文档视界 最新最全的文档下载
当前位置:文档视界 › 类胡萝卜素提取动力学研究实验总结报告

类胡萝卜素提取动力学研究实验总结报告

类胡萝卜素提取动力学研究实验总结报告
类胡萝卜素提取动力学研究实验总结报告

应用化学系本科化学实验报告

课程名称综合化学实验成绩评定

实验项目名称设计实验指导教师

实验项目类型综合化学实验实验地点食工楼6楼633室

班级实验者学号

实验时间2012年4月18日上午~4月18日下午温度13~26 ℃湿度65~80 %

2012年4月25日上午~4月25日下午温度16~23 ℃湿度65~80 %

一、实验目的

1.掌握类胡萝卜素的定性(薄层层析法);

2.定量测定方法(紫外可见分光光度法);

二、实验原理

1. 类胡萝卜素(carotenoids)是自然界广泛存在的天然色素,包括一类碳氢化合物(Carotenes)及它们的氧化衍生物(Xanthophylls),它们由8个类异戊二烯单位组成。对天然类胡萝卜素进行分离纯化和结构鉴定是十分重要的基础研究工作之一。紫外可见吸收光谱(Uv-Vis)主要产生于分子价电子在电子能级间的跃迁,它是研究分子吸收190~750 nm波长范围内的吸收光谱,它不仅在有机化合物的结构鉴定中发挥重要作用,而且依此原理建立的紫外可见分光光度法是应用最广泛的定量分析方法之一。

2. 实验室常用的薄层色谱,其原理是利用混和物中各组分在不相混溶的两相即流动相(展开剂)和固定相(吸附剂)中吸附和解吸的能力的不同,也可以说在两相中的分配不同,当混合物随流动相(展开剂)流过固定相(吸附剂)时,发生了

反复多次的吸附和解吸的过程,从而使混合物分离成两种或多种单一的纯组分。利用萜类化合物的溶解度差异进行分离,含羟基、氧环则溶于醇,不含羟基、氧环(多烯)则溶于石油醚。

三、试剂及器材

1. 原料,试剂

胡萝卜干粉或新鲜胡萝卜;α-和β-胡萝卜素标准品、(95%和无水)乙醇、石油醚(沸程30℃~60℃、60℃~90℃)、丙酮、乙酸乙酯、苯、甲苯、乙醚、氯仿、正已烷、环己烷、抗坏血酸、BHT、盐酸、氢氧化钠、硅胶层析板、氧化铝层析板和纯水。

2. 仪器

HH-4数显恒温水浴锅(国华电器有限公司);

BS224S电子分析天平(北京赛多利斯仪器系统有限公司);

UV8000A紫外可见分光光度计(上海元析仪器有限公司);

RE52CS旋转蒸发器(上海亚荣生化仪器厂);

四、操作步骤

1. 1试剂的配制

β-胡萝卜素标准溶液:准确称β-胡萝卜素标准物质25.0 mg于小烧杯中,加入10 mg抗坏血酸+ 10 mg BHT于小烧杯中,再先加入少量氯仿溶解后,再用石油醚定容至50ml摇匀,即配成浓度为500 μg/mlβ-胡萝卜素标准溶液的使用溶液,转移至棕色试剂瓶中贮存备用。

1.2 吸收曲线和标准曲线的测绘

按表1的比例要求移取不同体积的500 μg/mlβ-胡萝卜素使用液,用石油醚(沸程要与提取胡萝卜素用的石油醚相同)稀释配制成体积为5.00ml(或10.00ml)的一

系列不同浓度的标准溶液。取中间浓度的标准溶液,以含有相同浓度抗坏血酸+BHT的石油醚(沸程要与提取胡萝卜素用的石油醚相同)溶液为参比溶液,用1 cm比色杯,于紫外可见分光光度计在200~800 nm波段进行波长扫描,根据扫描结果从而可绘得β-胡萝卜素的吸收曲线。也可以用同样的方法绘制从胡萝卜中提取得到的胡萝卜的吸收曲线,并比较和分析两吸收曲线的异同。根据测得的吸收曲线可以找到β-胡萝卜素的最大吸收波长λmax ,并以此波长为工作波长λw。

用1 cm比色杯,在λmax下,以含有相同浓度的抗坏血酸+BHT的石油醚(沸程要与提取胡萝卜素用的石油醚相同)溶液为参比溶液,测定按表1配制好的一系列标准溶液的吸光度值?Aλmax,然后用Excel软件绘制出该标准工作曲线。

表1 β-胡萝卜素标准曲线数据

编号0123456789 Vβ-胡萝卜素使

用液(ml)

00.100.200.400.80 1.20 2.00 3.00 4.00 5.00

V石油醚(ml) 5.00 4.90 4.80 4.60 4.20 3.80 3.00 2.00 1.000 cβ-胡萝卜素

(ug/ml)

