文档视界 最新最全的文档下载
当前位置:文档视界 › 汇编语言浮点数指令集

汇编语言浮点数指令集

汇编语言浮点数指令集
汇编语言浮点数指令集

汇编语言浮点数指令集

;**************************************************************** ****************

;* 浮点数指令集

;**************************************************************** ****************

;////////////////////////////////////////////////////////////////////////////////

;////

;//// 浮点数载入指令

;////

;///////////////////////////////////////////////////////////////////////////////

;助记符操作数功能

fld memory(real) ;将存储器中的实型压人堆栈

fild memory(integer) ;将存储器的整型数值转化为浮点数并压人堆栈

fbld memory(BCD) ;将存储器的BCD码转化为浮点数并压人堆栈

fld st(num) ;将浮点型寄存器中的数值压入堆栈

fld1 (none) ;1.0压人堆栈

fldz (none) ;0.0压人堆栈

fldpi (none) ;Π(pi)压人堆栈

fldl2e (none) ;log2(e)压人堆栈

fldl2t (none) ;log2(10)压人堆栈

fldlg2 (none) ;log10(2)压人堆栈

fldln2 (none) ;loge(2)压人堆栈

finit (none) ;初始化浮点型单元,并清空8个寄存器的内容

;////////////////////////////////////////////////////////////////////////////////

;/////

;//// 浮点数数据存储指令

;////

;///////////////////////////////////////////////////////////////////////////////

;助记符操作数功能

fst st(num) ;复制st的值来替换st(num)的内容;只有st(num)是受到影响fstp st(num) ;复制st的值来替换st(num)的内容;st出栈

fst memory(real) ;复制st的值为实型数,存入存储器;堆栈不受影响

fstp memory(real) ;复制st的值为实型数,存入存储器;st出栈

fist memory(integer) ;复制st的值,并转换为整型数存入存储器

fistp memory(integer) ;复制st的值,并转换为整型数存入存储器;st出栈

fbstp memory(BCD) ;复制st的值,并转换为BCD码存入存储器;st出栈

fxch (none) ;互换st和st(1)

fxch st(num) ;互换st和st(num)

;/////////////////////////////////////////////////////////////////////////////// ;////

;/// 浮点型加法指令

;///

;//////////////////////////////////////////////////////////////////////////////

;助记符操作数功能

fadd (none) ;将st和st(1)出栈;将两个值相加;并将它们的和入栈

fadd st(num),st ;将st(num)和st相加;用和替换st(num)

fadd st,st(num) ;将st和st(num)相加;用和替换st

fadd memory(real) ;将st和存储器中的实型数相加;用和替换st

fiadd memory(integer) ;将st和存储器中的整型数相加,用和替换st

faddp st(num),st ;将st(num)和st相加,用和来替换st(num),将st出栈

;//////////////////////////////////////////////////////////////////////////////

;////

;/// 浮点型乘法指令

;///

;//////////////////////////////////////////////////////////////////////////////

;助记符操作数功能

fmul (none) ;将st和st(1)出栈;并将它们的值相乘;乘积人栈

fmul st(num),st ;将st(num)和st相乘;用乘积来替换st(num)

fmul st,st(num) ;将st和st(num)相乘;用乘积来替换st

fmul memory(real) ;将st和存储器中的实型数相乘;用乘积来替换st fimul memory(integer) ;将st和存储器中的整型数相乘,用乘积来替换st fmulp st(num),st ;将st(num)和st相乘;乘积来替换st(num);并将st出栈

;助记符操作数功能

fsub (none) ;将st和st(1)出栈,计算st(1)减st的值;将差入栈

fsub st(num),st ;计算st(num)减st的值;用差值替换st(num)

fsub st,st(num) ;计算st减st(num)的值;用差值来替换st

fsub memory(real) ;计算st减存储器中的实型数的值;用差值来替换st

fisub memory(integer) ;计算st减存储器中的整型数的值;用差值替换st

fsubp st(num),st ;计算st(num)减st的值;用差值替换st(num);将st出栈 fsubr (none) ;将st和st(1)出栈;计算st减st(1)的值;将差值入栈

fsubr st(num),st ;计算st减st(num)的值,用差值替换st(num)

fsubr st,st(num) ;计算st(num)减st的值,用差值来替换st

fsubr memory(real) ;计算存储器中的实型数值减st的值,用差值替换st

fisubr memory(integer) ;计算存储器中的整型数值减st的值;用差值替换st

fsubrp st(num),st ;计算st减st(num)的值,用差值替换st(num);将st出栈

;//////////////////////////////////////////////////////////////////////////////

;///

;/// 浮点型除法指令

;///

;//////////////////////////////////////////////////////////////////////////////

;助记符操作数功能

fdiv (none) ;将st和st(1)出栈;计算st(1)/st的值;并将商入栈

fdiv st(num),st ;计算st(num)/st的值;用商来替换st(num)

fdiv st,st(num) ;计算st/st(num)的值;用商来替换st

fdiv memory(real) ;计算st/存储器中的实型数;用商来替换st

fidiv memory(integer);计算st/存储器中的整型数;用商来替换st

fdivp st(num),st ;计算st(num)/st的值;用商来替换st(num);并将st出栈fdivr (none) ;将st和st(1)出栈;计算st/st(1)的值;并将商入栈

fdivr st(num),st ;计算st/st(num)的值;用商来替换st(num)

fdivr st,st(num) ;计算st(num)/st的值;用商来替换st

fdivr memory(real) ;计算存储器中的实型数/st;商来替换st

fidivr memory(integer);计算存储器中的整型数/st;用商来替换st

fdivrp st(num),st ;计算st/st(num)的值,用商来替换st(num);并将st出栈

;//////////////////////////////////////////////////////////////////////////////

;///

;/// 附加的浮点型指令

;///

;/////////////////////////////////////////////////////////////////////////////

;助记符操作数功能

fabs (none) ;st := |st|(绝对值)

fchs (none) ;st := -st(相反数)

frndint (none) ;对st取整

fsqrt (none) ;用st的平方根来替换st

;/////////////////////////////////////////////////////////////////////////////

;///

;/// 浮点型比较指令

;///

;////////////////////////////////////////////////////////////////////////////

;助记符操作数功能

fcom (none) ;比较st和st(1)

fcom st(num) ;比较st和st(num)

fcom memory(real) ;比较st和存储器中的实型数

ficom memory(integer) ;比较st和存储器中的整型数

ftst (none) ;比较st和0.0

fcomp (none) ;比较st和st(1);然后出栈

fcomp st(num) ;比较st和st(num);然后出栈

fcomp memory(real) ;比较st和存储器中的实型数;然后出栈

fcomp memory(integer) ;比较st和存储器中的整型数;然后出栈

fcompp (none) ;比较st和st(1);然后两次出栈

;//////////////////////////////////////////////////////////////////////////// ;///

