文档视界 最新最全的文档下载
当前位置:文档视界 › ISO 15614-7 2016 金属材料焊接工艺规程及评定堆焊(中文版)

ISO 15614-7 2016 金属材料焊接工艺规程及评定堆焊(中文版)

ISO 15614-7 2016 金属材料焊接工艺规程及评定堆焊(中文版)
ISO 15614-7 2016 金属材料焊接工艺规程及评定堆焊(中文版)

ISO15614-7:2016

金属材料焊接工艺规程及评定—焊接工艺试验—堆焊狮子十之八九译

目录

前言(略)

引言

1 范围

2 引用标准(略)

3 名词和术语

4预备焊接工艺评定(pWPS)

4.1耐腐蚀堆焊

4.2耐磨堆焊

5焊接工艺评定试验

6 试件

6.1 试件的形状和尺寸

6.1.1概述

6.1.2耐腐蚀堆焊和耐磨堆焊

6.1.3中间层

6.2试件的焊接

7检验和试验

7.1检验和试验的范围

7.2非破坏性检验(NDT)

7.3试样的截取及截取位置

7.4破坏性试验

7.4.1概述

7.4.2宏观金相试验

7.4.3硬度试验

7.4.4侧弯试验

7.4.5化学分析

7.4.6铁素体含量/数(FN)

7.5验收准则

7.5.1非破坏性检验(NDT)

7.5.2破坏性试验

7.6复试

8 认可范围

8.1 概述

8.2 与制造商有关的条件

8.3 与材料有关的条件

8.3.1 母材类型

8.3.2 母材厚度

8.4与焊接材料/堆焊材料有关的条件

8.4.1焊接材料型号

8.4.2堆焊层厚度

8.5 焊接工艺的通用规则

8.5.1 焊接方法

8.5.2 焊接位置

8.5.3 电流类型

8.5.4 电弧能量

8.5.5 预热温度

8.5.6 道间温度

8.5.7 消氢处理

8.5.8 焊后热处理(PWHT)

8.5.9 堆焊层数

8.6不同焊接方法的特殊要求

8.6.1焊接工艺方法111(焊条电弧焊)

8.6.2焊接工艺方法12(埋弧焊)和72(电渣堆焊)

8.6.3焊接工艺方法13(熔化极气体保护焊)和14(钨极气体保护焊)8.6.4焊接工艺方法15(等离子弧焊)

8.6.5焊接工艺方法153(等离子转移弧)

8.6.6焊接工艺方法311(氧-乙炔气焊)

9 焊接工艺评定报告(WPQR)

附录A(信息)焊接工艺评定报告格式(WPQR)

文献(略)

前言(略)

引言

本标准时ISO 15614系列标准的组成部分之一,具体细节见ISO 15607:2003,附录A。

自发布之日起,所有新的焊接工艺试验应按照ISO 15614的本部分进行。然而,ISO 15614的这一部分并不会使以前根据原国家标准或规范进行的焊接工艺试验或ISO 15614这一部分以前的版本进行的焊接工艺试验失效。

1 范围

ISO 15614系列标准的本部分规定了如何通过焊接工艺试验评定预备焊接工艺规程。

ISO 15614系列标准的本部分定义了焊接工艺试验的制造条件和针对特定焊接操作参数(条款8中的参数)焊接工艺的认可范围。

ISO 15614系列标准的本部分适用于堆焊。使用工作试件进行评定时,评定应执行ISO 15613,否则应尽可能根据ISO 15614系列标准的本部分进行试验。返修焊和母材的修复见ISO 15613或ISO 15614-1。

ISO 15614-7的本版本使用与所有新的焊接工艺评定试验。它不会使之前根据ISO 15614系列标准的本部分前一版本完成的焊接工艺试验失效。如果当前版本需要进行附加试验,仅需要进行附加试验,试件焊接根据已存在的WPS 和ISO 15614系列标准的本部分的要求进行。

如果不同材料之间焊接需要使用过渡层,焊接工艺应根据ISO 15614-1进行评定。对于结构或特性不同的材料之间的焊接,可能需要使用过渡层,例如马氏体或铁素体钢与奥氏体钢之间。

附加试验可以由应用标准规定。

2 引用标准(略)

3 名词和术语

ISO 15607中规定的术语和定义以及下列术语和定义适用于本标准。

3.1

堆焊overlay welding

使用焊接的方法改变表面。

3.2

复合层cladding

材料熔敷到母材之上,以获得预计的材料层;

3.3

复合层工艺cladding process

用于获得堆复合层的工艺(条款3.2);

3.4

复合钢clad steel

两种或多种金属通过堆焊工艺连接在一起的组合材料。

3.5

过渡层buttering

为母材和后续焊缝之间提供适当的过渡所进行的堆焊(条款3.1);

修复build up

为获得或恢复尺寸所进行的堆焊(条款3.1);

4 预备焊接工艺评定(pWPS)

4.1耐腐蚀堆焊

根据具体情况,预备焊接工艺评定应根据ISO 15609-1、ISO 15609-3或ISO 15609-4编写。其中应规定所有相关参数的范围;

4.2耐磨堆焊

根据具体情况,预备焊接工艺评定应根据ISO 15609-1、ISO 15614-2、ISO 15609-3或ISO 15609-4编写。其中应规定所有相关参数的范围;

5焊接工艺评定试验

试件使用与产品制造相同的焊接工艺方法或方法组合进行焊接。

焊接和试件的检验应根据条款6和条款7。

6 试件

6.1 试件的形状和尺寸

6.1.1概述

焊接工艺试验在根据图1和2制备的试件上进行。

试件的尺寸和/或数量应足以满足试验的需要(见图1和2)。

试件的厚度和/或尺寸应根据所需要的认可范围进行选择。

6.1.2耐腐蚀堆焊和耐磨堆焊

最后一层至少要求焊接三道。

6.1.3中间层

如果产品焊接中有中间层,则试件的焊接时应包括中间层。

尺寸mm

关键词

1 中间层,如要求

2 根据pWPS的焊层数或堆焊厚度

3 焊接方向a

4 母材厚度

a 没有定义每条焊道的方向。应用标准可以规定此细节。

图1 试件-板

尺寸mm

a) 轴向堆焊—外部b) 周向堆焊—外部

a) 轴向堆焊—内部b) 周向堆焊—内部

关键词

1 中间层,如需要

2 焊接方向

3 根据pWPS的层数(见条款6.1.2和6.1.3)或堆焊厚度De管外径Di管内径t母材厚度

图2 试件—管

6.2试件的焊接

试件的准备和焊接应根据预备焊接工艺规程(pWPS)进行,应在正常的产品制造条件下进行。

试件的焊接和试验应由考官或考试机构监督见证。

7检验和试验

7.1检验和试验的范围

检验和试验应根据表1的要求进行。

表1 试件的检验和试验

7.2非破坏性检验(NDT)

所有表1中要求的非破坏性检验应在试件进行焊后热处理后减小,如有规定,

如有规定,应在焊后热处理后和试样切割前,对试件进行所有非破坏性试验。

基于堆焊的形状、母材种类和产品的规程,非破坏性检验(NDT)应根据ISO 17637(外观检验)、ISO 3452-1(渗透检验)、ISO 17638(磁粉检验)和ISO 17405(超声波检验)。

验收准则见条款7.5.1或当有应用标准要求时,见产品的标准。

7.3试样的截取及截取位置

所有非破坏性检验已完成并合格之后,试样应根据图3和图4截取。

试样应避免在有缺欠(通过NDT检验,缺欠在限制值合格范围内)的位置截取。

关键词

1 去取>=25mm熔敷金属 4 此区域取1个侧弯试样

2 此区域取1个侧弯试样 5 焊接方向

3 此区域

— 1个宏观金相试验

— 化学分析、铁素体数(如果应用标准要求)

— 1个硬度试样

— 复试

图3 板堆焊试样的截取位置

a) 轴向堆焊b) 周向堆焊

关键词

1 去取>=25mm熔敷金属 4 此区域取1个侧弯试样

2 此区域取1个侧弯试样 5 焊接方向

3 此区域

— 1个宏观金相试验

— 化学分析、铁素体数(如果应用标准要求)

— 1个硬度试样

— 复试

图3 管堆焊试样的截取位置

7.4破坏性试验

7.4.1概述

试验的范围应基于表1的要求。附加试验可以由应用标准或规程规定。

7.4.2宏观金相试验

试样应根据ISO 17639准备,并在试样一侧腐蚀,以清楚地显示熔合线、热影响区(HAZ)和每个熔敷层。

宏观金相试验应包括未受影响的母材和堆焊层,报告中至少包括1个图片。

7.4.3硬度试验

应根据ISO 9015-1进行HV10或HV5的硬度试验。除非应用标准中另有规定,否则硬度压痕应如图5所示,并应进行记录。

在所有情况下,应以15°的角度对表面(包括堆焊层、热影响区和母材)进行硬度试验。、

堆焊的结果应符合规定的要求(如果详细),或预先的信息

对于耐磨堆焊,试件的机加工表面应有至少五个压痕。

关键词

1 中间层,如要求 3 耐磨或耐腐蚀堆焊

3 母材

注意沿15°线测量点之间的距离约为1毫米

图5 堆焊硬度压痕

7.4.4侧弯试验

对于耐腐蚀堆焊焊缝的弯曲试验,试样和试验应根据ISO 5173进行。

对于焊缝金属延伸率,A>=20%,压头直径或压辊应为4t,弯曲角度为180°。对于焊缝金属延伸率,A <20%,公式(1)适用:

其中

d 是最大压头或压辊直径;

t s 是弯曲试样厚度;

A材料的最低延伸率。

7.4.5化学分析

对于耐腐蚀堆焊,应根据应用标准和/或规范在指定堆焊厚度下确定化学成分。如果防腐复合层在使用过程中受到侵蚀,则应在最小可接受的使用寿命结束厚度区域进行额外的化学分析(见图6)。

当对焊接或机加工表面进行化学分析时,熔合线到最终焊接或机加工表面的距离应成为认可的最小堆焊厚度。化学分析可直接在表面或从表面或钻孔水平样品上采集的材料碎片上进行。

当对水平样品去除的材料进行化学分析时,熔合线到钻孔最上侧的距离应成为认可的最小复合层厚度。可对从钻孔中取出的材料碎片进行化学分析。

关键词

1 焊接复合层表面

2 机械加工后复合层

3 化学分析试样

4 总的复合层厚度

5 机械加工后,总的复合层厚度

6 服役寿命结束后耐腐蚀表面

7 熔合线t 母材厚度

t b 化学分析时去除的复合层厚度

图6 耐腐蚀堆焊试样的化学分析

7.4.6铁素体含量/数(FN)

如果要求,应根据应用标准或规程进行铁素体含量/数(FN)的测量。

7.5验收准则

7.5.1非破坏性检验(NDT)

除非另有规定,NDT验收准则应根据表2。

表2 NDT验收准则

7.5.2破坏性试验

除非另有规定,破坏性试验的验收准则应根据表3。对于耐磨堆焊,应规定缺欠的类型和尺寸限制。

表3 破坏性试验验收准则

表4 对于母材最大硬度值

7.6复试

如果试件不符合表2中无损检验(NDT)的任一要求,应重新焊接一个试件并进行相同的检验。如果该追加试件仍不符合要求,则焊接工艺试验失败。

如果仅仅因为焊缝缺欠使得任一试样不符合7.4中的破坏性试验要求,则应对每个不合格试样,追加两个试样进行试验。若材料充足,追加试样可以取自同一试件或新试件。追加的每个试样均应经过与最初不合格试样相同的试验。如果任何一个追加试件仍不符合要求,则焊接工艺试验失败。

如果弯曲试验的试样不符合7.4.4的要求,应为每个不合格的试样追加两个试样。追加的两个试样应满足表3的要求。

如果母材区或HAZ区中单个硬度高于表4规定值,应附加硬度试验(附加试验可在原试样的反面或原试验表面,充分打磨后进行)。附加试验的所有硬度值不得高于表4的最大值。

如果耐磨堆焊的硬度值低于要求的最低值,附加试验的所有硬度值不得低于规定值。

8 认可范围

8.1 概述

满足条款7规定的各个条件,才符合本标准,。

对于认可范围以外的变化,均应进行新的焊接工艺试验。

8.2 与制造商有关的条件

制造商依据本标准通过焊接工艺试验的取得预备焊接工艺预规程(pWPS)认可后,在具有相同技术和质量控制的车间或现场施焊均有效。

8.3 与材料有关的条件

8.3.1 母材类型

为了尽可能减少焊接工艺性试验的数量,依据ISO/TR 15608对铝及其合金进行了分组。

表5规定了认可范围。

表5未包含的金属,应进行单独的试验,这些试验无对于其它母材的认可范围。

表5 材料组别、分组认可范围

8.3.2 母材厚度

母材厚度认可范围见表6。

表6 母材厚度认可范围

8.4与焊接材料/堆焊材料有关的条件

8.4.1焊接材料型号

焊接材料的认可范围为相应国际标准规定的同一类型或相同名义成分中的其它焊接材料。

8.4.2堆焊层厚度

对于耐磨堆焊,硬度试验应根据条款7.4.3进行,以确定堆焊熔敷层的最低值。

对于耐腐蚀堆焊,认可的最小堆焊层厚度应根据条款7.4.5的化学分析确定。

对于耐腐蚀堆焊,可以要求附加一个化学分析试样,取样在预计使用寿命结束时的厚度。

最低认可的堆焊层厚度为:

—对于耐磨堆焊,条款7.4.3中试验时最薄截面尺寸;

—对于耐腐蚀堆焊,条款7.4.5和图6中试验时最薄截面尺寸;

8.5 焊接工艺的通用规则

8.5.1 焊接方法

认可范围限制在焊接工艺试验时使用的焊接工艺方法。

认可的范围仅限于焊接工艺评定试验期间使用的辅助设备,例如电极的摆动。

当使用多种焊接工艺方法生产时,应使用与焊接工艺试验时相同的配置。

8.5.2 焊接位置

认可的范围限制在焊接工艺试验时使用的位置。然而,焊接位置PC可以认可PA。

8.5.3 电流类型

认可范围为焊接工艺试验中使用的电流类型(交流(AC)、直流(DC)、脉冲电流)和极性。

8.5.4 电弧能量

电弧能量应根据ISO/TR 18491确定。

每层电弧能量的认可范围:

—对于耐蚀堆焊和耐磨堆焊,第一层和第二层(如果有)电弧能量认可范围应为相应焊层评定试验时电弧能量的±25%,对于其它层,最高的电弧能量为第二层或其它层电弧能量的+25%。

8.5.5 预热温度

第一层焊接时记录的最低预热温度,对于所有其它层的最低预热温度,除非pWPS规定了无预热的焊接顺序。预热温度的测量见ISO 13916。

8.5.6 道间温度

焊接工艺试验时达到的最高温度为认可的最高温度。道间温度的测量见ISO 13916。

8.5.7 消氢处理

消氢处理的温度和维持试件不能降低。后热处理不允许去除,但可以增加。

8.5.8 焊后热处理(PWHT)

不允许增加或取消焊后热处理。

下列条件要求单独的焊接工艺评定:

a)对于根据ISO/TR 15608的1、2、3、4、5、6、7、9、10和11组白料,下列热处理PWHT 条件需要满足:

1) PWHT低于相变温度(例如消除应力);

2) PWHT高于相变温度(例如正火);

3) PWHT高于相变温度然后低于相变温度热处理(例如正火或调质);

4) PWHT在高于相变温度和低于相变温度之间。

b)对于其它材料,PWHT在规定的温度范围内适用。

更严格的要求可以根据应用标准或规程规定。

8.5.9 堆焊层数

对于耐腐蚀堆焊,单层焊认可多层焊

对于耐磨堆焊,单层焊可以认可多层焊。多层焊不能认可单层焊。N层多层焊认可多层焊的最多层数为(N+4)层。

对于特定的耐磨合金,增加的层数可以导致开裂。应在允许增加最多4层堆焊层(在认可的WPS范围内)之前应获得耐磨堆焊合金制造厂商的建议。

8.6不同焊接方法的特殊要求

8.6.1焊接工艺方法111(焊条电弧焊)

认可范围是焊接工艺试验中使用的电极直径加上或减去每层电极直径大小,前提是满足电弧能量的认可要求。

8.6.2焊接工艺方法12(埋弧焊)和72(电渣堆焊)

认可的范围限制在焊接工艺试验使用的焊丝/带极系统(例如单丝/带极或多丝/带极系统)。

认可范围仅限制于焊接评定试验所使用的根据ISO 14174的焊丝/带极和焊剂组合。

对于耐磨堆焊,认可的范围仅限于焊接工艺试验所使用的相同制造方法的焊剂(根据ISO 14174等

级3)和焊丝/带极。

认可的范围仅限于焊接工艺评定试验期间使用的辅助设备,例如电极的摆动。

允许添加控制作用于熔池的磁场的装置,但不能删除

认可范围限制在焊接工艺试验是使用的焊丝或带极尺寸。

8.6.3焊接工艺方法13(熔化极气体保护焊)和14(钨极气体保护焊)

认可范围限制在工艺试验中使用保护气体(名义成分)。保护气体成分类型应根据ISO 14175标识,比如,ISO 14175:2008-M21-ArC-18或ISO 14175:2008-I3-ArHe-30。

对于131,CO2名义成分偏差最大10%(相对)是允许的。

对于141,He名义成分偏差最大10%(相对)是允许的。

然而,有意对任何气体成分的增加或减少,其变化量最大不超过0.1%,不需要重新评定。

送丝系统仅局限于认可焊接工艺试验时的送丝系统(例如单丝或多丝)。

8.6.4焊接工艺方法15(等离子弧焊)