010.020.040.080.0120200300400500

2.1 类胡萝卜素提取物的薄层层析

(1) 取一块活化好的层析板,用毛细管点样管(或微量注射器)将提取样品液与标

准溶液同时点在层析板上。

(2) 用铅笔在层析板上距末端1 cm处轻轻画一横线,然后用毛细管吸取样液在

横线上轻轻点样。若颜色浅,可重复点样,需前次样点挥发干后进行。样点直径不应超过2 mm,否则易拖尾影响测定。样点间距在1~1.5 cm为宜, 太

近易重叠。

(3) 展开缸内壁贴一片环绕周长的滤纸,倒入石油醚∶丙酮=50∶4作为展开剂进行

点样展开,液面高度约5mm 。滤纸下面浸入展开剂中,以使层析缸被展开剂饱和。待样点干燥后,将层析板点样一段放入层析缸中,样点不得浸泡在展开剂中,盖好瓶盖。待展开剂上升至前沿约10 mm 处取出,迅速在展开剂最前沿处画一横线。晾干,量出展开剂和样点移动的距离。也可以晾干后喷雾浓H 2SO 4显色后再量出展开剂和样点移动的距离。(4) 计算比移值R f

R f =

)

()(mm mm 剂剂剂剂剂剂剂剂

剂剂剂剂剂剂剂对于一种化合物,当展开条件相同时R f 值是一个常数。R f 可用作定性分析的依据。

五、数据记录及处理

1.β-胡萝卜素标准曲线石油醚

nm

图1 β-胡萝卜素的吸收曲线

有此表可知:β-胡萝卜素最大吸收波长在447.0nm。

序号样品名称447.0nm均值

15ug/ml标准胡萝卜素0.3335,0.3313,0.3335,0.32780.331525

210ug/ml标准胡萝卜素0.6573 ,0.6585,0.6542,0.63190.650475

315ug/ml标准胡萝卜素0.9681 ,0.9661,0.9661,0.93590.95905

420ug/ml标准胡萝卜素 1.3882 ,1.3882,1.3892,1.3464 1.37785

525ug/ml标准胡萝卜素 1.7189 ,1.7212,1.7235,1.6925 1.714025

618ug/ml标准胡萝卜素 1.1249 ,1.1272,1.1191,1.1266 1.12445

`722ug/ml标准胡萝卜素 1.3575 ,1.3645,1.3645,1.3615 1.362

由上表可得:447nm 下5--25ug/ml 的胡萝卜素浓度与A 的关系

2.薄层层析

根据实验方法测定,提取液经展开后只有一个斑点,说明该提取液在此展开体系中只能分开一个组分;且实验测得其比移值R f 为:

R f =

==0.88)()(mm mm 剂剂剂剂剂剂剂剂

剂剂剂剂剂剂剂

cm

cm 5.85.7六、结论与小结

β-胡萝卜素最大吸收波长在450.0nm ,然后再次波长下进行不同浓度吸光度的测定得出了浓度—吸光度曲线,根据此曲线可以求得不同吸光度下多对应的浓度。

七、注意事项

1.取样要迅速,否则会使液体从移液枪中溢出。

2.取挥发性溶剂时要在通风橱中进行。

3.使用薄层法时,注意样点不要浸泡在展开液中。

八、小组成员分工

本小组有组员3名,其中一名同学负责收集提取液,一名同学负责稀释提取液并定容,一名同学负责使用紫外可见分光光度计测量吸光度。

九、参考文献

[1] 王海滨,彭光华,等.菹草类胡萝卜素的研究.食品科学,2003,24(11):41-45.

[2] 王业勤,李勤生.天然类胡萝卜素研究进展、生产、应用。中国医药科技出版社.1997 年

[3]张其骏.胡萝卜类胡萝卜素及其品质的研究[D].浙江大学,硕士学位论文,2002

[4]彭光华,李忠,张声华.薄层色谱法分离鉴定枸杞籽中的类胡萝卜素[J].营养学报,1998,20(1): 76-78

[5] 施跃峰.天然β—胡萝卜素研究开发动态食品研究与开发,2000,21(2):13-16

乙酸乙酯实验报告

乙酸乙酯皂化反应速率常数测定 实验日期: 提交报告日期: 带实验的老师 一、 引言 1. 实验目的 1.学习测定化学反应动力学参数的一种物理化学分析方法——电导法。 2.了解二级反应的特点,学习反应动力学参数的求解方法,加深理解反应动力学特征。 3.进一步认识电导测定的应用,熟练掌握电导率仪的使用方法。 2. 实验原理 反应速率与反应物浓度的二次方成正比的反应为二级反应,其速率方程式可以表示为 22dc - =k c dt (1) 将(1)积分可得动力学方程: c t 22c 0dc -=k dt c ?? (2) 20 11-=k t c c (3) 式中:0c 为反应物的初始浓度;c 为t 时刻反应物的浓度;2k 为二级反应的反应速率常数。将1/c 对t 作图应得到一条直线,直线的斜率即为2k 。 对于大多数反应,反应速率与温度的关系可以用阿累尼乌斯经验方程式来表示: a E ln k=lnA-RT (4) 式中:a E 为阿累尼乌斯活化能或反应活化能;A 为指前因子;k 为速率常数。 实验中若测得两个不同温度下的速率常数,就很容易得到 21T a 21T 12k E T -T ln =k R T T ?? ??? (5) 由(5)就可以求出活化能a E 。 乙酸乙酯皂化反应是一个典型的二级反应,