;/// 混合浮点型指令

;///

;////////////////////////////////////////////////////////////////////////////

;助记符操作数功能

fstsw memory WORD ;复制状态寄存器到存储器字

fstsw ax ;复制状态寄存器到ax寄存器

fstcw memory WORD ;复制控制字寄存器到存储器

fldcw memory WORD ;复制存储器字到控制字寄存器

(完整word版)汇编语言常用指令大全,推荐文档

MOV指令为双操作数指令,两个操作数中必须有一个是寄存器. MOV DST , SRC // Byte / Word 执行操作: dst = src 1.目的数可以是通用寄存器, 存储单元和段寄存器(但不允许用CS段寄存器). 2.立即数不能直接送段寄存器 3.不允许在两个存储单元直接传送数据 4.不允许在两个段寄存器间直接传送信息 PUSH入栈指令及POP出栈指令: 堆栈操作是以“后进先出”的方式进行数据操作. PUSH SRC //Word 入栈的操作数除不允许用立即数外,可以为通用寄存器,段寄存器(全部)和存储器. 入栈时高位字节先入栈,低位字节后入栈. POP DST //Word 出栈操作数除不允许用立即数和CS段寄存器外, 可以为通用寄存器,段寄存器和存储器. 执行POP SS指令后,堆栈区在存储区的位置要改变. 执行POP SP 指令后,栈顶的位置要改变. XCHG(eXCHanG)交换指令: 将两操作数值交换. XCHG OPR1, OPR2 //Byte/Word 执行操作: Tmp=OPR1 OPR1=OPR2 OPR2=Tmp 1.必须有一个操作数是在寄存器中 2.不能与段寄存器交换数据 3.存储器与存储器之间不能交换数据. XLAT(TRANSLATE)换码指令: 把一种代码转换为另一种代码. XLAT (OPR 可选) //Byte 执行操作: AL=(BX+AL) 指令执行时只使用预先已存入BX中的表格首地址,执行后,AL中内容则是所要转换的代码. LEA(Load Effective Address) 有效地址传送寄存器指令 LEA REG , SRC //指令把源操作数SRC的有效地址送到指定的寄存器中. 执行操作: REG = EAsrc 注: SRC只能是各种寻址方式的存储器操作数,REG只能是16位寄存器 MOV BX , OFFSET OPER_ONE 等价于LEA BX , OPER_ONE MOV SP , [BX] //将BX间接寻址的相继的二个存储单元的内容送入SP中 LEA SP , [BX] //将BX的内容作为存储器有效地址送入SP中 LDS(Load DS with pointer)指针送寄存器和DS指令 LDS REG , SRC //常指定SI寄存器。 执行操作: REG=(SRC), DS=(SRC+2) //将SRC指出的前二个存储单元的内容送入指令中指定的寄存器中,后二个存储单元送入DS段寄存器中。

汇编语言入门

汇编语言入门教程 对初学者而言,汇编的许多命令太复杂,往往学习很长时间也写不出一个漂漂亮亮的程序,以致妨碍了我们学习汇编的兴趣,不少人就此放弃。所以我个人看法学汇编,不一定要写程序,写程序确实不是汇编的强项,大家不妨玩玩DEBUG,有时CRACK出一个小软件比完成一个程序更有成就感(就像学电脑先玩游戏一样)。某些高深的指令事实上只对有经验的汇编程序员有用,对我们而言,太过高深了。为了使学习汇编语言有个好的开始,你必须要先排除那些华丽复杂的命令,将注意力集中在最重要的几个指令上(CMP LOOP MOV JNZ……)。但是想在啰里吧嗦的教科书中完成上述目标,谈何容易,所以本人整理了这篇超浓缩(用WINZIP、WINRAR…依次压迫,嘿嘿!)教程。大言不惭的说,看通本文,你完全可以“不经意”间在前辈或是后生卖弄一下DEBUG,很有成就感的,试试看!那么――这个接下来呢?――Here we go!(阅读时看不懂不要紧,下文必有分解) 因为汇编是通过CPU和内存跟硬件对话的,所以我们不得不先了解一下CPU和内存:(关于数的进制问题在此不提) CPU是可以执行电脑所有算术╱逻辑运算与基本I/O 控制功能的一块芯片。一种汇编语言只能用于特定的CPU。也就是说,不同的CPU其汇编语言的指令语法亦不相同。个人电脑由1981年推出至今,其CPU发展过程为:8086→80286→80386→80486→PENTIUM →……,还有AMD、CYRIX等旁支。后面兼容前面CPU的功能,只不过多了些指令(如多能奔腾的MMX指令集)、增大了寄存器(如386的32位EAX)、增多了寄存器(如486的FS)。为确保汇编程序可以适用于各种机型,所以推荐使用8086汇编语言,其兼容性最佳。本文所提均为8086汇编语言。寄存器(Register)是CPU内部的元件,所以在寄存器之间的数据传送非常快。用途:1.可将寄存器内的数据执行算术及逻辑运算。2.存于寄存器内的地址可用来指向内存的某个位置,即寻址。3.可以用来读写数据到电脑的周边设备。8086 有8个8位数据寄存器,这些8位寄存器可分别组成16位寄存器:AH&AL=AX:累加寄存器,常用于运算;BH&BL=BX:基址寄存器,常用于地址索引;CH&CL=CX:计数寄存器,常用于计数;DH&DL=DX:数据寄存器,常用于数据传递。为了运用所有的内存空间,8086设定了四个段寄存器,专门用来保存段地址:CS(Code Segment):代码段寄存器;DS(Data Segment):数据段寄存器;SS(Stack Segment):堆栈段寄存器;ES(Extra Segment):附加段寄存器。当一个程序要执行时,就要决定程序代码、数据和堆栈各要用到内存的哪些位置,通过设定段寄存器CS,DS,SS 来指向这些起始位置。通常是将DS固定,而根据需要修改CS。所以,程序可以在可寻址空间小于64K的情况下被写成任意大小。所以,程序和其数据组合起来的大小,限制在DS 所指的64K内,这就是COM文件不得大于64K的原因。8086以内存做为战场,用寄存器做为军事基地,以加速工作。除了前面所提的寄存器外,还有一些特殊功能的寄存器:IP(Intruction Pointer):指令指针寄存器,与CS配合使用,可跟踪程序的执行过程;SP(Stack Pointer):堆栈指针,与SS配合使用,可指向目前的堆栈位置。BP(Base Pointer):基址指针寄存器,可用作SS 的一个相对基址位置;SI(Source Index):源变址寄存器可用来存放相对于DS段之源变址指针;DI(Destination Index):目的变址寄存器,可用来存放相对于ES 段之目的变址指针。还有一个标志寄存器FR(Flag Register),有九个有意义的标志,将在下文用到时详细说明。 内存是电脑运作中的关键部分,也是电脑在工作中储存信息的地方。内存组织有许多可存放

