文档视界 最新最全的文档下载
当前位置:文档视界 › 第一章 热力学基本概念

第一章 热力学基本概念

第一章 热力学基本概念
第一章 热力学基本概念

工程热力学与传热学

第一章基本概念典型问题分析

典型问题

一.基本概念分析

1闭口系统具有恒定的质量,但具有恒定质量的系统不一定就是闭口系统。

2孤立系统一定是闭口的,反之则不然。

3孤立系统一定是绝热系统,但绝热系统不一定都是孤立的。

4孤立系统的热力学状态不能发生变化。

5平衡状态的系统不一定是均匀的,均匀系统则一定处于平衡状态。

6摄氏温度的零点相当于热力学温度的273.15K。

7只有绝对压力才能表示工质所处的状态,才是状态参数。

8只有平衡状态,才能用状态参数坐标图上的一点来表示。

9非平衡状态,因为没有确定的状态参数,无法在状态参数坐标图中表示。

10不平衡过程,一定是不可逆过程;

11不可逆过程就是指工质不能恢复原来状态的过程;

12一个可逆过程必须同时也是一个准平衡过程,但准平衡过程不一定是可逆的。

13实际过程都是不可逆过程。

14功可以全部转变为热,但热不能全部转变为热

15质量相同的物体A和B,若T A >T B,则物体A具有的热量比物体B多。

二.计算题分析

1测得容器内气体的表压力为0.25MPa,当地大气压为755mmHg,求容器内气体的绝对压力p,并分别用(1)MPa(兆帕);(2)bar(巴);(3)atm(物理大气压);(4)at(工程大气压)表示。2某种气体工质从状态1(p1,V1)可逆地膨胀到状态2。膨胀过程中:(1)工质的压力服从p=a-bV,其中a,b为常数;(2)工质的pV保持恒定为p1V1。试分别求两过程中气体的膨胀功。

3利用体积为2m3的储气罐中的压缩空气给气球充气,开始时气球内完全没有气体,呈扁平状,可忽略其内部容积。设气球弹力可忽略不计,充气过程中气体温度维持不变,大气压力为0.9 ╳105Pa。为使气球充到2m3,问气罐内气体最低初压力及气体所作的功是多少?已知空气满足状态方程式pV=mR g T。

分析解答

一. 基本概念分析解答

1 √;

2 √;

3 √;

4 ╳;

5 √;

6 √;

7 √;

8 √;

9 √;10 √;11 ╳;

12 √;13 √;14 ╳;15 ╳;

二. 计算题分析解答

1 解:依据: Pa Pa Pa p Pa mmHg p p p b e 66107305.04322.1337551025.04332.1331,

?=?+?==+=

单位换算:

at Pa Pa atm Pa

Pa bar Pa Pa MPa Pa

Pa 7575.35.06698107305.0)

4(7460.3325101107305.0)3(057.310107305.0)2(7305.010107305.01665666=?=?=?=?)( 2 解:过程为可逆过程: 121121212121222

11221

21ln )2()(2)()(1V V V p V dV pV pdV W V V b V V a dV bV a pdV W ===---=-==

????--)( 分析:在上述两过程中,系统的初,终态相同,但中间途径不同,因而气体的膨胀功也不同。 3 解:因忽略气球弹力,充气后气球内压力与大气压力相同,为0.9 ╳105,而充气结束时储气罐内压力也应恰好降到。又依题意,留在罐内与充入球内的气体温度相同,由于压力相同,温度相同,故这两部分气体的状态相同。若取全部气体为热力系,则气体的最小初压应满足 Pa m m m Pa V V V p p T R V V p T R V p m B g B g 533

35112min ,12

1211

min ,1108.12)22(109.0)()(?=+??=+=

+== 4 考察该过程中储气罐的体积不变,充气时气球中气体压力等于大气压力,气体膨胀排斥了大气,所以气球对大气作功

J m m Pa V V p W 5335120108.1)24(109.0)(?=-??=-=

分析:本题中,储气罐内气体向气球充气的过程是不可逆的,因此不能用?=21pdV

W计算过程功。

但是,在一些场合下如果界面上反力为恒值,则可用外部参数计算过程体积变化功。

热力学基本概念式

第一章热力学基本概念 一、基本概念 热机:可把热能转化为机械能的机器统称为热力发动机,简称热机。工质:实现热能与机械能相互转换的媒介物质即称为工质。 热力系统:用界面将所要研究的对象与周围环境分割开来,这种人为分割的研究对象,称为热力系统。 边界:系统与外界得分界面。 外界:边界以外的物体。 开口系统:与外界有物质交换的系统,控制体(控制容积)。 闭口系统:与外界没有物质的交换,控制质量。 绝热系统:与外界没有热量的交换。 孤立系统:与外界没有任何形式的物质和能量的交换的系统。 状态:系统中某瞬间表现的工质热力性质的总状况。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变,系统内外同时建立热和力的平衡,这时系统的状态就称为热力平衡状态。 状态参数:温度、压力、比容(密度)、内能、熵、焓。 强度性参数:与系统内物质的数量无关,没有可加性。 广延性参数:与系统同内物质的数量有关,具有可加性。 准静态过程:过程进行的非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近于平衡状态。

