文档视界 最新最全的文档下载
当前位置:文档视界 › 表面改质(高分子)

表面改质(高分子)

智能型高分子膜的制备及应用研究进展

智能型高分子膜的制备及应用研究进展 摘要:膜材料的智能化是当今分离材料领域发展的一个新方向。讨论了智能型高分子膜材料的分类、制备方法及其环境响应特性等,分析了智能型高分子膜的应用现状及其应用前景,并展望了智能型高分子膜技术今后的研究和发展方向。 关键词:智能膜,智能高分子 Research process in preparation of intelligent polymer membranes and their application Abstract: the membrane material is the separation of intelligent material field in a new direction of development. Intelligent polymer film are discussed Material classification, preparation metho d and its environment, the response characteristics of intelligent polymer film and the application prospect of application situation and prospects of intelligent polymer membrane technology res earch and development direction. Keywords: intelligent membrane, intelligent polymer (一)引言膜的调研 膜是一种二维材料,是两相之间的选择性屏障。在自然界中,特别是在生物体内广泛存在,它与生命活动密切相关,是一切生命活动的基础,如能量转换、细胞识别、免疫激素、药物的作用和物质的传输等构成生命活动的基本问题,都与生物膜功能有关,而所有这些活动都是在界面上发生的,因此,研究膜及其界面具有重要的意义。近几年来,膜作为一种新型的高分离、浓缩、提纯及净化技术,已经广泛应用于生产。但是,随着人民生活水平的不断提高和科学技术的不断进步,对膜的要求也越来越高。由于目前已应用于生产的和科学研究的膜材料并不能响应环境的变化,已经不能满足人们的需要所以一种新型的膜应运而生——智能膜,智能膜能够响应各种环境的变化,而逐渐成为近几年来人们开发和研究的热点之一。智能膜材是智能材料的一种,即可感知、响应外界环境细微变化与刺激而发生膨胀、收缩等相应的自身调节,并且有功能发现能力的膜用材料。目前应用主要是高分子材料,合成高分子和天然高分子材料。 智能型高分子膜 膜技术是一种高效的流体分离技术,与传统的分离技术(如蒸馏等)相比具有效率高、能耗低、操作简便、对环境无污染等特点,在节能降耗、清洁生产和循环经济中发挥着越来越重要的作用。在膜分离中,膜材料起着关键作用,目前人们对高分子膜材料的研究逐渐 从传统商品化膜材料向功能性、智能型膜材料的方向发展。与传统商品分离膜不同,智能膜中含有对外界刺激做出可逆反应的基团或链段,从而使膜的结构岁外界刺激变化而可逆地改变,导致膜性能(如孔径大小、亲/疏水性等)的改变,从而控制膜的通量,提高膜的选择性。目前,膜材料的智能化已经成为当今分离材料领域发展的一个新方向。智能高分子膜在控制释放、化学分离、生物医药、化学传感器、人工脏器、水处理等多个领域具有重要的潜在价值。 现状前景 智能高分子膜是近十年来膜研究的一个崭新的领域。随着高新技术的发展,它已经在很多方面取得了较大的进步,例如在物质分离,感应元件,药物释放系统和固定化酶等方面有了一定的研究和应用,逐步开发出了一些新型膜材如LB (langmuir-blodgett)膜,分子自组装膜,纳米自组装膜和具有可调纳米孔道的高分子薄膜等。但是,目前,我国智能膜材的研究与开发存在着不足,与世界先进水平相比尚有相当大的差距,制约着我国信息、航天、航空、能源、建筑材料、

聚合物表面改性方法

聚合物表面改性方法 摘要:本文综述了聚合物表面改性的多种方法,主要包括有溶液处理法、等离子体处理法、表面接枝法、辐照处理法和新兴的原子力显微探针震荡法,并结合具体聚合物材料有重点的详细介绍了改性方法及其改性机理。 关键词:聚合物;表面改性;应用 聚合物在日常生活及化工领域都有非常广泛的应用,但是由于这些聚合物表面的亲水性和耐磨损性较差,限制了聚合物材料的进一步应用。为了改善这些表面性质,需要对聚合物的表面进行改性。聚合物表面改性是指在不影响材料本体性能的前提下,在材料表面纳米量级范围内进行一定的操作,赋予材料表面某些全新的性质,如亲水性、抗刮伤性等。 聚合物的表面改性方法很多,本文综述了溶液处理方法、等离子体处理法、表面接枝法、辐照处理方法和新兴的原子力显微探针震荡法。下面将结合具体聚合物材料详细介绍各种改性方法。 1溶液处理方法 1.1含氟聚合物 PTFE或Teflon具有优良的耐热性、化学稳定性、电性能以及抗水气的穿透性,所以在化学和电子工业上广泛地应用,但由于难粘结,所以应用上受到局限。为了提高粘结性能,需对表面进行改性,化学改性的方法通常用钠萘四氢呋哺液溶处理它。此处理液的配制是由1mol 的金属钠(23g)一次加到1mol萘(128g)的四氢呋喃(1L工业纯)中去,在装有搅拌及干燥管的三口瓶中反应2h,直至溶液完全变为暗棕色即成[1]。 将氟聚合物在处理液中浸泡几分钟,取出用丙酮洗涤,除去过量的有机物。然后用蒸馏水洗。除去表面上微量的金属。氟聚合物在处理液中浸泡时,要求体系要密封,否则空气中氧和水能与处理液中络合物反应而大大降低处理液的使用寿命。正常情况处理液贮存有效期为2个月。处理后的Teflon与环氧粘结剂粘结,拉剪强度可达1100~2000PSi。处理过的表面为黑色,处理层厚低于4×10-5mm 时,电子衍射实验表明处理过的材料本体结构没有变化,材料的体电阻、面电阻和介电损耗也没有变化,此方法有三个缺点:一、处理件表面发黑,影响有色导线的着色;二、处理件面电阻在高湿条件下略有下降,三、处理过的黑色表面在阳光下长时间照射,粘结性能降低,因此目前都采用低温等离子体技术来处理。 1.2聚烷烯烃 聚乙烯和聚丙烯是这类材料中的大品种,它们表面能低。如聚乙烯表面能只有31×10-7J/cm2。为了提高它们表面活性,有利于粘接,通常需对它们的表面进行改性,其中化学改性方法有用铬酸氧化液处理,此处理液的配方[2]重铬酸钠(或钾)5份,蒸馏水8份,浓硫酸100份,将聚乙烯或聚丙烯室温条件下在处理液中浸泡1~1.5h,66~71℃条件下浸泡1~5min,80~85℃处理几秒钟,此外还有过硫酸铵的氧化处理液[3]。其配方为硫酸铵60~120g,硫酸银(促进剂)0.6g,蒸馏水1000ml,将聚乙烯室温条件下处理20min,70℃处理5min,当用来处理聚丙烯时,处理温度和时间都需增加一些,70℃lh,90℃10min,其中促进剂硫酸银效果不明显,可以去掉,但此处理液有效期短,通常只有lh。这两种处理方法,效果都不错。 1.3聚醚型聚氨酯 Wrobleski D. A.等[4]对聚醚型聚氨酯Tecoflex以化学浸渍和接枝聚合进行表面改性。且用Wilhelmy平衡技术测定接触角,结果表明,经聚乙烯基吡咯烷酮(PVP)和PEG化学浸渍修饰表面,以及用VPHEMA对2-丙烯酰胺基-2-甲基-1-丙磺酸及其钠盐(AMPS和NaAMPS)光引发表面接枝。其表面能增大,表面更加亲水。化学浸溃使前进和后退接触角降低20和30~40

