文档视界 最新最全的文档下载
当前位置:文档视界 › 高考物理复习:电场和带电粒子在电场中运动

高考物理复习:电场和带电粒子在电场中运动

高考物理复习:电场和带电粒子在电场中运动
高考物理复习:电场和带电粒子在电场中运动

2019年高考物理复习:电场和带电粒子在电

场中运动

1.请回答库仑定律的内容、公式和适用条件分别是什么?

答案?(1)内容:真空中两个静止的点电荷之间的相互作用力,与它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。

(2)公式:F=kq1q2/r2,式中的k=9.0×109 N·m2/C2,叫静电力常量。

(3)适用条件:①点电荷;②真空中。

2.电场强度是描述电场力的性质的物理量,它有三个表达式:E=F/q,E=kQ/r2和E=U/d,这三个公式有何区别?如果空间某点存在多个电场,如何求该点的场强?电场的方向如何确定?

答案?(1)区别

①电场强度的定义式E=F/q,适用于任何电场,E由场源电荷和点的位置决定,与F、q无关。

②真空中点电荷所形成的电场E=kQ/r2,其中Q为场源电荷,r为某点到场源电荷的距离。

③匀强电场中场强和电势差的关系式E=U/d,其中d为两点沿电场方向的距离。

(2)用叠加原理求该点的场强

若空间的电场是由几个“场源”共同激发的,则空间中某点的电场强度等于每个“场源”单独存在时所激发的电场在该点的场强的矢量和——叠加原理。

(3)电场方向是正电荷的受力方向、负电荷受力的反方向、电场线的切线方向、电势降低最快的方向。

3.电场线与等势面间的关系是怎样的?

答案?(1)电场线上某点切线的方向为该点的场强方向,电场线的疏密表示场强的大小。

(2)电场线互不相交,等势面也互不相交。

(3)电场线和等势面在相交处互相垂直。

(4)电场线的方向是电势降低的方向,而场强方向是电势降低最快的方向;

(5)等差等势面密的地方电场线密,电场线密的地方等差等势面也密。

4.比较电势高低的方法有哪些?

答案?(1)顺着电场线方向,电势逐渐降低。

(2)越靠近正场源电荷处电势越高;越靠近负场源电荷处电势越低。

(3)根据电场力做功与电势能的变化比较

①移动正电荷,电场力做正功,电势能减少,电势降低;电场力做负功,电势能增加,电势升高。

②移动负电荷,电场力做正功,电势能减少,电势升高;

电场力做负功,电势能增加,电势降低。

5.比较电势能大小最常用的方法是什么?

答案?不管是正电荷还是负电荷,只要电场力对电荷做正功,该电荷的电势能就减少;只要电场力对电荷做负功,该电荷的电势能就增加。

6.电场力做功有什么特点?如何求解电场力的功?

答案?(1)电场力做功的特点

电荷在电场中任意两点间移动时,它的电势能的变化量是确定的,因而移动电荷做功的值也是确定的,所以,电场力移动电荷所做的功,与电荷移动的路径无关,仅与初、末位置的电势差有关,这与重力做功十分相似。

(2)电场力做功的计算及应用

①W=Flcos α,常用于匀强电场,即F=qE恒定。

②WAB=qUAB,适用于任何电场,q、UAB可带正负号运算,结果的正负可反映功的正负,也可带数值运算,但功的正负需结合移动电荷的正负以及A、B两点电势的高低另行判断。

③功能关系:电场力做功的过程就是电势能和其他形式的能相互转化的过程。

高考物理曲线运动试题汇编

高考物理曲线运动试题汇编 平抛运动: (xx 年全国理综)19.在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为1v ,摩托艇在静水中的航速为2v ,战士救人的地点A 离岸边最近处O 的距离为d ,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为 A .21222 v v dv B .0 C .21v dv D .1 2v dv (xx 年天津理综)16.在平坦的垒球运动场上,击球手挥动球棒将垒球水平击出,垒球飞行一段时间后落地.若不计空气阻力,则 A .垒球落地时瞬时速度的大小仅由初速度决定 B .垒球落地时瞬时速度的方向仅击球点离地面的高度决定 C .垒球在空中运动的水平位移仅由初速度决定 D .垒球在空中运动的时间仅由击球点离地面的高度决定 (xx 年上海物理)16.(4分)右图为用频闪摄影方法拍 摄的研究物体作平抛运动规律的照片,图中A 、B 、C 为 三个同时由同一点出发的小球,AA /为A 球在光滑水平 面上以速度运动的轨迹;BB /为B 球以速度v 被水平抛 出后的运动轨迹;CC /为C 球自由下落的运动轨迹,通 过分析上述三条轨迹可得出结论: 。 答案:作平抛运动的物体在水平方向作匀速直线运动,在竖直方向作自由落体运动(或平抛运动是水平方向的匀速直线运动和竖直方向的自由落体运动的合成)。

(xx 年春季物理)13.质量为10.0=m kg 的小钢球以 100=v m/s 的水平速度抛出,下落0.5=h m 时撞击一钢板,撞后速度恰好反向,则钢板与水平面的夹角 =θ_____________.刚要撞击钢板时小球动量的大小为 _________________.(取2/10s m g =) (xx 年全国物理)10.图为一空间探测器的示 意图, P 1、P 2、P 3、P 4是四个喷气发动机, P 1、P 3的连线与空间一固定坐标系的x轴平 行,P 2、P 4的连线与y 轴平行,每台发动机 开动时,都能向探测器提供推力,但不会使 探测器转动,开始时,探测器以恒定的速率 v 0向正x 方向平动,要使探测器改为向正x 偏负y 60o的方向以原来的速率v 0平动,则 可 A .先开动P 1适当时间,再开动P 4 B .先开动P 3适当时间,再开动P 2 C .先开动P 4适当时间,再开动P 2 D .先开动P 3适当时间,再开动P 4 (xx 年上海物理)20.(10分)如图所示,一高度为h =0.2m 的水平面在A 点处与一倾角为θ=30°的斜面连接,一小球以v 0=5m/s 的速度在平面上向右运动.求小球从A 点运动到地面所需的时间(平面与斜面均光滑,取g =10m/s 2).某同学对此题的解法为: 小球沿斜面运动,则 t g t v h ?+=θθsin 21sin 0,由此可求得落地时间t . 问:你同意上述解法吗?若同意,求出所需时间; 若不同意则说明理由并求出你认为正确的结果. 答案:不同意。小球应在A 点离开平面做平抛运动,而不是沿斜面下滑。正确做法为:落地点与A 点的水平距离 )(110 2.025200m g h v t v s =??=== ① A h v 0 θ