可逆过程:当系统进行正反两个过程后,系统与外界都能完全回复到出示状态。 膨胀功:由于系统容积发生变化(增大或者缩小)而通过系统边界向外界传递的机械功。(对外做功为正,外界对系统做功为负)。 热量:通过系统边界向外传递的热量。 热力循环:工质从某一初态开始,经历一系列中间过程,最后又回到初始状态。 二、基本公式 ??=-=0 2 1 1 2 dx x x dx 理想气体状态方程式: RT pV m = 循环热效率 1 q w net t = η 制冷系数 net w q 2 = ε 第二章 热力学第一定律 一、基本概念 热力学第一定律:能量既不能被创造,也不能被消灭,它只能从一种形式转换成另一种形式,或从一个系统转移到另一个系统,而其总量保持恒定。

热力学的基本概念汇总

§4-1 热力学的基本概念 本节介绍一些基本概念——热力学系统 平衡态 准静态过程。 一、热力学系统(Thermodynamic System )(系统) 1.热力学系统 在热力学中,把所要研究的对象,即由大量微观粒子组成的物体或物体系称为热力学系统。在下一节中,将对热力学系统进行详细的讨论。外界环境(环境):系统以外的物质 1)概念:在热力学中,把要研究的宏观物体叫作热力学系统,简称系统,也称为工作物质。热力学系统是由大量分子组成的,可以是固体、液体和气体等。本章主要研究理想气体。 与热力学系统相互作用的环境称为外界。 2)热力学系统的分类:根据系统与外界是否有作功和热量的交换,系统可分为: 一般系统:有功、有热交换 透热系统:无功、有热交换 绝热系统:有功、无热交换 封闭系统:无功、无热交换(又称为孤立系统) 对于平衡态的系统,可以用压强、温度、体积来描述系统的状态。 根据系统与外界是否有物质和能量交换,系统可分为: 孤立系统:无能量、无质量交换 ——isolated system 封闭系统:有能量、无质量交换 ——closed system 开放系统:有能量、有质量交换 ——Open system 绝热系统:无能量交换 ——adiabatic system 二、平衡态 1.气体的物态参量 对于由大量分子组成的一定量的气体,其宏观状态可以用体积V 、压强P 和温度T 来描述。描述系统状态变化的物理量称为气体的物态参量。有体积(V) 、压强(p)、温度(T) 1)气体的体积(V olumn )V —— 几何参量 气体的体积V 是指气体分子无规则热运动所能到达的空间。对于密闭容器中的气体,容器的体积就是气体的体积。 单位:m 3 注意:气体的体积和气体分子本身的体积的总和是不同的概念。 2)压强(Pressure )P ——力学参量 压强P 是大量分子与容器壁相碰撞而产生的,它等于容器壁上单位面积所受到的正压力。定义式为 S F P 单位:(1)SI 制帕斯卡 Pa 1Pa=1N ·m -2 (2)cm ·Hg 表示高度为1cm 的水银柱在单位底面上的正压力。 1mm ·Hg=1Toor (托) (3)标准大气压 1atm=76ch ·Hg=1.013×105Pa 工程大气压 9.80665×104Pa 3)温度(Temperature )T ——热力学参量 温度的概念是比较复杂的,它的本质与物质分子的热运动有密切的关系。温度的高低反映分子热运动激烈程度。在宏观上,我们可以用温度来表示物体的冷热程度,并规定较热的物体有较高的温度。

工程热力学基本概念

第一章 工质:实现热能和机械能之间转换的媒介物质。 系统:热设备中分离出来作为热力学研究对象的物体。 状态参数:描述系统宏观特性的物理量。 热力学平衡态:在无外界影响的条件下,如果系统的状态不随时间发生变化,则系统所处的状态称为热力学平衡态。 压力:系统表面单位面积上的垂直作用力。 温度:反映物体冷热程度的物理量。 温标:温度的数值表示法。 状态公理:对于一定组元的闭口系统,当其处于平衡状态时,可以用与该系统有关的准静态功形式的数量n加上一个象征传热方式的独立状态参数,即(n+1)个独立状态参数来确定。 热力过程:系统从初始平衡态到终了平衡态所经历的全部状态。 准静态过程:如过程进行的足够缓慢,则封闭系统经历的每一中间状态足够接近平衡态,这样的过程称为准静态过程。 可逆过程:系统经历一个过程后如果系统和外界都能恢复到各自的初态,这样的过程称为可逆过程。无任何不可逆因素的准静态过程是可逆过程。 循环:工质从初态出发,经过一系列过程有回到初态,这种闭合的过程称为循环。 可逆循环:全由可逆过程粘组成的循环。 不可逆循环:含有不可逆过程的循环。 第二章 热力学能:物质分子运动具有的平均动能和分子间相互作用而具有的分子势能称为物质的热力学能。 体积功:工质体积改变所做的功。 热量:除功以外,通过系统边界和外界之间传递的能量。 焓:引进或排出工质输入或输出系统的总能量。 技术功:工程技术上将可以直接利用的动能差、位能差和轴功三项之和称为技术功。 功:物质间通过宏观运动发生相互作用传递的能量。 轴功:外界通过旋转轴对流动工质所做的功。 流动功:外界对流入系统工质所做的功。 第三章