(完整word版)汇编语言指令集合-吐血整理,推荐文档

8086/8088指令系统记忆表 数据寄存器分为: AH&AL=AX(accumulator):累加寄存器,常用于运算;在乘除等指令中指定用来存放操作数,另外,所有的I/O指令都使用这一寄存器与外界设备传送数据. BH&BL=BX(base):基址寄存器,常用于地址索引; CH&CL=CX(count):计数寄存器,常用于计数;常用于保存计算值,如在移位指令,循环(loop)和串处理指令中用作隐含的计数器. DH&DL=DX(data):数据寄存器,常用于数据传递。他们的特点是,这4个16位的寄存器可以分为高8位: AH, BH, CH, DH.以及低八位:AL,BL,CL,DL。这2组8位寄存器可以分别寻址,并单独使用。 另一组是指针寄存器和变址寄存器,包括: SP(Stack Pointer):堆栈指针,与SS配合使用,可指向目前的堆栈位置; BP(Base Pointer):基址指针寄存器,可用作SS的一个相对基址位置; SI(Source Index):源变址寄存器可用来存放相对于DS段之源变址指针; DI(Destination Index):目的变址寄存器,可用来存放相对于ES 段之目的变址指针。 指令指针IP(Instruction Pointer) 标志寄存器FR(Flag Register) OF(overflow flag) DF(direction flag) CF(carrier flag) PF(parity flag) AF(auxiliary flag) ZF(zero flag) SF(sign flag) IF(interrupt flag) TF(trap flag) 段寄存器(Segment Register) 为了运用所有的内存空间,8086设定了四个段寄存器,专门用来保存段地址: CS(Code Segment):代码段寄存器; DS(Data Segment):数据段寄存器; SS(Stack Segment):堆栈段寄存器;

51单片机汇编指令集(附记忆方法)

51单片机汇编指令集 一、数据传送类指令(7种助记符) MOV(英文为Move):对内部数据寄存器RAM和特殊功能寄存器SFR的数据进行传送; MOVC(Move Code)读取程序存储器数据表格的数据传送; MOVX (Move External RAM) 对外部RAM的数据传送; XCH (Exchange) 字节交换; XCHD (Exchange low-order Digit) 低半字节交换; PUSH (Push onto Stack) 入栈; POP (Pop from Stack) 出栈; 二、算术运算类指令(8种助记符) ADD(Addition) 加法; ADDC(Add with Carry) 带进位加法; SUBB(Subtract with Borrow) 带借位减法; DA(Decimal Adjust) 十进制调整; INC(Increment) 加1; DEC(Decrement) 减1; MUL(Multiplication、Multiply) 乘法; DIV(Division、Divide) 除法; 三、逻辑运算类指令(10种助记符) ANL(AND Logic) 逻辑与; ORL(OR Logic) 逻辑或; XRL(Exclusive-OR Logic) 逻辑异或; CLR(Clear) 清零; CPL(Complement) 取反; RL(Rotate left) 循环左移; RLC(Rotate Left throught the Carry flag) 带进位循环左移; RR(Rotate Right) 循环右移; RRC (Rotate Right throught the Carry flag) 带进位循环右移; SWAP (Swap) 低4位与高4位交换; 四、控制转移类指令(17种助记符) ACALL(Absolute subroutine Call)子程序绝对调用; LCALL(Long subroutine Call)子程序长调用; RET(Return from subroutine)子程序返回; RETI(Return from Interruption)中断返回; SJMP(Short Jump)短转移; AJMP(Absolute Jump)绝对转移; LJMP(Long Jump)长转移; CJNE (Compare Jump if Not Equal)比较不相等则转移;

快速入门单片机汇编语言

快速入门单片机汇编语 言 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

快速入门单片机汇编语言 简要: 单片机有通用型和专用型之分。专用型是厂家为固定程序的执行专门开发研制的一种单片机,其程序不可更改。通用型单片机是常用的一种供学习或自主编制程序的单片机,其程序需要自己写入,可更改。单片机根据其基本操作处理位数不同可以分为:1位、4位、8位、16、32位单片机。 正文: 在此我们主要讲解美国ATMEL公司的89C51单片机。 一、89C51单片机PDIP(双列直插式)封装引脚图: 其引脚功能如下: P0口(—):为双向三态口,可以作为输入/输出口。但在实际应用中通常作为地址/数据总线口,即为低8位地址/数据总线分时复用。低8位地址在ALE信号的负跳变锁存到外部地址锁存器中,而高8位地址由P2口输出。 P1口(—):其每一位都能作为可编程的输入或输出线。 P2口(—):每一位也都可作为输入或输出线用,当扩展系统外设时,可作为扩展系统的地址总线高8位,与P0口一起组成16位地址总线。对89c51单片机来说,P2口一般只作为地址总线使用,而不作为I/O线直接与外设相连。 P3口(—):其为双功能口,作为第一功能使用时,其功能与P1口相同。当作为第二功能使用时,每一位功能如下表所示。 P3口第二功能