325325CH COOC H +NaOH CH COONa+C H OH → t=0时, 0c 0c 0 0 t=t 时, 0c -x 0c -x x x t=∞时, 0 0 0x c → 0x c → 设在时间t 内生成物的浓度为x ,则反应的动力学方程为 220dx =k (c -x)dt (6) 2001x k =t c (c -x) (7) 本实验使用电导法测量皂化反应进程中电导率随时间的变化。设0κ、t κ和κ∞分别代表时间为0、t 和∞(反应完毕)时溶液的电导率,则在稀溶液中有: 010=A c κ 20=A c κ∞ t 102=A (c -x)+A x κ 式中A 1和A 2是与温度、溶剂和电解质的性质有关的比例常数,由上面的三式可得 0t 00-x= -c -κκκκ∞ (8) 将(8)式代入(7)式得: 0t 20t -1k = t c -κκκκ∞ (9) 整理上式得到 t 20t 0=-k c (-)t+κκκκ∞ (10) 以t κ对t (-)t κκ∞作图可得一直线,直线的斜率为20-k c ,由此可以得到反应速率系数2k 。 溶液中的电导(对应于某一电导池)与电导率成正比,因此以电导代替电导率,(10)式也成立。本实验既可采用电导率仪,也可采用电导仪。 3实验操作 3.1 实验用品

空气动力学实验之二元翼型测压实验

空气动力学实验之 二元翼型测压实验 班级 姓名 实验日期 指导教师

一、实验目的 1.了解低速风动的基本结构和熟悉风洞实验的基本原理。 2.熟悉测定物体表面压强分布的方法。 3.复习巩固空气动力学的相关知识。 3.测定NACA0012翼型的压力分布并计算其升力系数Cy ,掌握获得机翼气动特性曲线的实验方法。 二、实验设备及工作原理简介 1.测定翼型表面压力 在翼型表面上各测点垂直钻一小孔,各孔成锯齿状分布,小孔底与埋置在模型内部的细金属管相通,小管的一伸出物体外,然后再通过细橡皮管与多管压力计上各支管相接,各测压孔与多管压力计上各支管都编有号码,上表面为1号-14号,下表面为15号-27号,于是根据各支管内的液面升降高度,立刻就可判断出各测点的压强分布。 2.压力系数的计算 通过测压,可以得到翼型在给定迎角下的压力分布,(采用无黏流理论)根据伯努利方程: 2 22 121∞∞+=+v p v p i ρρ 可得压力系数q p p C p ∞-= ,其中2 2 1∞∞=v q ρ 本实验利用水排测压得 h g p p p ?=-=?∞ρ

3.升力系数计算 根据计算得出压力系数Cp,利用Matlab做出压力系数Cp与测压点分布位移X的图像,并分别拟合上下表面的压力分布曲线,通过对上下表面的压力分布曲线的所夹面积进行积分,其值除以弦长L可得出翼型的升力系数Cy。在不同的迎角α下,可分别求出翼型的升力系数,由此绘制翼型NACA0012的升力系数分布图,再与标准升力系数图比较,分析实验结果。 三.实验步骤 1.检查实验设备并进行人员分工。 2.记录实验环境下的温度与大气压。 3.安装翼型模型,并调整迎角为 ?0。 4.调整多管压力计液柱的高低,记下初读数0 h。 5.开风洞调到所需的风速,本实验对应的来流风速为25m/s。 6.当多管压力计稳定后,记下液柱末读数i h。 7.关闭风机等待测压液柱回复,依次将翼型迎角调整到 ? 1? 3? 5和? 7重复实验。 8. 关闭风洞,整理实验场地,将记录交老师检查。 9. 整理实验数据,写好实验报告。 四.实验数据及处理 1.实验环境数据: 实验室温度(C?)大气压强(Pa)空气密度(kg/3m) 12 98010 1.225

