文档视界 最新最全的文档下载
当前位置:文档视界 › 概率论重点及课后题答案1

概率论重点及课后题答案1

概率论重点及课后题答案1
概率论重点及课后题答案1

第1章随机事件与概率

一、大纲要求

(1)理解随机事件的概率,了解样本空间的概念,掌握事件之间的关系与运算.

(2)了解概率的统计定义和公理化定义,掌握概率的基本性质.

(3)会计算古典概型的概率和几何概型的概率.

二、重点知识结构图

三、基础知识

1.随机试验的特征

(1)试验可以在相同的条件下重复地进行.

(2)试验的可能结果不止一个,但明确知道其所有可能会出现的结果.

(3)在每次试验前,不能确知这次试验的结果,但可以肯定,试验的结果必是所有可能结果中的某一个.

2.样本空间

在讨论一个随机试验时,试验的所有可能结果的集合是明确知道的,称这个集合为该实验的样本空间,常用()S Ω或表示,其元素称为样本点,常用ω记之,它是试验的一个可能结果.

3.随机事件

在实际问题中,面对一个随机试验,人们可能会关心某些特定的事情在重复试验下是否会发生.例如,投资者关心明日收市股价是否上涨,即明日股价>今日收市价,它是样本空间的一部分.因此,称样本空间的一些子集为随机事件,简称事件,通常用大写英文字母A B C 、、记之.

4.事件的关系和运算

一个较为复杂的事件,通过种种关系,可使其与一些较为简单的事件联系起来,这时,我们就可设法利用这种联系,通过简单的事件去研究那些较为复杂的事件,用已知的事件去表示未知的事件.

5.事件的蕴含与包含

若当事件A 发生时B 必发生,则称A 蕴含B ,或者说B 包含A ,记作A B ?.

6.事件的相等

若A 与B 互相蕴含,即A B ?且B A ?,则称事件A 与B 相等,记为A B =.

7.事件的互斥(或称互不相容)

若事件A B 、不能在同一次试验中都发生(但可以都不发生),则称它们是互不相容的或互斥的.

若一些事件中的任意两个事件都互不相容,则称这些事件是两两互不相容的,或简称互不相容的.

8.事件的对立(或称逆)

互不相容的一个重要特例是“对立”.称事件{}B A =不发生为A 的对立事件或逆事件,常记作A .

9.事件的并(或称和)

对给定的事件A 、B ,定义一个称为并或和的事件,以A B 记之.

A B ={A 发生或B 发生}={A 、B 至少有一个发生}

10.事件的交(或称积)

对给定的事件A 、B ,定义一个称为交或积的事件,以AB 记之.

AB ={A 发生且B 发生}={A 、B 同时发生}

11.事件的差

两个事件A 、B 之差,记为A B -.其定义是:

A B -={A 发生但B 不发生}={A 发生且B 发生}

从定义可看出:A B -=AB .

12.事件域

定义称样本空间Ω的一些子集所组成的集合F 为事件域.

如果满足以下3个条件:①Ω∈F ;②若A ∈F ,则A ∈F ③若i A ∈F (1,2,i = ),则1n

i

i A =∈ F ;称F a 中的元素为事件. 13.概率的统计定义

定义若事件A 在n 次试验中出现了r 次,则称比值/r n 为事件A 在n 次试验中出现的频率记作()n f A ,即

()n r f A n

= 式中r 称为事件A 在n 次试验中出现的频数.

概率的统计定义在同一组条件下所作的大量重复试验中,事件A 出现的频率总是在区间(0,1)上的一个确定的常数p 附近波动,并且稳定于p ,则称p 为事件A 的概率,记为()P A .即

()P A p =

14.古典概率定义

古典概率定义在古典概型中,如果基本事件的总数为n (n 为有限数),事件A 所

包含的样本点个数为r (r n ≤),则定义事件A 的概率()P A 为/r n .即

()r A P A n =

=中包含的样本点个数基本事件总数

15.概率的公理化定义 定义设Ω是样本空间,A 是随机事件,即A 是Ω上事件域F a 中的一个元素,()P A 是A 的实值函数,且满足下列3条公理,则称函数()P A 为事件A 的概率. 公理1对于任意事件A ,有0()1P A ≤≤.

公理2()1P Ω=.

公理3若12,,,,n A A A 两两互斥,则11()()i i i i P A P A ∞∞

===∑∑(可列可加性).

四、典型例题

例1设A 、B 是两个随机事件,若()0P AB =,则下列命题中正确的是().

(A )A 和B 互不相容(互斥)(B )AB 是不可能事件

(C )AB 不一定是不可能事件(D )()0()0P A P B ==或

解一个事件的概率为0,这个事件未必是不可能事件;因此C 项正确.反例如下:随机地向[0,1]区间内投点,令x 表示点的坐标,设{01/2},{1/21}A x B x =≤≤=≤≤,则{1/2}A B x ==,由几何概率可知,()0P AB =,由此例子还可得出A 项和B 项是不对的.D 项也是错误的,反例如下:

掷一枚均匀的硬币,设A 表示出现正面,B 表示出现反面,则()()1/2P A P B ==,

但AB φ=,从而()0P AB =.

例2 设当事件A 与B 同时发生时,事件C 比发生,则下列式子正确的是().

(A )()()()1P C P A P B ≤+-(B )()()()1P C P A P B ≥+-

(C )()()P C P AB =(C )()()P C P A B =

解已知AB C ?,则()()P C P AB ≥,又因为

()()()()()()1P AB P A P B P A B P A P B =+-≥+-

所有B 项正确,而A 项、C 项和D 项显然是错误的.

例3 袋子里有5个白球,3个黑球,从中任取两个球,求取出的两个球都是白球的概率.

解样本空间所包含的样本点总数为28n C =.

设事件{}A =取出的两个球都是白球,则事件A 包含的样本点总数为25k C =,故

2528

()0.357k C P A n C ==≈ 例4 一批产品工200个,其中有6个废品,求:(1)这批产品的废品率;(2)任取3个恰有1个废品的概率;(3)任取3个全是废品的概率.