Rst\Vpd:上电复位端和掉电保护端。 XTAL1(xtal2):外接晶振一脚,分别接晶振的一端。 Gnd:电源地。 Vcc:电源正级,接+5V。 PROG\ALE:地址锁存控制端 PSEN:片外程序存储器读选通信号输出端,低电平有效。 EA\vpp:访问外部程序储存器控制信号,低电平有效。当EA为高电平时访问片内存储器,若超出范围则自动访问外部程序存储器。当EA为低电平时只访问外部程序存储器。 二、常用指令及其格式介绍: 1、指令格式: [标号:]操作码 [ 目的操作数][,操作源][;注释] 例如:LOOP:ADD A,#0FFH ;(A)←(A)+FFH 2、常用符号: Ri和Rn:R表示工作寄存器,i表示1和0,n表示0~7。 rel:相对地址、地址偏移量,主要用于无条件相对短转移指令和条件转移指令。 #data:包含于指令中的8位立即数。 #data16:包含于指令中的16位立即数。

MCS-51汇编语言指令集

MCS-51汇编语言指令集 符号定义表 符号 含义 Rn R0~R7寄存器n=0~7 Direct 直接地址,内部数据区的地址RAM(00H~7FH) SFR(80H~FFH) B,ACC,PSW,IP,P3,IE,P2,SCON,P1,TCON,P0 @Ri 间接地址Ri=R0或R1 8051/31RAM地址(00H~7FH) 8052/32RAM地址(00H~FFH) #data 8位常数 #data16 16位常数 Addr16 16位的目标地址 Addr11 11位的目标地址 Rel 相关地址 bit 内部数据RAM(20H~2FH),特殊功能寄存器的直接地址的位 2指令介绍 指令 字节 周期 动作说明 算数运算指令 1.ADD A,Rn 1 1 将累加器与寄存器的内容相加,结果存回累加器 2.ADD A,direct 2 1 将累加器与直接地址的内容相加,结果存回累加器 3.ADD A,@Ri 1

将累加器与间接地址的内容相加,结果存回累加器4.ADD A,#data 2 1 将累加器与常数相加,结果存回累加器 5.ADDC A,Rn 1 1 将累加器与寄存器的内容及进位C相加,结果存回累加器6.ADDC A,direct 2 1 将累加器与直接地址的内容及进位C相加,结果存回累加器7.ADDC A,@Ri 1 1 将累加器与间接地址的内容及进位C相加,结果存回累加器8.ADDC A,#data 2 1 将累加器与常数及进位C相加,结果存回累加器 9.SUBB A,Rn 1 1 将累加器的值减去寄存器的值减借位C,结果存回累加器10.SUBB A,direct 2 1 将累加器的值减直接地址的值减借位C,结果存回累加器11.SUBB A,@Ri 1 1 将累加器的值减间接地址的值减借位C,结果存回累加器12.SUBB A,0data 2 1 将累加器的值减常数值减借位C,结果存回累加器 13.INC A 1 1 将累加器的值加1 14.INC Rn 1

一些常用的汇编语言指令

汇编语言常用指令 大家在做免杀或者破解软件的时候经常要用到汇编指令,本人整理出了常用的 希望对大家有帮助! 数据传送指令 MOV:寄存器之间传送注意,源和目的不能同时是段寄存器;代码段寄存器CS不能作为目的;指令指针IP不能作为源和目的。立即数不能直接传送段寄存器。源和目的操作数类型要一致;除了串操作指令外,源和目的不能同时是存储器操作数。 XCHG交换指令:操作数可以是通用寄存器和存储单元,但不包括段寄存器,也不能同时是存储单元,还不能有立即数。 LEA 16位寄存器存储器操作数传送有效地址指令:必须是一个16位寄存器和存储器操作数。 LDS 16位寄存器存储器操作数传送存储器操作数32位地址,它的16位偏移地址送16位寄存器,16位段基值送入DS中。 LES :同上,只是16位段基址送ES中。 堆栈操作指令 PUSH 操作数,操作数不能使用立即数, POP 操作数,操作数不能是CS和立即数 标志操作指令 LAHF:把标志寄存器低8位,符号SF,零ZF,辅助进位AF,奇偶PF,进位CF传送到AH 指定的位。不影响标志位。 SAHF:与上相反,把AH中的标志位传送回标志寄存器。 PUSHF:把标志寄存器内容压入栈顶。 POPF:把栈顶的一个字节传送到标志寄存器中。 CLC:进位位清零。 STC:进位位为1。 CMC:进位位取反。 CLD:使方向标志DF为零,在执行串操作中,使地址按递增方式变化。 STD:DF为1。 CLI:清中断允许标志IF。Cpu不相应来自外部装置的可屏蔽中断。 STI:IF为1。 加减运算指令

注意:对于此类运算只有通用寄存器和存储单元可以存放运算结果。如果参与运算的操作数有两个,最多只能有一个存储器操作数并且它们的类型必须一致。 ADD。 ADC:把进位CF中的数值加上去。 INC:加1指令 SUB。 SBB:把进位CF中数值减去。 DEC:减1指令。 NEG 操作数:取补指令,即用0减去操作数再送回操作数。 CMP:比较指令,完成操作数1减去操作数2,结果不送操作数1,但影响标志位。可根据ZF(零)是否被置1判断相等;如果两者是无符号数,可根据CF判断大小;如果两者是有符号数,要根据SF和OF判断大小。 乘除运算指令 MUL 操作数:无符号数乘法指令。操作数不能是立即数。操作数是字节与AL中的无符号数相乘,16位结果送AX中。若字节,则与AX乘,结果高16送DX,低16送AX。如乘积高半部分不为零,则CF、OF为1,否则为0。所以CF和OF表示AH或DX中含有结果的有效数。IMUL 操作数:有符号数乘法指令。基本与MUL相同。 DIV 操作数:被除数是在AX(除数8位)或者DX和AX(除数16位),操作数不能是立即数。如果除数是0,或者在8(16)位除数时商超过8(16)位,则认为是溢出,引起0号中断。IDIV:有符号除法指令,当除数为0,活着商太大,太小(字节超过127,-127字超过32767,-32767)时,引起0号中断。 符号扩展指令 CBW,CWD:把AL中的符号扩展到寄存器AH中,不影响各标志位。CWD则把AX中的符号扩展到DX,同样不影响标志位。注意:在无符号数除之前,不宜用这两条指令,一般采用XOR 清高8位或高16位。 逻辑运算指令与位移指令 注意:只能有一个存储器操作数;只有通用寄存器或存储器操作数可作为目的操作数,用于存放结果;操作数的类型必须一致。 NOT:取反,不影响标志位。 AND 操作数1 操作数2:操作结果送错作数1,标志CF(进位)、OF(溢出)清0,PF(奇偶)ZF(0标志) SF(符号)反映运算结果,AF(辅助进位)未定义。自己与自己AND值不变,她主要用于将操作数中与1相与的位保持不变,与0相与清0。(都为1时为1)OR 操作数1 操作数2:自己与自己OR值不变,CF(进位)、OF(溢出)清0,PF(奇偶)ZF(0标志)SF(符号)反映运算结果,AF(辅助进位)未定义。她使用于将若干位置1:

汇编语言指令集

汇编语言指令集 一、数据传输指令 1. 通用数据传送指令. MOV(MOVe) 传送字或字节. MOVS(MOVe String) 串传送指令 MOVSX先符号扩展,再传送. MOVZX先零扩展,再传送. PUSH把字压入堆栈. POP把字弹出堆栈. PUSHA把AX,CX,DX,BX,SP,BP,SI,DI依次压入堆栈. POPA把DI,SI,BP,SP,BX,DX,CX,AX依次弹出堆栈. PUSHAD把EAX,ECX,EDX,EBX,ESP,EBP,ESI,EDI依次压入堆栈. POPAD把EDI,ESI,EBP,ESP,EBX,EDX,ECX,EAX依次弹出堆栈. BSWAP 交换32位寄存器里字节的顺序 XCHG (eXCHanG)交换字或字节.( 至少有一个操作数为寄存器,段寄存器不可作为操作数) CMPXCHG比较并交换操作数.( 第二个操作数必须为累加器AL/AX/EAX ) XADD先交换再累加.( 结果在第一个操作数里) XLAT(TRANSLATE) 字节查表转换. ── BX 指向一张256 字节的表的起点, AL 为表的索引值(0-255,即0-FFH); 返回AL 为查表结果. ( [BX+AL]->AL ) 2. 输入输出端口传送指令. IN I/O端口输入. ( 语法: IN 累加器, {端口号│DX} ) OUT I/O端口输出. ( 语法: OUT {端口号│DX},累加器) 输入输出端口由立即方式指定时, 其范围是0-255; 由寄存器DX 指定时,其范围是0-65535. 3. 目的地址传送指令. LEA (Load Effective Address)装入有效地址. 例: LEA DX,string ;把偏移地址存到DX. LDS (Load DS with pointer)传送目标指针,把指针内容装入DS. 例: LDS SI,string ;把段地址:偏移地址存到DS:SI. LES (Load ES with pointer)传送目标指针,把指针内容装入ES. 例: LES DI,string ;把段地址:偏移地址存到ES:DI. LFS 传送目标指针,把指针内容装入FS. 例: LFS DI,string ;把段地址:偏移地址存到FS:DI. LGS 传送目标指针,把指针内容装入GS. 例: LGS DI,string ;把段地址:偏移地址存到GS:DI. LSS 传送目标指针,把指针内容装入SS. 例: LSS DI,string ;把段地址:偏移地址存到SS:DI. 4. 标志传送指令. LAHF (Load AH with Flags)标志寄存器传送,把标志装入AH. SAHF (Store AH into Flgs)标志寄存器传送,把AH内容装入标志寄存器. PUSHF (PUSH the Flags)标志入栈. POPF (POP the Flags)标志出栈.

PIC8位单片机汇编语言常用指令的识读

PIC8位单片机汇编语言常用指令的识读(上) 各大类单片机的指令系统是没有通用性的,它是由单片机生产厂家规定的,所以用户必须遵循厂家规定的标准,才能达到应用单片机的目的。 PIC 8位单片机共有三个级别,有相对应的指令集。基本级PIC系列芯片共有指令33条,每条指令是12位字长;中级PIC系列芯片共有指令35条,每条指令是14位字长;高级PIC 系列芯片共有指令58条,每条指令是16位字长。其指令向下兼容。 在这里笔者介绍PIC 8位单片机汇编语言指令的组成及指令中符号的功能,以供初学者阅读相关书籍和资料时快速入门。 一、PIC汇编语言指令格式 PIC系列微控制器汇编语言指令与MCS-51系列单片机汇编语言一样,每条汇编语言指令由4个部分组成,其书写格式如下: 标号操作码助记符操作数1,操作数2;注释 指令格式说明如下:指令的4个部分之间由空格作隔离符,空格可以是1格或多格,以保证交叉汇编时,PC机能识别指令。 1 标号与MCS-51系列单片机功能相同,标号代表指令的符号地址。在程序汇编时,已赋以指令存储器地址的具体数值。汇编语言中采用符号地址(即标号)是便于查看、修改,尤其是便于指令转移地址的表示。标号是指令格式中的可选项,只有在被其它语句引用时才需派上标号。在无标号的情况下,指令助记符前面必须保留一个或一个以上的空格再写指令助记符。指令助记符不能占用标号的位置,否则该助记符会被汇编程序作标号误处理。 书写标号时,规定第一字符必须是字母或半角下划线“—”,它后面可以跟英文和数字字符、冒号(:)制符表等,并可任意组合。再有标号不能用操作码助记符和寄存器的代号表示。标号也可以单独占一行。 2 操作码助记符该字段是指令的必选项。该项可以是指令助记符,也可以由伪指令及宏命令组成,其作用是在交叉汇编时,“指令操作码助记符”与“操作码表”进行逐一比较,找出其相应的机器码一一代之。 3 操作数由操作数的数据值或以符号表示的数据或地址值组成。若操作数有两个,则两个操作数之间用逗号(,)分开。当操作数是常数时,常数可以是二进制、八进制、十进制或十六进制数。还可以是被定义过的标号、字符串和ASCⅡ码等。具体表示时,规定在二进制数前冠以字母“B”,例如B10011100;八进制数前冠以字母“O”,例如O257;十进制数前冠以字母“D”,例如D122;十六进制数前冠以“H”,例如H2F。在这里PIC 8位单片机默认进制是十六进制,在十六进制数之前加上Ox,如H2F可以写成Ox2F。 指令的操作数项也是可选项。 PIC系列与MCS-51系列8位单片机一样,存在寻址方法,即操作数的来源或去向问题。因PIC系列微控制器采用了精简指令集(RISC)结构体系,其寻址方式和指令都既少而又简单。其寻址方式根据操作数来源的不同,可分为立即数寻址、直接寻址、寄存器间接寻址和位寻址四种。所以PIC系列单片机指令中的操作数常常出现有关寄存器符号。有关的寻址实例,均可在本文的后面找到。 4 注释用来对程序作些说明,便于人们阅读程序。注释开始之前用分号(;)与其它部分相隔。当汇编程序检测到分号时,其后面的字符不再处理。值得注意:在用到子程序时应说明程序的入口条件、出口条件以及该程序应完成的功能和作用。 二、清零指令(共4条) 1 寄存器清零指令 实例:CLRW;寄存器W被清零 说明:该条指令很简单,其中W为PIC单片机的工作寄存器,相当于MCS-51系列单片机中的累加器A,CLR是英语Clear的缩写字母。 2 看门狗定时器清零指令。 实例:CLRWDT;看门狗定时器清零(若已赋值,同时清预分频器)

