文档视界 最新最全的文档下载
当前位置:文档视界 › 细菌纤维素的研究进展

细菌纤维素的研究进展

细菌纤维素的研究进展
细菌纤维素的研究进展

细菌纤维素的研究进展

摘要:细菌纤维素是一种天然的生物高聚物,具有生物活性、生物适应性,具有独特的物理、化学和机械性能,例如高的结晶度、高的持水性、超精细纳米纤维网络、高抗张强度和弹性模量等,因而成为近年来国际上新型生物医学材料的研究热点。概括细菌纤维素的性质,发酵过程,改性方法以及在生物医学材料上的应用。

关键词:细菌纤维素;改性;生物医学材料;应用

0 前言

细菌合成纤维素是在1886年由Brown首次报道的,是胶膜醋酸菌A.xylium 在静置培养时于培养基表面形成的一层白色纤维状物质。后来在许多革兰氏阴性细菌,如土壤杆菌、致瘤农杆菌和革兰氏阳性菌如八叠球菌中也发现了细菌纤维素的产生。细菌纤维素与天然纤维素结构非常相似,都是由葡萄糖以β一1,4一糖苷键连接而成的高分子化合物,此外,细菌纤维素相对于传统的纤维素资源又有其优势,如加工时不用去木质素,可合成高质量的纸张或者加工成任何形状的无纺织物,还可通过发酵条件的改变控制合成不同结晶度的纤维素,从而可根据需要合成不同结晶度的纤维素。

从纤维素的发现至今已有一百多年的历史,但由于无合适的实验手段以及纤维素的产量较低,因此多年来一直未受到足够重视。近十几年来随着分子生物学的发展和体外无细胞体系的应用,细菌纤维素的生物合成机制已有了很深人的研究,同时在细菌纤维素的应用方面也有了很大进展。

1.细菌纤维素的结构特点和理化特性

1.1化学特性

经过长期的研究发现,BC和植物纤维素在化学组成和结构上没有明显的区别,均可以视为是由很多D-吡喃葡萄糖苷彼此以(1-4)糖苷键连接而成的线型高分子,相邻的吡喃葡萄糖的6个碳原子不在一个平面上,而是呈稳定的椅式立体结构。

日本的Masuda等采用13C和1H旋转扩散核磁共振分析了BC的纤维素结构,试验结果表明:在CP/MAS13C NMR图谱上出现共振线很大地分裂为低场线和高场线,其原因可能是高场线处的C4与微纤维中CH2OH的混乱的氢键结合在一起的构象不规则所引起的结构缺陷。

1.2细菌纤维素的聚合度,结晶度及其性质

BC的聚合度随着培养方式和条件不同而有很大差异,动态培养时较低,约为3000-5000,静态培养时可以高达16000,优质棉纤维为113000-14000,棉短绒为5000左右,木浆纤维素为7000-10000。结晶度高于普通高等植物纤维,而低于藻类(Vatinia)和动物纤维(Tunicin)。结晶度增加,纤维的抗张强度、杨氏模量、硬度、比重和体积的稳定性会随之增加,而伸长率、吸湿性、润胀度、柔软性和化学反应性均会随之降低。但是BC纤维的吸湿性、润胀度、柔软性和化学反应活性却比高等植物纤维素好得多这个反常规的原因可能是由于细菌纤维超细(纳米级)特点所造成,有待于深入研究。

Strobin等通过凝胶渗透色谱法研究了BC在不同培养时间以及培养基组成时的聚合度和聚合度分布性,结果表明:随培养时间的延长,其聚合度随之增加,到28天时开始降低,但聚合度分布性却增加。

1.3细菌纤维素膜的结构与性质

BC成膜性能好,BC膜的抗撕能力比聚乙烯膜和聚氯乙烯膜要强5倍;BC 膜持水量高,其内部有很多“孔道”,有良好的透气、透水性能,通常情况下持水率大于1:50,经特殊处理可达1:700,并且具有高的湿强度。

Wfochowicz等采用X-射线衍射研究了在不同培养时间发酵的细菌纤维素的纳米结构;采用重量分析法可知膜的持水率随培养时间延长而从193%降到120%。广角衍射测试表明:不管培养时间的长短,膜均有半结晶形态;小角衍射测试表明纤维素结晶纤维随机地分布在无定相中。

Dubey研究了除去蛋白质后的BC膜在二元溶剂体系(水-醇)中的全蒸发,随乙醇的浓度增加,对纤维素膜的渗透通量、选择性、全蒸发分离指数(PSI)和吸气度进行了研究,发现纤维素膜对水有高的选择性,当乙醇浓度高于70%时纤维素膜仍能透过95%的水,当二元体系中含水量少于30%时,纤维素膜对水的选择度在125-287范围,渗透通量高于100g/m2,PSIy约为104g/m2h。

1.4细菌纤维素的介电性能

Baranov等研究了由纳米晶体构成的BC在频率100Hz到1MHz之间,温度在100-400K之间的介电性能,高温状态下纤维素的介电常数的异常行为可以通过纤维素中水分子的吸附和解吸特征来解释,低于320K时,纤维素膜吸水,而高于此温度时将解吸水。

1.5细菌纤维素的溶解性能

Tamai发现BC在8%的二甲基乙酞胺的溶液中溶解形成均质溶液,而在某个浓度时会形成非均质溶液。

https://www.docsj.com/doc/835495026.html,szkiewicz从实验中发现,BC像云杉纤维一样,聚合度低于400,可以在-5℃下溶于8.5%的NaOH溶液中。当NaOH溶液中加入1%的尿素时,BC的溶解度会增加,聚合度不超过560就可以溶解。这个实验结果具有重要的实用意义,它指出了不用汽蒸或酶生物转移活化纤维素,而是通过纤维素纺丝液制备纤维的可能性。这种方法不同于传统的粘胶法生产纤维素,溶剂是一种对环境无毒,价格便宜,不需要制备纤维素衍生物的直接溶剂。

1.6其他性质

较高的生物适应性和良好的生物可降解性,可利用广泛的基质进行生产可以进行烷基化、轻烷基化、羧甲基化、硝基化、氰乙基化、氨基甲酸酯化以及多种接枝共聚反应和交联反应,其化学反应的可及度和反应性均强于普通植物纤维。日本学者在用BC、棉短绒和木浆纤维制造三醋酸纤维素酯和二醋酸纤维素酯时发现,相同条件下,BC完成反应速度快、耗时少。

2.细菌纤维素的生物合成

目前除醋酸菌属外,根瘤菌属(Rhizobium)、八叠球菌属(Sarcina)、假单胞菌属(Pseudomonas)、无色杆菌属(Achromobacter)、产碱菌属(Alcaligenes)、气杆菌属(Aerobacter)、固氮菌属(Azotobacter)等的某些种也能生成细菌纤维素。研究比较全面的是木醋杆菌(Acetobacter xylinum)。

在木醋杆菌生物代谢过程中戊糖循环(HMP)和柠檬酸循环(TCA)2条代谢途径参与了细菌纤维素的生物合成。由于糖酵解(EMP)活力缺乏或微弱,即缺乏磷酸果糖激酶或酶活力微弱,因此木醋杆菌不能在厌氧条件下代谢葡萄糖。从草酰乙酸经丙酮酸盐,由于草酰乙酸脱羧酶和丙酮酸盐激酶奇特调节作用,木醋杆菌

发生糖原异生作用。在这种条件下,一条代谢途径是由己糖磷酸盐通过异构化和磷酸化,直接合成纤维素。另一种为非直接途径,即经过戊糖循环和葡糖异生途径生成纤维素。其中由己糖磷酸盐直接转化成纤维素时,不需要己糖碳骨架中碳链的改变。由己糖磷酸盐或通过五碳糖循环生成纤维素都需能量代谢系统进行调节,其调节位点在对ATP敏感、连接葡萄糖-6-磷酸脱氢酶的烟酰胺腺嘌呤二核苷酸(NAD)上。在木醋杆菌中有两种不同的葡萄糖-6-磷酸脱氢酶,但只有一种葡萄糖-6-磷酸脱氢酶被ATP抑制。木醋杆菌生物合成纤维素与氧化代谢过程同步进行,但与蛋白质合成体系无关。

