>>>>>>>串并转换>>>>>>>>>>>>>>> %--------------------------------------------------- Sign_Set=[0,0,1,1,0,1,1,0,1,0,1,0,1,0,0,1] Lenth_Of_Sign_Set = length ( Sign_Set ); %计算信号长度 j=1; for I=1:2:Lenth_Of_Sign_Set %信号分离成两路信号Sign_Set1(j)= Sign_Set(I);Sign_Set2(j)=Sign_Set(I+1); j=j+1; end Lenth_Of_Sign = length ( Sign_Set1 ); st = zeros ( 1, Num_Unit * Lenth_Of_Sign/2 ); sign_orign = zeros ( 1, Num_Unit * Lenth_Of_Sign/2 ); sign_result = zeros ( 1, Num_Unit * Lenth_Of_Sign/2 ); t = 0 : 1/fs : Time_Hold_On * Lenth_Of_Sign- 1/fs; %--------------------------------------------------- %>>>>>>>>>>>产生基带信号>>>>>>>>>>>> %--------------------------------------------------- for I = 1 : Lenth_Of_Sign if ((Sign_Set1(I) == 0)&(Sign_Set2(I) == 0)) %00为1电平sign_orign( (I-1)*Num_Unit + 1 : I*Num_Unit) = one_Level; elseif ((Sign_Set1(I) == 0)&(Sign_Set2(I) == 1)) %01为2电平sign_orign( (I-1)*Num_Unit + 1 : I*Num_Unit) = two_Level; elseif ((Sign_Set1(I) == 1)&(Sign_Set2(I) == 1)) %11为3电平

AM幅度调制解调

3.1.1 幅度调制的一般模型 幅度调制是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程。幅度调制器的一般模型如图3-1所示。 图3-1 幅度调制器的一般模型 图中,为调制信号,为已调信号,为滤波器的冲激响应,则已调信号的时域和频域一般表达式分别为 (3-1) (3-2) 式中,为调制信号的频谱,为载波角频率。 由以上表达式可见,对于幅度调制信号,在波形上,它的幅度随基带信号规律而变化;在频谱结构上,它的频谱完全是基带信号频谱在频域的简单搬移。由于这种搬移是线性的,因此幅度调制通常又称为线性调制,相应地,幅度调制系统也称为线性调制系统。 在图3-1的一般模型中,适当选择滤波器的特性,便可得到各种幅度调制信号,例如:常规双边带调幅(AM)、抑制载波双边带调幅(DSB-SC)、单边带调制(SSB)和残留边带调制(VSB)信号等。 3.1.2 常规双边带调幅(AM) 1. AM信号的表达式、频谱及带宽 在图3-1中,若假设滤波器为全通网络(=1),调制信号叠加直流后再与载波相乘,则输出的信号就是常规双边带调幅(AM)信号。 AM调制器模型如图3-2所示。 图3-2 AM调制器模型 AM信号的时域和频域表示式分别为

(3-3) (3-4) 式中,为外加的直流分量;可以是确知信号也可以是随机信号,但通常认为其平均值为0,即。点此观看AM调制的Flash; AM信号的典型波形和频谱分别如图3-3(a)、(b)所示,图中假定调制信号的上限频率为。显然,调制信号的带宽为。 由图3-3(a)可见,AM信号波形的包络与输入基带信号成正比,故用包络检波的方法很容易恢复原始调制信号。但为了保证包络检波时不发生失真,必须满足,否则将出现过调幅现象而带来失真。 由Flash的频谱图可知,AM信号的频谱是由载频分量和上、下两个边带组成(通常称频谱中画斜线的部分为上边带,不画斜线的部分为下边带)。上边带的频谱与原调制信号的频谱结构相同,下边带是上边带的镜像。显然,无论是上边带还是下边带,都含有原调制信号的完整信息。故AM信号是带有载波的双边带信号,它的带宽为基带信号带宽的两倍,即 (3-5)式中,为调制信号的带宽,为调制信号的最高频率。 2. AM信号的功率分配及调制效率 AM信号在1电阻上的平均功率应等于的均方值。当为确知信号时,的均方值即为其平方的时间平均,即