MIPS 指令系统和汇编语言

第四章MIPS指令系统和汇编语言 1.考研预测:出题特点总结 本章是对统考408内容来说,本章是新增的章节。此外北航961大纲中制定了要考MIPS 指令集,从15年961真题来看MIPS是重中之重。但是今年计组并没有指定具体的教材,但大纲明确要求掌握MIPS指令集,所以还是建议考生将《计算机组成与设计:硬件/软件接口》中文版(原版第三版或第四版)作为本章的参考书籍。 本章大致内容是MIPS的基础知识,难度并不大。考生应该将重点放在MIPS指令集的基础上,考察C语言中的语句转换为对应的MIPS指令,所以需要熟练掌握C语言中一些语句对应的MIPS指令实现。本章出题很大可能就是C语言和MIPS汇编语言之间的转换,也可能涉及到第五章CPU指令流水线等内容。 2.考研知识点系统整理:梳理考点,各个击破 3.1 指令系统概述 机器指令要素 操作码:指明进行的何种操作 源操作数地址:参加操作的操作数的地址,可能有多个。 目的操作数地址:保存操作结果的地址。 下条指令的地址:指明下一条要运行的指令的位置,一般指令是按顺序依次执行的,所以绝大多数指令中并不显式的指明下一条指令的地址,也就是说,指令格式中并不包含这部分信息。只有少数指令需要显示指明下一条指令的地址。

指令执行周期 3.2 指令格式 一台计算机指令格式的选择和确定要涉及多方面的因素,如指令长度、地址码结构以及操

作码结构等,是一个很复杂的问题,它与计算机系统结构、数据表示方法、指令功能设计等都密切相关。 指令的基本格式 一条指令就是机器语言的一个语句,它是一组有意义的二进制代码,指令的基本格式如下: ( 其中A1为第一操作数地址,A2为第二操作数地址,A3为操作结果存放地址。 这条指令的含义:(A1)OP(A2)→A3 式中OP表示双操作数运算指令的运算符号,如“+”或“–”等。 (2)二地址指令

IC8位单片机汇编语言常用指令的识读

PIC单片机指令集简介 PIC 8位单片机共有三个级别,有相对应的指令集。基本级PIC系列芯片共有指令33条,每条指令是12位字长;中级PIC系列芯片共有指令35条,每条指令是14位字长;高级PIC系列芯片共有指令58条,每条指令是16位字长。其指令向下兼容。 一、PIC汇编语言指令格式 PIC系列微控制器汇编语言指令与MCS-51系列单片机汇编语言一样,每条汇编语言指令由4个部分组成,其书写格式如下: 标号操作码助记符操作数1,操作数2;注释 指令格式说明如下:指令的4个部分之间由空格作隔离符,空格可以是1格或多格,以保证交叉汇编时,PC机能识别指令。 1与MCS-51系列单片机功能相同,标号代表指令的符号地址。在程序汇编时,已赋以指令存储器地址的具体数值。汇编语言中采用符号地址(即标号)是便于查看、修改,尤其是便于指令转移地址的表示。标号是指令格式中的可选项,只有在被其它语句引用时才需派上标号。在无标号的情况下,指令助记符前面必须保留一个或一个以上的空格再写指令助记符。指令助记符不能占用标号的位置,否则该助记符会被汇编程序作标号误处理。 书写标号时,规定第一字符必须是字母或半角下划线“—”,它后面可以跟英文和数字字符、冒号(:)制符表等,并可任意组合。再有标号不能用操作码助记符和寄存器的代号表示。标号也可以单独占一行。 2该字段是指令的必选项。该项可以是指令助记符,也可以由伪指令及宏命令组成,其作用是在交叉汇编时,“指令操作码助记符”与“操作码表”进行逐一比较,找出其相应的机器码一一代之。 3由操作数的数据值或以符号表示的数据或地址值组成。若操作数有两个,则两个操作数之间用逗号(,)分开。当操作数是常数时,常数可以是二进制、八进制、十进制或十六进制数。还可以是被定义过的标号、字符串和ASCⅡ码等。具体表示时,规定在二进制数前冠以字母“B”,例如B10011100;八进制数前冠以字母“O”,例如O257;十进制数前冠以字母“D”,例如D122;十六进制数前冠以“H”,例如H2F。在这里PIC 8位单片机默认进制是十六进制,在十六进制数之前加上Ox,如H2F可以写成Ox2F。 指令的操作数项也是可选项。 PIC系列与MCS-51系列8位单片机一样,存在寻址方法,即操作数的来源或去向问题。因PIC系列微控制器采用了精简指令集(RISC)结构体系,其寻址方式和指令都既少而又简单。其寻址方式根据操作数来源的不同,可分为立即数寻址、直接寻址、寄存器间接寻址和位寻址四种。所以PIC系列单片机指令中的操作数常常出现有关寄存器符号。有关的寻址实例,均可在本文的后面找到。 4用来对程序作些说明,便于人们阅读程序。注释开始之前用分号(;)与其它部分相隔。当汇编程序检测到分号时,其后面的字符不再处理。值得注意:在用到子程序时应说明程序的入口条件、出口条件以及该程序应完成的功能和作用。 二、清零指令(共4条) 1 实例:CLRW;寄存器W被清零 说明:该条指令很简单,其中W为PIC单片机的工作寄存器,相当于MCS-51系列单片机中的累加器A,CLR是英语Clear的缩写字母。 2 实例:CLRWDT;看门狗定时器清零(若已赋值,同时清预分频器)