系统动力学实验报告

系统动力学实验报告 姓名:徐键 班级:管科131班 学号:5504113023

学院:管理学院 一、背景:高塘乡德邦牧业有限公司是一家大型种猪养殖场,在高速发展的同时存在两个急需解决的问题:1、养殖场猪粪尿污染环境;2、高塘乡已建的300余口户用沼气池大部分因缺乏原料致使沼气池闲置,农户买化肥、农药种植粮食、蔬菜,农作物受到污染。 二、基于顶点赋权分析确定规划实现的管理对策:略 三、基于逐树入仿真技术建立仿真入树模型 建立流位流率系: {(年出栏L1(t)(头),年出栏变化量R1(t)(头/年)),(规模养殖利润L2(t)(万元),规模养殖利润年变化量R2(t)(万元/年)),(日均存栏L3(t(头),日均存栏年变化量R3(t)(头/年)),(年猪尿量L4(t)(t),猪尿年变化量R4(t)(t/年)),(场猪尿年产沼气量L5(t)(m^3),场猪尿产沼气年变化量R5(t)(m^3/年)),(年猪粪量L6(t)(t),猪粪年变化量(t)(t/年)),(户猪粪年产沼气量L7(t)(m^3),户猪粪产沼气年变化量L7(t)(m^3/年))}

据实际意义,将流位流率系分为两部分 第一部分——生产.销售.利润流位流率系 {(年出栏L1(t)(头),年出栏变化量R1(t)(头/年)),(规模养殖利润L2(t)(万元),规模养殖利润年变化量R2(t)(万元/年)),(日均存栏L3(t(头),日均存栏年变化量R3(t)(头/年))} 第二部分——生物质资源开发流位流率系 {(年猪尿量L4(t)(t),猪尿年变化量R4(t)(t/年)),(场猪尿年产沼气量L5(t)(m^3),场猪尿产沼气年变化量R5(t)(m^3/年)),(年猪粪量L6(t)(t),猪粪年变化量(t)(t/年)),(户猪粪年产沼气量L7(t)(m^3),户猪粪产沼气年变化量L7(t)(m^3/年))}第一部分——逐枝建树逐树仿真建立生产.销售.利润子模型 (一)年出栏年变化量R1(t)(头/年)仿真流率基本入树T1(t) 1.逐枝建立的R1(t)(头/年)前期流率基本入树T1(t)见图3.1 图3.1年出栏变化量R1(t)(头/年)前期流率基本入树T1(t) 2.建立年出栏变化量R1(t)(头/年)流率基本入树T1(t)各变量方程:略

分子动力学方法模拟基本步骤

分子动力学方法模拟基本步骤 1.第一步 即模型的设定,也就是势函数的选取。势函数的研究和物理系统上对物质的描述研究息息相关。最早是硬球势,即小于临界值时无穷大,大于等于临界值时为零。常用的是LJ势函数,还有EAM势函数,不同的物质状态描述用不同的势函数。 模型势函数一旦确定,就可以根据物理学规律求得模拟中的守恒量。 2 第二步 给定初始条件。运动方程的求解需要知道粒子的初始位置和速度,不同的算法要求不同的初始条件。如:verlet算法需要两组坐标来启动计算,一组零时刻的坐标,一组是前进一个时间步的坐标或者一组零时刻的速度值。 一般意思上讲系统的初始条件不可能知道,实际上也不需要精确选择代求系统的初始条件,因为模拟实践足够长时,系统就会忘掉初始条件。当然,合理的初始条件可以加快系统趋于平衡的时间和步伐,获得好的精度。 常用的初始条件可以选择为:令初始位置在差分划分网格的格子上,初始速度则从玻尔兹曼分布随机抽样得到;令初始位置随机的偏离差分划分网格的格子上,初始速度为零;令初始位置随机的偏离差分划分网格的格子上,初始速度也是从玻尔兹曼分布随机抽样得到。 第三步 趋于平衡计算。在边界条件和初始条件给定后就可以解运动方程,进行分子动力学模拟。但这样计算出的系统是不会具有所要求的系统的能量,并且这个状态本身也还不是一个平衡态。 为使得系统平衡,模拟中设计一个趋衡过程,即在这个过程中,我们增加或者从系统中移出能量,直到持续给出确定的能量值。我们称这时的系统已经达到平衡。这段达到平衡的时间成为驰豫时间。 分子动力学中,时间步长的大小选择十分重要,决定了模拟所需要的时间。为了减小误差,步长要小,但小了系统模拟的驰豫时间就长了。因此根据经验选择适当的步长。如,对一个具有几百个氩气Ar分子的体系,lj势函数,发现取h为0.01量级,可以得到很好的相图。这里选择的h是没有量纲的,实际上这样选择的h对应的时间在10-14s的量级呢。如果模拟1000步,系统达到平衡,驰豫时间只有10-11s。 第四步 宏观物理量的计算。实际计算宏观的物理量往往是在模拟的最后揭短进行的。它是沿相空间轨迹求平均来计算得到的(时间平均代替系综平均)

气相色谱法实验报告记录

气相色谱法实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

实验五—气相色谱法实验 姓名:张瑞芳 学号:2013E8003561147 班级:化院413班 培养单位:上海高等研究院 指导教师:李向军 组别:2013年12月30日第二组