高考物理专题汇编物理牛顿运动定律的应用(一)及解析

高考物理专题汇编物理牛顿运动定律的应用(一)及解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求: (1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】 (1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得: F =7.5N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有: mgh = 212 mv 解得 v 2gh ; 滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有: μmgL = 2201122 mv mv 代入数据得: μ=0.25 (3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为: x=v 0t 对物体有: v 0=v ?at

ma=μmg 滑块相对传送带滑动的位移为: △x =L?x 相对滑动产生的热量为: Q=μmg △x 代值解得: Q =0.5J 【点睛】 对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs ,由运动学公式求得传送带通过的位移,即可求得相对位移. 2.如图,质量分别为m A =2kg 、m B =4kg 的A 、B 小球由轻绳贯穿并挂于定滑轮两侧等高H =25m 处,两球同时由静止开始向下运动,已知两球与轻绳间的最大静摩擦力均等于其重力的0.5倍,且最大静摩擦力等于滑动摩擦力.两侧轻绳下端恰好触地,取g =10m/s 2,不计细绳与滑轮间的摩擦,求:, (1)A 、B 两球开始运动时的加速度. (2)A 、B 两球落地时的动能. (3)A 、B 两球损失的机械能总量. 【答案】(1)2 5m/s A a =27.5m/s B a = (2)850J kB E = (3)250J 【解析】 【详解】 (1)由于是轻绳,所以A 、B 两球对细绳的摩擦力必须等大,又A 得质量小于B 的质量,所以两球由静止释放后A 与细绳间为滑动摩擦力,B 与细绳间为静摩擦力,经过受力分析可得: 对A :A A A A m g f m a -= 对B :B B B B m g f m a -= A B f f = 0.5A A f m g = 联立以上方程得:2 5m/s A a = 27.5m/s B a = (2)设A 球经t s 与细绳分离,此时,A 、B 下降的高度分别为h A 、h B ,速度分别为V A 、V B ,因为它们都做匀变速直线运动

高考物理曲线运动试题(有答案和解析)含解析

高考物理曲线运动试题(有答案和解析)含解析 一、高中物理精讲专题测试曲线运动 1.如图所示,倾角为45α=?的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为 b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的 c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小; (3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号) 【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)42μ-= 【解析】 【分析】 【详解】 (1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:2 12 r gt = 解得:a v gr = 小滑块在a 点飞出的动能211 22 k a E mv mgr = = (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得: 2211 222 m a mv mv mg r =+? 在最低点由牛顿第二定律:2 m mv F mg r -= 由牛顿第三定律得:F ′=F 解得:F ′=6mg (3)bd 之间长度为L ,由几何关系得:() 221L r =

从d 到最低点e 过程中,由动能定理21 cos 2 m mgH mg L mv μα-?= 解得42 14 μ-= 2.如图所示,一箱子高为H .底边长为L ,一小球从一壁上沿口A 垂直于箱壁以某一初速度向对面水平抛出,空气阻力不计。设小球与箱壁碰撞前后的速度大小不变,且速度方向与箱壁的夹角相等。 (1)若小球与箱壁一次碰撞后落到箱底处离C 点距离为,求小球抛出时的初速度v 0; (2)若小球正好落在箱子的B 点,求初速度的可能值。 【答案】(1) (2) 【解析】 【分析】 (1)将整个过程等效为完整的平抛运动,结合水平位移和竖直位移求解初速度;(2)若小球正好落在箱子的B 点,则水平位移应该是2L 的整数倍,通过平抛运动公式列式求解初速度可能值。 【详解】 (1)此题可以看成是无反弹的完整平抛运动, 则水平位移为:x = =v 0t 竖直位移为:H =gt 2 解得:v 0= ; (2)若小球正好落在箱子的B 点,则小球的水平位移为:x′=2nL (n =1.2.3……) 同理:x′=2nL =v′0t ,H =gt′2 解得: (n =1.2.3……) 3.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为

高考物理牛顿运动定律试题经典及解析

高考物理牛顿运动定律试题经典及解析 一、高中物理精讲专题测试牛顿运动定律 1.质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的图象如图所示取m/s2,求: (1)物体与水平面间的动摩擦因数; (2)水平推力F的大小; (3)s内物体运动位移的大小. 【答案】(1)0.2;(2)5.6N;(3)56m。 【解析】 【分析】 【详解】 (1)由题意可知,由v-t图像可知,物体在4~6s内加速度: 物体在4~6s内受力如图所示 根据牛顿第二定律有: 联立解得:μ=0.2 (2)由v-t图像可知:物体在0~4s内加速度: 又由题意可知:物体在0~4s内受力如图所示 根据牛顿第二定律有: 代入数据得:F=5.6N (3)物体在0~14s内的位移大小在数值上为图像和时间轴包围的面积,则有:

【点睛】 在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活 处理.在这类问题时,加速度是联系运动和力的纽带、桥梁. 2.如图所示为工厂里一种运货过程的简化模型,货物(可视为质点质量4m kg =,以初速度010/v m s =滑上静止在光滑轨道OB 上的小车左端,小车质量为6M kg =,高为 0.8h m =。在光滑的轨道上A 处设置一固定的障碍物,当小车撞到障碍物时会被粘住不 动,而货物继续运动,最后恰好落在光滑轨道上的B 点。已知货物与小车上表面的动摩擦因数0.5μ=,货物做平抛运动的水平距离AB 长为1.2m ,重力加速度g 取210/m s 。 ()1求货物从小车右端滑出时的速度; ()2若已知OA 段距离足够长,导致小车在碰到A 之前已经与货物达到共同速度,则小车 的长度是多少? 【答案】(1)3m/s ;(2)6.7m 【解析】 【详解】 ()1设货物从小车右端滑出时的速度为x v ,滑出之后做平抛运动, 在竖直方向上:2 12 h gt = , 水平方向:AB x l v t = 解得:3/x v m s = ()2在小车碰撞到障碍物前,车与货物已经到达共同速度,以小车与货物组成的系统为研 究对象,系统在水平方向动量守恒, 由动量守恒定律得:()0mv m M v =+共, 解得:4/v m s =共, 由能量守恒定律得:()2201122 Q mgs mv m M v μ==-+共相对, 解得:6s m =相对, 当小车被粘住之后,物块继续在小车上滑行,直到滑出过程,对货物,由动能定理得: 22 11'22 x mgs mv mv 共μ-= -,

带电粒子在电场中的运动练习题(含答案)

带电粒子在电场中的运动 1.如图所示,A 处有一个静止不动的带电体Q ,若在c 处有初速度为零的质子和α粒子,在电场力作用下由c 点向d 点运动,已知质子到达d 时速度为v 1,α粒子到达d 时速度为v 2,那么v 1、v 2等于:( ) A. :1 B.2 ∶1 C.2∶1 D.1∶2 2.如图所示, 一电子沿等量异种电荷的中垂线由 A →O → B 匀速运动,电子重力不计,则电子除受电场力外,所受的另一个力的大小和方向变化情况是:( ) A .先变大后变小,方向水平向左 B .先变大后变小,方向水平向右 C .先变小后变大,方向水平向左 D .先变小后变大,方向水平向右 3.让 、 、 的混合物沿着与电场垂直的方向进入同一有界匀强电场偏转, 要使它们的偏转角相同,则这些粒子必须具有相同的( ) A.初速度 B.初动能 C. 质 量 D.荷质比 4.如图所示,有三个质量相等,分别带正电,负电和不带电的小球,从上、下带电平行金属板间的P 点.以相同速率垂直电场方向射入电场,它们分别落到A 、B 、C 三点, 则 ( ) A 、A 带正电、 B 不带电、 C 带负电 B 、三小球在电场中运动时间相等 C 、在电场中加速度的关系是aC>aB>aA D 、到达正极板时动能关系 E A >E B >E C 5.如图所示,实线为不知方向的三条电场线,从电场中M 点以相同速度垂直 于电场线方向飞出a 、b 两个带电粒子,运动轨迹如图中虚线所示,不计粒 子重力及粒子之间的库仑力,则( ) A .a 一定带正电,b 一定带负电 B .a 的速度将减小,b 的速度将增加 C .a 的加速度将减小,b 的加速度将增加 D .两个粒子的动能,一个增加一个减小 6.空间某区域内存在着电场,电场线在竖直平面上的分布如图所示,一个质量为m 、电荷量为q 的小球在该电场中运动,小球经过A 点时的速度大小为v 1,方向水平向右,运动至B 点时的速度大小为v 2, 运动方向与水平方向之间的夹角为α,A 、B 两点之间的高度差与水平距离均为H ,则以下判断中正 确的是( ) A .若v 2>v 1,则电场力一定做正功 B .A 、B 两点间的电势差2221()2m U v v q =- C .小球运动到B 点时所受重力的瞬时功率2P mgv = D .小球由A 点运动到B 点,电场力做的功22211122 W mv mv mgH =-- 2 H 11H 21H 31