1 热力学基本概念

第一章热力学基本概念 一、是非题 1.只有处于平衡状态的系统才可用状态参数p、v、T来描写( )。 2.对处于非平衡状态的系统各强度参数是不可能确定的( ),各尺度参数也是不可能确定的( )。 3.尺度量具有可加性( ),强度量也具有可加性( )。 4.系统的总容积V是尺度量( ),比容v也是尺度量( )。 5.真空度是用百分数表示的( )。 6.平衡状态是不随时间改变的状态( ),它一定是均匀状态( )。 7.若容器中气体的压力没有改变则压力表上的读数就一定不会改变( )。 8.容器中水蒸气和水共存时,不能视为纯物质()。 9.各种气体的气体常数都相同()。 二、选择题 1.( )与测温介质的物性无关,因而可作为度量温度的客观标准。 (a)热力学温标;(b)理想气体温标;(c)经验温标。 2.在国际单位制中压力的单位是( )。 (a)帕;(b)巴;(c)工程大气压。 3.在国际单位制中温度的单位是( )。 (a)开尔文(K);(b)摄氏度(℃);(c)华氏度( )。

4.气体的( )与当时当地的大气压力有关,而( )与之无关。 (a)绝对压力;(b)表压力;(c)真空度。 5.1 Pa、1bar和1at的关系是( )。 (a)1at>1bar>1 Pa;(b)1 Pa>1bar>1at;(c)1bar>1at>1 Pa。 三、习题 1—1 确定与1bar压力相当的液柱高度,假定测压流体为酒精(其密度为0.82×103kg/m3)。 1—2 如果气压计压力为83kPa,试完成以下计算: (1)绝对压力为0.15MPa时的表压力; (2)真空计上读数为500mm水银柱时气体的绝对压力; (3)绝对压力的0.5bar时相应的真空度(mbar); (4)表压力为2.5bar时的绝对压力(kPa)。 1—3用水银压力计测量容器中气体的压力时,为避免水银蒸发,在水银柱上加一段水,水高1020mm,水银柱高900mm,如图1-12所示。当时当地气压计上水银柱高度为=755mm,求容器内气体的绝对压力多少MPa和多少at? 图1—12

第一章,热力学基本规律

一.几个基本概念: 1.孤立系,闭系和开系:与其他物质既没有物质交换也没有能量交换的系统叫做孤立系;与外界没有物质交换但有能量交换的系统叫做闭系;与外界既有物质交换也有能量交换的系统叫做开系。 2.平衡态:经验表明,一个孤立系统,不论其初态多么复杂,经过足够长的时间后,将会达到这样的状态,系统的各种宏观性质在长时间内不会发生任何变化,这样的状态称为热力学平衡态。 3.准静态:所谓准静态过程,它是进行的非常缓慢的过程,系统所经历的每一个状态都可以看做是平衡态。 4.可逆过程与不可逆过程:如果一个过程发生后,无论用任何曲折复杂的方法都不可能把它留下的后果完全的消除而使一切恢复原状,这过程称为不可逆过程;反之,如果一个过程发生后,它所产生的影响可以完全消除而令一切恢复原状,这过程称为可逆过程。 5.理想气体:我们把严格遵从玻意耳定律、焦耳定律和阿氏定律的气体称为理想气体。 二.热力学定律 1.热平衡定律(即热力学第零定律):如果物体A和物体B各自与处在同一状态C达到平衡,若令A与进行热接触,他们也将处在热平衡,这个实验事实称为热平衡定律。 2.热力学第一定律:自认界的一切物质都具有能量,能量有各种不同的形式,可以从一种形式转化成另一种形式,从一个物体传递到另一个物体,在传递与转化中能量的数量不变。第一定律也可以表述称为第一类永动机是不可能制成的。 3.热力学第二定律: 1)克氏表述:不可能把热量从低温物理传到高温物体而不引起其他变化。 2)开氏表述:不可能从单一热源吸热使之完全变成有用功而不引起其他变化。 热力学第二定律也可表述为第二类永动机是不可能制成的。

关于热力学第二定律有几点需要说明: 在两个表述中所说的不可能,不仅指【1】在不引起其他变化的条件下,直接从单一热源吸热而使之完全变成有用的功,或者直接将热量从低温物体送到高温物体是不可能的。 而且指【2】不论用多么复杂的方法,在全部过程终了时,其最终的唯一后果是从单一热源吸热而将之完全变成有用功,或者热量从低温物体传到高温物体是不可能的。说明中的【2】尤为重要。 关于热力学第二定律,其实还有许多其他的表述,自然界中与热现象有关的实际过程都有其自发进行的方向,是不可逆的。 实际上自然界的不可逆过程都是存在关联的,我们可以通过某种方法把两个不可逆过程联系起来,由一个过程的不可逆性推断出另一个过程的不可逆性。 我见过的比较经典就是课本上关于克氏和开氏定律的等价性证明和关于气体自由膨胀的不可逆性,分别陈述于下:1)克氏表述与开氏表述的等价性:这里我们用反正发证明,首先我们假设克氏表述不成立,然后我们可以构造如左图所示热机,一个卡诺循环,工作物质从高温热源吸取热量Q1,在低温热源放出热量Q2,对外做功W=Q1-Q2。如果克氏定理不成立,可以将热量Q2从低温热源送到高温热源而不引起其他变化,则全部过程的最终后果就是从单一热源吸收热量Q1-Q2,并全部转为有用的功,即开始表述不成立。反之,如果开氏表述不正确,则一个热机能够从高温热源吸收热量Q1并全部转化成有用功 W=Q1,可以利用这个功带动一个可逆卡诺热机逆向循环,整个过程是将Q2从低温物体传到高温物体,即克氏表述不正确。至此,我们证明了克氏表述与开氏表述的等价性。