ssb波的调制与解调教学教材

s s b波的调制与解调

海南大学 通信电子线路课程设计报告 学院:信息科学技术学院 课题名称:单边带的调制与解调 专业班级:12通信工程B班 姓名: 学号: 指导老师:黄艳 设计时间:2014.10——2014.12 使用仪器:Multisim12 同组成员:

目录 摘要及关键词 (1) 一设计总体概述 (2) 1.1 设计任务 (2) 1.2.设计指标 (2) 二系统框图 (2) (一) SSB调制电路 (2) (二) SSB解调电路 (3) 三各单元电路图及仿真 (4) 1 平衡调制器 (4) 2 带通滤波器 (8) 3 相乘器 (12) 4.低通滤波器 (13) 四总电路图 (15) 五自设问题及解答 (16) 六心得体会总结 (16) 七所遇问题及未解决问题 (17) 参考文献 (17)

内容摘要 本文用Multisim12设计并仿真了单边带的调制越解调,由于在调制单元,先设计一个混频器(双平衡调制器),在混频的两端通过信号发生器输入一个调制低频信号 f 和载波信号0f ,完成频谱的搬移,成为一个DSB 信号,再设计一个带通滤波器,将DSB 经过带通滤波器变成一个抑制单边带的SSB 波信号。单边带SSB 节约频带,节省功率,具有较高的保密性。在解调单元,将调制单元输出的SSB 和通过一个信号发生器产生的和调制单元同频同相的载波输入在相乘器(双平衡调制器)的两端,完成混频。再设计一个低通滤波器,将相乘器输出的信号经过低通滤波器,就可恢复基带信号低频信号0f ,完成解调。 在设计单元电路时,对每部分的电路设置参数,进行仿真,调参,对结果进行分析,由于在SSB 调制时,带通滤波的带宽相对中心频率的系数太小,所以将载波设置成较低频信号。反复调试后,得出结果和心得体会。 【关键词】:单边带 调制解调 平衡调制器 带通滤波器 低通滤波器 仿真 单边带的调制与解调

基于MATLAB的AM信号的调制与解调

通信专业课程设计一(论文) 太原科技大学 课程设计(论文) 设计(论文)题目:基于MATLAB的AM信号的调制与解调 姓名张壮阔 学号 200822080132 班级通信082201H 学院华科学院 指导教师郑秀萍 2011年12 月23 日

太原科技大学课程设计(论文)任务书 学院(直属系):华科学院电子信息工程系时间:2011年12月9日

目录 第1章绪论............................................................. - 2 - 1.1 AM信号调制解调的背景、意义和发展前景........................... - 2 - 1.2 本文研究的主要内容............................................. - 3 - 第2章AM信号调制解调的原理以及特点..................................... - 4 - 2.1 噪声模型....................................................... - 4 - 2.1.1 噪声的分类................................................. - 4 - 2.1.2 本文噪声模型............................................... - 4 - 2.2 通用调制模型................................................... - 5 - 2.3 AM信号的调制原理............................................... - 6 - 2.4 AM信号的解调原理及方式......................................... - 6 - 2.5 抗噪声性能的分析模型........................................... - 6 - 2.6 相干解调的抗噪声性能.......................................... - 7 - 第3章基于双音信号的AM调制与解调的仿真及结论.......................... - 9 - 3.1 设定的双音信号................................................. - 9 - 3.2 基于双音信号的AM调解与解调的仿真结果.......................... - 9 - 参考文献............................................................... - 14 - 附录.................................................................. - 17 -

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告 一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,

Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1 DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。