除了条款8.6.3,以下要求适用。

认可范围限制在焊接工艺试验时使用的焊接材料。

认可范围仅限于焊接工艺试验中所用粉末的制造、粒度和类型。

认可范围限制在焊接工艺试验时送粉速度的±10%范围内。

认可范围限制在焊接工艺试验时使用的过渡形式。

认可范围限制在焊接工艺试验时使用的焊枪孔径。

8.6.5焊接工艺方法153(等离子转移弧)

对于耐磨堆焊适用。除了条款8.6.4,以下要求适用。

最大粉末尺寸的认可范围为±20%。

认可范围限制在焊接工艺试验时使用的送粉气体类型(等离子弧喷涂)。

认可范围限制在焊接工艺试验时使用的钨极类型和尺寸。

最大焊枪到工件距离的认可范围为±20%。

8.6.6焊接工艺方法311(氧-乙炔气焊)

对于耐磨堆焊适用,认可范围限制:

—焊接工艺试验时使用的燃气,

—焊接工艺试验时使用的最大燃气压力,和

—焊接工艺试验时使用的焊炬类型和喷嘴尺寸。

9 焊接工艺评定报告(WPQR)

焊接工艺评定报告表述了每个试样(包括复试试样)的评估结果。报告应包括与ISO15609有关的WPS相关的事项,包括第7条款的任何否决项的细节详述。如果未发现否决项或不合格的试验结果,记录该焊接工艺评定试件结果的WPQR应得到认可并由考官考试机构签署。

焊接工艺评定报告是为了用于记录焊接工艺、认可范围、焊工工艺评定等级及试验结果的详细情况,并对数据做统一的表述和评估。

焊接工艺评定格式见附录A。

附录A(信息)

焊接工艺评定报告格式(WPQR)

焊接工艺评定——试验证书

制造商WPQR考官或考试机构

编号:代号:

制造商:

地址:

规程/试验标准:

焊接日期:

试件:认可范围:

焊接工艺方法:

焊接参数(电流、电压、焊接速度、送丝速度、电弧能量、摆动宽度)

堆焊设计(层顺序):

母材:

母材厚度(mm):

管外径(mm):

焊接材料类型:

保护气体/焊剂:

焊接电流类型/燃气:

焊接位置:

预热温度:

道间温度:

焊后热处理:

其它信息:

兹证明,本记录属实,所记录的考试焊缝的制备、焊接及检验符合ISO15614-7:2016的要求。

地点颁布日期考官或考试机构

名称、日期和签字

焊接试验报告

地点:考官或考试机构:

制造商焊接工艺规程编号:

制造商WPQR编号:制备和清理方法:

母材:

制造商:

焊工姓名:

焊接工艺方法:材料厚度(mm):

接头类型:管外径(mm):

接头细节(示意图)1)焊接位置:

接头示意图焊接顺序

焊接材料类型和牌号:其它信息1):

规定的烘干或干燥要求:手工焊接的摆动

(最大焊道宽度)

其它/焊剂:自动焊摆动:

保护气体振幅、频率、停留时间

背面保护

气体流量:—保护气体脉冲焊细节:

—背面保护距离:

钨极类型/尺寸:其它细节:

预热温度:

道间温度等离子焊细节

焊后热处理

时间、温度、方法:

加热和冷却速度2):

制造商考官或考试机构

姓名、日期及签名姓名、日期及签名

1) 如果要求

试验结果

制造商焊接工艺编号:考官或考试机构:

外观检验(VT):射线检验(RT):

渗透/磁粉检验(PT)和(MT):超声波检验(UT):

侧弯压头直径:

2)

硬度试验2)测量位置(示意图2))

类型/载荷:

母材:

硬度试验位置的堆焊层厚度

HAZ:

堆焊层:

化学分析3)

母材:

化学分析位置的堆焊层厚度:

化学分析结果:

其它试验3):

备注:

试验按以下要求进行:考官或考试机构试验室报告号:

试验结果:合格/不合格(删去相应选项)名称、日期和签字试验参与人员:

2)3)如要求

焊接工艺评定作业指导书

1.总则 焊接工艺评定是产品正式焊接前应进行的试验工作,解决在具体条件下焊接工艺问题,是制定工艺技术文件的依据。规定了焊接工艺评定的具体操作程序,是焊接工艺评定的指导性文件。 2.定义 2.1焊接:通过加热、加压或两者并用,并且用或不用填充材料使焊件间达到原子结 合的一种加工工艺方法。 2.2焊接工艺评定:是在正式产品焊接前通过试验、预测焊接接头可焊性。若试验的 接头性能不合格,可以改变焊接工艺,直到评定合格为止,以解决在具体条件下实施焊接工艺问题。 3.工作程序 3.1工作程序流程图 3.2凡属下列条件均需进行焊接工艺评定: ?甲方制作标准中规定; ?结构钢材系首次使用; ?焊条、焊丝、焊剂的型号改变; ?焊接方法改变,或由于焊接设备的改变而引起焊接参数的改变。 3.2.1焊接工艺需改变: a. 双面焊、对接焊改为单面焊; b. 单面对接电弧焊增加或去掉垫板,埋弧焊的单面焊反面成型; c.坡口型式改变、变更钢板厚度,要求焊透的T型接头。 3.2.2需要预热、后热或焊后要做热处理。

3.3技术员在正式产品施焊之前分别向制作车间、焊研室下达焊接工艺委托书(具体 项目见附页)。 3.4工艺试验的钢材和焊接材料,应于工程上所用材料相同。 3.4.1工艺试验一般以对接接头为主,试验前应根据钢材的可焊性和设计要求 拟定试件的焊接工艺、焊后处理、检验程序和质量要求。 3.4.2要求焊透的T型接头,宜用与实际构件刚度相当的试件进行试验。 3.4.3工艺试验应包括现场作业中遇到的各种焊接位置,当现场有妨碍焊接操 作的障碍时,还应做模拟障碍的焊接试验。 3.5制作车间:配料员据委托书配出工艺评定所用材料的规格、尺寸、经划线、切割 等各工序加工完毕后转至焊研室。 3.6试样的加工与评定 3.6.1工艺试板的焊接应由持焊工合格证的焊工施焊。 3.6.2试验焊件焊缝的外观及内部质量无损检测,应按JGT81-91第六章的规 定进行检查、评比。 3.6.3试验人员将试样的截取方式在试件上划出后转至网架结构车间。 3.6.4网架结构车间据图样加工出试验所需试样再转焊研室进行试验。 3.6.5焊接接头的力学性能试验以拉伸和冷弯(面弯、背弯)为主,冲击试验 按设计要求确定,有特殊要求时应做侧弯试验。每个焊接位置的试件数 量应为: ?拉伸、面弯、背弯及侧弯各2件 ?冲击试验9件(焊缝、熔合线、HAC各3件) 试件的截取、加工及试验方法均按国家标准GB2649-2656《焊缝金属及焊接接头力学性能试验》的规定进行。 3.6.6焊缝接头力学性能试验的合格标准。 ?拉伸试验:接头焊缝的强度不低于母材强度的最低保证值; ?冷弯试验弯曲合格角度按下表执行:

焊接工艺评定和焊工资格考核规范

1 目的 为确保焊接质量符合要求,焊工技能得到满足。 2 范围 适用于各种类型手工焊接方法的WPS的制定和焊接工艺、焊工的评定。 3 规范性文件 3.1 ASME 第Ⅸ卷焊接与钎焊评定 3.2 ASME第V卷无损检测 4 要求 4.1 焊缝方位 焊缝方位见图QW-461.3。 4.2 坡口焊缝的试验位置 4.2.1 板的焊接位置 4.2.1.1 平焊位置1G 板处于水平面内,焊缝金属在板的上方熔敷,见图(a)。 4.2.1.2 横焊位置2G 板处于垂直平面内,焊缝轴线是水平的,见图(b)。 4.2.1.3 立焊位置3G 板处于垂直平面内,焊缝轴线是垂直的,见图(c)。 4.2.1.4 仰焊位置4G 板处于水平面内,焊缝金属从板的下方向上熔敷,见图(d)。 4.3 试验和检验的类型和目的 4.3.1 力学性能试验 4.3.1.1 拉伸试验用于测定坡口焊缝接头的极限强度。 4.3.1.1.1 试样应符合图QW-462.1 (a)所示