细菌纤维素合成的前体物为尿苷二磷酸葡萄糖,由葡萄糖合成纤维素的4个主要酶催反应步骤分别是:葡萄糖激酶的对葡萄糖的磷酸化作用;葡萄糖磷酸异构酶将6-磷酸葡萄糖通过异构作用转化成1-磷酸葡萄糖;焦磷酸化酶将1-磷酸葡萄糖转化成尿苷二磷酸葡萄糖;以及纤维素合成酶的合成作用。纤维素合成酶催化合成纤维素的最后一步为:

UDP-Glc+(β-1,4-glucose)n→UDP+(β-1,4-glucose)n+1

通过对木醋杆菌细菌纤维素生物合成的研究,发现细菌纤维素合成步骤的最后一步是在细胞膜上进行的。c-di-GMP(环状鸟苷酸)是细菌纤维素合成调节机制的关键因子,c-di-GMP是作为纤维素合成酶变构催化剂起作用。在纤维素生物合成中如果没有c-di-GMP,纤维素合成酶将失去活性。c-di-GMP浓度的高或低(合成或降解)被认为是由两条具有相反作用途径并由与这两条途径有关的与膜相连的二鸟苷酸环化酶控制。两个GTP(鸟苷三磷酸)分子在二鸟苷酸环化酶催化作用下,首先释放出一个分子PPi后转变为线性二核苷酸三磷酸pppGpG,在释放出一分子PPi,进而合成c-di-GMP,与此同时,PPi迅速的分解而生成Pi。Mg2+对二鸟苷酸环化酶有激活作用。纤维素的生物合成将由于两种c-di-GMP磷酸二酯酶A和B的作用而终止。PDE-A从环形结构上切下单个的磷酸二酯,将具有活性的c-di-GMP变为不具活性的线性二聚物pGpG。非活性的二聚物磷酸二酯酶B(PDE-B)的催化作用下被转变为2个5′-GMP。Ca2+选择性抑制PDE-A的活性。

细菌纤维素的分泌过程是伴随细菌纤维素的生物合成同时进行的。随着醋酸菌生长,大约12至70分子的细菌纤维素从细胞表面间隔大约为10nm的微孔同时分泌到培养基中。在细胞表面这些纤维素分子通过氢键互相连接,形成纯的纤

维素纤丝。这种纤丝在纯度上和超分子结构上优于植物纤维素的纤丝。细菌纤维素的X-射线的分析显示了纤维素颗粒(分子)的具有高度规则的晶体结构。细菌纤维素纤丝的网眼结构有很大的表面积,具有高持水能力和抗撕强度。一个醋酸杆菌可以在培养基中通过β-1,4糖苷键聚合20000个葡糖分子形成单一、扭曲、带状的微细纤维。带状的微细纤维随着细胞的生长分裂而并不断裂。事实上,纤维素的生成模型中,葡糖聚合以及微细纤维素的连接作用是紧密相连同时进行的两个步骤。

3细菌纤维素的发酵生产

木醋杆菌的培养方法有静态法和动态法。静态法是指将菌种静置培养,在发酵液表面产生纤维素膜。动态法则是在机械搅拌罐或气升式生化反应器中通风培养细菌,纤维素完全分散在发酵液中,呈不规则的丝状、星状或微团状。

木醋杆菌发酵生产纤维素需要适合发酵条件的培养基,且培养基的组成对纤维素的产量有很大的影响。另外,改进发酵工艺设计合理的发酵装置、优良菌株的获得,都是获得理想的纤维素产品的途径。

向基础培养基中添加适量的烟酸胺、乙醇、木素磺化盐、琼脂、聚多糖、醋酸和柠檬酸等可以提高BC的产量。

S.Keshk等研究了培养基中加入木素磺化盐对BC产量和结构性质的影响。

Tonouchi等人发现在木醋杆菌生产纤维素的过程中加入少量的纤维素酶可以提高纤维素的产量。

设计不同类型的反应器,如:硅橡胶膜生物反应器、板或圆盘生物反应器、旋转盘生物反应器、改进的气升式生物反应器等来提高纤维素产量。

4细菌纤维素的改性

4.1生物改性

BC是由醋酸菌属、土壤杆菌属、根瘤菌属和八叠球菌属中的某种微生物在不同的条件下发酵合成的。不同的培养方式、不同的培养基组成以及不同的培养模型,都会对发酵产物的结构与性能产生很大的影响。采用不同的培养方法,如静态培养和动态培养,利用醋酸菌可以得到不同高级结构的纤维素。通过调节培养条件,也可得到化学性质有差异的BC。例如在培养液中加入水溶性高分子如羧甲基纤维素、半纤维素、壳聚糖、荧光染料以及葡聚糖内切酶等可获得不同微

结构和聚集行为的纤维,而羧甲基纤维素或羧甲基甲壳素的导入使BC具有了吸收和交换金属离子的特性。此外,改变不同葡萄糖衍生物碳源可控制微纤维的纳米尺寸,运用不同的模型可形成各种形状的功能材料。

4.2化学改性

生物改性虽然是一种绿色可持续的方法,但是存在微生物发酵环境要求严格、培养周期长、成本高等问题。相比于生物改性,化学改性合成衍生物目标明确,不受试剂种类的限制且反应时间短,也是一种很有开发潜力的BC改性途径。目前国内对植物纤维素的改性研究已经有了很深入的研究,而BC与植物纤维素一样可以进行羧甲基化、乙酰化、磷酸化、磺酸化以及多种接枝共聚反应和交联反应,以制备一系列纤维素衍生物。BC有着比植物纤维素更优良的性能,独特的纳米纤维结构使其比表面积更大。在化学反应过程中,BC分子链上的-OH具有更高的活性和可及度,因而相对于植物纤维素BC反应速度快、反应时间短。但是BC高的结晶度和强的分子之间作用力使得其溶解性能很差,不溶于酸碱以及常用的有机溶剂,均相反应较难实现,因而目前主要是通过表面改性和非均相改性的方法对BC进行改性。

4.3复合改性

复合改性相对于前两种改性方法来说,操作更加简单环保,能在一定程度上改善BC的力学、光学、细胞粘附等性能,也是一种比较实用的方法。Cai等将BC水凝胶膜直接浸入胶原(COL)溶液中一定时间后经冷冻-解冻制得COL-BC 复合水凝胶。胶原的引入明显提高了BC对3T3成纤维细胞黏附性,同时胶原对BC也起到了一定的增强作用。COL-BC复合支架材料具有较好的生物活性,有利于细胞的黏附增殖,同时还具有较高的力学强度,是一种具有广阔应用前景的生物医用材料。Wang等将BC膜在一定浓度的PV A溶液中浸泡一定时间后经冷冻-解冻法,溶胀平衡,真空干燥制得BC-PV A复合膜材料

5细菌纤维素在生物医学材料中应用

细菌纤维素由于具有独特的生物亲和性、生物相容性、生物可降解性、生物适应性和无过敏反应,以及高的持水性和结晶度、良好的纳米纤维网络、高的张力和强度,尤其是良好的机械韧性,因此在组织工程支架、人工血管、人工皮肤以及治疗皮肤损伤等方面具有广泛的用途,是国际生物医用材料研究的热点之一。

5.1BC在组织工程支架中的应用

生物相容性对于组织工程支架的构建是必不可少的。在研究组织工程BC支架构建中,体内生物相容性的评价非常重要。H elenius等系统地研究了BC的体内生物相容性。实验中他们把BC植入老鼠体内1~12 周,利用组织免疫化学和电子显微镜技术,从慢性炎症反应、异物排斥反应以及细胞向内生长和血管生成等方面的特征来评价植入物的体内相容性。结果发现植入物周围无肉眼和显微镜可见的炎症反应,没有纤维化被膜和巨细胞生成。BC被成纤维细胞侵入,与宿主组织融为一体,未引起任何慢性炎症反应。因此可以断定BC的生物相容性非常好,在组织工程支架构建方面具有潜在价值。

5.2BC在人工血管中的应用

众所周知,当血管由于动脉硬化、血管老化或破损等原因不能正常工作时,需进行血管移植重建。全世界每年要施行的许多血管重建手术由于自体血管来源有限,而异体血管强烈的排异作用,以及来源少和价格昂贵等原因,常不得不使用人工合成血管作为替代品。目前,国际临床上使用最广泛的、用于替代大于 6 mm的人工血管是编织型的涤纶聚酯血管和膨体聚四氟乙烯血管,这是因为它们结构稳定性好,在体内可长期工作而不发生降解,但是它们仍存在着不少缺点和不足,譬如血栓的形成和新生内膜增厚导致血管堵塞,至今尚无十分理想的血管替代物。基于同样原因,用于置换小于 6 mm的动、静脉血管的人工血管还没有开发成功。临床上是采用自体血管进行修复,例如冠状动脉搭桥手术。近30年来,人们一直在致力于这方面的研究。