分离膜的改性方法

高分子分离膜的改性方法 张爱娟(04300036) [摘要]:随着膜技术的发展,人们对膜材料的性能不断提出新的要求,其中改善膜的亲水 性,提高膜的抗污染能力已成为有待解决的迫切问题。由于单一的膜材料很难同时具有良好的亲水性、成膜性、热稳定性、化学稳定性、耐酸碱性、耐微生物性侵蚀、耐氧化性和较好的机械强度等优点,因此采用膜材料改性或膜表面改性的方法来提高膜的性能,是解决这一问题的关键。其中,化学改性可以通过膜材料和膜表面的化学改性来实现;而物理改性则主要是通过材料共混改性和表面涂覆或表面吸附来实现。 [关键词]:膜;改性;物理改性;化学改性 一引言 膜分离技术具有设备简单,操作方便,无相变,无化学变化,处理效率高和节能等优点,作为一种单元操作日益受到重视,已在海水淡化、电子工业、食品工业、医药工业、环境保护和工程的领域得到广泛的应用。然而,随着膜技术的发展,人们对膜材料的性能不断提出新的要求,其中改善膜的亲水性,提高膜的抗污染能力已成为有待解决的迫切问题。目前使用的大多数膜的材料是聚丙烯(PP)。聚乙烯,聚偏氟乙烯、醋酸纤维素、聚砜、聚醚讽和聚氯乙烯等。当这些膜与欲分离的物质相接触时,在膜表面和孔内的污染物聚集,使得膜通量随运行时间的延长而下将,特别时当聚合物膜材料用于生物医药领域中(如血液透析)时,在膜便面吸附的蛋白质加速纤维性和抗生素碎片在膜表面的聚集,导致一系列的生物反应,例如形成血栓及免疫反应。即使当蛋白质对分离膜的影响可以忽略,膜基体材料的亲水性、荷电性及荷电密度等性质对蛋白质的吸附都会产生重要的影响。因此,为了拓展分离膜的应用,通常需要对膜材料进行改性或改变膜表面的物理化学性能,赋予传统分离膜更多功能,增大膜的透水性,提高膜的抗污染性,改善膜的生物相容性。对膜材料的改性的方法有物理改性,化学改性和表面生物改性。 二物理改性 2.1 表面物理改性 1】 2.1.1 表面涂覆改性【 以分离膜为支撑层,将表面活性剂涂覆在支撑层表面而达到改性的目的,表面活性剂可以是有机物或无机物。但膜表面涂覆方法的改性效果并不十分理想,存在的最大问题是活性剂易从高分子表面脱离,不能得到永久的改性效果。但这种方法显示了制备一系列具有不同截留率分离膜的可能性。 2.1.2 表面吸附改性【2】

高分子材料中粉体表面改性的作用

超细粉体材料进行表面改性的作用分析 (上海汇精亚纳米新材料有限公司刘涛) (凤阳汇精纳米新材料科技有限公司) 高新技术的发展对材料的要求越来越高,而材料又是技术进步的关键和后盾。随着科技的发展,我们经常需要既能适应高温、高压、高硬度条件的材料,又具有能发光、导电、电磁、吸附等特殊性能的材料。因此,对材料特殊性能及品质要求的提高,为适应发展需要,人们不断地开发超微细粉体这一新兴填料体系。但由于超细粉体间普遍存在着范德华力(分子间作用力)、库仑力(静电力),粉体的细化过程实质上是以粒子的内部结合力不断被破坏,体系总能量不断增加的过程。因此从热力学角度来看,超细粉体有自发凝聚的倾向,而且颗粒越细小,团聚越严重。因此如何使团聚解聚,使颗粒均匀分散成为超细粉体材料得到很好应用的首要问题。研究表明,影响超细粉体分散的主要原因是:1:液桥力(液体的表面张力):当粉体受潮时,此力最大;2:范德华力;3:库仑力,不同电荷吸引力是粉体团聚的第三大因素。而对于超细粉体在高分子材料中的分散,一是常温下的分散混合,二是熔融状态下的分散混合,这两个过程都要求做到分散均匀。表面改性就是指在保持材料或制品原性能的前提下,赋予其表面新的性能,如生物相容性、抗静电性能、染色性能及良好的分散性能等。汇精公司粉体材料的表面改性产品就是用偶联剂及表面活性剂在粉体表面进行,其可以降低粉体表面能,提高相容性,阻止或减轻团聚体的形成,提高其分散性,并使得粉体在高分子材料中得到迅速、均匀的分散。若超细粉体不加任何处理就加入到高分子材料中去,材料与聚合物之间就会存在明显的界面,如果在基体树脂中存在的许多空洞,在外力作用下能承受外力的有效截面积减少,填充材料的力学性能就会变差。因此超细粉体在表面处理水份控制以及选择合适的表面改性剂是非常关键的。 上海汇精亚纳米新材料有限公司、凤阳汇精纳米新材料科技有限公司利用自身丰富粉体应用技术资源,采用专业的配方,使用SLG加热式连续性表面改性机对超细粉体材料进行表面改性处理,使得超细粉体材料在各行业的使用性能得到大大提升,更赋予它新的功能;使得超细粉体的各项性能得到更好的发挥,适应了时代发展的趋势需求。