高中物理带电粒子在电场中的运动典型例题解析

带电粒子在电场中的运动专题练习 1.一个带正电的微粒,从A 点射入水平方向的匀强电场中,微粒沿直线AB 运动,如图,AB 与电场线夹角θ=30°,已知带 电微粒的质量m =1.0×10-7kg ,电量q =1.0×10-10C ,A 、B 相距L =20cm .(取g =10m/s 2 ,结果保留二位有效数字)求: (1)说明微粒在电场中运动的性质,要求说明理由. (2)电场强度的大小和方向? (3)要使微粒从A 点运动到B 点,微粒射入电场时的最小速度是多少? 2.一个带电荷量为-q 的油滴,从O 点以速度v 射入匀强电场中,v 的方向与电场方向成θ角,已知油滴的质量为m ,测得油滴达到运动轨迹的最高点时,它的速度大小又为v ,求: (1) 最高点的位置可能在O 点的哪一方? (2) 电场强度 E 为多少? (3) 最高点处(设为N )与O 点的电势差U NO 为多少? 3. 如图所示,水平放置的平行板电容器,原来两板不带电,上极板接地,它的极板长L = 0.1m , 两板间距离 d = 0.4 cm ,有一束相同微粒组成的带电粒子流从两板中央平行极板射入,由于重力作用微粒能落到下板上,已知微粒质量为 m = 2×10-6kg ,电量q = 1×10-8 C ,电容器电容为C =10-6 F .求 (1) 为使第一粒子能落点范围在下板中点到紧靠边缘的B 点之内,则微粒入射速度v 0应为 多少? (2) 以上述速度入射的带电粒子,最多能有多少落到下极板上? 4.如图所示,在竖直平面内建立xOy 直角坐标系,Oy 表示竖直向上的方向。已知该平面内存在沿x 轴负方向的区域足够大的匀强电场,现有一个带电量为2.5×10-4 C 的小球从坐标原 点O 沿y 轴正方向以0.4kg.m/s 的初动量竖直向上抛出,它到达的最高点位置为图中的Q 点,不计空气阻力,g 取10m/s 2 . (1)指出小球带何种电荷; (2)求匀强电场的电场强度大小; (3)求小球从O 点抛出到落回x 轴的过程中电势能的改变量. 5、如图所示,一对竖直放置的平行金属板A 、B 构成电容器,电容为C 。电容器的A 板接地,且中间有一个小孔S ,一个被加热的灯丝K 与S 位于同一水平线,从丝上可以不断地发射出电子,电子经过电压U 0加速后通过小孔S 沿水平方向射入A 、B 两极板间。设电子的质量为m ,电荷量为e ,电子从灯丝发射时的初速度不计。如果到达B 板的电子都被B 板吸收,且单位时间内射入电容器的电子数为n 个,随着电子的射入, 两极板间的电势差逐渐增加,最终使电子无法到达B 板,求: (1)当B 板吸收了N 个电子时,AB 两板间的电势差 (2)A 、B 两板间可以达到的最大电势差(U O ) (3)从电子射入小孔S 开始到A 、B 两板间的电势差达到最大值所经历的时间。 6.如图所示是示波器的示意图,竖直偏转电极的极板长L 1=4cm ,板间距离d=1cm 。板右端距离荧光屏 L 2=18cm ,(水平偏转电极上不加电压,没有画出)电子沿中心线进入竖直偏转电场的速度是 v=1.6×107 m/s ,电子电量e=1.6×10-19C ,质量m=0.91×10-30kg 。 (1)要使电子束不打在偏转电极上,加在竖直偏转电极上的最大偏转电压U 不能超过多大? (2)若在偏转电极上加u=27.3sin100πt (V)的交变电压,在荧光屏竖直坐标轴上能观察到多长的线段? 7.两块水平平行放置的导体板如图所示,大量电子(质量m 、电量e ) 由静止开始,经电压为U 0的电场加速后,连续不断地沿平行板的方向从 两板正中间射入两板之间。当两板均不带电时,这些电子通过两板之间的时间为3t 0;当在两板间加如图所示的周期为2t 0,幅值恒为U 0的周期 性电压时,恰好..能使所有电子均从两板间通过。问: ?这些电子通过两板之间后,侧向位移的最大值和最小值分别是多少? ?侧向位移分别为最大值和最小值的情况下,电子在刚穿出两板之间时的动能之比为多少? 1.(1)微粒只在重力和电场力作用下沿AB 方向运动,在垂直于AB 方向上的重力和电场力必等大反向,可知电场力的方向水平向左,如图所示,微粒所受合力的方向由B 指向A ,与初速度v A 方向相反,微粒做匀减速运动.(2)在垂直于AB 方 向上,有qE sin θ-mg cos θ=0 所以电场强度E =1.7×104 N/C V U v 图3-1-6

高三物理曲线运动知识点总结

高三物理曲线运动知识点总结 高三物理曲线运动知识点 1.曲线运动:物体的轨迹是一条曲线,物体所作的运动就是曲线运动。 作曲线运动物体的速度方向就是曲线那一点的切线方向,而曲线上各点的切线方向不同,也就是运动物体的速度在不断地改变,所以作曲线运动的物体速度是变化的,物体作变速运动。 运动物体的轨迹是它在平面坐标系中的运动图像,与作直线运动物体的位移与时间图像是有着本质的不同,前者是运动的轨迹,后者是其位移随时间变化的规律;前者各点的切线方向是运动物体的速度方向,切线的斜率是运动物体的速度方向与某一方向的夹角的正切,后者各点的切线的斜率是运动物体的速度大小,但它只反映作直线运动物体的速度情况,而不能反映作曲线运动的速度情况。 物体作曲线运动的条件:物体所受的合外力与物体的速度不在一条直线上(也就是合外力沿与速度垂直的方向上有分量,该分量时刻在改变着运动物体的速度方向) 2.运动的合成与分解:运动的合成与分解就是矢量的合成与分解,它涉及运动学中的位移、速度、加速度三个矢量的合成与分解。 两个互相垂直方向上的直线运动合成后可能是直线运

动,也可能是曲线运动,反过来,两个方向的直线运动合成后可能是曲线,这就提供了研究曲线运动的途径——将曲线运动转化为直线运动进行研究。 运动的独立作用原理:如同力的独立作用原理一样,运动的合成与分解也是建立在各个方向分运动独立的基础上。 3.研究曲线运动的方法:利用速度、位移、加速度和力这些物理量的矢量性,进行合成与分解。 (1)在恒力的作用下的曲线运动:这种运动是匀速运动。一般将运动物体的初速度沿着力的方向和与力垂直的方向 上分解,在沿力的方向上物体作匀变速直线运动,在与力垂直的方向上物体作匀速直线运动。 若所求方向与速度和力均不在一条直线上,将速度和力均沿求解问题的方向和与求解问题垂直的方向进行分解。 (2)在变力作用下的曲线运动:这种运动是非匀变速运动。一般将物体受到的力沿运动方向和与运动垂直的方向分解。与运动方向一致的力改变速度的大小,与运动方向垂直的力改变运动的方向。 生活中的曲线运动举例 子弹射出枪膛,离弦的箭,抛铅球,投篮,过河的船等等都属于曲线运动。 高三物理平抛运动 1.平抛运动的特点:

最新高考物理牛顿运动定律练习题

最新高考物理牛顿运动定律练习题 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,质量2kg M =的木板静止在光滑水平地面上,一质量1kg m =的滑块(可 视为质点)以03m/s v =的初速度从左侧滑上木板水平地面右侧距离足够远处有一小型固定挡板,木板与挡板碰后速度立即减为零并与挡板粘连,最终滑块恰好未从木板表面滑落.已知滑块与木板之间动摩擦因数为0.2μ=,重力加速度210m/s g =,求: (1)木板与挡板碰撞前瞬间的速度v ? (2)木板与挡板碰撞后滑块的位移s ? (3)木板的长度L ? 【答案】(1)1m/s (2)0.25m (3)1.75m 【解析】 【详解】 (1)滑块与小车动量守恒0()mv m M v =+可得1m/s v = (2)木板静止后,滑块匀减速运动,根据动能定理有:2102 mgs mv μ-=- 解得0.25m s = (3)从滑块滑上木板到共速时,由能量守恒得:220111 ()22 mv m M v mgs μ=++ 故木板的长度1 1.75m L s s =+= 2.如图,光滑固定斜面上有一楔形物体A 。A 的上表面水平,A 上放置一物块B 。已知斜面足够长、倾角为θ,A 的质量为M ,B 的质量为m ,A 、B 间动摩擦因数为μ(μ<), 最大静擦力等于滑动摩擦力,重力加速度为g 。现对A 施加一水平推力。求: (1)物体A 、B 保持静止时,水平推力的大小F 1; (2)水平推力大小为F 2时,物体A 、B 一起沿斜面向上运动,运动距离x 后撒去推力,A 、B 一起沿斜面上滑,整个过程中物体上滑的最大距离L ; (3)为使A 、B 在推力作用下能一起沿斜面上滑,推力F 应满足的条件。 【答案】(1) (2) (3)

带电粒子在电场中的运动(附详解答案)

带电粒子在电场中的运动 强化训练 1.(多选题)冬天当脱毛衫时,静电经常会跟你开个小玩笑.下列一些相关的说法中正确的是( ) A .在将外衣脱下的过程中,内外衣间摩擦起电,内衣和外衣所带的电荷是同种电荷 B .如果内外两件衣服可看作电容器的两极,并且在将外衣脱下的某个过程中两衣间电荷量一定,随着两衣间距离的增大,两衣间电容变小,则两衣间的电势差也将变小 C .在将外衣脱下的过程中,内外两衣间隔增大,衣物上电荷的电势能将增大(若不计放电中和) D .脱衣时如果人体带上了正电,当手接近金属门把时,由于手与门把间空气电离会造成对人体轻微的电击 2.(2012·新课标全国卷) (多选题)如图,平行板电容器的两个极板与水平地面成一角度,两极板与一直流电源相连.若一带电粒子恰能沿图中所示水平直线通过电容器,则在此过程中,该粒子( ) A .所受重力与电场力平衡 B .电势能逐渐增加 C .动能逐渐增加 D .做匀变速直线运动 3.(2011·安徽卷)如图6-3-12甲所示,两平行正对的金属板A 、B 间加有如图乙所示的交变电压,一重力可忽略不计的带正电粒子被固定在两板的正中间P 处.若在t 0时刻释放该粒子,粒子会时而向A 板运动,时而向B 板运动,并最终打在A 板上.则t 0可能属于的时间段是( ) A .0<t 0<T 4 B.T 2<t 0<3T 4 C.3T 4<t 0<T D .T <t 0<9T 8 4.示波管是一种多功能电学仪器,它的工作原理可以等效成下列情况:如图所示,真空室中电极K 发出电子(初速度不计)经过电压为U 1的加速电场后,由小孔S 沿水平金属板A 、B 间的中心线射入板中.金属板长为L ,相距为d ,当A 、B 间电压为U 2时,电子偏离中心线飞出电场打到荧光屏上而显示亮点.已知电子的质量为m ,电荷量为e ,不计电子重力,下列情况中一定能使亮点偏离中心的距离变大的是( ) A .U 1变大,U 2变大 B .U 1变小,U 2变大 C .U 1变大,U 2变小 D .U 1变小,U 2变小 5.(2011·广东卷) (多选题)如图6-3-14为静电除尘器除尘机理的示意图.尘埃在电场中通过某种机制带电,在电场力的作用下向集尘极迁移并沉积,以达到除尘的目的.下列表述正确的是( ) A .到达集尘极的尘埃带正电荷 B .电场方向由集尘极指向放电极 C .带电尘埃所受电场力的方向与电场方向相同 D .同一位置带电荷量越多的尘埃所受电场力越大 6.如图所示,D 是一只二极管,AB 是平行板电容器,在电容器两极板间有一带电微粒P 处于静止状态,当两极板A 和B 间的距离增大一些的瞬间(两极板仍平行),带电微粒P 的运动情况是( ) A .向下运动 B .向上运动 C .仍静止不动 D .不能确定 7.(多选题)如图6-3-16所示,灯丝发热后发出的电子经加速电场后,进入偏转电场,若加速电压为U 1,偏转电压为U 2,要使电子在电场中偏转量y 变为原来的2倍,可选用的方法有(设电子不落到极板上)( ) A .只使U 1变为原来的1 2倍 B .只使U 2变为原来的1 2倍 C .只使偏转电极的长度L 变为原来的2倍 D .只使偏转电极间的距离d 减为原来的1 2 倍 8.(2013·沈阳二中测试) (多选题)在空间中水平面MN 的下方存在竖直向下的匀强电场,质量为m 的带电小球由MN 上方的A 点以一定初速度水平抛出,从B 点进入电场,到达C 点时速度方向恰好水平,A 、B 、C 三点在同一直线上,且AB =2BC ,如图6-3-17所示.由此可见( ) A .电场力为3mg B .小球带正电 C .小球从A 到B 与从B 到C 的运动时间相等