5.3BC在人工皮肤以及皮肤损伤治疗中的应用

自1987 年以来有近10 个皮肤伤病医疗单位已报道400多例应用BC膜治疗烧伤、烫伤、褥疮、皮肤移植、创伤和慢性皮肤溃疡等取得成功的实例,现已有用其制成的人工皮肤、纱布、绷带和创口贴等伤科敷料商品。与其它人工皮肤和伤科敷料相比,该膜的主要特点是在潮湿情况下机械强度高、对液、气及电解物有良好的通透性、与皮肤相容性好,

无刺激性,可有效缓解疼痛,防止细菌的感染和吸收伤口渗出的液体,促进伤口的快速愈合,有利于皮肤组织生长。此膜还可作为缓释药物的载体携带各种药物,利于皮肤表面给药,促使创面的愈合和康复。

6结束语

生物医学材料由于直接关系到人类的生命与健康,且面临着全球人口的巨大市场需求,因而得到世界各国的广泛重视。目前对细菌纤维素的研究主要集中在附加值较高的医学生物材料上,例如组织工程支架、骨支架、软骨支架、人工血管、人工皮肤以及药物载体等方面。但是真正能应用到临床上的产品还不多,除了巴西的商品BioFill外,大部分的研究还停留在细胞水平和动物实验等初级阶段,离临床应用仍有一定距离。在我国,人们对细菌纤维素的了解和认识还不足,对其研究尚处于初级阶段,大部分集中在食品、食品添加剂和造纸应用等方面,在生物医用材料上的开发应用上相关报道较少。由于细菌纤维素具有优秀的生物亲和性、生物相容性、生物适应性和良好的生物可降解性,因此该纤维素必将成为世界上性能优异的新型生物纳米高技术材料。

目前BC应用的主要技术障碍一是发酵水平较低,产量低、成本高、价格不抵普通植物纤维素,二是进一步研究和利用BC的成模和成型的工艺技术还没有解决,三是做为生物医用材料,其与生物体长期作用效果、体内的降解性、与宿主组织和细胞相容性,以及在体内时BC的机械、物理和化学性能的变化等一系列问题还需要进一步研究。要解决上述问题,今后的研究方向主要有两个:一是要研究设计可行的发酵设备及发酵工艺以提高纤维素产量,降低其成本;二是要研制开发具有自主知识产权的BC生物医用材料。

参考文献:

[1] 胡晓燕,曲音波等. 细菌纤维素的研究进展. 纤维素科学与技术,1998,12(6):57-64.

[2] 潘颖等. 细菌纤维素的制备及改性研究[J]. 现代化工, 2000,(7): 15.

[3] 赵日升,朱勇军. 细菌纤维素的改性研究进展[J]. 中国生物医学工程杂质, 2012,08(18): 335-338.

[4] 谭玉静,洪枫. 细菌纤维素在生物医学材料中的应用. 中国生物工程杂志, 2007,27(4):126-131.

[5] 贾士儒,马霞等. 细菌纤维素结构与性质的初步研究[J]. 纤维素科学与技术, 2002, 9(10): 25-30.

[6] 杨礼富. 细菌纤维素研究新进展. 微生物学通报, 2003,30(4):95-98.

[7] 贾士儒,欧宏宇等. 新型生物材料—细菌纤维素. 食品与发酵工业,27(1):54-58.

[8] 颜志勇,王华平等. 细菌纤维素的晶体结构[J]. 材料导报,2008,08(22):127-135.

[9] 施庆珊. 细菌纤维素的研究进展. 生物学杂志,2004,10(21):12-15.

[10]贾士儒等. 细菌纤维素的生物合成及其应用. 化工科技市场, 2001,2(2):21-23.

[11] 郝常明,罗祎等. 细菌纤维素——一种新兴的生物材料. 纤维素科学与术,2002,06(10):57-61.

[12] 卞玉荣,余晓斌等.细菌纤维素的性质与结构研究[J].纤维素科学与技术, 2001 , 9 (1):17

[13] 杨光,近藤哲男.细菌纤维素:一种环境友好的纳米材料[ J].科学, 2006,58(2):14

[14]马承铸,顾真荣.细菌纤维素生物理化特性和商业用途[J].上海农业学报,2001,17(4):93~98.

[15] Ross P,et al.Cellulose biosynthesis and function in bacteria[J].Microbiological Reviews,1991,55 (1) : 35-58.

[16] Jonas R, Farah L F. Production and application of microbialcellulose [J].Polymer Degradation and Stability,1998,59:101-106

[17]张海悦,张宁. 细菌纤维素生物合成的研究[J].中国酿造. 2008(19):24-27.

[18]陈竞,冯蕾,杨新平.细菌纤维素的制备和应用研究进展[J].纤维素科学与技术. 2014,06(02):58-63.

[19]周毓,刘艳. 细菌纤维素研究进展[J].广州化工. 2007,35(02):8-9.

[20]朱清梅,冯玉红等.细菌纤维素改性研究进展.现代化工,2009,8;34-37.

[21]苏文萍,王淑芳,曹名锋等.细菌纤维素的合成及其发酵培养改性[J].南开大学学报,2012(3):50-56.

[22]李朋,唐水佳等.细菌纤维素复合材料的发酵制备研究[J].纤维素科学与技术,2011,19(4):01-05.

[23]孙晓玉,王华平等.细菌纤维素合成过程中的影响因素[J].纤维素科学与技术, 2007, 15(2): 34-38.

[24]马霞,陈世文等.纳米材料细菌纤维素对大鼠皮肤创伤的促愈作用[J].中国临床康复, 2006, 10(37):45.

细菌纤维素的研究进展

细菌纤维素的研究进展 摘要:细菌纤维素是一种天然的生物高聚物,具有生物活性、生物适应性,具有独特的物理、化学和机械性能,例如高的结晶度、高的持水性、超精细纳米纤维网络、高抗张强度和弹性模量等,因而成为近年来国际上新型生物医学材料的研究热点。概括细菌纤维素的性质,发酵过程,改性方法以及在生物医学材料上的应用。 关键词:细菌纤维素;改性;生物医学材料;应用 0 前言 细菌合成纤维素是在1886年由Brown首次报道的,是胶膜醋酸菌A.xylium 在静置培养时于培养基表面形成的一层白色纤维状物质。后来在许多革兰氏阴性细菌,如土壤杆菌、致瘤农杆菌和革兰氏阳性菌如八叠球菌中也发现了细菌纤维素的产生。细菌纤维素与天然纤维素结构非常相似,都是由葡萄糖以β一1,4一糖苷键连接而成的高分子化合物,此外,细菌纤维素相对于传统的纤维素资源又有其优势,如加工时不用去木质素,可合成高质量的纸张或者加工成任何形状的无纺织物,还可通过发酵条件的改变控制合成不同结晶度的纤维素,从而可根据需要合成不同结晶度的纤维素。 从纤维素的发现至今已有一百多年的历史,但由于无合适的实验手段以及纤维素的产量较低,因此多年来一直未受到足够重视。近十几年来随着分子生物学的发展和体外无细胞体系的应用,细菌纤维素的生物合成机制已有了很深人的研究,同时在细菌纤维素的应用方面也有了很大进展。 1.细菌纤维素的结构特点和理化特性 1.1化学特性 经过长期的研究发现,BC和植物纤维素在化学组成和结构上没有明显的区别,均可以视为是由很多D-吡喃葡萄糖苷彼此以(1-4)糖苷键连接而成的线型高分子,相邻的吡喃葡萄糖的6个碳原子不在一个平面上,而是呈稳定的椅式立体结构。