图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 3. 2DPSK信号的解调原理 2DPSK信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。 (1) 2DPSK信号解调的极性比较法 它的原理是2DPSK信号先经过带通滤波器,去除调制信号频带以外的在信道中混入的噪声,再与本地载波相乘,去掉调制信号中的载波成分,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判决的到基带信号的差分码,再经过逆差分器,就得到了基带信号。它的原理框图如图1.3.1所示。 码变换相乘 载波 s(t)e o(t) 相乘器低通滤波器抽样判决器2DPSK 带通滤波器 延迟T

AM调制与解调的设计与实现

课题三 AM 调制与解调的设计与实现 一、 本课题的目的 本课程设计课题主要研究模拟系统AM 调制与解调的设计和实现方法。通过完成本课题的设计,拟主要达到以下几个目的: 1.掌握模拟系统AM 调制与解调的原理,了解FDM 频分复用工作原理及实现方法。 2.掌握模拟系统AM 调制与解调的设计方法; 3.掌握应用MA TLAB 分析系统时域、频域特性的方法,进一步锻炼应用Matlab 进行编程仿真的能力; 4.熟悉基于Simulink 的动态建模和仿真的步骤和过程; 二、 课题任务 设计一个模拟系统,实现AM 调制与解调。要求通过硬件实验掌握AM 的工作原理,根据给定的技术指标通过程序设计实现系统仿真。 硬件部分:基于信号与系统实验箱,使用信号源单元和FDM 频分复用模块进行实验。 软件仿真设计:采用Matlab 语言设计,采用两种方式进行仿真,即直接采用Matlab 语言编程的静态仿真方式和采用Simulink 进行动态建模和仿真的方式。 三、主要设备和软件 1. 信号与系统实验箱,一台(含FDM 频分复用模块(DYT3000-70)、同步信号源模块(DYT3000-57)) 2. PC 机,一台 3. 20MHz 双踪示波器,一台 4. MATLAB6.5以上版本软件,一套 5. USB2090数据采集卡,一块 三、 实验原理: AM 调制解调的原理 1.所谓调制,就是用一个信号(原信号也称调制信号)去控制另一个信号(载波信号)的某个参量,从而产生已调制信号, 解调则是相反的过程,即从已调制信号中恢复出原信号。 模拟调制方式是载频信号的幅度、频率或相位随着欲传输的模拟输入基带信号的变化而相应发生变化的调制方式,包括:幅度调制(AM )、频率调制(FM )、相位调制(PM )三种。 这三种调制方式的实质都是对原始信号进行频谱搬移,将信号的频谱搬移到所需要的较高频带上,从而满足信号传输的需要。 幅度调制是用调制信号去控制高频载波的振幅,使其按调制信号的规律变化,其它参数不变。是使高频载波的振幅载有传输信息的调制方式。 振幅调制分为三种方式:普通调幅方式(AM )、抑制载波的双边带调制(DSB-SC )和单边带调制(SSB )。所得的已调信号分别称为调幅波信号、双边带信号和单边带信号。 设载波信号为)cos()(t V t v c m o c ω=,c c f πω2=,调制信号为)cos()(t V t v m Ω=ΩΩ,则输出调幅电压为 )2cos())cos(()(0θπα+Ω+=t f t m V t v c a m o (1-1) 式中α是输入信号偏移,当1=α,为普通调幅波,当0=α时,为抑制载波的双边带调制波。θ是初始相位(设0=θ),a m 为调制指数(或称为调幅度,1≤a m )。

ssb波的调制与解调

海南大学 通信电子线路课程设计报告 学院:信息科学技术学院 课题名称:单边带的调制与解调 专业班级:12通信工程B班 姓名: 学号: 指导老师:黄艳 设计时间:2014.10——2014.12 使用仪器:Multisim12 同组成员:

目录 摘要及关键词 (1) 一设计总体概述 (2) 1.1 设计任务 (2) 1.2.设计指标 (2) 二系统框图 (2) (一)SSB调制电路 (2) (二)SSB解调电路 (3) 三各单元电路图及仿真 (4) 1 平衡调制器 (4) 2 带通滤波器 (8) 3 相乘器 (12) 4.低通滤波器 (13) 四总电路图 (15) 五自设问题及解答 (16) 六心得体会总结 (16) 七所遇问题及未解决问题 (17) 参考文献 (17)

内容摘要 本文用Multisim12设计并仿真了单边带的调制越解调,由于在调制单元,先设计一个混频器(双平衡调制器),在混频的两端通过信号发生器输入一个调制低频信号 f 和载波信号0f ,完成频谱的搬移,成为一个DSB 信号,再设计一个带通滤波器,将DSB 经过带通滤波器变成一个抑制单边带的SSB 波信号。单边带SSB 节约频带,节省功率,具有较高的保密性。在解调单元,将调制单元输出的SSB 和通过一个信号发生器产生的和调制单元同频同相的载波输入在相乘器(双平衡调制器)的两端,完成混频。再设计一个低通滤波器,将相乘器输出的信号经过低通滤波器,就可恢复基带信号低频信号0f ,完成解调。 在设计单元电路时,对每部分的电路设置参数,进行仿真,调参,对结果进行分析,由于在SSB 调制时,带通滤波的带宽相对中心频率的系数太小,所以将载波设置成较低频信号。反复调试后,得出结果和心得体会。 【关键词】:单边带 调制解调 平衡调制器 带通滤波器 低通滤波器 仿真

PSK调制解调实验报告范文

PSK调制解调实验报告范文 一、实验目的 1. 掌握二相绝对码与相对码的码变换方法; 2. 掌握二相相位键控调制解调的工作原理及性能测试; 3. 学习二相相位调制、解调硬件实现,掌握电路调整测试方法。 二、实验仪器 1.时钟与基带数据发生模块,位号:G 2.PSK 调制模块,位号A 3.PSK 解调模块,位号C 4.噪声模块,位号B 5.复接/解复接、同步技术模块,位号I 6.20M 双踪示波器1 台 7.小平口螺丝刀1 只 8.频率计1 台(选用) 9.信号连接线4 根 三、实验原理 相位键控调制在数字通信系统中是一种极重要的调制方式,它具有优良的抗干扰噪声性能及较高的频带利用率。在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而广泛应用在实际通信系统中。本实验箱采用相位选择法实现相位调制(二进制),绝对移相键控(PSK 或CPSK)是用输入的基带信号(绝对码)选择开关通断控制载波相位的变化来实现。相对移相键控

(DPSK)采用绝对码与相对码变换后,用相对码控制选择开关通断来实现。 (一)PSK 调制电路工作原理 二相相位键控的载波为1.024MHz,数字基带信号有32Kb/s 伪随机码、及其相对码、32KHz 方波、外加数字信号等。相位键控调制解调电原理框图,如图6-1 所示。 1.载波倒相器 模拟信号的倒相通常采用运放来实现。来自1.024MHz 载波信号输入到运放的反相输入端,在输出端即可得到一个反相的载波信号,即π相载波信号。为了使0 相载波与π相载波的幅度相等,在电路中加了电位器37W01 和37W02 调节。 2.模拟开关相乘器 对载波的相移键控是用模拟开关电路实现的。0 相载波与π相载波分别加到模拟开关A:CD4066 的输入端(1 脚)、模拟开关B:CD4066 的输入端(11 脚),在数字基带信号的信码中,它的正极性加到模拟开关A 的输入控制端(13 脚),它反极性加到模拟开关B 的输入控制端(12 脚)。用来控制两个同频反相载波的通断。当信码为“1”码时,模拟开关 A 的输入控制端为高电平,模拟开关A 导通,输出0 相载波,而模拟开关 B 的输入控制端为低电平,模拟开关B 截止。反之,当信码为“0”码时,模拟开关A 的输入控制端为低电平,模拟开关A 截止。而模拟开关B 的输入控制端却为高电平,模拟开关B 导通。输