高分子表面材料改性论文

(2014-2015学年第一学期) 《高分子材料改性》 课程论文 题目:纳米粒子增韧聚氯乙烯研究新进展 姓名:周凯 学院:材料与纺织工程学院 专业:高分子材料与工程 班级:高材121 班 学号: 201254575128 任课教师:兰平 教务处制 2014年12月30日

纳米粒子增韧聚氯乙烯研究新进展 摘要 通用塑料的高性能化和多功能化是开发新型材料的一个重要趋势, 而将纳米粒子作为填料来填充改性聚合物, 是获得高强高韧复合材料有效方法之一。本文对近年来纳米增韧PVC 的制备方法, 增韧机理和发展趋势进行了说明。 关键词: 聚氯乙烯纳米材料增韧 一.研究背景 随着科学技术的发展, 人们对材料性能的要求越来越高。聚氯乙烯作为第二大通用塑料, 具有阻燃、耐腐蚀、绝缘、耐磨损等优良的综合性能和价格低廉、原材料来源广泛的优点, 已被广泛应用于化学建材和其他部门。但是, 聚氯乙烯在加工应用中, 尤其在用作结构材料时也暴露出了抗冲击强度低、热稳定性差等缺点。纳米技术的发展及纳米材料所表现出的优异性能, 给人们以重大的启示。人们开始探索将纳米材料引入PVC 增韧改性研究中, 并发现增韧改性后的PVC 树脂具有优异的韧性, 刚度及强度得到显著改善, 而且热稳定性、尺寸稳定性、耐老化性等也有较大提高, 纳米复合材料已经成为PVC增韧改性的一个重要途径。本文主要介绍了近几年来纳米复合材料在PVC 增韧改性方面的研究现状 和发展趋势[1]。 二.纳米CaCO3 增韧PVC 碳酸钙是高分子复合材料中广泛使用的无机填料。在橡胶、塑料制品中添加碳酸钙等无机填料, 可提高制品的耐热性、耐磨性、尺寸稳定性及刚度等,并降低制品成本, 成为一种功能性补强增韧填充材料, 受到了人们的广泛关注。 2.1 纳米CaCO3 增韧对PVC 力学性能的影响 魏刚等[ 2]研究指出, 用CPE 包覆后纳米CaCO3填充PVC 的冲击强度均要比未包覆处理填充体系的略低, 而拉伸强度则相反。特别是在包覆小份量CaCO3( 2 份) 时, 所得复合材料的冲击强度甚至比PVC/ CPE( 8 份) 基体的低12%, 而拉伸强度则出现最大值, 比基体的高8. 9% 左右, 如图2-1 所示。 熊传溪、王涛等[3]研究发现两种粒径的纳米晶PVC 均能起到显著的增韧和增强作用, 且粒径小的纳米晶PVC 作用更明显, 而且偶联剂用量对试样的拉伸强度和冲击强度也有很大的影响。 对CPE/ACR共混增韧PVC力学性能的影响 2.2 纳米CaCO 3 如图2-2所示,为CPE/ACR共混物对PVC冲击强度的影响。从图2-2中可以看出当CPE/ACR/PVC为10/2/100时,共混体系的冲击强度达到最大,明显优于单一CPE或单一ACR对PVC的增韧效果。这是由于10mpr的CPE在PBC基体相中可能已经形成了完整的网络结构,这种网络结构可以吸收部分冲击能量而赋予共混体系一定的冲击强度,而在此基础上再添加2phr ACR后,由于核壳ACR在PVC