缩截面试样—板材符合ASME 第Ⅸ卷图QW-462.1 (a)中规定的缩截面试样,可用于所有厚度的板材的拉伸试验。 对于厚度不大于1in(25mm)的板材,每个要求的试样均应采用全板厚试样。 对于厚度大于1in(25mm)的板材,可采用全板厚试样或多个试样。 当采用多个试样代替全板厚试样时,应把每组试样看成相当于一个要求做拉伸试验的全板厚单个试样。总之,应把要求代表某一位置的焊缝全厚度的所有试样组成一组。 当需要多个试样时,应将整个厚度用机械方法分割成能够在现有设备中进行试验的大小接近相等的最少条款,对一组中的每个试样进行试验时,均应符合4.3.1.1.3 的要求。 4.3.1.1.2 程序 试样应在拉伸截荷下断裂。抗拉强度的计算是试样的极限总载荷除以加载前通过实测计算的最小横截面积。 4.3.1.1.3 合格标准 试样的抗拉强度不小于: 母材的规定最小抗拉强度;或 如母材是由两种规定最小抗拉强度不同的材料组成,则取较小值;或 焊缝金属的规定最小抗拉强度,此条适用于允许使用室温强度低于母材的焊缝金属; 如果试样断在焊缝或熔合线以外的母材上,只要强度低于母材规定最小抗拉强度的量不超过5%,可以认为试验满足要求。 4.3.1.2 导向弯曲试验用于测定坡口焊缝接头的完好性和延伸性。 4.3.1.2.1 试样 应从试验的板材或管材上切取制备,试样的横截面近似矩形。切割面定为试样的侧面,另外两个面称为正面和背面。 横向侧弯焊缝垂直于试样的纵轴,试样弯曲后,其侧面之一成为弯曲试样的凸面。 母材厚度在1 1/2 in( 38mm)以上的试件,可以切成近乎相等的宽3/4 n(19mm)至 1 1/2 in (38mm)的试验板条,或试样整宽度弯曲。如果采用多个试样,那么每项要求的试验应由一组完整的试样完成。对每个试样读报都进行试验,并满足4.3.1.2.3 要求。 横向面弯焊缝垂直于试样的纵轴,试样弯曲后,其正面成为弯曲试样的凸面。 横向背弯焊缝垂直于试样的纵轴,试样弯曲后,其背面成为弯曲试样的凸面。 纵向弯曲试验纵向安全弯曲可用以代替试验焊缝金属的: 两种母材之间,或 焊缝金属和母材之间弯曲性能显著不同的组合材料的横向侧面、横向正面和背面弯曲试验。 纵向面弯焊缝平行于试样的纵轴,试样弯曲后,其正面成为弯曲试样的凸面。 纵向背弯焊缝平行于试样的纵轴,试样弯曲后,其正面成为弯曲试样的凸面。 4.3.1.2.2 程序 应在试验压模中进行弯曲,弯曲角度为180°。 4.3.1.2.3 合格标准 试验后横向焊缝弯曲试样的焊缝和热影响区应全部在试样受弯范围内。 导向弯曲试样在弯曲后的凸面上沿任何方向测量,在焊缝和热影响区内都不得超过1/8 in(3.2mm)的

金属材料的焊接性能汇总

金属材料的焊接性能 (2014.2.27) 摘要:对各种常用金属材料的焊接性能进行研究,通过参考各类焊接丛书及焊接前辈多年的经验总结,对常用金属材料的焊接工艺可行性起指导作用。 关键词:碳当量;焊接性;焊接工艺参数;焊接接头 1 前言 随着中国特种设备制造业的不断发展,我们在制造产品时所用到的金属材料种类也在不断增加,相应地所必须掌握的各种金属材料的焊接性能也在不断研究和更新中,为了实际产品制造的焊接质量,熟悉金属材料的焊接性能,以制定正确的焊接工艺参数,从而获得优良的焊接接头起到至关重要的指导作用。 2 金属材料的焊接性能 2.1 金属材料焊接性的定义及其影响因素 2.1.1 金属材料焊接性的定义 金属材料的焊接性是指金属材料在采用一定的焊接工艺包括焊接方法、焊接材料、焊接规范及焊接结构形式等条件下,获得优良焊接接头的能力。一种金属,如果能用较多普通又简便的焊接工艺获得优良的焊接接头,则认为这种金属具有良好的焊接性能金属材料焊接性一般分为工艺焊接性和使用焊接性两个方面。 工艺焊接性是指在一定焊接工艺条件下,获得优良,无缺陷焊接接头的能力。它不是金属固有的性质,而是根据某种焊接方法和所采用的具体工艺措施来进行的评定。所以金属材料的工艺焊接性与焊接过程密切相关。 使用焊接性是指焊接接头或整个结构满足产品技术条件规定的使用性能的程度。使用性能取决于焊接结构的工作条件和设计上提出的技术要求。通常包括力学性能、抗低温韧性、抗脆断性能、高温蠕变、疲劳性能、持久强度、耐蚀性能和耐磨性能等。例如我们常用的S30403,S31603不锈钢就具有优良的耐蚀性能,16MnDR,09MnNiDR低温钢也有具备良好的抗低温韧性性能。

焊接工艺评定规范

焊接工艺评定规范 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 焊接工艺评定(Welding Procedure Qualification,简称WPQ) 为验证所拟定的焊件焊接工艺的正确性而进行的试验过程及结果评价。焊接工艺评定是保证质量的重要措施,为正式制定焊接工艺指导书或焊接工艺卡提供可靠依据。 目的 1.评定施焊单位是否有能力焊出符合相关国家或行业标准、技术规范所要求的焊接接头; 2.验证施焊单位所拟订的焊接工艺规程(WPS或pWPS)是否正确。 3.为制定正式的焊接工艺指导书或焊接工艺卡提供可靠的技术依据。 意义 焊接工艺是保证焊接质量的重要措施,它能确认为各种焊接接头编制的焊接工艺指导书的正确性和合理性。通过焊接工艺评定,检验按拟订的焊接工艺指导书焊制的焊接接头的使用性能是否符合设计要求,并为正式制定焊接工艺指导书或焊接工艺卡提供可靠的依据。 焊接工艺评定应用范围: 1、适用于锅炉,压力容器,压力管道,桥梁,船舶,航空航天,核能以及承重钢结构等钢制设备的制造、安装、检修工作。 2、适用于气焊,焊条电弧焊,钨极氩弧焊,熔化极气体保护焊,埋弧焊,等离子弧焊,电渣焊等焊接方法。评定过程: 1、拟定预备焊接工艺指导书(Preliminary Welding Procedure Specification,简称PWPS) 2、施焊试件和制取试样

3、检验试件和试样 4、测定焊接接头是否满足标准所要求的使用性能 5、提出焊接工艺评定报告对拟定的焊接工艺指导书进行评定 工艺评定常规测试 >>外观检测 >>无损探伤 >>拉伸测试 >>弯曲测试 >>冲击测试 >>硬度测试 >>低倍金相测试 >>表面裂纹检测 工艺评定相关标准 评定参考标准: 工艺评定的标准国内标准 SY∕T4103-1995 (相当于API 1104) NB/T47014-2011 《承压设备用焊接工艺评定》 SY∕T0452-2002 《石油输气管道焊接工艺评定方法》(注:供石油,化工工艺评定)JGJ81-2002 《建筑钢结构焊接技术规程》(注:公路桥梁工艺评定可参照执行)GB50236-98 《现场设备,工业管道焊接工程施工及压力管道工艺评定》 《蒸汽锅炉安全技术监察规程(1996)》注:起重行业工艺评定借用此标准 欧洲标准

(推荐)压力管道焊接工艺规程

压力管道焊接工艺规程 1 适用范围 本规程适用于工业管道或公用管道中材质为碳素钢、低合金钢、耐热钢、不锈钢和异种钢等压力管道的焊条电弧焊、钨极氩弧焊以及二氧化碳气体保护焊的焊接施工。 2 主要编制依据 2.1 GB50236-98《现场设备、工业管道焊接工程施工及验收规范》; 2.2 GB/T20801-2006《压力管道规范-工业管道》; 2.3 SH3501-2001《石油化工剧毒、可燃介质管道工程施工及验收规范》; 2.4 GB50235-97《工业金属管道工程施工及验收规范》; 2.5 CJJ28-89 《城市供热管网工程施工及验收规范》; 2.6 CJJ33-89 《城镇燃气输配工程施工及验收规范》; 2.7 GB/T5117-1995 《碳钢焊条》; 2.8 GB/T5118-1995 《低合金钢焊条》; 2.9 GB/T983-1995 《不锈钢焊条》; 2.10 YB/T4242-1984 《焊接用不锈钢丝》; 2.11 GB1300-77 《焊接用钢丝》; 2.12 其他现行有关标准、规范、技术文件。 3 施工准备 3.1 技术准备 3.1.1 压力管道焊接施工前,应依据设计文件及其引用的标准、规范,并依 据我公司焊接工艺评定报告编制出焊接工艺技术文件(焊接工艺卡或作业指