气相色谱法实验 一、实验目的 1.了解气相色谱仪的各部件的功能。 2.加深理解气相色谱的原理和应用。 3.掌握气相色谱分析的一般实验方法。 4.学会使用FID气相色谱对未知物进行分析。 二、实验原理 1.气相色谱法基本原理 气相色谱的流动向为惰性气体,气-固色谱法中以表面积大且具有一定活性的吸附剂作为固定相。当多组分的混合样品进入色谱柱后,由于吸附剂对每个组分的吸附力不同,经过一定时间后,各组分在色谱柱中的运行速度也就不同。吸附力弱的组分容易被解吸下来,最先离开色谱柱进入检测器,而吸附力最强的组分最不容易被解吸下来,因此最后离开色谱柱。如此,各组分得以在色谱柱中彼此分离,顺序进入检测器中被检测、记录下来。气相色谱仪器框图如图1所示: 图1.气相色谱仪器框图 仪器均由以下五个系统组成:气路、进样、分离、温度控制、检测和记录系统。 2.气相色谱法定性和定量分析原理 在这种吸附色谱中常用流出曲线来描述样品中各组分的浓度。也就是说,让

分离后的各组分谱带的浓度变化输入换能装置中,转变成电信号的变化。然后将电信号的变化输入记录器记录下来,便得到如图2的曲线。它表示组分进入检测器后,检测器所给出的信号随时间变化的规律。它是柱内组分分离结果的反映,是研究色谱分离过程机理的依据,也是定性和定量的依据。 图2.典型的色谱流动曲线 3.FID的原理 本次试验所用的为氢火焰离子化检测器(FID),它是以氢气和空气燃烧的火焰作为能源,利用含碳有机物在火焰中燃烧产生离子,在外加的电场作用下,使离子形成离子流,根据离子流产生的电信号强度,检测被色谱柱分离出的组分。 三.实验试剂和仪器 (1)试剂:甲醇、异丙醇、异丁醇 (2)仪器:气相色谱仪带氢火焰离子化检测器(GC-2014气相色谱仪); 氢-空发生器(SPH-300氢气发生器)、氮气钢瓶; 色谱柱; 微量注射器。 四.实验步骤 1.打开稳定电源。 2.打开N2钢瓶(减压阀),以N2为载气,开始通气,检漏;调整柱前压约为 0.12MPa。

蔗糖转化反应动力学 实验报告

蔗糖转化反应动力学 姓名: 学号: 班级: 1 实验目的 1) 测定蔗糖水溶液在酸催化作用下的反应速率常数和半衰期。 2) 了解旋光度的概念,学习旋光度的测量方法及在化学反应动力学研究中的应用。 2 原理 蔗糖在水溶液中的转化反应为 此反应是一个二级反应,在纯水中反应速率极慢,通常需要在H + 的催化作用下进行。当蔗糖含量不大时,反应过程中水是大量存在的,尽管有部分水分子参加了反应,仍可认为整个反应过程中水的浓度是恒定的。H +是催化剂,其浓度也保持不变。则此蔗糖转化反应可以看作是准一级反应,反应速率为 蔗果葡蔗kc dt dc dt dc dt dc ===-=υ 式中:k 为蔗糖转化反应速率常数,c 蔗 为时间t 时蔗糖的浓度。 当t =0时, kt c c =蔗 蔗,0ln 当蔗蔗,02 1 c c = 时,相应的时间t 即为半衰期21t ,且 k k t 6931 .02ln 21= = 测定不同t 时的c 蔗可求得k 。在化学反应动力学研究中,要求能实时测定某反应物或生成物的浓度,且测量过程对反应过程没有干扰,本实验通过测量旋光度来代替反应物或生成物浓度的测量。 旋光性物质的旋光角 A m m αα= 式中:αm 为旋光性物质的质量旋光本领,与温度、溶剂、偏振光波长等有关;m 为旋光性物质在截面积为A 的线性偏振光束途径中的质量。由此式可得 Mlc Al nMl m m ααα== M 为旋光性物质的摩尔质量,l 为旋光管的长度。当温度、溶剂、偏振光波长、旋光物质与旋光管长度一定时,将上式改写为 Ac =α 式中A 为常数。当旋光管中同时存在多种旋光性物质时,总的旋光角等于各旋光性物质旋光角之和。 蔗糖、葡萄糖和果糖都具有旋光性,但旋光能力不同,因此,随着反应的