AM调制与解调

课程设计 班级: 姓名: 学号: 指导教师: 成绩: 电子与信息工程学院 信息与通信工程系

摘要 振幅调制信号的解调过程称为同步检波。有载波振幅调制信号的包络直接反应调制信号的变化规律,可以用二极管包络检波的方法进行检波。而抑制载波的双边带或单边带振幅调制信号的包络不能直接反应调制信号的变化规律,无法用包络检波进行解调,所以要采用同步检波方法。 同步检波器主要适用于对DSB和SSB信号进行解调,也可以用于AM,但是一般AM调制信号都用包络检波来进行检波。同步检波法是加一个与载波同频同相的恢复载波信号。外加载波信号电压加入同步检波器的方法有两种。利用模拟乘法器的相乘原理,将已调信号频谱从载波频率附近搬移到原来位置,并通过低通滤波器提取多需要的调制(基带)信号,滤除无用的高频分量,从而实现双边带信号的解调。 本文详细介绍了根据模拟乘法器MC1496的AM调制系统和同步检波器的详细方案和各种参数。给出了基于Multisim软件的解调和解调仿真结果。 关键字:同步检波;AM;Multisim;调制

目录 1 MC1496芯片设计 (2) 1.1MC1496内部结构及基本性能 (2) 2 信号调制的一般方法 (3) 2.1模拟调制 (3) 2.2数字调制 (3) 2.3脉冲调制 (3) 3 振幅调制 (4) 3.1基本原理 (4) 3.2AM调制与仿真实现 (4) 3.3DSB调制与仿真实现 (6) 4解调 (7) 4.1同步检波器原理框图 (7) 4.2同步检波解调电路图 (9) 4.3分析解调过程 (9) 4.4解调仿真结果 (10) 4.4.1 AM解调与仿真实现 (10) 4.4.2 DSB解调与仿真实现 (11) 5 小结与体会 (12) 6附录:总电路图 (12)

ssb波的调制与解调

大学 通信电子线路课程设计报告 学院:信息科学技术学院 课题名称:单边带的调制与解调 专业班级:12通信工程B班 姓名: 学号: 指导老师:黄艳 设计时间:2014.10——2014.12 使用仪器:Multisim12 同组成员:

目录 摘要及关键词 (1) 一设计总体概述 (2) 1.1 设计任务 (2) 1.2.设计指标 (2) 二系统框图 (2) (一) SSB调制电路 (2) (二) SSB解调电路 (3) 三各单元电路图及仿真 (4) 1 平衡调制器 (4) 2 带通滤波器 (8) 3 相乘器 (12) 4.低通滤波器 (13) 四总电路图 (15) 五自设问题及解答 (16) 六心得体会总结 (16) 七所遇问题及未解决问题 (17) 参考文献 (17)

容摘要 本文用Multisim12设计并仿真了单边带的调制越解调,由于在调制单元,先设计一个混频器(双平衡调制器),在混频的两端通过信号发生器输入一个调制低频信号 f 和载波信号0f ,完成频谱的搬移,成为一个DSB 信号,再设计一个带通滤波器,将DSB 经过带通滤波器变成一个抑制单边带的SSB 波信号。单边带SSB 节约频带,节省功率,具有较高的性。在解调单元,将调制单元输出的SSB 和通过一个信号发生器产生的和调制单元同频同相的载波输入在相乘器(双平衡调制器)的两端,完成混频。再设计一个低通滤波器,将相乘器输出的信号经过低通滤波器,就可恢复基带信号低频信号0f ,完成解调。 在设计单元电路时,对每部分的电路设置参数,进行仿真,调参,对结果进行分析,由于在SSB 调制时,带通滤波的带宽相对中心频率的系数太小,所以将载波设置成较低频信号。反复调试后,得出结果和心得体会。 【关键词】:单边带 调制解调 平衡调制器 带通滤波器 低通滤波器 仿真