导书)。如果属本公司首次焊接的钢种,则首先要制定焊接工艺评定指导书,然后对该种材料进行工艺评定试验,合格后做出焊接工艺评定报告。

3.1.2 编制的焊接工艺技术文件(焊接工艺卡或作业指导书)必须针对工程 实际,详细写明管道的设计材质、选用的焊接方法、焊接材料、接头型式、具体的焊接施工工艺、焊缝的质量要求、检验要求及焊后热处理工艺(有要求时)等。 3.1.3 压力管道施焊前,根据焊接作业指导书应对焊工及相关人员进行技 术交底,并做好技术交底记录。 3.1.4 对于高温、高压、剧毒、易燃、易爆的压力管道,在焊接施工前应 画出焊口位置示意图,以便在焊接施工中进行质量监控。 3.2 对材料的要求 3.2.1 被焊管子(件)必须具有质量证明书,且其质量符合国家现行标准 (或部颁标准)的要求;进口材料应符合该国家标准或合同规定的技术条件。 3.2.2 焊接材料(焊条、焊丝、钨棒、氩气、二氧化碳气、氧气、乙炔气 等)的质量必须符合国家标准(或行业标准),且具有质量证明书。其中钨棒宜采用铈钨棒;氩气纯度不应低于99.95%;二氧化碳气纯度不低于99.5%; 含水量不超过0.005% 。 3.2.3 压力管道予制和安装现场应设置符合要求的焊材仓库和焊条烘干 室,并由专人进行焊条的烘干与焊材的发放,并做好烘干与发放记录。 3.3 焊接设备 3.3.1 焊接机具设备主要包括:交流焊机、直流焊机、氩弧焊机、高温烘 干箱、中温烘干箱、恒温箱、二氧化碳气体保护焊机、焊条保温筒、内磨机及电动磨光机等。

焊接工艺评定指导书

焊接工艺评定指导书(2) 工程名称指导书编号HP002 母材钢号Q420D 规格40 供货状态生产厂舞钢焊接材料生产厂牌号类型烘干温度(℃×h )备注焊条 焊丝ER55-D2-Ti ?1.2焊剂或气体CO2 焊接方法SMAW 焊接位置H 焊接设备型号电源极性DC 预热温度120 层间温度120~150 后热温度(℃)及时间(min)350×120热后处理消氢处理 接头尺寸及坡口图焊接顺序图 焊接工艺参数道次 焊接 方法 焊条或焊丝焊剂 或保 护气 保护气 流量 (L/mi n) 焊接 电流 (A) 焊接 电压 (V) 焊接 速度 (cm /s) 热输 入 (KJ/ cm) 备 注牌号? (mm ) 1~ SMA W ER55 -D2-T i 1.2 25 220~ 260 22~2 8 0.60~ 0.65 11 技术措施 焊前清理砂轮打磨层间清理钢丝砂轮或刷背面清根背面衬板 其他: 编制日期年月日审核日期年月日

焊接工艺评定记录表(2) 共页第页 工程名称指导书编号HP002 焊接方法SMAW 焊接位置H 设备型号NBC-500 电源及极性DC 母材钢号Q420D 类别Ⅲ生产厂 母材规程δ=40mm 热处理状态 接头尺寸及施焊道次顺序 焊接材料 焊 条 牌号类型 生产厂批号 烘干温度(℃) 时间(min) 焊 丝 牌号ER55-D2-Ti规格(mm) ?1.2 生产厂常州华通批号958121 焊 接 或 气 体 牌号CO2规格(mm) 生产厂 烘干温度(℃) 时间(min) 施焊工艺参数记录 道次焊接方 法 焊条(焊丝) 直径(mm) 保护气体流 量 (L/min) 电流 (A) 电压 (V) 速度 (cm/min) 热输入 (kJ/cm) 备注 1~2 SMAW?1.230 250 30 39.6 11.4 3~10 SMAW?1.230 250 30 38.1 11.8 11~42 SMAW?1.230 280 35 48.2 12.2 43~50 SMAW?1.230 250 30 40 11.3 施焊环境室外环境温度相对湿度% 预热温度200 层间温度230 后热温度350 时间2h 后热处理保温被保温 技术措施焊前清理砂轮打磨层间清理钢丝砂轮或刷背面清根背面衬板 其他无 焊工姓名康利伟资格代号级别施焊日期11年6月3 日记录雷建华日期11年5 月22日审核日期年月日

不锈钢管道焊接工艺规程..

奥氏体不锈钢管道焊接工艺规程 1范围 本标准适用于工业管道、公用管道和发电厂奥氏体不锈钢管道焊接施工。本标准也适用于手工氩弧焊和手工电弧焊作业。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款,凡是注日期的引用文件, 其随后的修改单(不包括勘误的内容)或修订版均不适用于标准,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB5023—97 《工业金属管道工程施工及验收规范》 GB/T 983—95 《不锈钢焊条》 DL/T869-2004 《火力发电厂焊接技术规程》 劳人部[1988]1号《锅炉压力容器焊工考试规则》 HYDB P006-2004〈压力管道安装工程焊接、热处理过程控制程序》 HYDB P018-2004〈压力管道安装工程焊接材料管理程序》 HYDB P013-2004〈压力管道安装工程材料设备储存管理程序》 HYDB P012-200《压力管道安装工程材料设备搬运管理程序》 HYDB P008-2004〈压力管道安装工程计量管理手册》 HYDB P007-2004〈压力管道安装工程检验和试验控制程序》 HYDB P010-2004〈压力管道安装工程不合格品控制程序》 劳动部发[1996]140号《压力管道安全管理与监察规定》 3先决条件 3.1 环境 3.1.1施工环境应符合下列要求: 3.1.1.1 风速:手工电弧焊小于8M/S,氩弧焊小于2M/S

焊接电弧在1m 范围内的相对湿度小于90%环境温度大于0C 。 3.2奥氏体不锈钢管道焊接控制流程图 3.3 焊接材料 3.3.1 奥氏体不锈钢管道焊接材料的采购和入库(一级库)由公司物资部负责,按《物资 采购控制 程序》和《焊接材料保管程序》执行。 3.3.2 奥氏体不锈钢管道焊接材料入二级库的保管、焊剂、烘干、发放、回收由各项目负 责,按 《焊接材料保管程序》执行。 3.1.1.2 3.1.1.3 非下雨、下雪天气。 3.1.2 当环境条件不符合上述要求时,必须采取挡风、 防雨、防寒等有效措施。 见图1。 图1奥氏体不锈钢管道焊接控制流程图

金属材料焊接性知识要点(最新整理)

金属材料焊接性知识要点 1. 金属焊接性:指同质材料或异质材料在制造工艺条件下,能够形成完整接头并满足预期使用要求的能力。包括(工艺焊接性和使用焊接性)。 2. 工艺焊接性:金属或材料在一定的焊接工艺条件下,能否获得优质致密无缺陷和具有一定使用性能的焊接接头能力。 3. 使用焊接性:指焊接接头和整体焊接结构满足各种性能的程度,包括常规的力学性能。 4. 影响金属焊接性的因素:1、材料本因素2、设计因素3、工艺因素4、服役环境 5. 评定焊接性的原则:(1)评定焊接接头中产生工艺缺陷的倾向,为制定合理的焊接工艺提供依据;(2)评定焊接接头能否满足结构使用性能的要求。 6. 实验方法应满足的原则:1可比性 2针对性 3再现性 4经济性 7. 常用焊接性试验方法: A:斜Y坡口焊接裂纹试验法: 此法主要用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。 B:插销试验 C:压板对接焊接裂纹试验法 D:可调拘束裂纹试验法 一问答:1、“小铁研”实验的目的是什么,适用于什么场合?了解其主要实验步骤,分析影响实验结果稳定性的因素有哪些? 答:1、目的是用于评定用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性时,影响结果稳定因素焊接接头拘束度预热温度角变形和未焊透。(一般认为低合金钢“小铁研实验”表面裂纹率小于20%时。用于一般焊接结构是安全的) 2、影响工艺焊接性的主要因素有哪些? 答:影响因素:(1)材料因素包括母材本身和使用的焊接材料,如焊条电弧焊的焊条、埋弧焊时的焊丝和焊剂、气体保护焊时的焊丝和保护气体等。 (2)设计因素焊接接头的结构设计会影响应力状态,从而对焊接性产生影响。 (3)工艺因素对于同一种母材,采用不同的焊接方法和工艺措施,所表现出来的焊接性有很大的差异。 (4)服役环境焊接结构的服役环境多种多样,如工作温度高低、工作介质种类、载荷性质等都属于使用条件。 3、举例说明有时工艺焊接性好的金属材料使用焊接性不一定好。 答:金属材料使用焊接性能是指焊接接头或整体焊接结构满足技术条件所规定的各种使用性能主要包括常规的力学性能或特定工作条件下的使用性能,如低温韧性、断裂韧性、高温蠕变强度、持久强度、疲劳性能以及耐蚀性、耐磨性等。而工艺焊接性是指金属或材料在一定的焊接工艺条件下,能否获得优质致密、无缺陷和具有一定使用性能的焊接接头的能力。比如低碳钢焊接性好,但其强度、硬度却没有高碳钢好。 4、为什么可以用热影响区最高硬度来评价钢铁材料的焊接冷裂纹敏感性?焊接工艺条件对热影响区最高硬度有什么影响? 答:因为(1).冷裂纹主要产生在热影响区; (2)其直接评定的是冷裂纹产生三要素中最重要的,接头淬硬组织,所以可以近似用来评价冷裂纹。 一般来说,焊接接头包括热影响区,它的硬度值相对于母材硬度值越高,证明焊接接头的