实验5气体绝热指数实验报告大全

实验5气体绝热指数测量 【预习提示】 1、熟悉气体的定压比热容、定容比热容、绝热指数、热力学过程等基本概念。 2、理解热力学第一定律和理想气体的状态方程。 3、了解绝热膨胀法测量空气的绝热指数的基本原理和方法。 4、了解用传感器精确测量气体压强和温度的基本原理和方法。 【实验目的】 1、学习绝热膨胀法测量气体绝热指数的原理和方法。 2、观察和分析热力学系统的状态和过程特征,掌握实现等值过程的方法。 3、初步了解半导体气体压力传感器和电流型集成温度传感器的工作原理和使用方法。 【实验原理】 1、测量绝热指数的原理 根据热力学第一定律,Q= .E A ,系统自外界吸收的热量Q等于系统内能的增加:E 和对外界所做的功A之和。压强、温度、体积是研究气体状态的三个基本参量。 设想一储气瓶,上面有充气阀、放气阀,用打气球向瓶内 打气,瓶内空气被压缩,也强增大,温度升高。等瓶内气 体稳定后,空气分子分布均匀,瓶内气体温度与室温相 同,此时气体状态记录为 (p1 V1,T0);迅速打开放气阀,使瓶,内气体与大气相 通,则瓶内气体将有喷出,当压强降为大气压P o时,关闭 放气阀,根据热力学第一定律,气体对外界做功,内能减 少,气体温度下降为「,,由于放 气较快,瓶内保留气体可视作为未与外界进行热量交换, 视为绝热膨胀过程;瓶内气体低于外界温度,气体将会从外界吸热直到达到室温为止,压强也会 增加为P2,这个过程视作为等容吸热过程。 将绝热膨胀后瓶内剩余气体作为一定质量的热力学系统来研究。剩余气体放气前处于状态 I (p,y,T o),经过绝热膨胀后气体由状态I变为状态II (P),V2,T1 κV是瓶内剩余气体 在状态I的体积,V是储气瓶的体积。再经过等容吸热的过程由状态II P0,V2,T1变为状 态III P2,V2,T0。气体的状态变化过程如图所示。由于状态I和状态III的温度均为T o,因此,由状态I到状态III可视为等温过程。 I-II绝热过程状态变化方程: P1V1 = P0V2 (泊松方程)

流体力学及气体动力学综合实验报告册(二)

流体力学及气体动力学综合实验实验报告册(二) 班级 姓名 学号 成绩 西北工业大学动力与能源学院 2015年11月

实验三沿程损失实验 一、实验目的 1、验证沿程水头损失与平均流速的关系。 2、掌握管道沿程阻力系数λ的测量方法。 二、实验设备 实验设备为沿程损失实验装置,其主要由恒压水箱、进水阀、出水阀、测压计、接水盒以及自循环供水箱等部件组成,如图3-1所示。 接 水 盒 图3-1 沿程损失实验原理图 三、实验原理

四、实验方法与步骤 1. 确定出水阀完全开启,进水阀半开启。启动水泵,排出实验管道、测压计中的气泡。 2. 逐渐开启进水阀,稳定2~3分钟,观测各个测压计中液面液高,并用体积法或称重 法测定流量。每次测量流量的时间应大于10秒。 3. 调整流量,继续测量,直至进水阀全开。 4. 如此测量10次以上,其中层流流动时测量3~5次。 5. 每次实验均要测量温度。 6. 实验完毕,先关闭进水阀,然后关闭出水阀,并切断电源,整理实验现场。 五、实验成果及要求 实验台号No 1.记录计算有关常数: 管径d = cm ,管长l = cm , 水温t = ℃,水的密度3______/kg m ρ=。 运动粘度6 21.7751010.03370.000221t t υ-?= =++ 2/m s

2.实验数据记录与计算 六、实验分析与讨论: 1.什么是沿程损失,影响沿程损失的因素有哪些? 2.沿程损失系数 与雷诺数Re之间有什么关系,请采用经验公式验证所计算得到的沿程损失系数。

实验四局部损失实验 一、实验目的 1、掌握管路中测定局部阻力系数的方法。 2、通过对圆管突扩局部阻力系数和突缩局部阻力系数的经验公式的实验验证与分析,熟悉用理论分析法和经验法建立函数式的途径。 3、加深对局部阻力损失机理的了解。 二、实验装置 实验设备为局部损失实验装置,其主要由恒压水箱、出水阀、测压计、接水盒以及自循环供水箱等部件组成,如图4-1所示。实验管道具有突扩与突缩段,在突扩与突缩段前后设置有测压计,用来测量突扩与突缩所造成的压力损失。 图4-1 局部阻力系数测定实验装置 三、实验原理

气垫导轨实验报告

气轨导轨上的实验 ——测量速度、加速度及验证牛顿第二运动定律 一、实验目的 1、学习气垫导轨和电脑计数器的使用方法。 2、在气垫导轨上测量物体的速度和加速度,并验证牛顿第二定律。 3、定性研究滑块在气轨上受到的粘滞阻力与滑块运动速度的关系。 二、实验仪器 气垫导轨(QG-5-1.5m)、气源(DC-2B 型)、滑块、垫片、电脑计数器(MUJ-6B 型)、电子天平(YP1201型) 三、实验原理 1、采用气垫技术,使被测物体“漂浮”在气垫导轨上,没有接触摩擦,只用气垫的粘滞阻力,从而使阻力大大减小,实验测量值接近于理论值,可以验证力学定律。 2、电脑计数器(数字毫秒计)与气垫导轨配合使用,使时间的测量精度大3x v t ?= ?x t ??4过1s 、s 离s ?a =