高考物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)含解析

高考物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)含解 析 一、高考物理精讲专题带电粒子在电场中的运动 1.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。y 轴右侧存在一个匀强电场,方向沿y 轴正方向,电场区域宽度l =0.1m 。现从坐标为(﹣0.2m ,﹣0.2m )的P 点发射出质量m =2.0×10﹣9kg 、带电荷量q =5.0×10﹣5C 的带正电粒子,沿y 轴正方向射入匀强磁场,速度大小v 0=5.0×103m/s (粒子重力不计)。 (1)带电粒子从坐标为(0.1m ,0.05m )的点射出电场,求该电场强度; (2)为了使该带电粒子能从坐标为(0.1m ,﹣0.05m )的点回到电场,可在紧邻电场的右侧区域内加匀强磁场,试求所加匀强磁场的磁感应强度大小和方向。 【答案】(1)1.0×104N/C (2)4T ,方向垂直纸面向外 【解析】 【详解】 解:(1)带正电粒子在磁场中做匀速圆周运动,根据洛伦兹力提供向心力有: 20 0v qv B m r = 可得:r =0.20m =R 根据几何关系可以知道,带电粒子恰从O 点沿x 轴进入电场,带电粒子做类平抛运动,设粒子到达电场边缘时,竖直方向的位移为y 根据类平抛规律可得:2012 l v t y at == , 根据牛顿第二定律可得:Eq ma = 联立可得:41.010E =?N/C (2)粒子飞离电场时,沿电场方向速度:30 5.010y qE l v at m v ===?g m/s=0v 粒子射出电场时速度:02=v v 根据几何关系可知,粒子在B '区域磁场中做圆周运动半径:2r y '= 根据洛伦兹力提供向心力可得: 2 v qvB m r '=' 联立可得所加匀强磁场的磁感应强度大小:4mv B qr '= =' T 根据左手定则可知所加磁场方向垂直纸面向外。

2018高考物理真题曲线运动分类汇编

2018年全真高考+名校模拟物理试题分项解析 真题再现 1.某弹射管每次弹出的小球速度相等.在沿光滑竖直轨道自由下落过程中,该弹射管保持水平,先后弹出两只小球.忽略空气阻力,两只小球落到水平地面的() A. 时刻相同,地点相同 B. 时刻相同,地点不同 C. 时刻不同,地点相同 D. 时刻不同,地点不同 【来源】2018年全国普通高等学校招生统一考试物理(江苏卷) 【答案】 B 点睛:本题以平抛运动为背景考查合运动与分运动的关系及时刻和位置的概念,解题时要注意弹射管沿光滑竖直轨道向下做自由落体运动,小球弹出时在竖直方向始终具有跟弹射管相同的速度。 2.根据高中所学知识可知,做自由落体运动的小球,将落在正下方位置。但实际上,赤道上方200m处无初速下落的小球将落在正下方位置偏东约6cm处,这一现象可解释为,除重力外,由于地球自转,下落过程小球还受到一个水平向东的“力”,该“力”与竖直方向的速度大小成正比,现将小球从赤道地面竖直上抛,考虑对称性,上升过程该“力”水平向西,则小球 A. 到最高点时,水平方向的加速度和速度均为零 B. 到最高点时,水平方向的加速度和速度均不为零 C. 落地点在抛出点东侧 D. 落地点在抛出点西侧 【来源】2018年全国普通高等学校招生统一考试物理(北京卷) 【答案】 D 【解析】AB、上升过程水平方向向西加速,在最高点竖直方向上速度为零,水平方向上有向西的水平速度,且有竖直向下的加速度,故AB错; CD、下降过程向西减速,按照对称性落至地面时水平速度为0,整个过程都在向西运动,所以落点在抛出点的西

侧,故C错,D正确; 故选D 点睛:本题的运动可以分解为竖直方向上的匀变速和水平方向上的变加速运动,利用运动的合成与分解来求解。3.滑雪运动深受人民群众的喜爱,某滑雪运动员(可视为质点)由坡道进入竖直面内的圆弧形滑道AB,从滑道的A点滑行到最低点B的过程中,由于摩擦力的存在,运动员的速率不变,则运动员沿AB下滑过程中 A. 所受合外力始终为零 B. 所受摩擦力大小不变 C. 合外力做功一定为零 D. 机械能始终保持不变 【来源】2018年全国普通高等学校招生同一考试理科综合物理试题(天津卷) 【答案】 C 【点睛】考查了曲线运动、圆周运动、动能定理等;知道曲线运动过程中速度时刻变化,合力不为零;在分析物体做圆周运动时,首先要弄清楚合力充当向心力,然后根据牛顿第二定律列式,基础题,难以程度适中.

高考物理牛顿运动定律练习题及解析

高考物理牛顿运动定律练习题及解析 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,在倾角为θ = 37°的足够长斜面上放置一质量M = 2kg 、长度L = 1.5m 的极薄平板 AB ,在薄平板的上端A 处放一质量m =1kg 的小滑块(视为质点),将小滑块和薄平板同时无初速释放。已知小滑块与薄平板之间的动摩擦因数为μ1=0.25、薄平板与斜面之间的动摩擦因数为μ2=0.5,sin37°=0.6,cos37°=0.8,取g=10m/s 2。求: (1)释放后,小滑块的加速度a l 和薄平板的加速度a 2; (2)从释放到小滑块滑离薄平板经历的时间t 。 【答案】(1)24m/s ,21m/s ;(2)1s t = 【解析】 【详解】 (1)设释放后,滑块会相对于平板向下滑动, 对滑块m :由牛顿第二定律有:0 11sin 37mg f ma -= 其中0 1cos37N F mg =,111N f F μ= 解得:002 11sin 37cos374/a g g m s μ=-= 对薄平板M ,由牛顿第二定律有:0 122sin 37Mg f f Ma +-= 其中00 2cos37cos37N F mg Mg =+,222N f F μ= 解得:2 21m/s a = 12a a >,假设成立,即滑块会相对于平板向下滑动。 设滑块滑离时间为t ,由运动学公式,有:21112x a t =,2221 2 x a t =,12x x L -= 解得:1s t = 2.如图1所示,在水平面上有一质量为m 1=1kg 的足够长的木板,其上叠放一质量为m 2=2kg 的木块,木块和木板之间的动摩擦因数μ1=0.3,木板与地面间的动摩擦因数μ2=0.1.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等?现给木块施加随时间t 增大的水平拉力F =3t (N ),重力加速度大小g =10m/s 2