解样本空间所包含的样本点的总数为3200n C =. 设事件

{3}1,3i A i i ==取出的个产品中有个废品()

;{}B =事件这批产品的废品率.若取出的3个产品中有i 个废品,则这i 个废品必是从6个废品中获得的,而另3i -个合格品必是从194个合格品中获得的,从而事件i A 所包含的样本点数为

36194(1,3)i i i k C C i -==,故

6()0.03200

P B == 121619413200

()0.086k C C P A n C ==≈ 33613200

()0.00002k C P A n C ==≈ 例5 袋子里装有6个球,其中4个白球,2个红球.从袋中取球两次,每次任取一个,试分别就放回抽样和不放回抽样两种情况,求:(1)取到的两个球都是白球的概率;(2)取到的两个球颜色相同的概率;(3)取到的两个球中至少有一个是白球的概率.

解设事件{}A =两个球都是白球;事件{}B =两个球都是红球;

事件{}C =两个球中至少有一个是白球.

第一种情况:不放回抽样

样本空间的基本事件总数为116530n C C ==.事件A 的基本事件数为

11434312A k C C ==?=.事件B 基本事件数为1121212B k C C ==?=.

(1)122()305

A k P A n === (2)由于21()3015

B k P B n ===,且AB =?,因此 217()()()51515P A B P A P B =+=

+= (3)114()1()11515P C P B =-=-

= 第二种情况:放回抽样

第一次从袋中取球有6个球可供抽取,第二次也有6个球可供抽取,由乘法原理,共有66?种取法,即样本空间的基本事件总数为66?.对事件A 而言,第一次有4个白球可供抽取,第二次也有4个球可供抽取,由乘法原理,共有44?种取法,即A 中包含44?个基本事件.同理,B 中包含22?个基本事件.

(1)444()669

P A ?==? (2)由于221()669

P B ?==?,且AB =?,因此 415()()()999P A B P A P B =+=

+= (3)18()()1()199P C P B P B ==-=-

= 例6 从n 双不同型号的鞋子中任取2(2)k k n <只,试求下列事件的概率:(1)A ={没有成对的鞋子};(2)B ={恰有一对鞋子} .

解样本空间包含22k n C 个样本点.

(1)为使事件A 发生,先将鞋子成对地放在一起,然后从n 双鞋子中取出2k 双,

最后再从这2k 双鞋子中每双取出1只,故事件A 的概率为

2122222222()2()k k k k n n k k n n

C C C P A C C == (2)为使事件B 发生,先从n 双鞋子中取出1双,再从剩下的1n -双鞋子中任取22k -双,最后再从这22k -双鞋子中每双取出1只,故事件B 的概率为

12212222221212222()2()k k k k n n n k k n n

C C C n C P B C C ------== 例7

随机地向半圆0y <

解这是一个几何概型的概率计算问题.

设{(,):02}S x y y x a =≤≤≤≤,在极坐标下可写为

{(,):2cos ,0/2}S r r a θθθπ=≤≤≤

设事件{(,):2cos ,0/4}A r r a θθθπ=≤≤<,故

22

21124()22

a a A P A a B πππ

+===+的面积的面积 例8 将50个铆钉随地取来用在10个部件上,其中3个铆钉强度太弱,每个部件用3个铆钉,若将3个强度太弱的铆钉都装在同一个部件上,则这个部件的强度就太弱,问发生一个部件强度太弱的概率是多少?

解设事件A ={发生一个部件强度太弱},则A 所含的样本点数为12710479

27!(3!)C C .将50个铆钉装在10个部件上的所有装法的全体看作样本空间,则所包含的样本点数为305010

30!(3!)C ,故 1271047

9

30501027!

1(3!)()30!1960(3!)C C P A C ==

例9 设A B 、为随机事件,()0.5,()0.2P A P A B =-=,求()P AB .

解因为A B A AB -=-,且AB A ?,所以

()()()P A B P A P AB -=-

于是()()()0.50.20.3P AB P A P A B =--=-= 因此()1()0.7P AB P AB =-=

例10 在(0,1)内任取三个数,求以为长度的三条线段围成一个三角形的概率.

解设样本空间{(,,):0,,1}S a b c a b c =<<;

所求事件{(,,):,,}A a b c a b c a c b b c a =+>+>+> 因此23111311132()112

A OABCD P A S -????====的面积六面体的体积的面积边长为的正方体体积 五、课本习题全解

1-1(1)Ω={1,2,3,4,5,6};

(2)Ω={(1,2,3),(1,2,4),(1,2,5),(1,3,4)(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)};

(3)Ω={3,4,5,6,7,8,9,10};

(4)用数字1代表正品,数字0代表次品,则

Ω={(0,0),(1,0,0),(0,1,0),(1,1,0,0),(0,1,1,0),(1,0,1,0),(1,1,1,0),(1,1,0,1),(1,0,1,1),(1,1,1,1)}.

1-2 (1)A 为随机事件;B 为不可能事件;C 为随机事件;D 为必然事件;(2)、(3)、(4)、(5)均为随机事件.

1-3 (1)A ;(2)ABC ;(3)A B C ;(4)ABC ;(5)ABC ABC ABC . 1-4 (1)ABC ;(2)ABC ABC ABC ;(3)ABC ;(4)

ABC A B C 或;

(5)ABC ABC ABC ABC ABC ABC ABC ABC ;

(6)A B C ABC ABC ABC ABC ABC ABC ABC 或或ABC . 1-5 (1)买的是1985年以后出版的英文版物理书;

(2)在“书店所有物理书都是1985年以后出版的且是英文版”这一条件下,ABC A = .

1-6 (1)、(4)、(5)、(6)、(7)正确,其余均不正确.