焊接工艺评定资料

焊接件的设计及焊接工艺评定 一、焊接件的设计要求及在设计图上的正确表述: 1、焊接结构钢材的选择: 选择原则:抗拉强度、刚度、塑性、冲击韧性、成形性、焊接性等。 另外还需要考虑:耐蚀性、耐磨性、耐热性及材料的价格和市场供货状况。 2、焊接结构的强度计算: (1)、焊缝容许应力 各行业间的焊缝容许应力值常有差异,设计焊接结构时应遵循所纳入的行业的国家标准。 A、建筑钢结构焊缝强度设计值应符合: GBJ64—84《建筑结构设计统一标准》; GBJ17-88《钢结构设计规范》; GBJ18—87《冷弯薄壁型钢结构技术规范》。 B、压力容器结构焊缝容许应力: 压力容器结构中的焊缝,当母材金属与焊缝材料相匹配时,其容许应力按母材金属的强度乘以焊缝系数φ计算 压力容器强度计算时的焊缝系数φ a)最简单的结构形式; b)最少的焊接工作量; c)容易进行焊接施工; d)焊接接头产生变形的可能性最小; e)最低的表面处理要求; f)最简便的焊缝检验方法; g)最少的加工与焊接成本; h)最短的交货期限。 3、焊接结构工作图(设计图): 焊接结构设计图是制造焊接结构产品的基本依据,通常由总图、部件图及零件图组成(各行业有差异,有些企业是由总图及部件图两部份组成,而由施工单位即制造单位的工艺人员绘制零件图).

通常焊接结构设计图除常规的要求外,还应包括以下内容: 1)、结构材料; 2)、焊接方法及材料; 3)、焊接接头形式及尺寸的细节(或局部放大图); 4)、允许尺寸偏差; 5)、焊前预热要求; 6)、焊后热处理的方法.(消除应力热处理). 注:接头形式: 焊接结构及焊接连接方法的多样化,以及结构几何尺寸、施工场合与条件等的多变形,使焊接接头形式及几何尺寸的选择有极大的差异.优良的接头形式有赖于设计者对结构强度的认识及丰富的生产实践经验.优良的接头不仅可保证结构的局部及整体强度,而且可简化生产工艺,节省制造成本;反之则可能影响结构的安全使用甚至无法施焊.例如相同板厚的对接接头,手工焊与自动埋弧焊的坡口形式及几何尺寸完全不同;两块板相连时采用对接或搭连接,其强度、备料、焊接要求及制造成本也迥然不同,这就需要根据技术经济效果综合考虑,认真选择. 我国关于不同焊法的接头形式的国家标准有: GB985—88气焊、手工电弧焊及气体保护焊焊缝坡口的基本形式与尺寸; GB986—88 埋弧焊焊缝坡口的基本形式和尺寸; 它们具有指导性,需要指出,在不同行业及各个工厂企业,由于习惯及一些特殊要求,在接头形式及符号上会出现差异。 4、焊接方法及焊缝符号在设计图上的表示: 设计标准、规范与法规是指导设计、制造、试验与验收的重要依据。从事焊接结构产品设计的人员,应通晓本专业范围所涉及的各类原材料、焊接材料、焊接设备、焊接工艺、无损检测、焊缝及焊接接头的力学性能检验与验收标准,此外,还应当熟悉与焊接有关的基础与通用标准。 焊接标记符号与辅助加工记号,已经批准实施的国家标准有: GB324-88 焊缝符号表示法; GB5185-85 金属焊接及钎焊方法在图样上的表示方法; GB12212-90 技术制图焊缝符号的尺寸、比例及简化表示法; GB7093.2《图形符号表示规则产品技术文件用图形符号》; GB4457.3 《机械制图字体》; GB4457.4 《机械制图图线》; GB4458.1 《机械制图图样画法》; GB4458.3 《机械制图轴测图》; 它们通过符号、数字或以技术要求方式在图样中标明。(凡应用标准规定的,可在图样上直接标注标准号及合格要求,以简化技术文件内容。) 在技术图样中,一般按GB324-88规定的焊缝符号表示焊缝,也可按GB4458.1和GB4458.3规定的制图方法表示焊缝。焊缝图形符号及其组成,应按GB7093.2《图形符号表示规则产品技术文件用图形符号》的有关规则设计和绘制,用于焊缝符号的字体和图线应符合GB4457.3和GB4457.4的规定。 焊接设计人员了解各种常用的及新推广的焊接方法、设备、材料、工艺基础知识,通晓现行的焊缝符号、标志方法、尺寸公差,熟悉最常用的焊缝质量检测方法与质量分等规定。 5、技术要求的一般内容: 技术要求

焊接工艺评定作业指导书

钢结构焊接工艺评定作业指导书 JZB-JSZW-B/1-04 1.目的 为验证拟定的焊件是否满足钢结构焊接作业指导的要求,确定焊件焊接接头的使用性能符合标准要求。 2.适用范围 适用于本公司承揽的钢结构工程项目的焊接工艺评定。 3.编制依据 建筑钢结构焊接技术规程 JGJ81-2002 4.焊接工艺评定基本要求 4.1 凡符合以下情况之一者,应在钢结构构件制作及安装施工之前进行焊接工艺评定:4.1.1 首次采用的钢种、焊接材料和焊接方法必须进行焊接工艺评定。 4.1.2 设计规定的钢材类别、焊接材料、焊接方法、接头形式、焊接位置、焊后热处理制度以及所采用的焊接工艺参数、预热后热措施等各种参数的组合条件为首次采用。4.2 焊接工艺评定应由结构制作、安装企业根据所承担钢结构的设计节点形式、钢材类型、规格、采用的焊接方法、焊接位置等,制定焊接工艺评定方案,拟定相应的焊接工艺评定指导书,按《建筑钢结构焊接技术规程》JGJ81-2002的规定施焊试件、切取试样并由具有国家技术质量监督部门认证资质的检测单位进行检测试验。 4.3 焊接工艺评定的施焊参数,包括热输入、预热、后热制度等应根据被焊材料的焊接性制订。 4.4 焊接工艺评定所用设备、仪表的性能应与实际工程施工焊接相一致并处于正常工作状态。焊接工艺评定所用的钢材、焊钉、焊接材料必须与实际工程所用材料一致并符合相应标准要求,具有生产厂出具的质量证明文件。 4.5 焊接工艺评定试件应由该工程施工企业中技能熟练的焊接人员施焊。 4.6 焊接工艺评定所用的焊接方法、钢材类别、试件接头形式、施焊位置分类代号应符合《建筑钢结构焊接技术规程》中表 5.1.6/1-5.1.6/4及图5.1.6/1-5.1.6/4的规定。

焊接工艺规程

四、要求:详见《电网钢管结构焊工资格培训考核大纲》。 接头形式 *考试试板坡口加工均采用机械加工(考试试板和练习试板由一车间负责加工) *练习试板坡口加工,可采用火焰切割+砂轮打磨。图1和图2练习试板数量按5倍以上准备。

内部焊工考试试板 1、内部焊工考试,采用3个类型的试板。 评定:内部X光拍片+外观+焊缝尺寸评定:外观+焊缝尺寸评定:外观+焊缝尺寸材质试板宽/mm 试板长/mm 数量附图备注 Q345/10mm 75 150 1 图1 等离子下料、 外协加工 Q345/10mm 75 150 1 图2 等离子下料、 外协加工 Q345/6mm 50 170 1 图3 等离子下料Q345/14mm 80 200 2 图4 按图下料后, 只需加工30 块 Φ89x4钢管(Q235)或Φ114x4钢管长度=100 1 锯切,割好相 贯线 长度=200 1 锯切 图1 图2 图3 图4

超大法兰杆体装焊工艺 编制:日期: 批准:日期: 宁波鲍家变订单号N09061703-9,SSGZ1-33钢管杆(G段), 温州电力订单号N09082006-9,SSGZJ-18钢管杆(E段),下法兰超出锌缸宽度50~70mm,上述两杆体下法兰(如下图)两侧切边后与杆体的焊接,镀锌后再将两侧切边部分焊接。 具体要求如下: 1、下法兰按图纸要求完成下料和孔加工后,在按图纸要求进行两侧切边,切边时必须严格控制尺寸2730±2mm,且保证两侧平行。法兰切边坡口如图。 2、下法兰与杆体装配时,SSGZ1-33(G段)下法兰切边拼缝与横担基本平行;SSGZJ-18(E 段)下法兰切边拼缝与横担基本垂直。 3、下法兰拼缝区域的加强筋也镀锌后焊接。 4、拼缝区域的加强筋、法兰切边焊接区域做上标识,在送镀锌前涂上油漆,一起随杆体送热镀锌。 5、杆体、法兰切边、加强筋镀锌回厂检验合格后、将法兰焊接区域和加强筋焊接区域,法兰与加强焊接区域,进行严格的打磨清理后进行装配和焊接。 6、装配时,保证法兰切边与法兰装配齐平,焊接时应控制焊接变形,不允许存在错边和角变形。 7、焊接合格后,对焊接区域打磨清理,经检验合格后进行防腐处理。防腐处理要求:对焊接区域先涂环氧富锌底漆2道,干膜厚度80μm。待油漆干后,再喷锌处理,保证颜色基本一致 文件分发记录

管道焊接施工工艺标准..