实验九 QPSK调制与解调实验报告

实验九QPSK/OQPSK 调制与解调实验 一、实验目的 1、了解用CPLD 进行电路设计的基本方法。 2、掌握QPSK 调制与解调的原理。 3、通过本实验掌握星座图的概念、星座图的产生原理及方法,了解星座图的作用及工程上的作用。 二、实验内容 1、观察QPSK 调制的各种波形。 2、观察QPSK 解调的各种波形。 三、实验器材 1、信号源模块 一块 2、⑤号模块 一块 3、20M 双踪示波器 一台 4、 连接线 若干 四、实验原理 (一)QPSK 调制解调原理 1、QPSK 调制 QPSK 信号的产生方法可分为调相法和相位选择法。 用调相法产生QPSK 信号的组成方框图如图12-1(a )所示。图中,串/并变换器将输入的二进制序列依次分为两个并行的双极性序列。设两个序列中的二进制数字分别为a 和b ,每一对ab 称为一个双比特码元。双极性的a 和b 脉冲通过两个平衡调制器分别对同相载波及正交载波进行二相调制,得到图12-1(b )中虚线矢量。将两路输出叠加,即得如图12-1(b )中实线所示的四相移相信号,其相位编码逻辑关系如表12-1所示。 (a ) a(0)b(0) b(1) a(1) (b ) 图12-1 QPSK 调制 /并变换。串/并变换器将输入的二进制序列分为两个并行的双极性序列110010*********和

111101*********。双极性的a 和b 脉冲通过两个平衡调制器分别对同相载波及正交载波进行二相调制,然后将两路输出叠加,即得到QPSK 调制信号。 2、QPSK 解调 图12-2 QPSK 相干解调器 由于四相绝对移相信号可以看作是两个正交2PSK 信号的合成,故它可以采用与2PSK 信号类似的解调方法进行解调,即由两个2PSK 信号相干解调器构成,其组成方框图如图12-2所示。图中的并/串变换器的作用与调制器中的串/并变换器相反,它是用来将上、下支路所得到的并行数据恢复成串行数据的。 (二)OQPSK 调制解调原理 OQPSK 又叫偏移四相相移键控,它是基于QPSK 的改进型,为了克服QPSK 中过零点的相位跃变特性,以及由此带来的幅度起伏不恒定和频带的展宽(通过带限系统后)等一系列问题。若将QPSK 中并行的I ,Q 两路码元错开时间(如半个码元),称这类QPSK 为偏移QPSK 或OQPSK 。通过I ,Q 路码元错开半个码元调制之后的波形,其载波相位跃变由180°降至90°,避免了过零点,从而大大降低了峰平比和频带的展宽。 下面通过一个具体的例子说明某个带宽波形序列的I 路,Q 路波形,以及经载波调制以后相位变化情况。 若给定基带信号序列为1 -1 -1 1 1 1 1 -1 -1 1 1 -1 对应的QPSK 与OQPSK 发送波形如图12-3所示。 1-1-11111-1-111-1111-11-111-11-1-111-11-1 基基基基I 基基Q P S K ,O Q P S K Q 基基 Q P S K Q 基基O Q P S K -1 图12-3 QPSK,OQPSK 发送信号波形 图12-3中,I 信道为U (t )的奇数数据单元,Q 信道为U (t )的偶数数据单元,而OQPSK 的Q 信道与其I 信道错开(延时)半个码元。 QPSK ,OQPSK 载波相位变化公式为 {}()33arctan ,,,()44 44j i j i Q t I t ππ?ππ? ????? =--???? ?????? ?@ QPSK 数据码元对应的相位变化如图12-4所示,OQPSK 数据码元对应相位变化如图 12-5所示

相关文档
相关文档 最新文档