分解纤维素的微生物的分离习题

《分解纤维素的微生物的分离》 1.下列有关微生物培养与应用的说法正确的是( ) A.天然培养基是指直接取自自然界不需加工的培养基 B.接种前需对培养基、培养皿、接种环、实验操作者的双手等进行严格的灭菌处理 C.大肠杆菌的纯化培养过程包括培养基的配制和纯化大肠杆菌两个阶段 D.分离分解尿素的细菌时,尿素是培养基中唯一的氮源和碳源 2.微生物与人类生产、生活密切相关,下列相关说法不合理的是( ) A.土壤中的微生物能降解多种化合物,是大自然的清洁工 B.生活中许多发酵产品需要微生物,如酿醋需要的关键细菌是酵母菌 C.可利用能分解纤维素的微生物分解秸秆,并将其产物转化为乙醇 D.许多微生物也可导致人类患病 3.微生物(除病毒外)需要从外界吸收营养物质,并通过代谢来维持正常的生长和繁殖。下列有关微生物营养的说法正确的是( ) A.纤维素分解菌与硝化细菌所利用的碳源物质是相同的 B.许多微生物(如细菌、放线菌)为原核生物,不含线粒体,所以只进行无氧呼吸,为厌氧型生物 C.培养基中的营养物质浓度越高对微生物的生长越有利 D.生长因子通常是微生物生长必需的,而微生物本身合成这些物质的能力往往不足 4.苯酚是工业生产排放的有毒污染物质,自然界中存在着降解苯酚的微生物,某工厂产生的废水中含有苯酚,为了降解废水中的苯酚,研究人员从土壤中筛选获得了只能降解利用苯酚的细菌菌株,筛选的主要步骤如下图所示,①为土壤样品。下列相关叙述错误的是( ) A.使用平板划线法可以在⑥上获得单个菌落

B.如果要测定②中的活细菌数量,常采用稀释涂布平板法 C.图中②培养目的菌株的选择培养基中应加入苯酚作为碳源 D.微生物培养前,需对培养基和培养皿进行消毒处理 5.要将从土壤中提取的自生固氮菌与其他细菌分离开来,应将它们接种在( ) A.含五大类营养物质的培养基上B.加入某种指示剂的鉴别培养基上 C.含蛋白胨等营养物质的培养基上D.无氮的选择培养基上 6.下列关于分离纤维素分解菌的实验的叙述,错误的是( ) A.经选择培养后将样品涂布到鉴别纤维素分解菌的培养基上 B.选择培养这一步可省略,但培养纤维素分解菌少 C.经稀释培养后,用刚果红染色 D.对照组可用同样量的培养液涂布到不含纤维素的培养基上 7.鉴别培养基是根据微生物的代谢特点在培养基中加入一些物质配制而成的,这些物质是( ) A.指示剂或化学药品B.青霉素或琼脂C.高浓度食盐D.维生素或指示剂8.在加入刚果红的培养基中会出现透明圈,产生的透明圈是( ) A.刚果红与纤维素形成的复合物B.刚果红与纤维二糖形成的复合物 C.纤维素分解后形成的葡萄糖导致的D.以纤维素分解菌为中心形成的 9.在分离分解纤维素的微生物实验中,下列关于土壤取样的叙述,不正确的是( ) A.可选取深层的土壤作为样品 B.可选取树林中多年落叶的腐殖土作为样品 C.可选取树林中多年积累的枯枝败叶作为样品 D.可把滤纸埋在土壤中经过30 d左右,再选取已腐烂的滤纸作为样品 10.下列有关纤维素分解菌分离实验的说法中,不正确的是( ) A.通常采用刚果红染色法筛选纤维素分解菌

纤维素分解菌的分离和鉴定

纤维素降解菌类的分离与鉴定系列实验 一、实验背景 纤维素就是植物细胞壁主要成分,属于多糖类物质,就是地球上数量最大的可再生资源。如能利用微生物将其转化为生物产品或生物能源,即可缓解能源短缺、解决环境污染,又能形成新的产业。由于在自然界中存在着大量产纤维素酶的细菌与真菌,因而纤维素的生物降解主要依赖于微生物的作用。从20世纪 40-50年代起,针对产纤维素酶的微生物的分离筛选就进行了大量的工作,并逐 步建立起一套较完整的分离筛选方法。迄今为止有关纤维素降解菌分离筛选的研究报导已有很多,如细菌中的生孢噬纤维菌属、噬纤维菌属及纤维单胞菌属等;放线菌由于能形成芽孢,与真菌相比较耐高温与各种酸碱度,故在高温阶段放线菌对分解木质素与纤维素起着重要的作用。主要有诺卡氏菌属、链霉菌属、芽孢杆菌属及小单胞菌属等;真菌中研究较多的就是青霉属、根霉属、曲霉属等,其中以木霉属的菌株纤维素酶活较高。以羧甲基纤维素钠与添加少量葡萄糖作为碳源,培养纤维素酶产生菌株,培养一定时间后,经刚果红染色与稀碱液固定,在菌落周围形成透明水解圈,根据透明圈的大小,快速定性鉴定纤维素酶产生菌酶活大小。与传统纤维素酶活检测方法比较,本方法菌丝生长快,两天后菌落经染色,透明圈边缘清晰,直观性强,与酶活力成一定线性关系。纤维素就是世界上所有植物的组成部分,就是地球上最为丰富且可再生的资源。随着世界能源形势趋于恶化,环境问题日益加剧,利用纤维素生产有高附加值资源的以维持人类可持续发展的研究方向近年来逐步成为科学研究的热点方向。利用微生物将纤维素、半纤维素降解转化为生物产品或生物能源即可缓解能源短缺、解决环境污染,又能形成新的产业。因此分离与筛选高酶活性的菌株就是有效利用纤维素物质的关键。 二、实验目的 从目标试样中分离筛选出具有降解纤维素能力的菌株。 三、实验材料: 1、样品的采集 1)风干土样E4-1、E2-6、 E2-6试样。 2)潮湿土样E4-1、E2-6、 E2-6试样。 3)牛粪样品2份

细菌纤维素

细菌纤维素 摘要:细菌纤维素是一种新型的生物纳米材料材料,具有广泛的发展前景.本文从细菌纤维素的组成和结构入手,列举了细菌纤维素合成研究过程中的方法,并进一步对细菌纤维素在环境中的应用进行阐述,最后对未来细菌纤维素发展趋势作出了展望。 关键词:细菌纤维素,纳米材料,应用 众所周知,纤维素是自然界中最丰富且具有生物可降解性的天然高分子材料,是高分子化学诞生和发展阶段的主要研究对象之一。在当今世界面临人口、资源、环境和粮食四大问题的情况下,大力开发取之不尽用之不竭的天然高分子材料造福于人类,具有重要战略意义。 目前,人类获得纤维素的途径主要通过树木、棉花等职务光合作用合成和微生物合成。为了区别于植物来源的纤维素,称微生物合成的纤维素为微生物纤维素或者是细菌纤维素(简称BC)。细菌纤维素最初在1886年,用英国科学家Brown AJ利用化学分析方法确定。当时他发现在传统酿造液表面生成的类似凝胶半透明膜状物质为纤维素,在光学显微镜下观察到发酵生产的菌膜中存在菌体[1]。自然界中有少数细菌可以产生纤维素,其镇南关木醋菌属中的木醋杆菌(简称Ax)合成纤维素的能力最强,最具有大规模生产的能力。Ax合成细菌纤维素在纯度、抗拉强度、杨氏模量等理化性能方面均优于植物纤维素,且具有较强的生物性,在自然界中可以直接降解,是一种环境友好,性能优异型材料[2]。近年来引起了人们广泛的研究兴趣和关注。 1.细菌纤维素的结构和特性 1.1细菌纤维素的结构 经过长期的研究发现,细菌纤维素和植物纤维素在化学组成和结构上没有明显的区别,都可视为D-吡喃葡萄糖单体以糖苷键连接而成的直链多糖,直链间彼此平行,不呈螺旋结构,无分支结构,又称β-1, 4-葡聚糖。但相邻的吡喃葡萄糖的6个碳原子并不在同一平面上,而是呈稳定的椅状立体结构,数个邻近的β-1, 4-葡聚糖通过分子链内与链间的氢键作用形成稳定的不溶于水的聚合物[3]。 1.2细菌纤维素的性质 1.2.1 细菌纤维素的独特性质 细菌纤维素和植物或海藻产生的天然纤维素具有相同的分子结构单元, 但细菌纤维素纤维却有许多独特的性质。①细菌纤维素与植物纤维素相比无木质素、果胶和半纤维素等伴生产物,具有高结晶度(可达95%,植物纤维素的为65%)和高的聚合度(DP值2 000~8 000); [4]②超精细网状结构。细菌纤维素纤维是由直径3~4 纳米的微纤组合成40~60 纳米粗的