第1章 热力学基本概念

第一章热力学的基本概念 1.1 热力系及其描述 (1) 1.1.1 热力系 (1) 1.1.2 热力系的状态、平衡状态及状态参数 (2) 1.1.3 状态参数的特性 (3) 1.2 基本状态参数 (4) 1.2.1 密度及比体积 (4) 1.2.2 压力 (4) 1.2.3 温度及热力学第零定律 (7) 1.3 状态方程式,状态参数坐标图 (12) 1.3.1 状态公理 (12) 1.3.2 纯物质的状态方程式 (12) 1.3.3 状态参数坐标图 (13) 1.4 热力过程及热力循环 (14) 1.4.1 准平衡过程 (14) 1.4.2 热力循环 (16) 思考题及答案 (19) 1.1 热力系及其描述 1.1.1 热力系 在对一个现象或—个过程进行分析时为了确定研究的对象,规划出研究的范围,常从若干物体中取出需要研究的部分.这种被取出的部分叫做热力学系统,简称热力系。热力系以外的物质世界统称为外界(或环境)。热力系与外界的分界面叫做界面(或边界)。所谓热力系,即是由界面包围着的作为研究对象的物体的总和。热力系与外界之间的界面可以是真实的,也可以是假拟的,可以是固定的,也可以是运动的。 在一般情况下,热力系与外界处于相互作用中,彼此可交换能量(如热量及各种形式的功)及物质。 按热力系与外界进行物质交换的情况可将热力系分类为: 闭口系(或闭系)——热力系与外界无物质交换,或者说没有物质穿过边界。此时.热力系内部的质量将保持不变,称为控制质量(C.M.),故闭口系即是我们所研究的某“控制质量”。

开口系(或开系)——热力系与外界之间有物质交换,或者说有物质穿过边界。这种热力系内部的质量可以是变化的。这时,我们可以把研究的对象规划在一定的空间范围内,这种空间范围叫作控制容积(C.V.),或称控制体,故开口系即是我们所研究的某“控制体”。 相应地,控制质量或控制容积与外界的分界面也可称为控制面。 按热力系与外界进行能量交换的情况常将热力系分类为: 简单热力系——热力系与外界只交换热量及一种形式的准静功(准静功的概念将在2-2节中讨论); 绝热系——热力系与外界无热交换; 孤立系——热力系与外界既无能量交换又无物质交换。 以上是按热力系与外界的相互关系所作的分类。热力系也可按其内部状况的不同而分类为:单元系(只包含一种化学成分的物质)、多元系(包含两种以上的物质)、均匀系(各部 分具有相同的性质,如单相系)、非均匀系(各部分具有不同的性质,如复相系);等等。 在热力工程上,能量转换是通过工作物质的状态变化来实现的。最常用的工质是一些可压缩流体(如蒸汽动力装置中的水蒸气,燃气动力装置中的燃气,等等)。由可压缩流体 构成的热力系称为可压缩系统。若可压缩系统与外界只有准静容积变化功(膨胀功或压缩功)的交换,则此系统称为简单可压缩系统。工程热力学中讨论的大部分系统都是简单可压缩系统。 另外,在热力学中还会遇到一些特殊的系统,例如某种具有无限大热容量的系统,它对外放出或吸入有限的热量时其自身的温度维持不变,这种系统称为热源(或冷源)。 正确地选择热力系是进行正确的热力学分析的前提。没有明确选定热力系之前,对力、质量、热、功等任何问题的讨论都是不可能进行的。 1.1.2 热力系的状态、平衡状态及状态参数 所谓热力系的状态,即是热力系在某一瞬间所呈现的宏观物理状况。在热力学中我们一般取设备中的流体工质(主要是气体)作为研究对象,这时热力系的状态即是指气体所呈 现的物理状况。 热力系可能呈现各种不同的状态,其中具有特别重要意义的是所谓平衡状态。平衡状态是指,在没有外界影响的条件下系统的各部分在长时间内不发生任何变化的状态。 处于平衡状态的热力系各处的温度、压力等参数是均匀一致的。试设想系统中各物体之间有温差存在而发生热接触,则必然有热自发地从高温物体传向低温物体,这时系统不会维持状态不变,而是不断产生状态变化直至温差消失而达到平衡。这种平衡称为热平衡。可见,温差是驱动热流的不平衡势,而温差的消失则是系统建立起热平衡的必要条件。同样,如果物体间有力的相互作用(例如由压力差引起),则将引起宏观物体的位形变化,这时系统的状态不断变化直至力差消失而建立起平衡。这种平衡称为力学平衡。所以,力差也是驱使系统状态变化的一种不平衡势,而力差的消失是使系统建止起力学平衡

热力学统计物理总复习知识点

热力学部分 第一章 热力学的基本规律 1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统 其中所要研究的系统可分为三类 孤立系:与其他物体既没有物质交换也没有能量交换的系统; 闭系:与外界有能量交换但没有物质交换的系统; 开系:与外界既有能量交换又有物质交换的系统。 2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。 3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。 4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此 也处在热平衡. 5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。 6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状 态方程作了修正之后的实际气体的物态方程。 7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。 8、准静态过程外界对气体所作的功:,外界对气体所作的功是个过程量。 9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。绝 热过程中内能U 是一个态函数:A B U U W -= 10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造, 只能从一种形式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式: Q W U U A B +=-;微分形式:W Q U d d d += 11、态函数焓H :pV U H +=,等压过程:V p U H ?+?=?,与热力学第一定律的公 式一比较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。 12、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =。 13.定压热容比:p p T H C ??? ????=;定容热容比:V V T U C ??? ????= 迈耶公式:nR C C V p =- 14、绝热过程的状态方程:const =γpV ;const =γ TV ;const 1 =-γγT p 。 15、卡诺循环过程由两个等温过程和两个绝热过程组成。正循环为卡诺热机,效率 211T T -=η,逆循环为卡诺制冷机,效率为2 11T T T -=η(只能用于卡诺热机)。 16、热力学第二定律:克劳修斯表述:不可能把热量从低温物体传到高温物体 而不引起其他变化(表明热传导过程是不可逆的); 开尔文(汤姆孙)表述:不可能从单一热源吸收热量使之完全变成有用的功而不引起其 他变化(表明功变热的过程是不可逆的); 另一种开氏表述:第二类永动机不可能造成的。 V p W d d -=