1-7 若需要测试7次,即前6次恰好取出2个次品,还有一个次品在

第7次取出,故有246376C C A 次.而在10个中取出7个共有710A 种取法.设A

={测试7次},故

2463767101()8

C C A P A A == 1-8 设A ={能开门},从6把钥匙中任取2把共有26C 种取法,故

2611()15

P A C == . 1-9 设A ={拨号不超过3次就能接通电话},则

191981()0.3101091098

P A =+?+??= 设B ={若记得最后一位是奇数时,拨号不超过3次就能接通电话},则

141431()0.6554543

P B =+?+??= 1-10 设A ={恰有2人的生日在同一个月份},则

21114121110455()12144

C C C C P A == .

1-11 将五个数字有放回地抽取,出现的结果有35125=种. 三个数字不同的取法有335360C A =种,故60()0.48125

P A ==; 三个数字不含1或5,即每次只能在2、3、4中进行抽取,共有3327= 种取法,故27()0.216125

P A ==; 三个数字5出现两次,即有213412C C =种取法,故12()0.096125P C =

= . 1-12 设A ={指定的3本书恰好放在一起},10本书的排列方法共有10!种,而指定的3本书的排列方法有3!种,剩下的7本书与指定的3本书这一整体的排列有8!种,故

3!8!1()10!15

P A == 1-13 (1)21134339()416

C C C P A ==;(2)341()416P B == . 1-14 从10个人中任选3个人共有310C 种方法.

(1)设A ={最小号码是5},当最小号码是5时,在610 之间还有地两个号码,即有25C 种方法,故

253101()12

C P A C == (2)设B ={最大号码是5},当最大号码是5时,在14 之间还有两个号码,即有24C 种方法,故

243101()20

C P B C == 1-15 (1)112211661()9C C P A C C ==;(2)1111244211664()9

C C C C P B C C +== .

1-16 (1)22261()15C P A C ==;(2)1124268()15

C C P A C == . 1-17 (1)设A ={样品中有一套优质品、一套次品},则

11844210056()825

C C P A C ==; (2)设B ={样品中有一套等级品、一套次品},则

1112421008()825

C C P B C ==; (3)设C ={退货},则

2112496412210076()825

C C C C P C C ++==; (4)设

D ={该批货被接受},则

2118484122100749()825

C C C P

D C +==; (5)设

E ={样品中有一套优质品},则

1184162100224()825

C C P E C == . 1-18 (1)设A ={恰有5张黑体,4张红心,3张方块,1张梅花},则

5431131313131352

()C C C C P A C = (2)设B ={恰有大牌A,K,Q,J 各一张而其余为小牌},则

111194444361352

()C C C C C P B C = 1-19 设A ={至少有两张牌的花色相同},则3112113441134354

()0.562C C C C C P A C +==.六、自测题及答案

1.事件A 与B 互不相容,且()0.8P A =,则()P AB =

2. ()0.5,()0.2P A P B A =-=则()P AB =

3.事件A 与B 互不相容,且A B =,则()P A =

4.()()()1/4P A P B P C ===,()0P AB =,()()1/16P AC P BC ==,则事件A 、B 、C 全不发生的概率为

5. 设A B 、是任意两事件,则()P A B -=()

(A) ()()P A P B - (B)()()()P A P B P AB -+

(C)()()P A P AB - (D) ()()()P A P B P AB +-

6. 设甲乙两人进行象棋比赛,设事件A ={甲胜乙负},则A 为().

(A){甲胜乙负} (B){甲乙平局}

(C){甲负} (D) {甲负和平局}

7.某单位招工需经过四项考核,设能够通过第一、二、三、四项考核的概率分别是0.6,0.8,0.91,0.95,且各项考核都是独立的,每个应招者都要经过四项考核,只要有一项不通过即被淘汰,试求:(1)这项招工的淘汰率;(2)虽通过第一和第三项考核,但仍被淘汰的概率;(3)设考核按顺序进行,应试者一旦某项不合格即被淘汰,不参加后面项目的考核,求这种情况下的淘汰率.

8.从1~9这九个数字中,又放回地抽取三次,每次任取一个,求所取的三个数之积能被10整除的概率.

9. 在某城市中发行三种报纸A B C 、、,订阅A 报的有45%,订阅B 报的有35%,订阅C 报的有30%,同时订阅A 报及B 报的有10%,同时订阅A 报及C 报的有8%,同时订阅B 报及C 报的有5%,同时订阅A B C 、、报的有3%,试求下列事件的概率:(1)只订A 报的;(2)只订A 报及B 报的;(3)只订一种报纸的;(4)正好订两种报纸的;(5)至少订阅一种报纸的.

【答案】

1.由()0,P AB =且()1()10.80.2P A P A =-=-=,得

()()()0.200.2P AB P A P AB =-=-=

2.由()()()0.2P B A P B P AB -=-=()0.5P A =得

()1()1()()()P AB P A B P A P B P AB =-+=--+=1()[()()]P A P B P AB ---=1-0.5-0.2=0.3

3.由于A B =,于是有AB A B ==,又由于A 与B 互不相容,所以有AB =?,即A B =?=,因此()0P A = .

4事件A B C 、、全不发生表示为ABC 。故

()1()P ABC P A B C =- ,

=1()1[()()()()()()()]P A B C P A P B P C P AB P AC P BC P ABC --++---- =1

1

1

113

1(00)44416168-++---+=

5.C

6.D

7.设{},2,3,4i A i i =第项考核合格(=1),根据题意有

1234()0.6,()0.8,()0.91,()0.95P A P A P A P A ====

(1)123412341234()1()1()()()()P A A A A P A A A A P A P A P A P A =-=-

10.60.80.910.950.585=-???≈;

(2)132413241324()()()()()()(1()())P A A A A P A P A P A A P A P A P A P A ==- 0.60.91(10.80.95)0.131;=??-?=

(3)

1121231234()P A A A A A A A A A A

1121231234()()()()P A P A A P A A A P A A A A =+++

1121231234()()()()()()()()()()P A P A P A P A P A P A P A P A P A P A =+++

(10.6)0.6(10.8)0.60.8(10.91)=-+?-+??-+

0.60.80.91(10.95)???-

0.585≈

8.设1A ={所取的三个数字中含有数5},2A ={所取的三个数字中含有偶数},A

={所取的三个数字之积能被10整除},则12A A A =,故

121212(()1()1()P A P A A P A A P A A ==-=- )

12121()()()P A P A P A A =--+

333854110.7860.214999??????=--+=-= ? ? ???????