细菌纤维素

改性纤维素在卫生领域的研究及应 用情况 (昆明理工大学化学工程学院轻化工程2010级肖任) 摘要: 纤维素是自然界最丰富的自然资源,在未来对于解决人类面临的能源、资源、和环境污染等问题方面有非常重要的作用,但是纤维素分子中由于高密度的氢键影响作用,使之在医疗卫生领域等方面受到了很大的限制。综述近年来通过对纤维素化学改性合成可以得到纤维素衍生物在医疗卫生方面的应用。其中,细茵纤维素是一种天然的生物高聚物,具有生物活性、生物可降解性、生物适应性,具有独特的物理、化学和机械性能,例如高的结晶度、高的持水性、超细纳米纤维网络、高抗张强度和弹性模量等,因而成为近年来国际上新型生物医学材料的研究热点。概括细茵纤维素的性质、研究历史以及在生物医学材料上的应用,重点阐述细茵纤维素在组织工程支架、人工血管、人工皮肤和治疗皮肤损伤方面的应用以及当前研究现状。 关键词:纤维素、细茵纤维素、组织工程支架、人工血管、人工皮肤、化学改性、 医疗卫生 Modified cellulose in health field research and should use situation Cellulose is the most abundant natural resources of nature, in the future to solve human beings are facing with the energy, resources, and environment pollution and so on has a very important role, but cellulose molecules due to the high density of hydrogen bond effect, make in the medical and health fields was much limited. Recent advances in chemical modification of cellulose by synthesis can get cellulose derivatives in medical applications. Among them, the fine wormwood cellulose is a kind of natural biopolymer, with biological activity, biodegradable property, biological adaptability, has a unique physical, chemical and mechanical properties, such as high degree of crystallinity, high water binding capacity, ultrafine nano fiber network, a high strength and modulus of elasticity, etc., and become in recent years international new biomedical materials research hot spot. The nature of the cellulose in fine wormwood, historical study and the application of biomedical materials, the paper fine wormwood cellulose in tissue engineering scaffolds, artificial blood vessels, artificial skin and the treatment of skin damage and the application of the current research status. Keywords: cellulose, fine wormwood cellulose, tissue engineering scaffolds, artificial blood vessels, artificial skin, chemical modification, medical and health 细菌纤维素( bacterial cellulose,简称 B C) 又称为微生物纤维素( microbial cellulose ) ,不仅是地球上除植物纤维素之外的另一类由细菌合成的天然惰性材料,而且是世界上公认的性能优异的新型生物学材料。能够产生纤维素的细菌【1】主要有A c e t o b a c t e r ,R h i z o b i u m,A g r o b a c t e r i u m和S a r c i n a等,其中研究最多、产量最高的是A c e t o b a c t e r x y l i n u m( A .x y l i n u m,木醋杆菌) 。从纤维素的分子组成看,B c和植物纤维一样都是由B - D- 葡萄糖通过B .1 ,4 精苷键结合成的直链,直链间彼此平行,不呈螺旋构象,无分支结构,又称为 B - 1 ,4.葡聚糖。但从物理、化学、

纤维素分解细菌的分离和鉴定

纤维素分解细菌的分离和鉴定 一.实验目的: 1.研究低温环境下纤维素降解细菌的分离与鉴定. 2.采用低温培养的方法从秸秆堆肥中筛选出3株分解纤维素的细茵。 3.通过PCR克隆这3株茵的16s rDNA并与相似菌株做比对.进一步构建分子进 化树.来研究其分类情况。 4.综合其个体形态、茵落形态、生理生化特征、16S rDNA发育树构建结果等分 类依据。 二.实验原理: 细菌进行化能异养、短杆状、无出芽分裂、好氧、革兰氏染色阴性.无芽孢、无丝状菌体、有细胞壁且能独立生存。应为其第二部分滑动细菌或第七部分的假单胞菌类。由于滑动细菌能在“固体表面和汽一水交界面缓慢滑动”,故其固体菌落边缘应不整齐,且其一般形成亮色肉眼可见的子实体。将灭菌的滤纸蘸取无菌生理盐水后贴在已凝固的平板上,用接种环蘸取土样,点样在平板滤纸上,15℃下培养10 d。用接种环从有滤纸水解透明圈的单菌落处刮取细菌,在贴有滤纸的初筛平板上划线,计数并且观察。 三、实验仪器: 1、材料试验材料为背阴处长时间堆放的秸秆堆肥表层; 2、培养基:初筛培养基。浓缩10倍的赫奇逊固体无机盐培养基”。:啦嘞1.00 g,MgS04·7H20 0.30 g,NaCl 0.10 g,F'eCl3O.0l g,NaN03 2.50 g,CaCi2 0.10 g,琼脂18.00 g,蒸馏水l000lnl,pH值7.0~7.2.121℃灭菌20min。无淀粉滤纸(浙江富阳纸厂)用浓度l%的醋酸浸泡一夜后用浓度2%的Na-2C03水溶液洗至中性,晾干备用。把上述处理过的滤纸剪成直径约为8 ca的圆形滤纸片.放在干净的平皿中,用报纸包好.采用湿热的方法灭菌; 3、复筛培养基。浓缩10倍的赫奇逊固体无机盐培养基:啦P04 1.009,m.庐04‘7H200.309。NaO 0.109.FeCl30.01g,NaN03 2.50 g.CaCl20.10g,羧甲基纤维素钠lO.00 g,琼脂18.00g,蒸馏水10130ml,pH值7.0—7.2,121℃灭菌20 min。 4、牛肉膏蛋白胨固体培养基; 5、生理生化特征鉴定培养基。 四、实验步骤: 1、菌种分离 菌种初筛。将灭菌的滤纸蘸取无菌生理盐水后贴在已凝固的平板上,用接种环蘸取土样,点样在平板滤纸上,15℃下培养10 d。用接种环从有滤纸水解透明圈的单菌落处刮取细菌,在 贴有滤纸的初筛平板上划线,15℃下培养10 d。重复此操作至菌种初步纯化。 2、菌种复筛。 用接种环从已初步纯化的初筛平板上滤纸水解透明圈的菌落处,刮取菌种在复筛平板上划线,15℃下培养7 d,得到单菌落。将分离纯化的单菌落回接到初筛培养基上,观察其对滤纸的分解。将分离到的单菌落接种到牛肉膏蛋白胨培养基上。15℃下培养7 d,4℃保留菌种或用作各种鉴定。

【人教版】生物选修一:2.3分解纤维素的微生物的分离教案设计

专题2 微生物的培养与应用 课题2.3 分解纤维素的微生物的分离 一、【课题目标】 (一)知识与技能 简述纤维素酶的种类及作用,从土壤中分离出分解纤维素的微生物;掌握从土壤中分离某种特定微生物的操作技术 (二)过程与方法 分析分离分解纤维素的微生物的实验流程,弄懂实验操作的原理 (三)情感、态度与价值观 领悟科学探究的方法,发展科学思维和创新能力 二、【课题重点】 从土壤中分离分解纤维素的微生物 三、【课题难点】 从土壤中分离分解纤维素的微生物 四、【教学方法】 启发式教学 五、【教学工具】 多媒体课件 六、【教学过程】 (一)引入新课 上节课我们探讨学习了土壤中尿素分解菌的分离与计数,这节课我们以纤维素分解菌的分离与纯化为例,巩固加深对这方面技术的理解和掌握。 (二)进行新课 1.基础知识 活动1:阅读“纤维素与纤维素酶”,回答下列问题: 1.1纤维素是一种由葡萄糖首尾相连而成的高分子化合物,是含量最丰富的多糖类物质。纤维素能被土壤中某些微生物分解利用,这是因为它们能够产生纤维素酶。 延伸:草食性动物是怎样消化食物中纤维素的?肠胃中的共生物生物。 1.2棉花是自然界中纤维素含量最高的天然产物。纤维素的分解需要在纤维素酶的催化作用下完成,请完成下列过程: 〖思考1〗实验分析:P27的小实验是如何构成对照的? 在一支试管中添加纤维素酶,另一支试管不添加纤维素酶;尽管醋酸-醋酸钠缓冲液用量不同,但都能维持相同的pH。 〖思考2〗1个酶活力单位是指在温度为 25 ℃,其它反应条件最适宜情况下,在 1 min内转化 1mmol 的底物所需要的酶量。 活动2:阅读“纤维素分解菌的筛选”,回答下列问题: 1.3筛选纤维素分解菌的方法是刚果红染色法。该方法可以通过颜色反应直接筛选。 2.4其原理是:刚果红可以与纤维素形成红色复合物,当纤维素被纤维素酶分解后,红色复合物无法形成,出现以纤维素分解菌为中心的透明圈,我们可以通过是否产生透明圈来筛选纤维素分解菌。 2.实验设计 活动3:完成实验方案流程图,讨论回答问题:

分解纤维素的微生物的分离教案

专题2课题3:分解纤维素的微生物的分离 【课程标准】 1.简述纤维素酶的种类及作用 2.从土壤中分离出分解纤维素的微生物 3.讨论分解纤维素的微生物的应用价值。 【课题重点】 从土壤中分离分解纤维素的微生物。 【课题难点】 从土壤中分离分解纤维素的微生物。 【基础知识】 1.是纤维素含量最高的天然产物。 2.纤维素酶是一种酶,它至少包括三种组分,即,,。前两种酶使纤维素分解为,第三种酶将纤维素分解为。 3。纤维素分解菌的筛选方法是利用。 4。刚果红染色法的原理是。 5.分解纤维素的微生物的分离的试验流程是、、、、6.鉴别培养基用于菌种的鉴别,其中加入可以鉴别出 出现的现象是。 7.选择培养的操作方法是 。 8.常用的刚果红染色法有两种即 。 9.分解纤维素的微生物的分离实验完成后为确定得到的是纤维素分解菌,还需要进行实验,纤维素酶的发酵方法有两种即、。 10.分解纤维素的微生物的分离实验中要选择样品进行分离纤维素分解菌,该样品的特点是、。作出这种选择的理由是。 11.选择培养能够浓缩所需微生物,原因是。 12.分解纤维素的微生物的分离与土壤中分解尿素的细菌的分离流程有何区别? 13.刚果红染色法有两种,这两种的主要优缺点是什么?

【跟踪练习】 1.下列生物能分解纤维素的是() (1)人(2)兔(3)牛(4)蘑菇(5)纤维杆菌 A(1)(2)(3)(4)(5)B(2)(3)(5) C (2)(3)(4)(5)D(3)(5) 2.纤维素分解菌的培养基中胶木膏能提供的主要营养物质是() (1)碳源(2)氮源(3)生长因子(4)无机盐 A(3)B(1)(2)C(1)(2)(3)D(1)(2)(3)(4) 3.从土壤中筛选蛋白酶产生菌时,所用培养基为() A加富培养基 B 选择培养基 C 基础培养基D鉴别培养基 4.分离土壤中纤维素分解菌用到的方法是() (1)稀释倒平板法(2)涂布平板法(3)单细胞挑取法(4)选择培养分离A(1)(2)B(2)(3)(4)C(2)(3)D(1)(3)(4) 5.鉴别纤维素分解菌的培养基中碳源为() A CMC-Na B 木聚糖 C 纤维素 D 裂解酶 6.在酸性贫瘠的土壤中分解纤维素占优势的菌为() A真菌 B 细菌 C 兼性厌氧细菌和真菌 D 放线菌 7.CX 酶能水解() A纤维素和CMC-Na B纤维素和果胶 C纤维二糖和微晶纤维D麦芽糖和蔗糖 8.在加入刚果红的培养基中出现透明圈的菌落是() A分解尿素的细菌 B 消化细菌 C 分解纤维素的细菌 D 乳酸菌 9.在对纤维素分解菌进行培养时,培养基中酵母膏的主要作用是() A提供碳源 B 提供氮源 C 提供微生素 D 凝固剂 10.要将能分解纤维素的细菌从土壤中分离出来,应将它们接种在( ) A 加入指示剂的鉴别培养基上 B 含有蛋白胨的固体培养基上 C 只含纤维素粉无其他碳源的选择培养基上 D 含四大营养素的培养基上 11.纤维素分解菌选择培养基的选择作用原因在于() A 硝酸钠 B 氯化钾 C 酵母膏 D 纤维素粉 12.选择培养的结果,培养液变() A 清澈 B 浑浊 C 红色 D 产生透明圈 13.在对纤维素分解菌进行选择培养时用液体培养基的目的是() A 可获得大量菌体 B 纤维素分解菌适宜在液体培养基上生长 C 可以充分利用培养基中的营养物质 D 可获得高纯度的纤维素分解菌

纤维素分解菌的分离和鉴定教学提纲

纤维素分解菌的分离 和鉴定

纤维素降解菌类的分离与鉴定系列实验 一、实验背景 纤维素是植物细胞壁主要成分,属于多糖类物质,是地球上数量最大的可再生资源。如能利用微生物将其转化为生物产品或生物能源,即可缓解能源短缺、解决环境污染,又能形成新的产业。由于在自然界中存在着大量产纤维素酶的细菌和真菌,因而纤维素的生物降解主要依赖于微生物的作用。从20世纪40-50年代起,针对产纤维素酶的微生物的分离筛选就进行了大量的工作,并逐步建立起一套较完整的分离筛选方法。迄今为止有关纤维素降解菌分离筛选的研究报导已有很多,如细菌中的生抱噬纤维菌属、噬纤维菌属及纤维单胞菌属等;放线菌由于能形成芽抱,与真菌相比较耐高温和各种酸碱度,故在高温阶段放线菌对分解木质素和纤维素起着重要的作用。主要有诺卡氏菌属、链霉菌属、芽抱杆菌属及小单胞菌属等;真菌中研究较多的是青霉属、根霉属、曲霉属等,其中以木霉属的菌株纤维素酶活较高。以羧甲基纤维素钠和添加少量葡萄糖作为碳源,培养纤维素酶产生菌株,培养一定时间后,经刚果红染色和稀碱液固定,在菌落周围形成透明水解圈,根据透明圈的大小,快速定性鉴定纤维素酶产生菌酶活大小。与传统纤维素酶活检测方法比较,本方法菌丝生长快,两天后菌落经染色,透明圈边缘清晰,直观性强,与酶活力成一定线性关系。纤维素是世界上所有植物的组成部分,是地球上最为丰富且可再生的资源。随着世界能源形势趋于恶化,环境问题日益加剧,利用纤维素生产有高附加值资源的以维持人类可持续发展的研究方向近年来逐步成为科学研究的热点方向。利用微生物将纤维素、半纤维素降解转化为生物产品或生物能源即可缓 解能源短缺、解决环境污染,又能形成新的产业。因此分离和筛选高酶活性的 菌株是有效利用纤维素物质的关键。

《分解纤维素的微生物的分离》导学案

《课题3 分解纤维素的微生物的分离》导学案 【学习目标】 1.简述纤维素酶的种类及作用; 2.从土壤中分离出分解纤维素的微生物,了解这类微生物的应用; 3.能掌握从土壤中分离某种特定微生物的操作技术。 【学习重点】从土壤中分离分解纤维素的微生物。 【学习难点】从土壤中分离分解纤维素的微生物。 【预习指导】课前通过阅读教材、查阅教辅资料、交流,初步完成下列问题。 【学习过程】 一、基础知识: 活动1:阅读P27“课题背景”和“纤维素与纤维素酶”,回答下列问题: 1、纤维素是一种由首尾相连而成的化合物,是含量最丰富的多糖类物质。纤维素能被土壤中某些微生物分解利用,这是因为它们能够产生。 2、是自然界中纤维素含量最高的天然产物。纤维素的分解需要在酶的催化作用下完成,请完成下列过程: 3.1个酶活力单位是指在温度为℃,其它反应条件最适宜情况下,在min 内转化 的底物所需要的酶量。 4、P27小实验:通过设置对照实验体会纤维素酶的作用。分析课本是如何设置对照的? 活动2 :阅读P28“纤维素分解菌的筛选”,回答下列问题: 1、筛选纤维素分解菌的方法是。该方法可以通过反应直接筛选。 2、其原理是:刚果红可以与纤维素形成,当纤维素被 _分解后,红色复合物无法形成,出现以为中心的,我们可以通过是否来筛选纤维素分解菌。 二、实验设计 实验方案流程图: 活动3:阅读资料一“土壤取样”,回答下列问题: 土壤取样:纤维素分解菌大多分布在的环境中。若找不到合适环境,可将滤纸埋在土壤中一个月左右,也会有能分解纤维素的微生物生长。 〖思考1〗为什么要在富含纤维素的环境中寻找纤维素分解菌? 〖思考2〗将滤纸埋在土壤中有什么作用?你认为滤纸应该埋进土壤多深? 活动4:阅读资料二“选择培养”,回答下列问题:

【人教版】生物选修一:2.3《分解纤维素的微生物的分离》课后习题(含解析)