化工热力学基本概念和重点

第一章热力学第一定律及其应用 本章内容: *介绍有关热力学第一定律的一些基本概念,热、功、状态函数,热力学第一定律、热力学能和焓,明确准静态过程与可逆过程的意义,进一步介绍热化学。 第一节热力学概论 *热力学研究的目的、内容 *热力学的方法及局限性 *热力学基本概念 一.热力学研究的目的和内容 目的: 热力学是研究热和其它形式能量之间相互转换以及转换过程中所应遵循的规律的科学。 内容: 热力学第零定律、第一定律、第二定律和本世纪初建立的热力学第三定律。其中第一、第二定律是热力学的主要基础。 一.热力学研究的目的和内容 把热力学中最基本的原理用来研究化学现象和化学有关的物理现象,称为化学热力学。 化学热力学的主要内容是: *利用热力学第一定律解决化学变化的热效应问题; *利用热力学第二律解决指定的化学及物理变化实现的可能性、方向和限度问题,建立相平衡、化学平衡理论; *利用热力学第三律可以从热力学的数据解决有关化学平衡的计算问题。 二、热力学的方法及局限性 方法: 以热力学第一定律和第二定律为基础,演绎出有特定用途的状态函数,通过计算某变化过程的有关状态函数改变值,来解决这些过程的能量关系和自动进行的方向、限度。 而计算状态函数的改变只需要根据变化的始、终态的一些可通过实验测定的宏观性质,并不涉及物质结构和变化的细节。 二、热力学的方法及局限性 优点: *研究对象是大数量分子的集合体,研究宏观性质,所得结论具有统计意义。 *只考虑变化前后的净结果,不考虑物质的微观结构和反应机理,简化了处理方法。 二、热力学的方法及局限性 局限性: *只考虑变化前后的净结果,只能对现象之间的联系作宏观的了解,而不能作微观的说明或给出宏观性质的数据。 例如:热力学能给出蒸汽压和蒸发热之间的关系,但不能给出某液体的实际蒸汽压的数值是多少。 *只讲可能性,不讲现实性,不知道反应的机理、速率。 三、热力学中的一些基本概念 *系统与环境 系统:

工程热力学基本概念与重要公式

第一章基本概念 1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。 多元系:由两种以上不同化学成分组成的系统称为多元系。 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。 温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。 热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。 压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。 相对压力:相对于大气环境所测得的压力。如工程上常用测压仪表测定系统中工质的压

第四章 溶液热力学基本概念题

第四章 溶液热力学基本概念题 一、填空题 1、试写出理想稀溶液中溶质B 的化学式表示式,其中溶质B 的质量摩尔浓度以b B 表示,B μ= 。 2、写出化学势的两个定义式B μ= = 。 3、已知60℃时,A(l)的蒸汽压为20.0kPa ,B(l) 的蒸汽压为40.0kPa 。则与含0.5molB(l),99.5molA(l)的理想液态混合物成平衡的气体总压力为 kPa 。 4、某理想溶液的温度为T ,压力为 p θ,溶剂A 的摩尔分数为A x ,则组分A 的化学势表达式为:A μ= 。 5、在恒温恒压下,一切相变化必然是朝着化学势 的方向自发的进行。 6、在一定温度下,B A p p **>, 由纯液态物质和形成理想溶液,当气液达平衡时,气相组成B y 总是 液相组成B x 。7、在T=300K ,p=102.0kPa 的外压下,物质的量为0.03的蔗糖水溶液的渗透压为1π。物质的量为0.02的KCl 水溶液的渗透压为2π,两种相同体积的溶液,则必然存在2π 1π的关系。 二、是非题。正确地打“√”,错误的打“×”。 1、当系统在一定的T 、p 下,处于相平衡时,任一组分在各相的化学势必定相等。 ( ) 2、一定温度下,微溶气体在水中的溶解度与其平衡分压成正比。 ( ) 3、偏摩尔量和化学势是同一公式的两种不同表示方式。 ( ) 4、一定温度下,稀溶液中挥发性溶质与其蒸汽达到平衡时,气相中的分压与该组分在液相中的组成成正比。 ( ) 5、在多相系统中于一定的T ,p 下,物质有从浓度高的相自发向浓度较低的相转移的趋势。 ( ) 三、问答题 1、写出纯理想气体在温度T 及压力p 时化学势表示式并解释式中各项符号的意义。 2、下列偏导数中那些是偏摩尔量?那些是化学势? ,,j B T p n H n ??? ???? ,,j B S p n H n ??? ???? ,,j B T V n A n ??? ???? ,,j B T V n G n ??? ???? ,,j B S V n U n ??? ???? ,,j B T p n V n ??? ???? ,,j B T p n A n ??? ???? 。 三、选择题