带电粒子在电场中的运动

带电粒子在电场中的运动 带电粒子经电场加速:处理方法,可用动能定理、牛顿运动定律或用功能关系。带电粒子经电场偏转:处理方法:灵活应用运动的合成和分解。 带电粒子在匀强电场中作类平抛运动,U、 d、 l、 m、 q、 v0已知。 (1)穿越时间: (2)末速度: (3)侧向位移: (4)偏角:

1、如图所示,长为L、倾角为θ的光滑绝缘斜面处于电场中,一带电量为+q、质量为m的小球,以初速度v0从斜面底端 A点开始沿斜面上滑,当到达斜面顶端B点时,速度仍为v0,则() A.A、B两点间的电压一定等于mgLsinθ/q. B.小球在B点的电势能一定大于在A点的电势能 C.若电场是匀强电场,则该电场的电场强度的最大值一定为mg/q D.如果该电场由斜面中点正止方某处的点电荷产生,则该点电荷必为负电荷. 2、如图所示,质量相等的两个带电液滴1和2从水平方向的匀强电场中0点自由释放后,分别抵达B、C两点,若AB=BC,则它们带电荷量之比q1:q2等于() A.1:2 B.2:1. C. 1:2 D.2:1 3.如图所示,质量为m、电量为q的带电微粒,以初速度v 从A点竖直向上射 入水平方向、电场强度为E的匀强电场中。当微粒经过B点时速率为V B =2V , 而方向与E同向。下列判断中正确的是( ) A、A、B两点间电势差为2mV 2/q. B、A、B两点间的高度差为V 2/2g. C、微粒在B点的电势能大于在A点的电势能 D、从A到B微粒作匀变速运动.

4.一个带正电的微粒,从A点射入水平方向的匀强电场中,微粒沿直线AB运动,如图,AB与电场线夹角θ=30°,已知带电微粒的质量m=1.0×10-7kg,电量q=1.0×10-10C,A、B相距L=20cm.(取g=10m/s2,结果保留二位有效数字)求:(1)说明微粒在电场中运动的性质,要求说明理由. (2)电场强度的大小和方向? (3)要使微粒从A点运动到B点,微粒射入电场时的最小速度是多少? 1.7×104N/C v A= 2.8m/s 5.一个带电荷量为-q的油滴,从O点以速度v射入匀强电场中,v的方向与电场方向成θ角,已知油滴的质量为m,测得油滴达到运动轨迹的最高点时,它的速度大小又为v,求: (1) 最高点的位置可能在O点的哪一方? (2) 电场强度E为多少? (3) 最高点处(设为N)与O点的电势差U NO为多少? U NO = q mv 2 sin2 2

2014-2018高考物理曲线运动真题

专题四曲线运动 (2017~2018年) 201701 15.发球机从同一高度向正前方依次水平射出两个速度不同的乒乓球(忽略空气的影响)。速度较大的球越过球网,速度较小的球没有越过球网,其原因是A.速度较小的球下降相同距离所用的时间较多 B.速度较小的球在下降相同距离时在竖直方向上的速度较大 C.速度较大的球通过同一水平距离所用的时间较少 D.速度较大的球在相同时间间隔内下降的距离较大 201803 4.在一斜面顶端,将甲乙两个小球分别以v和的速度沿同一方向水平抛出,两球都落在该斜面上。甲球落至斜面时的速率是乙球落至斜面时速率的 A.2倍 B.4倍 C.6倍 D.8倍

(2016~2014年) 1.(2016·全国卷Ⅰ,18,6分)(难度★★)(多选)一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则() A.质点速度的方向总是与该恒力的方向相同 B.质点速度的方向不可能总是与该恒力的方向垂直 C.质点加速度的方向总是与该恒力的方向相同 D.质点单位时间内速率的变化量总是不变 2.(2016·全国卷Ⅱ,16,6分)(难度★★★)小球P和Q用不可伸长的轻绳悬挂在天花板上,P球的质量大于Q球的质量,悬挂P球的绳比悬挂Q球的绳短。将两球拉起,使两绳均被水平拉直,如图所示。将两球由静止释放。在各自轨迹的最低点() A.P球的速度一定大于Q球的速度 B.P球的动能一定小于Q球的动能 C.P球所受绳的拉力一定大于Q球所受绳的拉力 D.P球的向心加速度一定小于Q球的向心加速度

3.(2016·江苏单科,2,3分)(难度★★)有A、B两小球,B的质量为A的两倍,现将它们以相同速率沿同一方向抛出,不计空气阻力,图中①为A的运动轨迹,则B的运动轨迹是() A.①B.②C.③D.④ 4.(2015·安徽理综,14,6分)图示是α粒子(氦原子核)被重金属原子核散射的运动轨迹,M、N、P、Q是轨迹上的四点,在散射过程中可以认为重金属原子核静止不动.图中所标出的α粒子在各点处的加速度方向正确的是() A.M点B.N点C.P点D.Q点