汇编语言的各条指令

常用命令 数据传送指令 一通用数据传送指令 MOV指令为双操作数指令,两个操作数中不能全为内存操作数 格式:MOV DST,SRC 执行操作:dst = src 注:1.目的数可以是通用寄存器,存储单元和段寄存器(但不允许用CS段寄存器). 2.立即数不能直接送段寄存器 3.不允许在两个存储单元直接传送数据 4.不允许在两个段寄存器间直接传送信息 PUSH入栈指令及POP出栈指令: 堆栈操作是以“后进先出”的方式进行数据操作。 格式:PUSH SRC //Word 执行操作:(SP)<-(SP)-2 ((SP)+1,(SP))<-(SRC) 注:1.入栈的操作数除不允许用立即数外,可以为通用寄存器,段寄存器(全部)和存储器。

2.入栈时高位字节先入栈,低位字节后入栈。 格式:POP DST //Word 执行操作:(DST)<-((SP+1),(SP)) (SP)<-(SP)+2 注:1.出栈操作数除不允许用立即数和CS段寄存器外,可以为通用寄存器,段寄存器和存储器。 2.执行POP SS指令后,堆栈区在存储区的位置要改变。 3.执行POP SP 指令后,栈顶的位置要改变。 XCHG(eXCHanG)交换指令: 将两操作数值交换。 格式:XCHG OPR1,OPR2 //Byte/Word 执行的操作:(OPR1)<-->(OPR2) 注:1.必须有一个操作数是在寄存器中 2.不能与段寄存器交换数据 存储器与存储器之间不能交换数据。 二累加器专用传送指令 IN输入指令 长格式为:IN AL,PORT(字节) IN AX,PORT(字) 执行的操作:(AL)<-(PORT)(字节)

单片机汇编语言指令集

汇编语言的所有指令数据传送指令集 MOV 功能: 把源操作数送给目的操作数 语法: MOV 目的操作数,源操作数 格式: MOV r1,r2 MOV r,m MOV m,r MOV r,data XCHG 功能: 交换两个操作数的数据 语法: XCHG 格式: XCHG r1,r2 XCHG m,r XCHG r,m PUSH,POP 功能: 把操作数压入或取出堆栈 语法: PUSH 操作数POP 操作数 格式: PUSH r PUSH M PUSH data POP r POP m PUSHF,POPF,PUSHA,POPA 功能: 堆栈指令群 格式: PUSHF POPF PUSHA POPA LEA,LDS,LES 功能: 取地址至寄存器 语法: LEA r,m LDS r,m LES r,m XLAT(XLATB) 功能: 查表指令 语法: XLAT XLAT m 算数运算指令 ADD,ADC 功能: 加法指令 语法: ADD OP1,OP2 ADC OP1,OP2 格式: ADD r1,r2 ADD r,m ADD m,r ADD r,data 影响标志: C,P,A,Z,S,O SUB,SBB 功能:减法指令 语法: SUB OP1,OP2 SBB OP1,OP2 格式: SUB r1,r2 SUB r,m SUB m,r SUB r,data SUB m,data 影响标志: C,P,A,Z,S,O

INC,DEC 功能: 把OP的值加一或减一 语法: INC OP DEC OP 格式: INC r/m DEC r/m 影响标志: P,A,Z,S,O NEG 功能: 将OP的符号反相(取二进制补码) 语法: NEG OP 格式: NEG r/m 影响标志: C,P,A,Z,S,O MUL,IMUL 功能: 乘法指令 语法: MUL OP IMUL OP 格式: MUL r/m IMUL r/m 影响标志: C,P,A,Z,S,O(仅IMUL会影响S标志) DIV,IDIV 功能:除法指令 语法: DIV OP IDIV OP 格式: DIV r/m IDIV r/m CBW,CWD 功能: 有符号数扩展指令 语法: CBW CWD AAA,AAS,AAM,AAD 功能: 非压BCD码运算调整指令 语法: AAA AAS AAM AAD 影响标志: A,C(AAA,AAS) S,Z,P(AAM,AAD) DAA,DAS 功能: 压缩BCD码调整指令 语法: DAA DAS 影响标志: C,P,A,Z,S 位运算指令集 AND,OR,XOR,NOT,TEST 功能: 执行BIT与BIT之间的逻辑运算 语法: AND r/m,r/m/data OR r/m,r/m/data XOR r/m,r/m/data TEST r/m,r/m/data NOT r/m 影响标志: C,O,P,Z,S(其中C与O两个标志会被设为0) NOT指令不影响任何标志位 SHR,SHL,SAR,SAL 功能: 移位指令 语法: SHR r/m,data/CL SHL r/m,data/CL SAR r/m,data/CL SAL r/m,data/CL

常见汇编语言指令解释:

PC是一个16位的程序计数器。用于存放和指示下一条要执行的指令的地址。寻址范围达64KB。PC有自动加1功能,以实现程序的顺序执行。PC没有地址,是不可寻址的,无法用指令对它进行读写。但在执行转移、调用、返回等指令时能自动改变其内容,以改变程序的执行顺序。 参数代表的意义: 1、Rn 表示R0~R7中的一个 2、#data 表示8位的数值 00H~FFH 3、direct 表示8位的地址 00H~FFH(指的是内部RAM或SFR的地址) 4、@Ri 表示寄存器间接寻址只能是R0或者R1 5、@DPTR 表示数据指针间接寻址 6、bit 表示位地址 7、$ 表示当前地址 常见汇编语言指令解释: 寄存器寻址 MOV A,R1将R1中的数值赋予A 直接寻址 MOV A,3AH将地址3AH中的数值赋予A 立即寻址 MOV A,#3AH将3AH数值赋予A