管道焊接施工工艺标准 1.适用范围 本工艺标准适用于工厂管道预制加工和野外现场管道安装工程的焊接施工作业指导。 2.引用标准 2.1《特种设备焊接工艺评定》JB4708-2008 2.2《工业金属管道工程施工及验收规范》GB50235-97 2.3《现场设备、工业管道焊接工程施工及验收规范》GB50236-98 2.4《电力建设施工及技术验收规范》(火力发电厂管道篇)DL5031-1994 2.5《电力建设施工及技术验收规范》(火力发电厂焊接篇)DL5007-1992 2.6《化工金属管道工程施工及验收规范》HG20225-95 2.7《石油化工剧毒、可燃介质管道施工及验收规范》SH3501-2001 2.8《西气东输管道工程焊接施工及验收规范》1(2010年6月4日) 2.9《石油天然气站内工艺管道焊接工程施工及验收规范》SY0402-2000 2.10《石油和天然气管道穿越工程施工及验收规范》SY/T4079-1995 2.11《钢质管道焊接及验收》SY/T 4103-2005

2.12《输油输气管道线路工程施工技术规范》Q/CVNP 59-2001 2.13《工业设备及管道绝热工程施工及验收规范》GBJ126-89 2.14《给水排水管道工程施工及验收规范》GB50268-2008 2.15《钢制压力容器焊接工艺评定》JB4708-2000 2.16《焊接工艺评定规程》(电力行业)DL/T868-2004 2.17《火力发电厂锅炉压力容器焊接工艺评定规程》(电力行业)SD340-1989 2.18《核电厂相关焊接工艺标准》(ASME ,RCC-M) 2.19《核电厂常规岛焊接工艺评定规程》(核电)DL/T868-2004 2.20《锅炉焊接工艺评定》JB4420-1989 2.21《蒸汽锅炉安全技术监察规程》附录I(锅炉安装施工焊接工艺评定)(1999版) 2.22《石油天然气金属管道焊接工艺评定》SY/T0452-2002 2.23《工业金属管道工程质量检查评定标准》GB50184-93 2.24《锅炉压力容器焊接考试管理规则》(国家质监总疫局2002版) 2.25《承压设备无损检测》JB4730-2005.1,2,3,4,5各分册 3.术语. 3.1焊接电弧焊:指用手工操作电焊条的一种电弧焊焊接方法。管道焊接常用上向焊和下向焊两种。 3.2自动焊:指用焊接机械操作焊丝的一种电弧焊焊接方法。管

压力管道通用焊接工艺规程碳钢

压力管道通用焊接工艺规程(GD01) 1.总则 本规程适用于按SH3501-2002《石油化工剧毒、可燃介质管道施工及验收规范》、GB50235-97《工业金属管道规程施工及验收规范》及GB50236《现场设备、工业管道焊接工程施工及验收规范》等标准施工验收的20、20G、Q235-A、20R、16Mn、16MnR等碳钢及其与20、20G、Q235-A、20R、16Mn、16MnR之间的管道焊接。 本规程编制所依据的焊接工艺评定号: 所有参加焊接的焊工,均必须按《锅炉压力容器压力管道焊工考试与管理规则》进行考试,并取得相应的焊工资格。 2.焊前准备 坡口加工后应进行外观检查,其表面不得与裂纹、夹层等缺陷。 焊接接头组对前,应用手工或机械方法清理内外表面,在坡口两侧20mm范围不得有油漆、毛刺、锈斑、氧化皮及其他对焊接过程有害的杂物。 3.焊接 定位焊应与正式焊接工艺相同,其焊缝长度宜为10~15mm,高宜为2~4mm,且不超过壁厚的2/3. 不得在焊件表面引弧或试验电流,焊件表面不得有电弧擦伤等缺陷。

定位焊的焊缝不得有裂纹及其它缺陷,若发现缺陷应及时清除,定位焊焊道的两端应修磨成缓坡形。 氩弧焊焊接时,使用氩气的纯度应在﹪以上,含水量小于50mm/L。 在保证焊透及熔合良好的条件下,应选用小的焊接参数,采用短弧、多层多焊道,层间温度控制在60℃以下。 有耐腐蚀性要求的双面焊焊缝,与介质接触的一侧应最后焊接。 管径DN≥60mm的对接焊缝,骑座式角对接缝全采用手工钨极氩弧焊,其它焊缝可采用氩弧焊打底,手工电弧焊盖面;也允许采用手工电弧焊打底(设计图样或用户要求氩弧焊打底外),但施焊者必须具备相应不带垫的焊工合格项目,其焊接工艺参数见下表:

金属材料焊接工艺知识重点总结

第一章 1、焊接:是通过加热或加压,或两者并用,并且添加或不添加材料,使工件达到永久性连接的一种方法 2、焊接成形技术有如下特点:(1)焊接可以将不同类型、不同形状尺寸的材料连接起来,可使金属结构中材料的分布更合理。(2)焊接接头是通过原子间的结合力实现连接的,刚度好、整体性好,在外力作用下不像机械连接那样产生较大的变形;而且,焊接结构具有良好的气密性、水密性,这是其它连接方法无法比拟的。(3)焊接加工一般不需要大型、贵重的设备。因此,是一种投资少、见效快的方法。同时,焊接是一种“柔性”加工工艺,既适用于大批量、又适用于小批量生产。(4)焊接连接工艺特别适用于几何尺寸大而材料较分散的制品,焊接还可以将大型、复杂的结构件分解为许多小型零部件分别加工,然后通过焊接连接整体结构。 3、焊接可分为熔焊、压焊、钎焊。 4、熔焊有:电弧焊{熔化极电弧焊【焊条电弧焊、埋弧焊、熔化极气体保护焊(GMAW)、 焊、螺柱焊、】非熔化极电弧焊【钨极氩弧焊(GTAW)、等离子弧焊、氢原子焊】};CO 2 气焊{氧-氢火焰、氧-乙炔火焰、空气-乙炔火焰、氧-丙烷火焰、空气-丙烷火焰};铝热焊;电渣焊;电子束焊{高真空电子束焊、低真空电子束焊、非真空电子束焊};激光焊{CO 激 2 光焊、Y AG激光焊};电阻点焊;电阻缝。 5、压焊有:闪光对焊、电阻对焊、冷压焊、超声波焊、爆炸焊、锻焊、扩散焊、摩擦焊。 6、钎焊有:火焰钎焊、感应钎焊、炉中钎焊{空气炉钎焊、气体保护钎焊、真空炉钎焊}、盐浴钎焊、超声波钎焊、电阻钎焊、摩擦钎焊、金属熔钎焊、放热反应钎焊、红外线钎焊、电子束钎焊。 7、熔焊:利用一定的热源,使构件的被连接位居部熔化成液体,然后再冷却结晶成一体的方法 8、压焊:利用摩擦、扩散和加压等物理作用,克服两个连接面的不平度,除去氧化物及其他污染物,使两个连接表面上的原子相互接近到晶格距离,从而在固态条件下实现连接的方法 9、钎焊:采用熔点比母材低的材料作为钎料,将焊件和钎料加热至高于钎料熔点的温度,利用毛细作用使液态钎料充满接头间隙,融化钎料润湿母材表面,冷却后结晶形成冶金结合的方法。 第二章 1.电弧焊是利用电弧作为热源的熔焊方法,简称弧焊。 2.电弧是一种气体导电现象,电弧稳定燃烧时,参与导电的带电粒子主要是电子和正离子。这些带电离子是通过电弧中气体介质的电离和电极的电子发射这两个物理过程而产生的。 3.气体电离主要有:热电离、电场电离、光电离,而且在电弧温度下是以一次电离为主。 4.电极的电子发射有:热发射、电场发射、光发射、碰撞发射。 5.电弧对外界呈现电中性。 6.电弧是由阴极区、弧柱区、阳极区三部分构成。 7.阴极斑点:阴极斑点是指阴极表面局部出现的发光强、电流密度很高的区域。形成条件: ①该点具有可能发射电子的条件②电弧通过该点时能量消耗较小。特点:自动跳向温度高、热发射能力强的物质上;自动寻找氧化膜的倾向。 8.弧柱的电离以热点里为主,电弧放电具有小电压、大电流的特点。 9.阳极斑点:阳极斑点是指阳极表面局部出现的发光强、电流密度大的区域。形成条件:首