第一章 热学基本概念

第一章 热力学基本概念 英文习题 1. Expressing temperature rise in different units During a heating process, the temperature of a system rises by 10℃. Express this rise in temperature in K, ℉ and R. 2. Absolute pressure of a vacuum chamber A vacuum gage connected to a chamber reads 5.8 psi at location where the atmosphere pressure is 14.5 psi. Determine the absolute pressure in the chamber. 3. Measuring pressure with a manometer A manometer is used to measure the pressure in a tank. The fluid used has a specific gravity of 0.85, and the manometer column height is 55 cm, as shown in Fig.1-1. If the local atmospheric pressure is 96 kPa, determine the absolute pressure within the tank. 4. Measuring pressure with a multi-fluid manometer The water in a tank is pressurized by air, and the pressure is measured by a multi-fluid manometer as shown in Fig. 1-2. The tank is located on a mountain at an altitude of 1400 m where the atmospheric pressure is 85.6 kPa. Determine the air pressure in the tank if h 1=0.1 m, h 2=0.2 m, and h 3=0.35 m. Take the densities of water, oil, and mercury to be 1000 kg/m 3, 850 kg/m 3, and 13 600 kg/m 3 respectively. 5. Effect of piston weight on pressure in a cylinder The piston of a vertical piston-cylinder device containing a gas has a mass of 60 kg and a cross-sectional area of 0.04 m 2, as shown in Fig.1-3. The local atmosphere pressure is 0.97 bar, and the gravitational acceleration is 9.81 m/s 2. (a) Determine the pressure inside the cylinder. (b) If some heat is transferred to the gas and its volume is doubled, do you expect the pressure inside the cylinder to change? 6. Burning off lunch calories A 90-kg man had two hamburgers, a regular serving of French fries, and a 200-ml Coke for lunch. Determine how long it will take for him to burn the lunch calories off (a) by watching TV and (b) by fast swimming. What would your answers be for a 45-kg man? 7. Burning of a candle in an insulated room A candle is burning in a well-insulated room. Taking the room (the air plus the candle) as the system, determine (a) if there is any heat transfer during this FIGURE 1-1 FIGURE 1-2 FIGURE 1-3 FIGURE 1-4

工程热力学基本概念

工质:实现热能和机械能之间转换的媒介物质。 系统:热设备中分离出来作为热力学研究对象的物体。 状态参数:描述系统宏观特性的物理量。 热力学平衡态:在无外界影响的条件下,如果系统的状态不随时间发生变化,则系统所处的状态称为热力学平衡态。 压力:系统表面单位面积上的垂直作用力。 温度:反映物体冷热程度的物理量。 温标:温度的数值表示法。 状态公理:对于一定组元的闭口系统,当其处于平衡状态时,可以用与该系统有关的准静态功形式的数量n加上一个象征传热方式的独立状态参数,即(n+1)个独立状态参数来确定。 热力过程:系统从初始平衡态到终了平衡态所经历的全部状态。 准静态过程:如过程进行的足够缓慢,则封闭系统经历的每一中间状态足够接近平衡态,这样的过程称为准静态过程。 可逆过程:系统经历一个过程后如果系统和外界都能恢复到各自的初态,这样的过程称为可逆过程。无任何不可逆因素的准静态过程是可逆过程。 循环:工质从初态出发,经过一系列过程有回到初态,这种闭合的过程称为循环。 可逆循环:全由可逆过程粘组成的循环。 不可逆循环:含有不可逆过程的循环。 第二章 热力学能:物质分子运动具有的平均动能和分子间相互作用而具有的分子势能称为物质的热力学能。 体积功:工质体积改变所做的功。 热量:除功以外,通过系统边界和外界之间传递的能量。 焓:引进或排出工质输入或输出系统的总能量。 技术功:工程技术上将可以直接利用的动能差、位能差和轴功三项之和称为技术功。 功:物质间通过宏观运动发生相互作用传递的能量。 轴功:外界通过旋转轴对流动工质所做的功。 流动功:外界对流入系统工质所做的功。

热力学第二定律: 克劳修斯说法:不可能使热量从低温物体传到高温物体而不引起其他变化。 开尔文说法:不可能从单一热源吸热使之完全转化为有用功而不引起其他变化。 卡诺循环:两热源间的可逆循环,由定温吸热、绝热膨胀、定温放热、绝热压缩四个可逆过程组成。 卡诺定理:在温度为T1的高温热源和温度为T2的低温热源之间工作的一切可逆热机,其热效率相等,与工质的性质无关;在温度为T1的高温热源和温度为T2的低温热源之间工作的热机循环,以卡诺循环的热效率为最高。 熵:沿可逆过程的克劳修斯积分,与路径无关,由初、终状态决定。 熵流:沿任何过程(可逆或不可逆)的克劳修斯积分,称为“熵流”。 熵产:系统熵的变化量与熵流之差。 熵增原理:在孤立系统和绝热系统中,如进行的过程是可逆过程,其系统总熵保持不变;如为不可逆过程,其熵增加;不论什么过程,其熵不可能减少。 第四章 理想气体:热力学中,把完全符合PV=RT及热力学能仅为温度的函数U=U(T)的气体,称为理想气体。 比热容:单位物量物体在准静态过程中温度升高1K(或1 C)所需要的热量称为“比热容”。 质量比热容:取1kg质量作为计量单位时,其比热容称为质量比热容。 体积比热容:取标准状态下1m^3气体的体积作为计量单位时,其比热容称为体积比热容。 摩尔比热容:取1mol作为计量单位时,其比热容称为摩尔比热容。 第五章 饱和温度:饱和状态的温度称为饱和温度 饱和压力:饱和状态的压力称为饱和压力 饱和水:水温t等于水压p所对应的饱和温度ts,称为饱和水 干饱和蒸汽:水蒸气温度t等于其压力p所对应的饱和温度ts,称为干饱和蒸汽。 过热蒸汽:蒸汽的温度t高于其压力p所对应的饱和温度ts,称为过饱和蒸汽。 干度:1kg湿蒸汽中含xkg的饱和蒸汽,(1-x)kg饱和水。 绝热效率:实际输出功和理论实处功之比。 过冷度:水温t低于水压p所对应的饱和温度ts,称为未饱和水。 过热度:蒸汽的温度t高于其压力p所对应的饱和温度ts,称为过饱和蒸汽。 第六章 理想混合气体:由相互不发生化学反应的理想气体组成 道尔顿分压力定律:理想气体混合物的压力等于各组成气体分压力的总和 分体积定律:理想气体混合物的总体积等于各组成气体分体积的总和