速度和加速度的计算程序已编入到电脑计数器中,实验时也可通过按相应的功能和转换按钮,从电脑计数器上直接读出速度和加速度的大小。 5、牛顿第二定律得研究 若不计阻力,则滑块所受的合外力就是下滑分力,sin h F mg mg L θ==。假定牛顿第二定律成立,有h mg ma L =理论,h a g L =理论,将实验测得的a 和a 理论进行比较,计算相对误差。如果误差实在可允许的范围内(<5%),即可认为a a =理论,则验证了牛顿第二定律。 (本地g 取979.5cm/s 2) 6、定性研究滑块所受的粘滞阻力与滑块速度的关系 实验时,滑块实际上要受到气垫和空气的粘滞阻力。考虑阻力,滑块的动力 学方程为h mg f ma L -=,()h f m g ma m a a L =-=理论-,比较不同倾斜状态下的 平均阻力f 与滑块的平均速度,可以定性得出f 与v 的关系。 四、实验内容与步骤 1、将气垫导轨调成水平状态 先“静态”调平(粗调),后“动态”调平(细调),“静态”调平应在工作区间范围内不同的位置上进行2~3次,“动态”调平时,当滑块被轻推以50cm/s 左右的速度(挡光宽度1cm ,挡光时间20ms 左右)前进时,通过两光电门所用的时间之差只能为零点几毫秒,不能超过1毫秒,且左右来回的情况应基本相同。两光电门之间的距离一般应在50cm~70cm 之间。 2、测滑块的速度 ①气垫调平后,应将滑块先推向左运动,后推向右运动(先推向右运动,后推向左运动,或者让滑块自动弹回),作左右往返的测量; ②从电脑计数器上记录滑块从右向左或从左向右运动时通过两个光电门的时间1t ?、2t ?,然后按转换健,记录滑块通过两个光电门速度1v 、2v ,如此重复3次,将测得的实验数据计入表1,计算速度差值。 3、测量加速度,并验证牛顿第二定律 在导轨的单脚螺丝下垫2块垫片,让滑块从最高处由静止开始下滑,测出速度1v 、2v 和加速度 a ,重复4次,取a 。再添2块(或1块)垫片,重复测量4 次。然后取下垫片,用游标卡尺测量两次所用垫片的高度h ,用钢卷尺测量单脚螺丝到双脚螺丝连线的距离L 。计算a 理论,进比较a 与a 理论,计算相对误差,写出实验结论。 4、用电子天平称量滑块的质量m ,计算两种不同倾斜状态下滑块受到的平

分子动力学实验报告

分子动力学实验报告 实验名称平衡晶格常数和体弹模量 实验目的 1、学习Linux系统的指令 2、学习lammps脚本的形式和内容 实验原理 原子、离子或分子在三维空间做规则的排列,相同的部分具有直线周期平移的特点。为了描述晶体结构的周期性,人们提出了空间点阵的概念。为了说明点阵排列的规律和特点,可以在点阵中去除一个具有代表性的基本单元作为点阵的组成单元,称为晶胞。晶胞的大小一般是由晶格常数衡量的,它是表征晶体结构的一个重要基本参数。 在本次模拟实验中,给定Si集中典型立方晶体结构:fcc,bcc,sc,dc。根据 可判定dc结构是否能量最低,即是否最稳定 材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。弹性模量是描述物质弹性的一个物理量,是一个总称,包括杨氏模量、剪切模量、体积模量等。在弹性变形范围内,物体的体应力与相应体应变之比的绝对值称为体弹模量。表达式为 B=? dP dV V 式中,P为体应力或物体受到的各向均匀的压强,dV V为体积的相对变化。对于立方晶胞,总能量可以表示为ε=ME,E为单个原子的结合能,M 为单位晶胞内的原子数。晶胞体积可以表示为V=a3,那么压强P为 P=?dε dV =? M 3a2 dE da 故体积模量可以表示为 根据实验第一部分算出的平衡晶格常数,以及能量与晶格间距的函数关系,可以求得对应晶格类型的体积模量。并与现有数据进行对比。 实验过程 (1)平衡晶格常数

将share文件夹中关于第一次实验的文件夹拷贝到本地,其中包含势函数文件和input文件。 $ cp□-r□share/md_1□. $ cd□md_1 $ cd□1_lattice 通过LAMMPS执行in.diamond文件,得到输出文件,包括体系能量和cfg文件,log文件。 $ lmp□-i□in.diamond 用gnuplot画图软件利用输出数据作图,得到晶格长度与体系能量的关系,能量最低处对应的晶格长度即是晶格常数。 Si为diamond晶格结构时晶格长度与体系能量关系图如图, 由图可得能量最小处对应取a0=5.43095。 Si为fcc晶格结构时晶格长度与体系能量关系图如图, a0=4.15。 改写后的sc、bcc脚本文件分别如图所示