9.(1)()(())(())P ABC P A B C P A A B C =-=- ()(())()()()()P A P A B C P A P AB P AC P ABC =-=--+ 0.450.100.080.030.30;=--+=

(2)()()()()()P ABC P AB C P AB ABC P AB P ABC =-=-=- 0.100.030.07;=-=

(3)()()(()P ABC ABC ABC P ABC P ABC P ABC ++=++ ()(()()()()P AB P ABC P AC P ABC P BC P ABC =-+-+-) 0.73;=

(4)()()()()P ABC ABC ABC P ABC P ABC P ABC ++=++ ()(()()()()P AB P ABC P AC P ABC P BC P ABC =--+-)+ ()()()3()P AB P AC P BC P ABC =++-

0.100.080.0530.030.14;=++-?=

(5)()P A B C

()()()()()()()P A P B P C P AB P AC P BC P ABC =++---+ 0.450.350.300.100.080.050.030.90.=++---+=

(完整版)概率论与数理统计课后习题答案

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’ 1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 ( 3 ) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5) S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = ( 4 ) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

经济数学基础-概率统计课后习题答案

习 题 一 写出下列事件的样本空间: (1) 把一枚硬币抛掷一次; (2) 把一枚硬币连续抛掷两次; (3) 掷一枚硬币,直到首次出现正面为止; (4) 一个库房在某一个时刻的库存量(假定最大容量为M ). 解 (1) Ω={正面,反面} △ {正,反} (2) Ω={(正、正),(正、反),(反、正),(反、反)} (3) Ω={(正),(反,正),(反,反,正),…} (4) Ω={x ;0 ≤x ≤ m } 掷一颗骰子的试验,观察其出现的点数,事件A =“偶数点”, B =“奇数点”, C =“点数小于5”, D =“小于5的偶数点”,讨论上述各事件间的关系. 解 {}{}{}{}{}.4,2,4,3,2,1,5,3,1,6,4,2,6,5,4,3,2,1=====D C B A Ω A 与B 为对立事件,即B =A ;B 与D 互不相容;A ?D ,C ?D. 3. 事件A i 表示某个生产单位第i 车间完成生产任务,i =1,2,3,B 表示至少有两个车间完成生产任务,C 表示最多只有两个车间完成生产任务,说明事件B 及B -C 的含义,并且用A i (i =1,2,3)表示出来. 解 B 表示最多有一个车间完成生产任务,即至少有两个车间没有完成生产任务. 313221A A A A A A B ++= B - C 表示三个车间都完成生产任务 321321321321+++A A A A A A A A A A A A B = 321321321321321321321A A A A A A A A A A A A A A A A A A A A A C ++++++= 321A A A C B =- 4. 如图1-1,事件A 、B 、C 都相容,即ABC ≠Φ,把事件A +B ,A +B +C ,AC +B ,C -AB 用一些互不相容事件的和表示出来. 解 B A A B A +=+ C B A B A A C B A ++=++ C B A B B AC +=+ BC A C B A C B A AB C ++=- 5.两个事件互不相容与两个事件对立的区别何在,举例说明. 解 两个对立的事件一定互不相容,它们不可能同时发生,也不可能同时不发生;两个互不相容的事件不一定是对立事件,它们只是不可能同时发生,但不一定同时不发生. 在本书第6页例2中A 与D 是对立事件,C 与D 是互不相容事件. 6.三个事件A 、B 、C 的积是不可能事件,即ABC =Φ,问这三个事件是否一定互不相容?画图说明. 解 不一定. A 、B 、C 三个事件互不相容是指它们中任何两个事件均互不相容,即两两互不相容.如图1-2,事件ABC =Φ,但是A 与B 相容. 7. 事件A 与B 相容,记C =AB ,D =A+B ,F =A -B. 说明事件A 、C 、D 、F 的关系. 解 由于AB ?A ?A+B ,A -B ?A ?A+B ,AB 与A -B 互不相容,且A =AB +(A -B). 因此有 A =C +F ,C 与F 互不相容, D ?A ?F ,A ?C. 8. 袋内装有5个白球,3个黑球,从中一次任取两个,求取到的两个球颜色不同的概率. 解 记事件A 表示“取到的两个球颜色不同”. 则有利于事件A 的样本点数目#A =1 315 C C .而组成试验的样本点总数为#Ω=235+C ,由古典概率公式有 图1-1 图1-2

概率论与数理统计课后习题答案

第一章 事件与概率 1.写出下列随机试验的样本空间。 (1)记录一个班级一次概率统计考试的平均分数 (设以百分制记分)。 (2)同时掷三颗骰子,记录三颗骰子点数之和。 (3)生产产品直到有10件正品为止,记录生产产 品的总件数。 (4)对某工厂出厂的产品进行检查,合格的记上 “正品”,不合格的记上“次品”,如连续查出2个次品 就停止检查,或检查4个产品就停止检查,记录检查的 结果。 (5)在单位正方形内任意取一点,记录它的坐标。 (6)实测某种型号灯泡的寿命。 解(1)},100,,1,0{n i n i ==Ω其中n 为班级人数。 (2)}18,,4,3{ =Ω。 (3)},11,10{ =Ω。 (4)=Ω{00,100,0100,0101,0110,1100, 1010,1011,0111,1101,0111,1111},其中 0表示次品,1表示正品。 (5)=Ω{(x,y)| 0