第七章 聚合物的表面改性技术介绍

第七章聚合物的表面改性 聚合物表面改性原因:①聚合物表面能低②聚合物表面具有化学惰性难以润湿和粘合③聚合物表面污染及存在弱边界层聚合物表面改性的目的:①改变表面化学组成,引进带有反应性的功能团②清除杂质或弱边界层③改变界面的物理形态④提高表面能,改进聚合物表面的润湿性和黏结性⑤设计界面过渡层 第七章聚合物的表面改性 聚合物的表面改性的方法:电晕、火焰、化学改性、等离子改性、辐照、光化学改性等。这些方法一般只引起10-8~10-4m 厚表面层的物理或化学变化,不影响其整体性质。 7-1 电晕放电处理 电晕放电是聚烯烃薄膜中最常用的表面处理方法。因为聚烯烃,聚丙烯等烯烃是非极性是非极性材料,有高度结晶性,其表面的印刷、粘接、涂层非常困难。电晕放电处理装置如图 7-1 电晕放电处理 原理:塑料薄膜在电极和感应辊之间通过。当施加高压电时,局部发光放电,产生电子、正离子、负离子等高能离子。电子的冲突电离作用使电子、离子增殖,产生的正离子、光子又发生二次电离而持续放电,结果在阳极和阴极之间产生电晕。这些高能粒子与聚合物表面作用,使聚合物表面产生自由基和离子,在空气中氧的作用下,聚合物表面可形成各种极性基团,因而改善了聚合物的黏结性和润湿性。 7-1 电晕放电处理 7-1 电晕放电处理 以上两图表明: 1.电晕处理后低密度聚乙烯(LDPE)表面张力的变化:开始表面张力随电晕处理的电流增大而显著提高,当电流超过100 mA 后,表面张力增加速度趋缓2.电晕处理后低密度聚乙烯(LDPE)剥夺力的影响(变化同上) 7-2 火焰处理和热处理 一、火焰处理:1.定义:用可燃性气体的热氧化焰对聚合物表面进行瞬时高温燃烧,使其表面发生氧化反应而达到处理的目的。 2.常用可燃气体:采用焦炉煤气或甲烷、丙烷、丁烷、天然气和一定比例的空气或氧气。即焦炉煤气甲烷、丙烷、丁烷、天然气 7-2 火焰处理和热处理 3.常用火焰处理来提高其表面性能的物质(粘接性)聚乙烯、聚丙烯的薄膜、薄片吹塑的瓶、罐、桶等 4.例如:用聚丙烯制作汽车保险杠,用火焰处理来提高其表面的可漆性。 5.原理:火焰燃烧的温度可达1000-2700oC,处理的时间极短(0.01~0.1s内)(以避免工件受高温影响而发生变形、软化甚至熔化) 7-2 火焰处理和热处理 火焰中含有许多激活的自由基、离子、电子和中子,如激发态的O﹑NO﹑OH和NH,可夺取聚合物表面的氢,随后按自由基机理进行表面氧化反应,使聚合物表面生成羰基、羧基、羟基等含氧活性基团和不饱和双键,从而提高聚合物的表面活性。二、热处理1.定义:7-2 火焰处理和热处理 把聚合物暴露在热空气中进行氧化反应,使其表面引进羰基、羧基以及某些胺基和过氧化物,从而获得可润湿性和黏结性。2.热处理的温度只有几百(<500oC)摄氏度,远低于火焰处理的温度,因而处理时间较长。 7-3 化学处理 指用化学试剂浸洗聚合物使其表面发生化学和物理变化的方法。优点:工艺简单,设备投资小,因而应用广泛。一、含氟聚合物1.如聚四氟乙烯(PTFE )、氟化乙烯-丙烯共聚物(FEP )和聚三氟乙烯( PTFE )等

聚合物表界面改性方法

聚合物表界面改性方法概述 摘要:聚合物由于表面能低、表面具有化学惰性、难以润湿和粘合、聚合物表面污染及存在弱边界层,所以要使用一定的方法金星表面改性,提高整体性能。聚合物表面改性通常需要改变表面化学组成,引进带有反应性的功能团;清除杂质或弱边界层;改变界面的物理形态,提高表面能;改进聚合物表面的润湿性和黏结性;设计界面过渡层等。 关键词:聚合物;表面改性;研究进展,应用 聚合物在日常生活及化工领域都有非常广泛的应用,但是由于这些聚合物表面的亲水性和耐磨损性较差,限制了聚合物材料的进一步应用。为了改善这些表面性质,需要对聚合物的表面进行改性。聚合物表面改性是指在不影响材料本体性能的前提下,在材料表面纳米量级范围内进行一定的操作,赋予材料表面某些全新的性质,如亲水性、抗刮伤性等。 聚合物的表面改性方法很多,本文综述了常见的改性及最新的研究进展。下面将结合具体聚合物材料详细介绍各种改性方法。 这些方法一般只引起10-8~10-4m厚表面层的物理或化学变化,不影响其整体性质。 一、电晕放电处理 电晕放电是聚烯烃薄膜中最常用的表面处理方法。因为聚烯烃,聚丙烯等烯烃是非极性是非极性材料,有高度结晶性,其表面的印刷、粘接、涂层非常困难。 原理:塑料薄膜在电极和感应辊之间通过。当施加高压电时,局部发光放电,产生电子、正离子、负离子等高能离子。电子的冲突电离作用使电子、离子增殖,产生的正离子、光子又发生二次电离而持续放电,结果在阳极和阴极之间产生电晕。这些高能粒子与聚合物表面作用,使聚合物表面产生自由基和离子,在空气中氧的作用下,聚合物表面可形成各种极性基团,因而改善了聚合物的黏结性和润湿性。 二、火焰处理和热处理 ⒈火焰处理 ①定义:用可燃性气体的热氧化焰对聚合物表面进行瞬时高温燃烧,使其表