【优化设计】2018-2019学年高中生物专题2 课题3 分解纤维素的微生物的分离课后习题(含解析)新人教版选修1 课时演练·促提升 A.C1酶和C X酶 B.C1酶和葡萄糖苷酶 C.C X酶和葡萄糖苷酶 D.C1酶、C X酶和葡萄糖苷酶 解析:纤维素酶包括C1酶、C X酶和葡萄糖苷酶,能将纤维素分解成纤维二糖的是C1酶和C X酶。 答案:A 2.纤维素分解菌的选择培养基和鉴别培养基按物理性质划分,分别属于( ) A.固体培养基固体培养基 B.固体培养基液体培养基 C.液体培养基液体培养基 D.液体培养基固体培养基 解析:纤维素分解菌的选择培养基没有加入凝固剂琼脂,属于液体培养基。纤维素分解菌的鉴别培养基含琼脂,属于固体培养基。 答案:D 3.加工橘子罐头,采用酸碱处理脱去中果皮(橘络),会产生严重污染。目前使用酶解法去除橘络,可减少污染。下列生长在特定环境中的4类微生物,不能大量产生所用酶的有( ) A.生长在麦麸上的黑曲霉 B.生长在酸奶中的乳酸菌 C.生长在棉籽壳上的平菇 D.生长在木屑上的木霉 解析:橘络的主要成分是纤维素,将其分解要用纤维素酶,麦麸、棉籽壳、木屑的主要成分也是纤维素,生长在这三种成分上的黑曲霉、平菇、木霉肯定能产生纤维素酶,所以可以利用。而乳酸菌的培养基为牛奶,其主要成分是蛋白质,不含纤维素,所以乳酸菌不能产生纤维素酶。 答案:B 4.分解纤维素的微生物的分离实验的具体操作步骤是( ) ①土壤取样②将样品涂布到鉴别纤维素分解菌的培养基上③挑选产生透明圈的菌落④选择培养⑤梯度稀释 A.①④⑤②③ B.①⑤②④③ C.①⑤④③② D.①③⑤④② 解析:为了增加分解纤维素的微生物的浓度,在土壤取样后,要进行选择培养,然后再通过梯度稀释并将样品涂布到鉴别纤维素分解菌的培养基上培养一段时间,挑选产生透明圈的菌落即可。 答案:A 5.“筛选”是分离和培养生物新类型常用的手段,下列有关技术中不能筛选成功的是( ) A.在全营养的普通培养基中,筛选大肠杆菌 B.在尿素为唯一碳源的固体培养基中,筛选能够分解尿素的微生物 C.用纤维素为唯一碳源的培养基,筛选能分解纤维素的微生物 D.在培养基中加入不同浓度的氯化钠,筛选抗盐突变体植物 解析:全营养的普通培养基上可生长多种细菌,筛选不到纯的大肠杆菌。 答案:A 6.在分离分解纤维素的微生物实验中,关于土壤取样的叙述不正确的是( ) A.可选取深层的土壤作为样品 B.可选取树林中多年落叶形成的腐殖土作为样品 C.可选取树林中多年积累的枯枝败叶作为样品 D.可把滤纸埋在土壤中经过30天左右,再选取已烂的滤纸作为样品 解析:深层土壤中纤维素含量少,纤维素分解菌的数量也少。 答案:A 7.下列有关培养基和菌种鉴定的叙述,不正确的是( ) A.分离纯化微生物常用的是固体培养基 B.可利用固体培养基上菌落的特征来判断和鉴别细菌的类型 C.利用含刚果红的培养基上是否形成透明圈来筛选纤维素分解菌

纤维素分解菌的筛选填空

2.3 分解纤维素的微生物的分离 一 基础知识 1. 纤维素是一种由 相连而成的高分子 类化合物,是植物 (细胞结构)的主要成分之一, __________是自然界中纤维素含量最高的天然产物。植物产生的纤维素在 的催化作用下分解。 2.完成下列过程 3.筛选纤维素分解菌的方法是 ,简称( )。该方法可以通过 反应直接筛选。 4.原理:刚果红与纤维素形成 ,当纤维素被 分解后,红色复合物无法形成,出现以________ 为中心的 ,我们可以通过 来筛选纤维素分解菌。 二 实验设计 1. 实验流程 【思考】本课题实验流程与课题2中的实验流程有哪些异同? ________________________________________________________________________________________________ 2. 实验操作要点 (1) 土壤取样 选择____________________环境,因为_______________________________.还可以将滤纸埋进土壤,这样做是为了___________________________________________. (2)选择培养 步骤:a.制备选择培养基:参照课本旁栏中的比例配制 该培养基从物理性质方面属于_______培养基,如何起到选择作用_______________________,怎么证明培养基 是否起到选择作用________________________________________________________ . b.选择培养的操作方法 c.目的:_________________________________________________________________________. 【思考】为什么选择培养能“浓缩”所需要的微生物? ______________________________________________________________________________________ (3)梯度稀释 (4)将样品涂布到鉴别纤维素分解菌的培养基上 a.制备培养基 b.接种菌液 (5)挑选产生透明圈的菌落 刚果红染色,挑选产生透明圈的菌落 常用的刚果红染色方法两种,一中是先_____________,再加入刚果红进行________反应,另一种是在___________就加入刚果红。 三 课题延伸 1.为了确定分离得到的是纤维素分解菌,还需要进行 实验,纤维素酶的发酵方法有 发酵和 发酵。 2.纤维素酶测定方法是对纤维素酶分解滤纸等纤维素所产生的 ___ 含量进行定量测定。 【练习题】某同学在做微生物实验时,不小心把圆褐固氮菌和酵母菌混在一起。该同学设计下面的实验,分离得纯度较高的圆褐固氮菌和酵母菌。 (1)实验原理:圆褐固氮菌是自生固氮菌,能在无氮培养条件下生长繁殖而酵母菌则不能;青霉素不影响酵母菌的生长繁殖,而会抑制圆褐固氮菌的生长繁殖。 (2)材料用具:(略) (3)主要步骤:①制备两种培养基,一种是 培养基,另一种是 培养基,将两种培养基各自分成两份,依次标上A 、a 和B 、b 。 ②分别向A 、B 培养基中接种混合菌,适宜条件培养了3—4天。 ③分别从A 、B 培养基的菌落中挑取生长良好的菌并分别接种到a 、b 培养基中,适宜条件下培养3—4天。 (4)请同答:①将题中的空处填充完整: 培养基和 培养基。 ②本实验中,根据上述原理配制的培养基的类型属于 培养基。 ③根据所需目的配制上述培养基时除营养要协调外还应注意 。 ④实验步骤中第③步的目的是 。 ⑤圆褐固氮菌与酵母菌在结构上的主要差异为 。 ⑥青霉素抑制圆褐固氮菌的生长繁殖,其作用机理是破坏或抑制其细胞壁的形成。请据此推测不影响酵母菌 等真菌生长繁殖的原因是______________________________________________________________.

细菌纤维素

摘要 细菌纤维素是一种天然的生物高聚物,不仅具有生物活性、生物可降解性、生物适应性,而且具有独特的物理、化学和机械性能,简要介绍细菌纤维素的基本性质,系统地介绍了细菌纤维素的生物合成与调节,发酵工艺条件控制以及在生物医学材料上的应用。与细菌纤维素培养方法采用不同的培养方法,如静态培养和动态培养,利用醋酸菌可以得到不同高级结构的纤维素。通过调节培养条件,也可得到化学性质有差异的细菌纤维素。 关键词:细菌纤维素,特征,培养方式,生物医学应用 Abstract Bacterial cellulose is a kind of natural biopolymer, not only has the bioactivity, biodegradability, biocompatibility, and has unique physical, chemical and mechanical properties, the basic properties of bacterial cellulose were briefly introduced, systematically introduced bacterial cellulose biosynthesis and regulation, fermentation process control and in biomedical materials applications. Different methods were used in the culture of bacterial cellulose, such as static and dynamic culture. Bacterial cellulose with different chemical properties can be obtained by adjusting the culture conditions. Keywords:BC, Feature, Training mode, biomedical applications