(2)A 与B 都发生,而C 不发生。 (3)A ,B ,C 中至少有一个发生。 (4)A ,B ,C 都发生。 (5)A ,B ,C 都不发生。 (6)A ,B ,C 中不多于一个发生。 (7)A ,B ,C 至少有一个不发生。 (8)A ,B ,C 中至少有两个发生。 解 (1)C B A ,(2)C AB ,(3)C B A ++,(4)ABC , (5)C B A , (6)C B C A B A ++或 C B A C B A C B A C B A +++, (7)C B A ++, (8)BC AC AB ++或 ABC BC A C B A C AB ??? 3.指出下列命题中哪些成立,哪些不成立,并作 图说明。 (1)B B A B A =(2)AB B A = (3)AB B A B =?则若,(4)若 A B B A ??则, (5)C B A C B A = (6)若Φ=AB 且A C ?,

概率论与数理统计课后习题答案

习题1.1解答 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)} 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω; {})1,3(),2,2(),3,1(),1,1(=AB ; {})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ; Φ=C A ;{})2,2(),1,1(=BC ; {})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++ 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和:C B A ++,C AB +,AC B -. 解:如图:

概率论课后习题答案

习题1解答 1、 写出下列随机试验的样本空间Ω: (1)记录一个班一次数学考试的平均分数(设以百分制记分); (2)生产产品直到有10件正品为止,记录生产产品的总件数; (3)对某工厂出厂的产品进行检查,合格的记为“正品”,不合格的记为“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果; (4)在单位圆内任意取一点,记录它的坐标、 解:(1)以n 表示该班的学生人数,总成绩的可能取值为0,1,2,…,100n ,所以该试验的样本空间为 {|0,1,2,,100}i i n n Ω==、 (2)设在生产第10件正品前共生产了k 件不合格品,样本空间为 {10|0,1,2,}k k Ω=+=, 或写成{10,11,12,}.Ω= (3)采用0表示检查到一个次品,以1表示检查到一个正品,例如0110表示第一次与第四次检查到次品,而第二次与第三次检查到的就是正品,样本空间可表示为 {00,100,0100,0101,0110,1100,1010,1011,0111,1101,1110,1111}Ω=、 (3)取直角坐标系,则有22 {(,)|1}x y x y Ω=+<,若取极坐标系,则有 {(,)|01,02π}ρθρθΩ=≤<≤<、 2.设A 、B 、C 为三事件,用A 、B 、C 及其运算关系表示下列事件、 (1) A 发生而B 与C 不发生; (2) A 、B 、C 中恰好发生一个; (3) A 、B 、C 中至少有一个发生; (4) A 、B 、C 中恰好有两个发生; (5) A 、B 、C 中至少有两个发生; (6) A 、B 、C 中有不多于一个事件发生、

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

概率论与数理统计及其应用课后答案

第1章 随机变量及其概率 1,写出下列试验的样本空间: (1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录 投掷的次数。 (2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次, 记录投掷的次数。 (3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。 (4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰 子,观察出现的各种结果。 解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =; (4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。 2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(___ ___AB B A P AB P B A P B A P ??。 解:625.0)()()()(=-+=?AB P B P A P B A P , 375.0)()(])[()(=-=-=AB P B P B A S P B A P ,

875.0)(1)(___--=AB P AB P , 5 .0)(625.0)])([()()])([()])([(___=-=?-?=-?=?AB P AB B A P B A P AB S B A P AB B A P 3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。 解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=??,所以所求得概率为 72.0900 648= 4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。(1)求该数是奇数的概率;(2)求该数大于330的概率。 解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=??个。(1)该数是奇数的可能个数为48344=??个,所以出现奇数的概率为 48.0100 48= (2)该数大于330的可能个数为48454542=?+?+?,所以该数大于330的概率为

概率论与数理统计课后习题及答案

习题八 1. 已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N,.现在测了5炉铁水,其含碳量(%)分别为 问若标准差不改变,总体平均值有无显着性变化(α=) 【解】 0010 /20.025 0.025 : 4.55;: 4.55. 5,0.05, 1.96,0.108 4.364, (4.364 4.55) 3.851, 0.108 . H H n Z Z x x Z Z Z α μμμμ ασ ==≠= ===== = - ===- > 所以拒绝H0,认为总体平均值有显着性变化. 2. 某种矿砂的5个样品中的含镍量(%)经测定为: 设含镍量服从正态分布,问在α=下能否接收假设:这批矿砂的含镍量为. 【解】设 0010 /20.005 0.005 : 3.25;: 3.25. 5,0.01,(1)(4) 4.6041 3.252,0.013, (3.252 3.25) 0.344, 0.013 (4). H H n t n t x s x t t t α μμμμ α ==≠= ==-== == - === < 所以接受H0,认为这批矿砂的含镍量为. 3. 在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为(克),样本方差s2=(g2).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=). 【解】设 0010 /20.025 2 0.025 : 1.1;: 1.1. 36,0.05,(1)(35) 2.0301,36, 1.008,0.1, 6 1.7456, 1.7456(35) 2.0301. H H n t n t n x s x t t t α μμμμ α ==≠= ==-=== == === =<= 所以接受H0,认为这堆香烟(支)的重要(克)正常. 4.某公司宣称由他们生产的某种型号的电池其平均寿命为小时,标准差为小时.在实验室测试了该公司生产的6只电池,得到它们的寿命(以小时计)为19,18,20,22,16,25,问这些结果是否表明这种电池的平均寿命比该公司宣称的平均寿命要短设电池寿命近似地

概率论重点课后题答案

第2章条件概率与独立性 一、大纲要求 <1)理解条件概率的定义. <2)掌握概率的加法公式、乘法公式,会应用全概率公式和贝叶斯公式. <3)理解事件独立性的概念,掌握应用事件独立性进行概率计算. <4)了解独立重复实验概型,掌握计算有关事件概率的方法,熟悉二项概率公式的应用. 二、重点知识结构图 为2这个公式称为乘法定理. 乘法定理可以推广到有限多个随机事件的情形. 定理设12,, ,n A A A 为任意n 个事件<2n ≥),且121()0n P A A A ->,则有 12112131212 1()()(|)(|)(|)n n n n P A A A A P A P A A P A A A P A A A A --= 3.全概率公式 定理设12,,B B 为一列<有限或无限个)两两互不相容的事件,有