高分子材料与工程_就业前景和社会需求

材料工程类属于理工科类,是研究有机及生物高分子材料的制备、结构、性能和加工应用的 高新技术专业。材料工程科学的形成可以追溯到19世纪30年代,但直到20世纪70年代, 才得到全面的发展。目前高分子材料已被广泛应用于生活、生产、科研和国防等各个领域, 成为我国科学研究的一个重点领域。学生毕业后可以到高分子材料及高分子复合材料成型加工、高分子合成、化学纤维、新型建筑装饰材料、现代喷涂与包装材料、汽车、家用电器、电子电气、航天航空等企业从事设计、新产品开发、生产管理、市场经营及贸易部门工作,也可以到高等学校、科研单位从事科学研究与教学工作,还可以到政府部门从事行政管理、质量监督等工作。 由于高分子材料发展十分迅速,所以申请这个专业的人数也稍微偏多,竞争相对激烈。在就业方面可以从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面工作,就业前景很不错。所以美国大学的录取要求相对别的专业都会有所提高。 高分子材料与工程专业就业前景 当今,高分子材料又向着尖端领域发展,新的特殊性能高分子功能材料不断出现, 前 景十分的广阔?市场对高分子人才的需求也日益增加,无论是在日常化工,还是在高精尖端科技,高分子人才都备受欢迎,高分子材料专业的社会需求一直处于化学、材料类专业的前列?随着国际国内对环境保护的重视,印刷包装领域也在不断改进材料,如环保型印刷材料、环保型包装材料和新型数字印刷材料等都是产业发展方向,相信经过四年的学习,在印刷包装材料领域一定大有可为?高分子材料与工程专业就业前景广阔,高分子材料人才可以在绝大多数 工业领域取得发展,因为需要高分子材料的行业多得超乎你的想像?学任何专业,如果立志于毕业后干本行业,专业课是必须要学好的,另外英语也能成为你的一把利器? 高分子材料与工程专业就业前景之课程介绍 高等数学、大学物理、计算机文化基础及语言、近代化学基础(包括无机、有机、分析化学等)、物理化学、仪器分析、工程力学、高分子化学和物理、材料科学与工程基础、工程制图、化工原理、高分子材料成型加工基础、高分子材料成型机械及模具基础、聚合物 共混改性原理、机械设计基础、机械原理及计算机设计、高分子材料加工新技术、模具工程设计、模具CAD/CAE、聚合物成型机械等. 高分子材料与工程专业就业前景之培养目标 本专业培养德、智、体全面发展,掌握高分子材料合成、加工的基本原理,能在高分子材料的合成、共混改性和加工成型等领域从事科学研究、技术开发、工艺和设备设计、生 产及经营管理、教学等方面工作,并具有开拓创新精神和竞争能力的高级工程技术人才?高分子材料与工程专业就业前景之就业方向 本专业毕业生的择业面很宽,适应能力强.适合于高分子材料合成与加工、复合材料、橡胶、塑料及纤维制品等的生产企业以及研究单位的新产品研发、生产和管理工作,以及高 等院校的教学和科研.主要面向化工、建材、汽车、石油化工、航天航空、电子、家电、包装以及造船等行业. 高分子材料与工程专业就业前景之市场需求 高分子材料与工程专业为当今国内应用广泛,是研究天然及生物有机高分子材料的 设计、合成、制备以及组成、结构、性能和加工应用的充满活力的材料类学科,其工业和研究体系已经成为国民经济发展的支柱产业.高分子材料与工程专业就业前景是众多专业发 展前景好的专业之一.近年来本科毕业生读研比例均在65%以上,一次就业率均超过95%,毕业生深受国内各行业的青睐;学院注重国际化人才培养,除每年招收部分优秀学生进入学校英才班学习,与国际著名大学进行联合培养以外,还与国外多个知名高校合作,选送优秀本科生 进行联合培养;专业拥有高分子化学实验室、高分子物理实验室、功能高分子实验室和多家企业联合

膜的改性

1.膜改性由于具有清洁、廉价、节能等特点,近年来得到快速发展,是解决膜污染的有效方法之一。本文综合介绍了膜的基体改性、表面改性这两种改性类型和目前常用的改性方法包括表面涂覆、表面活性剂改性、化学修饰改性、仿生改性等等,并简单介绍了膜改性在环境领域的应用,探讨了膜改性今后的发展。 3. 膜改性类型 膜的改性主要有两种方法,其一是基体改性,其二是表面改性。 3.1基体改性: 3.1.1共混制膜是一种非常适用和常用的膜改性方法,这种方法是将传统制膜材料与另一种聚合物共混,改性在成膜过程中完成,不需要繁琐的后续处理步骤,很适合工业化生产。所制备的膜既具有传统膜的物理、化学和机械性能,又具备所添加的共混物功能,取长补短,消除各单一聚合物组分性能上的弱点,获得综合性能较为理想的膜材料。通常说来,共混膜是为了提高膜的亲水性能。国外研究者关注于共混膜的性能、微观形态结构以及共混物质的相容性。 3.1.2共聚改性是指通过两种或者两种以上单体间的聚合反应改善膜材料的性能。在制备过程中,各单体之间发生复杂的反应,形成最终的共聚膜。目前,常见的共聚膜有聚合物膜的璜化如璜化聚砜,璜化聚丙烯腈,璜化聚苯乙烯,璜化聚醋酸乙烯酯等。 Hester J F等合成了一种以聚甲基丙烯酸甲酯为主链,聚乙二醇为支链的两亲性梳状聚合物P(MMA~r PEOM),并且提出了两亲性聚合物在相转化制膜过程中在膜表面的表面富集及自组装行为。由于在成膜过程中膜和凝固浴之间存在水浓度梯度,两亲性聚合物向表面迁移,形成表面富集。表面富集的程度与凝固浴的温度正相关,温度升高,富集现象明显,反之,则富集度下降。依据这种原理,可以利用制膜过程中使用外加热源而达到表面富集的效果。例如将膜置于热水中进行热处理,表面富集程度可以进一步提高。另外,当膜的亲水性由于使用而遭到破坏时,可通过热处理使两亲性梳状聚合物亲水性侧链重新迁移到膜表面,从而使膜的亲水特性得以自我恢复。Hester等还研究了PEO链长对膜性能的影响,发现随着链长的增加,膜的亲水性和抗污染能力进一步提高。 3.2表面改性 3.2.1物理改性 在膜表面涂覆具有特定功能的高分子基团,膜的性能由所涂覆基团的性质决定,