中美焊接工艺评定标准中母材评定规则的比较备份样本

中美焊接工艺评定标准中母材评定规则的比较 靳茂明( 江苏省特种设备安全监督检验研究院, 210003, 南京) 摘要: 经过对焊接工艺评定在概念和逻辑上的理论分析, 认识评定标准的本质规律, 在理论层上完善ASME评定标准的结构体系, 并对国内评定标准中的一些认识提出不同的观点。本文在逻辑理论的基础上, 对中美焊接工艺评定中母材评定问题进行一些分析和比较, 认为基础标准体系的差异对焊接工艺评定标准有着重要影响。 关键词: 焊接工艺评定; 母材组合形式; 概念; 逻辑; 分类; 正逻辑定义; 负逻辑定义 1. 母材组合形式的分类和母材评定规则定义方法 1.1定义: ( 1) 对焊: 同一牌号母材之间的焊接称为”对焊”。 ( 2) 组焊: 不同牌号母材之间的焊接称为”组焊”。注: 即一般说的异种接头。 ( 3) 同类组焊: 同一类别中不同母材之间的焊接称为”同类组焊”。 ( 4) 跨类组焊: 不同类别母材之间的焊接称为”跨类组焊”( 或异类焊接) 。. ( 5) 同组组焊: 同一组别中不同的两种母材之间的焊接。 ( 6) 跨组组焊: 同一类别中不同组别的两种母材之间的焊接 以上6种分类是评定标准中实际存在的母材组合形式的基本逻辑分类, 对评定规则的语言描述的准确性有着重要意义。母材的分类体系并不能直接用于母材评定规则, 母材的组合形式的分类才是评定规则需要的工艺评定因素, 见表1和表2。 母材以类别为基本要素的分类体系表1 母材以组别为基本要素的分类体系表2

1.2 标准中母材组合类型的数量 假设标准中全部铁基材料的分类和分组情况如表3。 ( 1) 只考虑类别时, 母材组合类型的数量( 即包含不同”类别符号”的概念数量) , 见表4。其中”同类对焊”类型数量=”同类组焊”类型数量=12 ”跨类组焊”类型数量= C(12,2) = 12!/[(12-2)!*2!] = 12*11/2 = 66 只考虑类别时, 母材组合的类型数量=”同类对焊”+”同类组焊”+”跨类组焊”= 12+12+66 = 90 ( 2) 考虑组别后, 母材组合的类型数量, 见表5。 其中”同组对焊”类型数量=”同组组焊”类型数量= 21; ”跨组组焊”类型数量= 每个类别中跨组数量之和= 13 ( ”跨组组焊”类型的数量: Fe-1内为6; Fe-3内为3; Fe-4内为1; Fe-5A内为0; Fe-5B内为1; Fe-5C内为0; Fe-6 内为0; Fe-7内为1; Fe-8内为1; Fe-9B内为0; Fe-10I内为0; Fe-10H 内为0) 不同组别的”组焊”数量类型 = C(21,2) = 21!/[(21-2)!*2!] = 210 210种类型中”跨类组焊( 异组异类组焊) ”类型数量 = 210 – 13 = 197 考虑组别后, 母材组合的类型数量=”同组对焊”+”同组组焊”+”跨组组焊”+”跨类组焊” =21+21+13+197=252 母材类别和组别数量( 仅作为示例) 表3 只考虑类别时, 母材组合的类型数量表4 考虑组别后, 母材组合的类型数量表5 则: 母材组合类型的数量 =2n+ C(n,2) ( 2) 假设L1类别中包含m1种组别, L2类别中包含m2种组别; 。。。Ln类别中包含m(n)种组

金属材料焊接及热处理工艺

金属材料焊接及热处理工艺 16.1 总则 1)本工艺适用于汽机范围内管道、容器、承重构架及结构部件的焊接及热处理工作。 2)本工艺适用于低碳钢,普通低合金钢,耐热钢、不锈钢、铜及铜合金、铝及铝合金、铸铁等材料的手工电弧焊,手工钨氩弧焊和O2 C 2H2气焊。 3)有关安全方面,应遵守安全防火等规程的有关规定。 4)焊缝检查和焊工考核及质量验收应遵照有关射线超声检验等规定及焊工考试的规则执行。5)对焊工及热处理工的要求,见电力建设施工及验收技术规范(火力发电厂焊接篇)。 16.2 焊接工艺 16.2.1焊接材料 16.2.1.1焊条、电丝的选择,具体按工程一览表选择 1)对同种类钢,机械性能及化学性能,化学成分与母材相近,焊条的合金元素的含量应略高于母材,Ar弧焊焊则要求与母材相同,化学类有钢要求抗蚀性同母材相同。 2)对焊接质量要求高,裂纹倾向大的材料和结构,应选用低氢型焊条。 3)对于异种钢,两非“A”体钢同类组织异种钢应选择靠近低合金侧或选其中间合金含量的焊条和焊丝;两非“A”体一同组织异种钢应选择能获得综合性能好的组织的焊条,焊丝,两材料其中之一为“A”体不锈钢时应选用高Ni不透钢焊条,对各异种钢结构,可参考附表16-1选择。 4)对低碳钢,普通碳素结构钢,选用相应强度等级的结构焊丝,焊条。 5)焊条的直径选择,必须是在保证操作工艺性良好,成型美观,保证焊接质量的前提下尽可能选择较大直径的焊条,对于承压管道的多层焊,底层采用?2.5mm焊条,第2-3层选用?3.2mm 焊条,以后各层选用?4.0mm焊条,对应力大,裂纹倾向大的高合金钢,高碳钢,应选用较小的焊条直径。 16.2.1.2钨极的选择:目前市场上有纯钨极,钍钨极和铈钨极三种,纯钨极及钍钨极已趋于淘汰不再被采用。最好选用铈钨极。其直径据所用的电流进行选择,各种规格的钨极所适应的电流范围如表16.1.

焊接工艺评定、焊接工艺规程实用编制方法

焊接工艺评定、焊接工艺规程的实用编制方法 一、焊接工艺评定的有关概念 二、焊接工艺评定及使用管理程序 三、焊接工艺评定变素及其评定规则 四、如何阅读焊接工艺评定报告 五、如何编制焊接工艺规程 一、焊接工艺评定的有关概念 1、焊接工艺评定的定义和目的 2、消除焊接工艺评定认识上误区: 3、“焊接性能”与“焊接性” 4、“焊接性能试验”与“焊接工艺评定” 5、“焊缝”与“焊接接头” 6、“焊接工艺评定”与“焊工技能考试” 7、焊接工艺评定的基本条件 8、常用焊接工艺评定标准: JB4708-2000《钢制压力容器焊接工艺评定》 GB50236-98《现场设备、工业管道焊接工程施工及验收规范》第4章 劳部发1996[276]号《蒸汽锅炉安全监察规程》附录I JGJ81-2000《建筑钢结构焊接技术规程》第5章 GB128-90《立式圆筒形钢制焊接油罐施工及验收规范》附录一 ASME第IX卷《焊接与钎焊》 二、焊接工艺评定及使用管理程序 1、焊接工艺评定程序 (1)焊接工艺评定立项 (2)焊接工艺评定委托 (3)编制焊接工艺指导书(WPI)并批准 (4)评定试板的焊接 (5)评定试板的检验 焊接工艺评定失败,重新修改焊接工艺指导书,重复进行上述程序。

(6)编写焊接工艺评定报告(PQR)并批准 2、焊接工艺评定文件的使用与管理 (1)焊接工艺评定文件的受控登记。 (2)焊接工艺评定的有效版本及换版转换。 (3)每季度编制焊接工艺评定文件的有效版本目录。 (4)保证现场工程和产品的焊接工艺评定的覆盖率为100%。 (5)焊接工艺评定文件作为公司的一项焊接技术储备,属于公司重要技术机密文件,应妥善保管。 三、焊接工艺评定变素及其评定规则 1、焊接工艺评定的主要变素: 试件形式 母材类别 焊接方法 焊接工艺因素 焊后热处理种类及参数 母材厚度 焊缝熔敷金属厚度 四、如何阅读焊接工艺评定报告 1、如何认识焊接工艺评定报告的作用 (1)焊接工艺评定报告的合法性: (2)焊接工艺评定报告的有效性: (3)焊接工艺评定报告及焊接工艺规程的局限性: (4)焊接工艺评定报告是一种必须由企业焊接责任工程师和总工程师签字的重要质保文件,也是技术监督部门和用户代表审核施工企业质保能力的主要依据之一。 2、焊接工艺评定报告与焊接工艺规程的关系 3、阅读焊接工艺评定报告的方法 五、如何编制焊接工艺规程 1、焊接工艺规程的作用 2、焊接工艺规程的基本要求 3、焊接工艺规程的编写应遵循的原则

相关文档
相关文档 最新文档