高考物理牛顿运动定律专项训练及答案.doc

高考物理牛顿运动定律专项训练及答案 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,一足够长木板在水平粗糙面上向右运动。某时刻速度为v0= 2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v1= 4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v2= 1m/s,方向向左。重力加速度g= 10m/s2,试求: (1)木板与滑块间的动摩擦因数μ1 (2)木板与地面间的动摩擦因数μ2 (3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。 【答案】( 1)0.3( 2)1 (3)2.75m 20 【解析】 【分析】 (1)对小滑块根据牛顿第二定律以及运动学公式进行求解; (2)对木板分析,先向右减速后向左加速,分过程进行分析即可; (3)分别求出二者相对地面位移,然后求解二者相对位移; 【详解】 (1)对小滑块分析:其加速度为:a1 v2 v1 1 4 m / s2 3m / s2,方向向右 t 1 对小滑块根据牛顿第二定律有:1mg ma1,可以得到: 1 0.3 ; (2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到: v0 1 mg22mg m t1 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到: 1 mg 2 2mg m v2 t2 而且 t1 t2 t 1s 联立可以得到: 1 t1 0.5s,t2 0.5s ; 2 , 20 (3)在t1 0.5s时间内,木板向右减速运动,其向右运动的位移为:0v0 x1t10.5m ,方向向右; 在 t20.5s 时间内,木板向左加速运动,其向左加速运动的位移为:

带电粒子在电场中的运动教学设计

贵州师大附中实习期间 教学设计 《带电粒子在电场中的运动》 指导老师: 实习生: 谢忠 2015年9月

《带电粒子在电场中的运动》教学设计 一、教学设计说明 1.教材分析 《带电粒子在在电场中的运动》是《普通高中物理课程标准》选修模块3—1中第一章“静电场” 中的内容,其基本内容是要求“处理带电粒子在电场中运动的问题”主要培养学生综合应用力学知识和电学知识的能力。 本节课的教学内容选自人民教育出版普通高中课程标准实验教材教科书2007年版《物理》选修3—1第1章第9节。教材内容由“带电粒子的加速”“带电粒子的偏转”“示波管原理”三部分组成,教学内容的梯度十分明显,安排符合学生的认知规律,教材首先介绍了带电粒子在电场中静电力的作用会发生不同程度的偏转,紧接着通过例题的形式来研究带电粒子的加速和偏转问题,这样我们出现进行问题的处理,清晰明了,一步一步地进行分析求解,可以防止公式过多的出现,避免学生死记硬背的现象出现,让学生从问题的本质出发,将复杂的问题简单化。 示波管的原理部分不仅对力学、电学知识的综合能力有较高的要求,而且要有一定的空间想象能力,因此教科书在“思考与讨论”栏目中设置了四个问题,层次分明、循序渐进,给学生足够的时间与空间的配置,对此部分内容的学习减轻了负担。 2.学情分析 教学主体是普通高二年纪的学生,已经掌握了运动学和功能关系的知识以及简单的静电学的知识,学生具有一定的分析推理能力,但是由于力学和电学的综合程度已有提高,这对于学生的学习还是有一定的困难。 高中二年级学生处于高中学习的关键时期,理论和科技方面的知识都需要加强,而本节教学则恰是理论联系现代科学实验和技术设备的知识,对学生而言通过本节课的学习讲师质的提升,也基于物理学习的宗旨,为往后的电磁学的学习打下(作为类比学习)基础。

高考物理曲线运动常见题型及答题技巧及练习题(含答案)

高考物理曲线运动常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试曲线运动 1.如图所示,一位宇航员站一斜坡上A 点,沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点B ,斜坡倾角为α,已知该星球的半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度g ; (2)该星球的密度ρ . 【答案】(1)02tan v t α (2)03tan 2v RtG α π 【解析】 试题分析:平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度.根据万有引力等于重力求出星球的质量,结合密度的公式求出星球的密度. (1)小球做平抛运动,落在斜面上时有:tanα== = 所以星球表面的重力加速度为:g=. (2)在星球表面上,根据万有引力等于重力,得:mg=G 解得星球的质量为为:M= 星球的体积为:V=πR 3. 则星球的密度为:ρ= 整理得:ρ= 点晴:解决本题关键为利用斜面上的平抛运动规律:往往利用斜面倾解的正切值进行求得星球表面的重力加速度,再利用mg=G 和ρ=求星球的密度. 2.如图所示,一轨道由半径2R m =的四分之一竖直圆弧轨道AB 和水平直轨道BC 在B 点平滑连接而成.现有一质量为1m Kg =的小球从A 点正上方 2 R 处的O '点由静止释放,小

球经过圆弧上的B 点时,轨道对小球的支持力大小18N F N =,最后从C 点水平飞离轨道,落到水平地面上的P 点.已知B 点与地面间的高度 3.2h m =,小球与BC 段轨道间的动摩擦因数0.2μ=,小球运动过程中可视为质点. (不计空气阻力, g 取10 m/s 2). 求: (1)小球运动至B 点时的速度大小B v (2)小球在圆弧轨道AB 上运动过程中克服摩擦力所做的功f W (3)水平轨道BC 的长度L 多大时,小球落点P 与B 点的水平距最大. 【答案】(1)4? /B v m s = (2)22?f W J = (3) 3.36L m = 【解析】 试题分析:(1)小球在B 点受到的重力与支持力的合力提供向心力,由此即可求出B 点的速度;(2)根据动能定理即可求出小球在圆弧轨道上克服摩擦力所做的功;(3)结合平抛运动的公式,即可求出为使小球落点P 与B 点的水平距离最大时BC 段的长度. (1)小球在B 点受到的重力与支持力的合力提供向心力,则有:2 B N v F mg m R -= 解得:4/B v m s = (2)从O '到B 的过程中重力和阻力做功,由动能定理可得: 21022f B R mg R W mv ? ?+-=- ??? 解得:22f W J = (3)由B 到C 的过程中,由动能定理得:221122 BC C B mgL mv mv μ-=- 解得:22 2B C BC v v L g μ-= 从C 点到落地的时间:020.8h t s g = = B 到P 的水平距离:2202B C C v v L v t g μ-= + 代入数据,联立并整理可得:214445 C C L v v =- + 由数学知识可知,当 1.6/C v m s =时,P 到B 的水平距离最大,为:L=3.36m

相关文档
相关文档 最新文档