高分子材料的等离子体表面处理分析

高分子材料的等离子体表面处理 摘要 阐述了等离子体表面改性技术的作用原理, 总结论述了等离子体对高聚物表面作用的几种理论, 经低温等离子体处理的高分子材料表面发生多种物理和化学变化,重点介绍了低温等离子体在医用高分子材料、合成纤维材料、薄膜材料中的研究概况和进展。 关键词: 等离子体; 表面改性; 高分子材料; 0 引言 高分子聚合物材料同金属材料相比具有许多优点, 如密度小、比强度和比模量低、耐蚀性能好、成型工艺简单、成本低廉、优异的化学稳定性、热稳定性好、卓越的介电性能、极低的摩擦系数、良好的润滑作用及优异的耐候性等, 因此广泛应用于包装、印刷、农业、轻工、电子、仪表、航天航空、医用器械、复合材料等行业[1]。但其应用范围和使用效益往往会受到表面性能的制约,因此常常需按使用目的改善或变换其表面性能,如材料或部件的粘着性,高分子膜的印刷性、透过性等。 1 高分子材料的表面改性 高分子材料的各种表面性能的获得取决于材料的表面结构和相关的界面特性,所以高分子材料的界面物性控制是非常必要的。 图1 界面物控技术内容及应用领域 图1所示为界面物性控制技术的内容和相关的应用领域。为了使高分子材料适合各种应用需要,大体上有两类作法。一类是利用各种表面改性技术产生一个新的表面活性层,从而改变表面、界面的基本特性。另一类作法是借助功能性薄膜或表面层形成技术在原表面上敷膜。这两种作法的目的都是为了使材料具有或同时具有几种表面性能。为此,人们研究开发了许多种可供利用的表面处理技术。诸如化学湿法处理,利用电子束或紫外线的干式处理,利用表面活性剂的添加剂处理以及采用真空蒸渡的金属化处理等。本论文主要介绍的等离子体表面处理是利用低压气体辉光放电的干式处理技术。既能改变表面结构,控制界面物性,也可以按需求进行表面敷膜。在塑料、天然纤维、功能性高分子膜的表面处理方面有着巨大

SiO2表面改性机理及其对高分子材料性能的影响

SiO2表面改性机理及其对高分子材料性能的影响 (高材11201:瞿启凡;指导老师:肖伟) 该文简要介绍了表面改性机理!对其作为填料改性高分子材料的研究进行了梳理!针对橡胶、塑料、涂料及胶黏剂等进行了一一阐述!并对未来研究内容及方向做出展望。 关键词:刚性SiO2,表面改性,填充,高分子材料 高分子材料具有结构独特易于改性和加工的特点,具有其他材料无可比拟不可取代的许多优异性能。促使其在国民经济建设、国防及科学技术应用等领域具有不可替代的优势,已逐渐发展成为人们生产生活中不可或缺的材料之一。然而,随着时代的发展和科学技术的进步,对高分子材料性能方面提出了更高要求。因此,对高分子材料性能方面的改良研究越来越多,如通过调整高分子材料内在分子结构与其他有机高分子材料进行共混以及采用无机刚性粉体SiO2作为添加剂等手段。其中,通过采用刚性无机材料(如炭黑黏土等)作为添加剂,可以在很大程度上提高高分子材料性能,已成为学者们争相研究的热点。 刚性无机材料具有很高化学稳定性和热稳定性、无毒、无刺激、使用安全、在自然界中分布广泛、对高分子材料改性有着重要作用,但无机刚性粉体SiO2颗粒表面具有很强极性,是典型亲水性材料,与亲油高分子材料物性间存在巨大差异,难以在有机基体中均匀分散,另外作为添加剂颗粒尺寸通常较小甚至为纳米颗粒,颗粒表面氢键的存在极大表面能使其极易发生团聚,以聚集体形式存在,分散效果差。苏瑞彩也从内外表面原子所受力场不同的角度分析了团聚机理,即处于晶体内部原子受力受到来自周围对称价键力和稍远原子的范德华力、受力对称,价键饱和,而表面原子受力来自其临近内部原子的非对称价键力和其他原子的远程范德华力,受力不对称,价键不饱和,易与外界原子键合形成大颗粒团聚体。的这些特性使其极不易分散。因此,要发挥无机刚性粉体SiO2独特作用,必须改善其在高分子材料基体中的分散效果,改善与高分子材料的亲和性、相容性,提高其加工流动性,增强两相间界面结合力,以此来增加其填充量,提高高分子材料性能。 1.SiO2表面改性机理 SiO2表面亲水疏油,在有机质中难以均匀分散,与有机体间结合力差,因此使用前必须对其进行表面改性。SiO2颗粒表面含有大量羟基基团使其呈现为亲水性。该结果已经被大量文献中未改性SiO2红外光谱分析结果中验证。 针对SiO2颗粒表面特性,其在液相中改性机理有3种"即静电作用机理、吸附层媒介作用机理以及化学键键合作用机理! 1.1静电作用机理和吸附层媒介机理 静电作用机理即利用化学键—离子键形成的本质,利用SiO2 颗粒表面具有羟基基团,根据相反电荷在颗粒表面的相互吸引作用完成包覆。其本质是利用静电作用,阴阳离子之间可以作用在任何方向上,方向性差!

离子注入高分子材料表面改性

摘要叙述了离子注入对高分子材料进行表面改性的新工艺。其技术原理和特点, 并着重介绍了其在高分子材料表面改性中的应用,综述了国内目前在这方面的研究现状及试验结果及发展前景。 关键词离子注入高分子材料表面改性