热力学第一定律基本概念和重点总结

本章内容: 介绍有关热力学第一定律的一些基本概念,热、功、状态函数,热力学第一定律、热力学能和焓,明确准静态过程与可逆过程的意义,进一步介绍热化学。 第一节热力学概论 ?热力学研究的目的、内容 ?热力学的方法及局限性 ?热力学基本概念 一.热力学研究的目的和内容 目的:热力学是研究热和其它形式能量之间相互转换以及转换过程中所应遵循的规律的科学。内容:热力学第零定律、第一定律、第二定律和本世纪初建立的热力学第三定律。其中第一、第二定律是热力学的主要基础。 把热力学中最基本的原理用来研究化学现象和化学有关的物理现象,称为化学热力学。 化学热力学的主要内容是: 1.利用热力学第一定律解决化学变化的热效应问题; 2.利用热力学第二律解决指定的化学及物理变化实现的可能性、方向和限度问题,建 立相平衡、化学平衡理论; 3.利用热力学第三律可以从热力学的数据解决有关化学平衡的计算问题 二、热力学的方法及局限性 方法: 以热力学第一定律和第二定律为基础,演绎出有特定用途的状态函数,通过计算某变化过程的有关状态函数改变值,来解决这些过程的能量关系和自动进行的方向、限度。 而计算状态函数的改变只需要根据变化的始、终态的一些可通过实验测定的宏观性质,并不涉及物质结构和变化的细节。 优点: ?研究对象是大数量分子的集合体,研究宏观性质,所得结论具有统计意义。 ?只考虑变化前后的净结果,不考虑物质的微观结构和反应机理,简化了处理方法。局限性: 1.只考虑变化前后的净结果,只能对现象之间的联系作宏观的了解,而不能作微观的 说明或给出宏观性质的数据。 例如:热力学能给出蒸汽压和蒸发热之间的关系,但不能给出某液体的实际蒸汽压的数值是多少。 2.只讲可能性,不讲现实性,不知道反应的机理、速率。 三、热力学中的一些基本概念 1.系统与环境 系统:用热力学方法研究问题时,首先要确定研究的对象,将所研究的一部分物质或空间,从其余的物质或空间中划分出来,这种划定的研究对象叫体系或系统 (system)。 环境:系统以外与系统密切相关的其它部分称环境(surrounding 注意: 1.体系内可有一种或多种物质,可为单相或多相,其空间范围可以是固定或 随过程而变。 2.体系和环境之间有分界,这个分界可以是真实的,也可以是虚构的,既可 以是静止的也可以是运动的。 根据体系与环境的关系将体系区分为三种:

热力学基本概念.

潍坊职业学院教案案首

3)孤立体系(isolated system ) 体系与环境之间既无物质交换,又无能量交换,故又称为隔离体系。有时把封闭体系和体系影响所及的环境一起作为孤立体系来考虑 注意: 可见,体系与环境的划分并不是绝对的,实际上带有一定的人为性。原则上说,对于同一问题,不论选哪个部分作为体系都可将问题解决,只是在处理上有简便与复杂之分。因此,要尽量选便于处理的部分作为体系。一般情况下,选择哪一部分作为体系是明显的,但是在某些特殊场合下,选择方便问题处理的体系并非一目了然。 2 、状态函数

体系的一些性质,其数值仅取决于体系所处的状态,而与体系的历史无关;它的变化值仅取决于体系的始态和终态,而与变化的途径无关。具有这种特性的物理量称为状态函数(state function)。 状态函数的特性可描述为:异途同归,值变相等;周而复始,数值还原。 状态函数在数学上具有全微分的性质。 体系的性质-状态函数性质 用宏观可测性质来描述体系的热力学状态,故这些性质又称为热力学变量。可分为两类: 广延性质(extensive properties) 又称为容量性质,它的数值与体系的物质的量成正比,如体积、质量、熵等。这种性质有加和性,在数学上是一次齐函数。 强度性质(intensive properties) 它的数值取决于体系自身的特点,与体系的数量无关,不具有加和性,如温度、压力等。它在数学上是零次齐函数。指定了物质的量的容量性质即成为强度性质,如摩尔热容。 3.过程与途径 (1)体系状态的任何变化称过程(process)。 始态————————————————→终态 过程(具体可通过不同的途径来实现) (2) 实现状态变化的具体步骤称为途径(path)。 根据过程有无相变及化学反应分: 简单状态变化过程:T,p,V变化 化学变化过程 相变过程 常见的变化过程 ◆恒温过程:T始=T终=T外=常数 ◆恒压过程: p始=p终=p外=常数