寄存器间址 MOV A,@R0 将 R0中地址的数值赋予A 变址寻址 MOVC A,@A+DPTR以A中的数值为地址偏移量进行查表 相对寻址 AJMP MATN跳转到行号为MATN处 位寻址 MOV C,7FH 将位地址7FH的数值赋予C MOV A,#3AH数据传输、赋值命令 PUSH direct将direct为地址的数值压入堆栈中 POP direct将direct为地址的数值弹出堆栈 XCH A,direct将direct中的数值与A进行交换 ADD A,direct将direct中的数值与 INC direct将direct中的数值加1 SUBB A,direct将A中的数值减去direct中的数值和Cy值,并保存在A中,如果想使用不带Cy减法,可以在运算前对Cy清零:CLR C DEC direct将direct中的数值减1 DA A 用于对BCD码加减法后进行10进制调整 MUL A B将A和B相乘,并把高八位放在B中,低八位放在A中 DIV A B将A和B相除,并把商放在A中,余数放在B中 ANL A,direct将A与direct中的数值进行与运算,结果保留在A 中(与运算规律:有0出0,全1出1) ORL A,direct将A与direct中的数值进行或运算,结果保留在A中(或运算规律:有1出1,全0出0) XRL A,direct将A与direct中的数值进行异或运算,结果保留在A 中(异或运算规律:全0出0,全1出0,01、10出1)

汇编语言常见指令

?PTR?操作符:强制类型转换 MOV BYTE PTR [BX], 20H ;1B立即数20H送DS:[BX] MOV WORD PTR [BX], 20H ;立即数20H送DS:[BX], ;00H送DS:[BX+1] 2.LEA(Load Effective Address) 设:变量X的偏移地址为1020H , (BP)=0020H 执行指令后: LEA DX, X LEA BX, [BP] ; 执行后, (DX) = 1020H ; 执行后, (BX) = 0020H 3.地址传送指令LDS,LES LDS REG16, MEM ; 从存储器取出4B,送入REG16和DS LES REG16, MEM ; 从存储器取出4B,送入REG16和ES 4.符号扩展指令CBW,CWD CBW ;将AL寄存器内容符号位扩展到AH CWD ;将AX寄存器内容符号位扩展到DX 设:(AX)= 8060H,(DX)=1234H 执行下列指令后 CBW ;(AX)= 0060H 设:(AX)= 8060H,(DX)=1234H 执行下列指令后 CWD ;(DX)= 0FFFFH,(AX)= 8060H 5.交换指令XCHG 例如,(AX)= 5678H 执行下面指令后 XCHG AH, AL ;(AX)= 7856H 6.换码指令XLAT XLAT ;AL←DS: [BX+AL] 表格的首地址事先存放在内存逻辑地址DS: BX中, AL的内容是相对于表格的位移量, 把对应内存的内容取出放在AL寄存器。 7.逻辑运算符 SHR(右移) SHL(左移) AND(与) OR(或) XOR(异或)

反汇编语言常用指令

内容目录 计算机寄存器分类简介 计算机寄存器常用指令 一、常用指令 二、算术运算指令 三、逻辑运算指令 四、串指令 五、程序跳转指令 ------------------------------------------ 计算机寄存器分类简介: 32位CPU所含有的寄存器有: 4个数据寄存器(EAX、EBX、ECX和EDX) 2个变址和指针寄存器(ESI和EDI) 2个指针寄存器(ESP和EBP) 6个段寄存器(ES、CS、SS、DS、FS和GS) 1个指令指针寄存器(EIP) 1个标志寄存器(EFlags) 1、数据寄存器 数据寄存器主要用来保存操作数和运算结果等信息,从而节省读取操作数所需占用总线和访问存储器的时间。 32位CPU有4个32位的通用寄存器EAX、EBX、ECX和EDX。 对低16位数据的存取,不会影响高16位的数据。 这些低16位寄存器分别命名为:AX、BX、CX和DX,它和先前的CPU中的寄存器相一致。 4个16位寄存器又可分割成8个独立的8位寄存器(AX:AH-AL、BX:BH-BL、CX:CH-CL、DX:DH-DL),每个寄存器都有自己的名称,可独立存取。 程序员可利用数据寄存器的这种“可分可合”的特性,灵活地处理字/字节的信息。 寄存器EAX通常称为累加器(Accumulator),用累加器进行的操作可能需要更少时间。可用于乘、除、输入/输出等操作,使用频率很高; 寄存器EBX称为基地址寄存器(Base Register)。它可作为存储器指针来使用; 寄存器ECX称为计数寄存器(Count Register)。 在循环和字符串操作时,要用它来控制循环次数;在位操作中,当移多位时,要用CL来指明移位的位数;寄存器EDX称为数据寄存器(Data Register)。在进行乘、除运算时,它可作为默认的操作数参与运算,也可用于存放I/O的端口地址。 在16位CPU中,AX、BX、CX和DX不能作为基址和变址寄存器来存放存储单元的地址, 在32位CPU中,其32位寄存器EAX、EBX、ECX和EDX不仅可传送数据、暂存数据保存算术逻辑运算结果, 而且也可作为指针寄存器,所以,这些32位寄存器更具有通用性。 2、变址寄存器 32位CPU有2个32位通用寄存器ESI和EDI。 其低16位对应先前CPU中的SI和DI,对低16位数据的存取,不影响高16位的数据。 寄存器ESI、EDI、SI和DI称为变址寄存器(Index Register),它们主要用于存放存储单元在段内的偏移量,用它们可实现多种存储器操作数的寻址方式,为以不同的地址形式访问存储单元提供方便。 变址寄存器不可分割成8位寄存器。作为通用寄存器,也可存储算术逻辑运算的操作数和运算结果。 它们可作一般的存储器指针使用。在字符串操作指令的执行过程中,对它们有特定的要求,而且还具有特殊的功能。 3、指针寄存器

相关文档