1 i i B ∞==Ω∑()0(1,2,)i P B i >= 则对任一事件A ,有1 ()()(|)i i i P A P B P A B ∞==∑. 4.贝叶斯公式 定理设12,,B B 为一系列<有限或无限个)两两互不相容的事件,有 1i i B ∞==Ω∑()0(1,2,)i P B i >= 则对任一具有正概率的事件A ,有 1()(|) (|)()(|)k k k j j j P B P A B P B A P B P A B ∞==∑ 5.事件的相互独立性 定义若两事件A B 、满足,则称A B 、<或B A 、)相互独立,简称独立. 定理若四对事件;;A B A B A B A B 、、 、; 、 中有一对是相互独立的,则另外三对事件也是相互独立的.即这四对事件或者都相互独立,或者都相互不独立.定义设12n A A A ,,,是n 个事件,若对所有可能的组合1i j k n ≤<<<≤成 立: ()()()i j i j P A A P A P A =<共2n C 个) ()()()()i j k i j k P A A A P A P A P A =<共3n C 个) 1212()()()()n n P A A A P A P A P A =<共n n C 个) 则称12,,n A A A 相互独立. 定理设n 个事件12,, n A A A 相互独立,那么,把其中任意m <1m n ≤≤)个事件相应换成它们的对立事件,则所得的n 个事件仍然相互独立. 6. 重复独立实验,而且这些重复实验具备:<1)每次实验条件都相同,因此各次实验中同一个事件的出现概率相同;<2)各次实验结果相互独立;满足这两

概率统计习题带答案

概率统计习题带答案 概率论与数理统计习题及题解沈志军盛子宁第一章概率论的基本概念1.设事件A,B及A?B的概率分别为p,q及r,试求P(AB),P(AB),P(AB)及P(AB) 2.若A,B,C相互独立,试证明:A,B,C 亦必相互独立。3.试验E为掷2颗骰子观察出现的点数。每种结果以(x1,x2)记之,其中x1,x2分别表示第一颗、第二颗骰子的点数。设事件A?{(x1,x2)|x1?x2?10},事件B?{(x1,x2)|x1?x2}。试求P(B|A)和P(A|B) 4.某人有5把钥匙,但忘了开房门的是哪一把,只得逐把试开。问:恰好第三次打开房门锁的概率?三次内打开的概率?如果5把里有2把房门钥匙,则在三次内打开的概率又是多少?5.设有甲、乙两袋,甲袋中装有n个白

球、m个红球,乙袋中装有N个白球、M个红球。今从甲袋中任意取一个放入乙袋中,再从乙袋中任意取一个,问取到白球的概率是多少?6.在时间间隔5分钟内的任何时刻,两信号等可能地进入同一收音机,如果两信号进入收音机的间隔小于30秒,则收音机受到干扰。试求收音机不受干扰的概率?7.甲、乙两船欲停靠同一码头,它们在一昼夜内独立地到达码头的时间是等可能的,各自在码头上停留的时间依次是1小时和2小时。试求一船要等待空出码头的概率?8.某仓库同时装有甲、乙两种警报系统,每个系统单独使用的有效率分别为,,在甲系统失灵的条件下乙系统也失灵的概率为。试求下列事件的概率:仓库发生意外时能及时发出警报;乙系统失灵的条件下甲系统亦失灵?9.设A,B为两随机变量,试求解下列问题:已知P(A)?P(B)?1/3,P(A|B)?1/6。求:P(A|B);

概率论习题及答案习题详解

222 习题七 ( A ) 1、设总体X 服从参数为N 和p 的二项分布,n X X X ,,,21 为取自 X 的一个样本,试求参数p 的矩估计量与极大似然估计量. 解:由题意,X 的分布律为: ()(1),0k N k N P X k p p k N k -??==-≤≤ ??? . 总体X 的数学期望为 (1)(1) 011(1)(1) 1N N k N k k N k k k N N EX k p p Np p p k k ----==-????=-=- ? ?-???? ∑∑ 1((1))N Np p p Np -=+-= 则EX p N = .用X 替换EX 即得未知参数p 的矩估计量为?X p N =. 设12,,n x x x 是相应于样本12,,n X X X 的样本值,则似然函数为 11 1211(,,;)()(1) n n i i i i n n x nN x n i i i i N L x x x p P X x p p x ==- ==∑ ∑??===?- ??? ∏∏ 取对数 11 1ln ln ln ()ln(1)n n n i i i i i i N L x p nN x p x ===??=+?+-?- ???∑∑∑, 11 ln (1) n n i i i i x nN x d L dp p p ==-=--∑∑.

223 令 ln 0d L dp =,解得p 的极大似然估计值为 11?n i i x n p N ==∑. 从而得p 的极大似然估计量为 11?n i i X X n p N N ===∑. 2,、设n X X X ,,,21 为取自总体X 的一个样本,X 的概率密度为 2 2,0(;)0, x x f x θ θθ?<,求θ的矩估计. 解:取n X X X ,,,21 为母体X 的一个样本容量为n 的样本,则 20 22 ()3 x EX xf x dx x dx θ θθ+∞ -∞ ==? =? ? 3 2 EX θ?= 用X 替换EX 即得未知参数θ的矩估计量为3 ?2 X θ =. 3、设12,,,n X X X 总体X 的一个样本, X 的概率密度为 ?? ?? ?≤>=--0 ,0, 0, );(1x x e x x f x α λαλαλ 其中0>λ是未知参数,0>α是已知常数,求λ的最大似然估计. 解:设12,,,n x x x 为样本12,,,n X X X 的一组观测值,则似然函数为