1.前言 近几十年来, 随着高科技的迅猛发展, 对各类材料的表面性能提出越来越高的要求。因此, 采用新技术、新工艺改善材料的表面性能就越显重要- 离子注入能在不改变材料基本性能的情况下, 有选择地改善材料表面的耐磨性、耐蚀性、抗氧化性和抗疲劳性等- 目前世界上许多国家都有专门从事离子注入研究的队伍。据了解, 英国Rolls-Roycc股份有限公司为了解决飞机发动机叶片材料的微粒磨损, 曾比较了46种不同的表面处理工艺, 最后选择了3种, 其中之一就是离子注入新工艺。由此可见, 离子注入技术将会受到人们更加广泛的重视, 它将在我国社会主义现代化建设中发挥越来越大的作用。 2.离子注入的原理 离子注入对高分子材料的改性是通过离子注入使材料的结晶、组分以及分子空间位置的变化来实现的。当带能离子射到高分子表面时,会与材料原子和电子发生一系列的碰撞作用,与电子的碰撞是非弹性碰撞,与原子的碰撞是弹性碰撞。无论在哪种碰撞过程中,载能离子每经一次碰撞,就将部分能量传递给原子或电子,同时相应减少离子本身的能量,直到经多次碰撞后入射离子的能量几乎耗尽,它才在材料中作为一种杂质原子停留下来。此外,被撞的晶格节点上的原子,如果接受的能量足以使其克服周围原子对它的束缚就会发生离位,并以一定能量在材料晶格中飞行。此时,它同样能使别的原子离位。可以想像,一个入射离子可以产生出一系列的碰撞,产生一系列的离位原子,这种原子与原子、原子与电子的碰撞就是注入离子与高分子材料相互作用的基本物理过程。 离子在加速器中获得一定的能量并藉此进入样品表面以下一定深度, 在靠近表面处形成一层组成和结构都不同于体相的注入层。由于离子的注入深度h 和离子能量的平方根E1/ 2成正比, 所以在不同加速器中得到的表面改性层是不一样的。影响离子注入改性效果的另外一个重要因素是离子注入量, 只有在恰当的离子注入量的时候才会使表面硬度和耐磨性得到最好的改善。 在离子注入技术中由于注入离子在基体中与基体原子相混合,属于非包覆处理, 因此离子注入技术的应用不受材料固溶度的限制。另外, 离子注入过程是在较低温度下进行的, 被注入材料不会发生热变形,可保持原有的尺寸精度和表面粗糙度等。由于这些突出的优点, 近年来, 人们不断将离子注入技术用在

聚合物表面改性方法综述

聚合物表面改性方法综述 摘要:聚合物表面改性的方法很多,本文主要对溶液处理法、等离子体处理法、表面接枝法、辐照处理法和新兴的原子力显微探针震荡法进行综述。前几种方法都是化学处理法, 在基底上形成的新的极性表面层与体相结合一体, 非常牢固;最后一种方法为物理过程, 能够精确控制改性区域, 对于改善材料表面微摩擦性能有重要作用。 关键词:聚合物;表面改性;化学处理法;物理过程 在当今的社会中,材料是人类赖以生存和发展的重要物质,是现代工业和高科技发展的基础和关键。由于材料单体的种类有限,而且材料单体的单一的某的些性能比较差,不符合人们所求,所以要对其材料经行改性。 聚合物在日常生活及化工领域都有非常广泛的应用,但是由于这些聚合物表面的亲水性和耐磨损性较差,限制了聚合物材料的进一步应用。为了改善这些表面性质,需要对聚合物的表面进行改性。聚合物表面改性是指在不影响材料本体性能的前提下,在材料表面纳米量级范围内进行一定的操作,赋予材料表面某些全新的性质,如亲水性、抗刮伤性等。 聚合物的表面改性方法很多,本文综述了溶液处理方法、等离子体处理法、表面接枝法、辐照处理方法和新兴的原子力显微探针震荡法。 1溶液处理方法 1.1溶液氧化法 溶液氧化法是一种应用时间较长的处理方法, 由于其简便易行, 可以处理形状复杂的 部件, 且条件易于控制, 一直受到广泛关注。溶液氧化法对聚合物表面改性影响较大的因素主要是化学氧化剂的种类及配方、处理时间、处理温度。常用的氧化体系有: 氯酸- 硫酸系、高锰酸- 硫酸系、无水铬酸- 四氯乙烷系、铬酸- 醋酸系、重铬酸- 硫酸系及硫代硫酸铵- 硝酸银系等, 其中以后两种体系最为常用。溶液氧化法处理聚乙烯表面是一个典型的氧化反应, 反应的温度和时间对氧化处理有很大的影响, 王博等系统的研究了用重铬酸钾- 浓硫酸、高锰酸钾-浓硫酸体系处理市售农用聚乙烯薄膜表面时温度和时间对表面性质的影响[ 1]。实验发现, 当氧化体系温度低于30 o C时, 氧化处理基本不能发生, 温度升高,对制备氧化深度大 的产品有利, 但是过高的温度会使聚乙烯表面萎缩变形, 最适宜的温度为45~ 60 o C。当氧化时间少于30 min 时, 氧化程度很小, 几乎观察不到, 当氧化时间超过30 min 后, 氧化作用 明显加强。进一步的研究表明, 合适的氧化时间为45 min左右。由此可见, 表面氧化处理效 果和氧化时间、氧化温度之间有一种平衡关系。只有在一定的时间和温度范围内才能得到最佳的效果。 1.2溶剂浸渍法 溶剂浸渍法是用适当的溶剂处理聚合物表面, 溶剂与聚合物表面发生溶解、吸附和化学反应等作用,从而达到除污、增加粗糙度及提高表面极性等效果。聚碳酸酯在1, 6- 己二胺水溶液或N, N - 二甲基- 1,3- 丙二胺水溶液中进行处理时, 会发生某种化学反应, 使表面活化。聚乙烯在进行溶液氧化处理之前,可选用适当的溶剂, 如CCl4 对聚乙烯进行预浸渍。这样可 以除掉聚合物弱的边界层, 在制品表面形成凹凸不平的孔穴, 增加表面粗糙程度, 使氧化液 与制品表面接触面积增加, 从而提高氧化处理效果。 1.3水解法