高中生物选修1课时作业19:2.3 分解纤维素的微生物的分离

第7课时分解纤维素的微生物的分离 [基础过关] 1.下列有关分解纤维素的微生物的分离的叙述,不正确的是() A.纤维素酶的发酵方法有液体发酵和固体发酵 B.对分解纤维素的微生物进行了初步筛选后,无需再进行其他实验 C.纤维素酶的测定方法,一般是对所产生的葡萄糖进行定量的测定 D.纤维素酶是一种复合酶 [答案] B [解析]初步筛选只是分离纯化的第一步。为确定得到的是纤维素分解菌,还需要进行发酵产纤维素酶的实验。 2.漆酶属于木质素降解酶类,在环境修复、农业生产等领域有着广泛用途。下图是分离、纯化和保存漆酶菌株的过程,相关叙述正确的是() A.生活污水中含有大量微生物,是分离产漆酶菌株的首选样品 B.筛选培养基中需要加入漆酶的底物,通过菌落特征挑出产漆酶的菌落 C.在涂布平板上长出的菌落,不需要进一步纯化 D.斜面培养基中含有大量营养物,可在常温下长期保存菌株 [答案] B [解析]漆酶降解“木质素”,则漆酶菌株多存在于“木质素”丰富的场所,生活污水中含有大量微生物,但不一定含有产漆酶的菌株,A错误;产漆酶菌株可降解木质素,在筛选培养基中加入漆酶的底物木质素,通过菌落特征挑出产漆酶的菌落,B正确;在涂布平板上长出的菌落,需要再通过划线进一步纯化,C错误;斜面培养基中含有大量营养物,可在低温下长期保存菌株,D错误。 3.从土壤中筛选纤维素分解菌的实验设计,下列流程正确的是() A.土壤取样→梯度稀释→稀释涂布平板→挑选菌落

B.土壤取样→选择培养→稀释涂布平板→挑选菌落 C.土壤取样→梯度稀释→选择培养→挑选菌落 D.土壤取样→梯度稀释→稀释涂布平板→选择培养→挑选菌落 [答案] B [解析]实验的正确流程是“土壤取样→选择培养→稀释涂布平板→挑选菌落”,其中选择培养的目的是增加纤维素分解菌的浓度,因此需要在稀释涂布平板之前进行,最后根据菌落的特征挑选纤维素分解菌。 4.在对纤维素分解菌进行选择培养时,用液体培养基的目的是() A.用液体培养基可获得大量菌体 B.纤维素分解菌适宜在液体培养基上生长 C.用液体培养基可以使菌体充分利用培养基中的营养物质 D.用液体培养基可获得高纯度的纤维素分解菌 [答案] A [解析]使用液体选择培养基培养纤维素分解菌,一方面可以获得大量纤维素分解菌,另一方面便于稀释涂布平板。 5.微生物(除病毒外)需要从外界吸收营养物质,并通过代谢来维持正常的生长和繁殖。下列有关微生物营养的说法,正确的是() A.纤维素分解菌与硝化细菌所利用的碳源物质是相同的 B.在纤维素分解菌生长的培养基中只需碳源、氮源、水、无机盐即可正常生长 C.培养基中的营养物质浓度越高对微生物的生长越有利 D.生长因子是微生物生长必需的,而微生物本身合成这些物质的能力往往不足 [答案] D [解析]纤维素分解菌是异养型微生物,其碳源为有机物,如纤维素等。硝化细菌是自养型微生物,其碳源物质为CO2,因此A错误;纤维素分解菌的培养基中需加入维生素做生长因子,才能正常生长,因此B错误;培养基中的营养物质浓度过高会导致微生物不能从培养基中吸水,将出现失水过多而死亡的现象,对生长不利,因此C错误。 6.分离纤维素分解菌的实验过程中操作有误的是() A.经选择培养后将样品涂布到鉴别纤维素分解菌的培养基上 B.选择培养这一步可省略,但获得的纤维素分解菌较少 C.样品经稀释培养后,用刚果红染色

分解纤维素的微生物的分离习题

分解纤维素的微生物的分离习题

————————————————————————————————作者:————————————————————————————————日期:

《分解纤维素的微生物的分离》 1.下列有关微生物培养与应用的说法正确的是() A.天然培养基是指直接取自自然界不需加工的培养基 B.接种前需对培养基、培养皿、接种环、实验操作者的双手等进行严格的灭菌处理 C. 大肠杆菌的纯化培养过程包括培养基的配制和纯化大肠杆菌两个阶段 D.分离分解尿素的细菌时,尿素是培养基中唯一的氮源和碳源 2.微生物与人类生产、生活密切相关,下列相关说法不合理的是( ) A. 土壤中的微生物能降解多种化合物,是大自然的清洁工 B. 生活中许多发酵产品需要微生物,如酿醋需要的关键细菌是酵母菌 C.可利用能分解纤维素的微生物分解秸秆,并将其产物转化为乙醇 D. 许多微生物也可导致人类患病 3.微生物(除病毒外)需要从外界吸收营养物质,并通过代谢来维持正常的生长和繁殖。下列有关微生物营养的说法正确的是( ) A. 纤维素分解菌与硝化细菌所利用的碳源物质是相同的 B. 许多微生物(如细菌、放线菌)为原核生物,不含线粒体,所以只进行无氧呼吸,为厌氧型生物 C. 培养基中的营养物质浓度越高对微生物的生长越有利 D.生长因子通常是微生物生长必需的,而微生物本身合成这些物质的能力往往不足 4.苯酚是工业生产排放的有毒污染物质,自然界中存在着降解苯酚的微生物,某工厂产生的废水中含有苯酚,为了降解废水中的苯酚,研究人员从土壤中筛选获得了只能降解利用苯酚的细菌菌株,筛选的主要步骤如下图所示,①为土壤样品。下列相关叙述错误的是( ) A.使用平板划线法可以在⑥上获得单个菌落 B. 如果要测定②中的活细菌数量,常采用稀释涂布平板法 C.图中②培养目的菌株的选择培养基中应加入苯酚作为碳源 D. 微生物培养前,需对培养基和培养皿进行消毒处理 5.要将从土壤中提取的自生固氮菌与其他细菌分离开来,应将它们接种在( )

纤维素降解菌

那些是植物结构多糖,是细胞壁的主要成分。通过对降解纤维素微生物发生的分析。可知具有降解纤维素能力的微生物分布在细菌、放线菌、和真菌的许多菌属中,其中真菌被认为是自然界中有机质特别是纤维素物质的主要降解者、 降解纤维素微生物种类 木质素的存在 木质素(lignin )与纤维素及半纤维素共同形成植物体骨架,是自然界中在 数量上仅次于纤维素的第二大天然高分子材料,据估计全世界每年可产生600 万亿吨[18] 。木质素是植物的主要成分之一,它是植物细胞胞间层和初生壁的主 要填充物,其产量是仅次于纤维素的最为丰富的有机物,通常在木质细胞中占 15%~30%。从化学结构看[19],针叶树的木质素主要由松柏醇的脱氢聚合物构成 愈创木基木质素;阔叶树的木质素由松柏醇和芥子醇的脱氢聚合物构成愈创木 基紫丁香基木质素;而草本植物则是由松柏醇、芥子醇和对香豆醇的脱氢聚合 物和对香豆酸组成因而使木质素成为结构复杂、稳定、多样的生物大分子物。 木质素依靠化学键与半纤维素连接,包裹在纤维之外,形成纤维素。植物组织 由于木质素存在而有了强度和硬度。 在生活生产中,大部分的木质素被直接排放,不仅浪费了这种宝贵的资源,

还对周围环境产生巨大影响,因此研究木质素的降解和利用越来越成为热门的 课题。 绿色植物占地球陆地生物量的95% ,其化学物质组成主要是木质素、纤维素和半纤维素,它们占植物 [] 干重的比率分别为15%~20%,45%和20% 农作物秸杆是这类生物质资源的重要组成部分,全世界年 产量为20 多亿吨,而我国为 5 亿多吨但是,要充分、有效地利用这类资源却相当困难,这是由于秸秆产量 ! B ' 随季节变化,且量大、低值、体积大、不便运输,大多数动物都不能消化其木质纤维素,自然降解过程又极其 缓慢,导致大部分秸秆以堆积、荒烧等形式直接倾入环境,造成极大的环境污染和浪费' 存在于秸秆中的非水溶性木质纤维素很难被酸和酶水解,主要是因纤维素的结晶度、聚合度以及环绕 着纤维素与半纤维素缔合的木质素鞘所致'木质素与半纤维素以共价键形式结合,将纤维素分子包埋在其 中,形成一种天然屏障,使酶不易与纤维素分子接触,而木质素的非水溶性、化学结构的复杂性,导致了秸 秆的难降解性'所以,要彻底降解纤维素,必须首先解决木质素的降解问题'因此,秸秆利

相关文档
相关文档 最新文档