概率论与数理统计第四版课后习题答案

概率论与数理统计课后习题答案 第七章参数估计 1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计) 74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002 求总体均值μ及方差σ2的矩估计,并求样本方差S 2。 解:μ,σ2 的矩估计是 61 22 106)(1?,002.74?-=?=-===∑n i i x X n X σμ 621086.6-?=S 。 2.[二]设X 1,X 1,…,X n 为准总体的一个样本。求下列各总体的密度函数或分布律中的未知参数的矩估计量。 (1)? ??>=+-其它,0,)()1(c x x c θx f θθ 其中c >0为已知,θ>1,θ为未知参数。 (2)?? ???≤≤=-.,01 0,)(1其它x x θx f θ 其中θ>0,θ为未知参数。 (5)()p p m x p p x X P x m x m x ,10,,,2,1,0,)1()(<<=-==- 为未知参数。 解:(1)X c θc θc c θdx x c θdx x xf X E θθc θ θ =--=-== =+-∞+-∞+∞ -? ? 1 ,11)()(1令, 得c X X θ-= (2),1)()(10 += = = ? ? ∞+∞ -θθdx x θdx x xf X E θ 2 )1(,1 X X θX θθ-==+得令 (5)E (X ) = mp 令mp = X , 解得m X p =? 3.[三]求上题中各未知参数的极大似然估计值和估计量。 解:(1)似然函数 1211 )()()(+-=== ∏θn θ n n n i i x x x c θ x f θL 0ln ln )(ln ,ln )1(ln )ln()(ln 1 1 =- +=-++=∑∑ ==n i i n i i x c n n θθ d θL d x θc θn θn θL

概率论课后作业及答案

1. 写出下列随机试验的样本空间及事件中的样本点: 1) 将一枚均匀硬币连续掷两次,记事件 =A {第一次出现正面}, =B {两次出现同一面}, =C {至少有一次正面出现}. 2) 一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5,从中同时取3只球. 记事件 =A {球的最小号码为1}. 3) 10件产品中有一件废品,从中任取两件,记事件=A {得一件废品}. 4) 两个口袋各装一个白球与一个黑球,从第一袋中任取一球记下其颜色后放入第二袋,搅均后再 从第二袋中任取一球.记事件=A {两次取出的球有相同颜色}. 5) 掷两颗骰子,记事件 =A {出现点数之和为奇数,且其中恰好有一个1点}, =B {出现点数之和为偶数,但没有一颗骰子出现1点}. 答案:1) }),(),,(),,(),,({T T H T T H H H =Ω, 其中 :H 正面出现; :T 反面出现. }),(),,({T H H H A =; }),(),,({T T H H B =; }),(),,(),,({H T T H H H C =. 2) 由题意,可只考虑组合,则 ? ?? ?? ?=)5,4,3(),5,4,2(),5,3,2(),4,3,2(),5,4,1(),5,3,1(),4,3,1(),5,2,1(),4,2,1(),3,2,1(Ω; {})5,4,1(),5,3,1(),4,3,1(),5,2,1(),4,2,1(),3,2,1(=A . 3) 用9,,2,1 号表示正品,10号表示废品.则 ??? ? ????? ?????????=)10,9()10,8()10,2(,),4,2(),3,2()10,1(,),4,1(),3,1(),2,1( Ω; {})10,9(,),10,2(),10,1( =A . 4) 记第一袋中的球为),(11b w ,第二袋中的球为),(22b w ,则 {}),(),,(),,(),,(),,(),,(112121112121b b b b w b w w b w w w =Ω; {}),(),,(),,(),,(11211121b b b b w w w w A =.

概率统计课后答案

概率统计课后答案

2 第 一 章 思 考 题 1.事件的和或者差的运算的等式两端能“移项”吗?为什么? 2.医生在检查完病人的时候摇摇头“你的病很 重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但 你是幸运的.因为你找到了我,我已经看过九个 病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么? 3.圆周率ΛΛ1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后 七位, 这个记录保持了1000多年! 以后有人不 断把它算得更精确. 1873年, 英国学者沈克士 公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费 林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表: 675844625664686762609 876543210出现次数数字 你能说出他产生怀疑的理由吗?

答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由. 4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗? 5.两事件A、B相互独立与A、B互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系? 6.条件概率是否是概率?为什么? 习题一 1.写出下列试验下的样本空间: (1)将一枚硬币抛掷两次 答:样本空间由如下4个样本点组成Ω=正正,正反,反正,反反 {(,)(,)(,)(,)} (2)将两枚骰子抛掷一次 答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6} Ω== i j i j (3)调查城市居民(以户为单位)烟、酒的年支出 3

概率论与数理统计统计课后习题答案

概率论与数理统计统计课后习题答案

第二章习题解答 1. 设)(1x F 与)(2 x F 分别是随机变量X 与Y 的分布函数,为使)()(2 1x bF x aF -是某个随机变量的分布函数, 则b a ,的值可取为( A ). A . 5 2,53-==b a B . 32,32==b a C . 23,21=-=b a D . 23,21-==b a 2. 解:因为随机变量X ={这4个产品中的次品数} X 的所有可能的取值为:0,1,2,3,4. 且4015542091{0}0.2817323C C P X C ===≈; 31155420455{1}0.4696969C C P X C ===≈; 2215542070{2}0.2167323 C C P X C ===≈; 1315542010{3}0.0310323C C P X C ===≈; 041554201{4}0.0010969 C C P X C ===≈. 因此所求X 的分布律为: 3.

5. 解:设X ={其中黑桃张数}. 则X 的所有可能的取值为0,1,2,3,4,5. 051339552 2109 {0}0.22159520C C P x C ===≈; 14 133955227417 {1}0.411466640 C C P x C ===≈; 231339552 27417 {2}0.274399960C C P x C ===≈; 32133955216302 {3}0.0815199920 C C P x C ===≈; 4 11339 552429{4}0.010739984 C C P x C ===≈; 50 133955233 {5}0.000566640 C C P x C ===≈. 所以X 的概率分布为: 6.

概率论重点附课后题答案

第1章随机事件与概率 一、大纲要求 (1)理解随机事件的概率,了解样本空间的概念,掌握事件之间的关系与运算. (2)了解概率的统计定义和公理化定义,掌握概率的基本性质. (3)会计算古典概型的概率和几何概型的概率. 二、重点知识结构图 三、基础知识 1.随机试验的特征 (1)试验可以在相同的条件下重复地进行. (2)试验的可能结果不止一个,但明确知道其所有可能会出现的结果.