臭氧化法在高分子生物材料表面改性中的应用

知识介绍 臭氧化法在高分子生物材料表面改性中的应用 袁幼菱 艾 飞 臧晓鹏 沈 健 林思聪 (南京大学表面和界面化学工程技术研究中心南京 210093) 摘 要 综述了臭氧化法在高分子生物材料表面改性中的应用及研究,介绍了臭氧化法的特点,过氧化物浓度的测定及臭氧化反应和过氧化物引发接枝共聚的反应机理。 关键词 臭氧化法 表面改性 接枝共聚 反应机理 Abstract The application and research advances in surface m odification of biopolymer materials using ozoniza2 tion have been reviewed.The characteristics of ozonization,determination of peroxide complex concentration and the mechanism of ozonization and graft copolymerization generated by peroxide complex were als o described. K ey w ords Ozonization,Surface m odification,G raft copolylmerization,Mechanism 近来已有一系列不同的技术用于高聚物表面改性,高聚物表面接枝聚合就是其中的一种。高聚物表面接枝聚合方法为现有的高聚物具有多姿多彩的新的不同功能提供了途径,使聚合物具有亲水性、粘接、生物相容性、导电性、防雾、防臭及润滑等的性质[1]。利用在聚合物表面氧化来改善聚合物表面性质已被广泛地应用于聚合物工业。 发展生物材料的一个重要途径是在物理力学性能适当的材料表面上建立特定的分子结构,使得生物材料的物理力学性能与生物相容性相统一。高聚物表面接枝聚合已被广泛地应用在高分子生物材料表面改性上。在接枝聚合反应中,可以通过各种方法如化学试剂法[2]、等离子体法[3~4]、紫外光照射法[5~6]、电晕放电[7]、电子束[8]、辉光放电[9]和臭氧化法[10~11]等等。利用这些方法,首先是在聚合物基材表面引入官能团,然后引发聚合。本文主要介绍臭氧化法及其在高分子生物材料表面改性中的应用及研究进展。 1 臭氧化法 臭氧化法跟其它方法相比较,其最大的优点是能在聚合物表面均匀引入过氧基团,并且具有实验步骤简单,操作容易,适用性广,费用低的优点,因此被广泛应用于高分子领域中[10~14]。当高聚物暴露在臭氧气体中时,除了形成羰基和羧基集团外,还生成氢过氧化物[15]。这些氢过氧化物具有引发乙烯基单体聚合的能力,导致在臭氧化的聚合物材料表面的接枝反应[10]。臭氧化并不停留在材料表面的氧化,也可以渗透到材料的内部。臭氧化的程度和材料、臭氧浓度及臭氧化时间有关[16]。但是同时必须考虑臭氧活化会引起高聚物的降解而产生对材料力学性能的影响。Park 等[17]对聚氨酯(PU)膜进行15,30,60和180min臭氧处理后,测试膜的力学性能,发现处理前后没有什么改变。Ikada等[10]把PU膜在50V时臭氧处理60min后,发现膜变得不透明,即发生降解。 袁幼菱 女,38岁,博士,副教授,从事高分子生物材料表面改性的研究。 973国家重点基础研究发展规划项目(N o G1*******),南京大学博士后基金资助项目 2002201204收稿,2002205228修回

光化学固定法_医用高分子材料表面改性的一种新方法

光化学固定法——医用高分子材料 表面改性的一种新方法3 罗祥林 黄 嘉 何 斌 综述 乐以伦 审校 (四川大学 高分子材料系,成都 610065) 摘要 阐述了医用高分子材料表面改性的一种新方法——光化学固定法,指出该方法优于其它化学和物理的表面改性方法。简要叙述了光化学固定法的原理和光活性基团的分类,并对光化学固定法在医用高分子材料表面改性中的应用和前景作了介绍。 关键词 光化学固定法 医用高分子材料 表面改性 Photochem ica l I mm ob il iza tion-A New Approach to Surface M od if ica tion of M ed ica l Poly m er M a ter i a ls L uo X i angl i n Huang J i a He B i n Y ue Y ilun (D ep a rt m en t of P olym er S cience and E ng ineering,S ichuan U n iversity,Cheng d u 610065) Abstract T he p resent paper review s the app roach of surface modificati on of m edical po lym er m aterials2 pho tochem ical i m mobilizati on.T he app roach is dram atically different from any o ther surface modificati on p rocess available fo r m edical m aterials.T he top ics include the p rinci p le of pho tochem ical i m mobilizati on,the fundam ental classificati on pho to reactive group s and the typ ical app licati ons of pho tochem ical surface modificati on. Key words Pho tochem ical i m mobilizati on app roach M edical po lym er m aterials Surface modificati on 1 前 言 为了提高医用高分子材料的生物相容性,通常需要对材料的表面进行改性处理,使材料既能保持本体结构所提供的物理机械性能,又具有生物材料所必需的表面性能[1]。理想的改性方法应满足:(1)能适用于各类型的化合物(天然 合成),包括亲水性和疏水性高聚物、抗凝剂、抗菌剂、抗生素、生长因子、多肽、酶、蛋白质以及其他有益于人体的生物分子等;(2)无论高分子材料的表面结构如何,所采用的技术都能将上述化合物与各类材料的表面相偶联。光化学固定法就能满足这些条件[2]。光化学固定法最初用于酶的固定[3~5],八十年代末才开始用于高分子材料的表面改性,使医用高分子材料表面具有所要求的性能[6~10]。在改性医用高分子材料表面的各种方法中,光化学固定法优于其它物理方法和 3教育部留学回国人员基金资助项目(教外司留96644)化学方法。因此,这种新方法已为生物材料学家所关注和研究[9~16]。 2 光化学固定法及光活性基团的类型用于医用高分子材料表面改性的光化学固定法,是指利用紫外或可见区域(300~800nm)光线,将具有特定性质的组分或生物分子偶联到材料表面的方法[2]。它不同于通常的高分子光化学反应或利用紫外光把单体接枝到聚合物表面的光接枝改性。光化学固定法的原理是用带有热活性基团和光活性基团的化学连接组分将各种类型化合物的分子偶联到医用高分子材料表面,来达到改性表面的目的。其途径有两种: (1)将感兴趣的分子(目的分子)同化学连接组分上的热活性基团进行化学反应,形成带光活性基团的目的分子衍生物,然后进行光解,使目的分子共价偶联到高分子材料的表面; (2)首先用化学连接组分对高分子材料表面进 生物医学工程学杂志 J B i om ed Eng 2000∶17(3)∶320~323

相关文档