第一章 热力学的基本规律(复习)

第一章 热力学的基本规律(复习) 一、内容概述 (一)、知识结构 (二)、基本概念 热力学系统及其分类(孤立系、闭系、开系)、热力学平衡状态、物态方程、内能、焓、熵、自由能、吉布斯函数、可逆过程与不可逆过程。 (三)、基本规律和公式 1、与物态方程有关的三个物理量 定压体胀系数P T V V )( ??=1 α 定容压强系数V T P P )(??=1β 三者联系为P K T βα= 等温压缩系数T T T V V k )( ??-=1 热力学的基本规律 热力学第零定律 温度 物态方程 热力学第一定律 内能 两种典型表述 卡诺定理 克劳修斯等式与不等式 熵的定义和热力学基本微分方程 热力学第二定律 热力学第二定律的普遍表述 熵的性质和物理意义 熵变的计算

2、热力学第一定律 条件:闭系 ??? ? ??? - =+=-∑i i i A B dY Y Q d dU W Q U U 无穷小过程有限过程 只有体积变化功 PdV Q d dU -= 意义:①说明了做功和热传递是改变物体能量及其量度的两种等效的方式;②揭示了能的转化及其守恒规律 ◆热力学第一定律在理想气体的应用 理想气体的内能只是温度T 的函数(焦耳实验证实),即U=U(T),且其状态方程为pV=nRT ,由此得到: ① 内能: οU dT C U dT C dU V V +==?, ② 焓: ?+==οH dT C H dT C dH p p ③ 热容量差: nR C C V p =- ④ 过程方程: 常量常量,常量,===--Z Z Z Z T p TV pV /1 1 其中Z=0,1,∞和γ分别对应理想气体的等压、等温、绝热和等容过程; ⑤ 多方过程中热容量; )1/()(--=Z C Z C V γ ⑥ 理想气体卡诺正循环效率η和负循环的致冷系数ε: 1 21 21 11T T Q Q Q W - =- ==η 2 122T T T W Q -= = ε 3、热力学第二定律 ⑴热力学第二定律两种标准的表述: ① 克劳修斯叙述:不可能把热量从低温物体传到高温物体而不引起其它变化。 ② 开尔文叙述:不可能从单一热源吸热使之完全变为有用的功而不引起其它变化,(或说为:第二类永动机不可能造成。) 克劳修斯叙述揭示了热传导的不可逆性,而开尔文叙述揭示了功热转换的不可逆性。这两种叙述在正的绝对温度区间是等效的。 ⑵卡诺定理 定理:所有工作于两个一定温度之间的热机,以可逆机的效率为最大。 推论:所有工作于两个一定温度之间的可逆热机,其效率都相等。由卡诺定理及其、推论,应有:工作于温度为)(21T T >和2T 之间的热机,其效率η满足

工程热力学基本概念及重要公式

第一章基本概念 1. 基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。 多元系:由两种以上不同化学成分组成的系统称为多元系。 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(u、或密度(p )、内能(u )、焓(h)、熵(s)、自由能(f)、自由焓(g)基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。 温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的

热力学基本概念

大学物理
热力学基础
第1讲 热力学的基本概念

? 热力学系统 在热力学中把有大量分子组成的宏观物体 ( 气体、液 体、固体)称为热力学系统,简称系统. 系统以外与系统有着相互作用的环境称为外界. 孤立系统 : 与外界不发生任何能量和物质交换 的热力学系统. 封闭系统 : 与外界只有能量交换而没有物质交 换的系统. 绝热系统: 与外界没有热量交换的系统.

? 热力学的状态参量 状态参量是描述气体宏观状态的物理量. 包括体积、压强 和温度. 1. 体积 V : 气体分子自由活动的空间. 国际单位: m3(米3 )
当气体分子大小不计时 , 气 体体积等于容器的容积. 2. 压强 p: 垂直作用在容器壁单位面积上的气体压力.
F p= S
国际单位: Pa (帕斯卡) 1 Pa = 1 N·m-2 1标准大气压 = 1.01325×105Pa

3. 温度 T : 表征热平衡状态下系统的宏观性质. 热平衡: 两热力学系统相互接触, 而与外界没有热量交 换, 当经过了足够长的时间后, 它们的冷热程度不再发生 变化, 则称这两系统达到了热平衡. ? 热力学第零定律 在不受外界影响的条件下, 如果处于确定状态下的物体A 分别与物体B、C达到热平衡, 则物体B和C也必相互热平衡.
A B C
A B C

? 温标 —— 温度的数值表示. 摄氏温标(t): t ℃ 水的冰点 0 ℃, 水的沸点 —— 100℃. 华氏温标(F): 在标准大气压下, 冰的熔 点为 32度, 水的沸点为212度,中间划分 180等分. 热力学温标(T): 单位: K(开尔文) 绝对温标与测温物质的性质无关,是 一种基本的科学温标. 水三相点(气态、液态、固态的共存状态) 为273.16 K . 摄氏温标和绝对温标的换算: T = 273.15 + t

相关文档
相关文档 最新文档