(3)在每次试验前,不能确知这次试验的结果,但可以肯定,试验的结果必是所有可能结果中的某一个. 2.样本空间 在讨论一个随机试验时,试验的所有可能结果的集合是明确知道的,称这个集合为该实验的样本空间,常用()S Ω或表示,其元素称为样本点,常用ω记之,它是试验的一个可能结果. 3.随机事件 在实际问题中,面对一个随机试验,人们可能会关心某些特定的事情在重复试验下是否会发生.例如,投资者关心明日收市股价是否上涨,即明日股价>今日收市价,它是样本空间的一部分.因此,称样本空间的一些子集为随机事件,简称事件,通常用大写英文字母A B C 、、记之. 4.事件的关系和运算 一个较为复杂的事件,通过种种关系,可使其与一些较为简单的事件联系起来,这时,我们就可设法利用这种联系,通过简单的事件去研究那些较为复杂的事件,用已知的事件去表示未知的事件. 5.事件的蕴含与包含 若当事件A 发生时B 必发生,则称A 蕴含B ,或者说B 包含A ,记作A B ?. 6.事件的相等 若A 与B 互相蕴含,即A B ?且B A ?,则称事件A 与B 相等,记为A B =. 7.事件的互斥(或称互不相容) 若事件A B 、不能在同一次试验中都发生(但可以都不发生),则称它们是互不相容的或互斥的. 若一些事件中的任意两个事件都互不相容,则称这些事件是两两互不相容的,或简称互不相容的. 8.事件的对立(或称逆) 互不相容的一个重要特例是“对立”.称事件{}B A =不发生为A 的对立事件或逆事件,常记作A . 9.事件的并(或称和)

概率统计课后答案

第 一 章 思 考 题 1.事件的和或者差的运算的等式两端能“移项”吗?为什么? 2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么? 3.圆周率 1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表: 67 5844625664686762609 876543210出现次数数字 你能说出他产生怀疑的理由吗? 答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由. 4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗? 5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系? 6.条件概率是否是概率?为什么? 习 题 一 1.写出下列试验下的样本空间: (1)将一枚硬币抛掷两次 答:样本空间由如下4个样本点组成{(,)(,)(,)(,)Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次 答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω== (3)调查城市居民(以户为单位)烟、酒的年支出 答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥ 2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件: (1) “甲未中靶”: ;A (2) “甲中靶而乙未中靶”: ;B A (3) “三人中只有丙未中靶”: ;C AB

概率论与数理统计课后习题答案

习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出 现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A = ‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量, A =‘通过汽车不足5台’, B =‘通过的汽车不 少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2, ,6i =, 135{,,}A e e e =。 (2) {(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 (3) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (4) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5) {0,1,2,},{0,1,2,3,4},{3,4,} S A B ===。 2.设,,A B C 是随机试验E 的三个事件,试用 ,,A B C 表示下列事件: (1)仅A 发生; (2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。 解 (1)ABC (2)AB AC BC 或 ABC ABC ABC ABC ; (3)A B C 或 ABC ABC ABC ABC ABC ABC ABC ; (4)ABC ABC ABC ; (5)AB AC BC 或 ABC ABC ABC ABC ; 3.一个工人生产了三件产品,以(1,2,3)i A i =表示第i 件产品是正品,试用i A 表示下列事件:(1)没有一件产品是次品;(2)至少有一件产品是次品;(3)恰有一件产品是次品;(4)至少有两件产品不是次品。 解 (1)123A A A ;(2)1 23A A A ;(3) 123123123A A A A A A A A A ;(4) 12 13 23A A A A A A 。 4.在电话号码中任取一个电话号码,求后面四个数字全不相同的概率。 解 设A =‘任取一电话号码后四个数字全不相同’,则 5.一批晶体管共40只,其中3只是坏的,今从中任取5只,求 (1)5只全是好的的概率; (2)5只中有两只坏的的概率。 解 (1)设A =‘5只全是好的’,则 537540 ()0.662C P A C =;

概率论与数理统计课后习题答案徐雅静版

习题答案 第1章 三、解答题 1. 设P(AB) = 0 ,贝U下列说法哪些是正确的? ⑴A和B不相容; (2) A和B相容; (3) AB是不可能事件; (4) AB不一定是不可能事件; (5) P(A) = 0或P(B) = 0 (6) P(A -B) = P(A) 解:(4) (6)正确. 2. 设A, B是两事件,且P(A) = 0.6 , RB) = 0.7,问: (1) 在什么条件下P(AB)取到最大值,最大值是多少? (2) 在什么条件下P(AB)取到最小值,最小值是多少? 解:因为P(AB) ^P(A) P(B)-P(A B), 又因为P(B) _P(A B)即P(B)—P(A B)_0.所以 (1) 当P(B)二P(A B)时P(AB)取到最大值,最大值是P(AB)二P(A) =0.6. (2) P( A B) =1 时P(AB)取到最小值,最小值是P(AB)=0.6+0.7-仁0.3. 3. 已知事件A, B 满足P(AB)二P(AB),记P(A) = p,试求P(B). 解:因为P(AB)二P(AB), 即P(AB) = P(A― ) = 1 - P(A B) = 1 _ P(A) _ P(B) P(AB), 所以P(B) =1 _P(A) =1 _ p. 4. 已知P(A) = 0.7 , P(A -B) = 0.3 ,试求P( AB). 解:因为P(A -B) = 0.3 ,所以P(A ) -P(AB) = 0.3, P(AB) = P(A ) -0.3, 又因为P(A) = 0.7 ,所以P(AB) =0 .7 -0.3=0.4 , P(AB) =1 - P(AB) =0.6. 5. 从5双不同的鞋子种任取4只,问这4只鞋子中至少有两只配成一双的概率是多少? 4 解:显然总取法有n二C10种,以下求至少有两只配成一双的取法k : 法一:分两种情况考虑:k 二c;c:(c2)2+c;

相关文档