造球、焙烧、还原反应动力学综合实验报告

造球、焙烧、还原反应动力学综合实验 摘要:本实验主要分为造球、生球焙烧、还原反应三个部分,全面的演示了炼铁的全过程。其中造球包括生球形成,生球抗压强度测定,生球落下强度测定。 关键词:铁矿粉造球生球焙烧球团还原反应 The experiment of pelletizing,Pellet roasting and reduction reaction Abstract:This experiment mainly have three parts,pelletizing, Pellet roasting and reduction reaction. It shows all the Process of Iron-making. the pelletizing contains Determination of compressive strength of green-ball, Determination of Falling strength of green-ball。 Key word: pelletizing Pellet roasting reduction reaction 正文: 一、造球实验 造球是细磨物料在造球设备中被水湿润,借助机械力的作用而滚动成球的过程。在工业生产中,湿料连续加到造球机中,母球在造球机中不断的滚动而被压密,引起毛细管形状和尺寸的改变,从而使过剩的毛细管被迁移到母球表面,潮湿的母球在滚动中很容易粘上一层润湿程度较低的湿料。再压密,表面再粘上一层湿料,如此反复多次,母球不断长大,一直到母球中的摩擦力比滚动时的机械压密

作用力大为止,如果要使母球继续长大,必须人为地使母球的表面过分湿润,即向母球表面喷水,母球长大应满足以下3个条件: (1)机械外力的作用,使滚动粘附料层和压密; (2)有润湿程度较低的物料,能粘附在过湿的母球表面; (3)母球表面必须有过湿层,必要时可通过喷水实现。 实验设备:造球机,重量计 生球要求:合适的生球抗压强度和生球落下强度 配料:95%以上的精矿粉,添加剂为膨润土及一些矿质元素等 实验生球直径:10~12mm 生球测试数据 二、生球焙烧实验 生球烧结的目的: 铁矿粉在一定的高温作用下,部分颗粒表面发生软化和熔化,产生一定量的液相,并与其他未熔矿石颗粒作用,冷却后,液相将矿粉颗粒粘结成块,达到人造富矿的目的。 生球烧结的目的: (1)为高炉提供冶金性能好的优质烧结矿; (2)除去矿石中的有害杂质; (3)可以扩大炼铁原料的来源。 实验设备:三段式电阻炉模拟焙烧机 球团矿的焙烧阶段: 干燥、焙烧、均热、冷却五个阶段

分子动力学模拟

分子动力学模拟 分子动力学是一门结合物理,数学和化学的综合技术。分子动力学是一套分子模拟方法,该方法主要是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系统中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量和其他宏观性质。 这门技术的发展进程是: 1980年:恒压条件下的动力学方法(Andersenの方法、Parrinello-Rahman法) 1983年:非平衡态动力学方法(Gillan and Dixon) 1984年:恒温条件下的动力学方法(能势‐フーバーの方法) 1985年:第一原理分子动力学法(→カー?パリネロ法) 1991年:巨正则系综的分子动力学方法(Cagin and Pettit). 最新的巨正则系综,即为组成系综的系统与一温度为T、化学势为μ的很大的热源、粒子源相接触,此时系统不仅同热源有能量交换,而且可以同粒子源有粒子的交换,最后达到平衡,这种系综称巨正则系综。 进行分子动力学模拟的第一步是确定起始构型,一个能量较低的起始构型是进行分子模拟的基础,一般分子的其实构型主要是来自实验数据或量子化学计算。在确定起始构型之后要赋予构成分子的各个原子速度,这一速度是根据玻尔兹曼分布随机生成,由于速度的分布符合玻尔兹曼统计,因此在这个阶段,体系的温度是恒定的。另外,在随机生成各个原子的运动速度之后须进行调整,使得体系总体在各个方向上的动量之和为零,即保证体系没有平动位移。 由上一步确定的分子组建平衡相,在构建平衡相的时候会对构型、温度等参数加以监控。 进入生产相之后体系中的分子和分子中的原子开始根据初始速度运动,可以想象其间会发生吸引、排斥乃至碰撞,这时就根据牛顿力学和预先给定的粒子间相互作用势来对各个例子的运动轨迹进行计算,在这个过程中,体系总能量不变,但分子内部势能和动能不断相互转化,从而体系的温度也不断变化,在整个过程中,体系会遍历势能面上的各个点,计算的样本正是在这个过程中抽取的。 用抽样所得体系的各个状态计算当时体系的势能,进而计算构型积分。 作用势的选择与动力学计算的关系极为密切,选择不同的作用势,体系的势能面会有不同的形状,动力学计算所得的分子运动和分子内部运动的轨迹也会不同,进而影响到抽样的结果和抽样结果的势能计算,在计算宏观体积和微观成分关系的时候主要采用刚球模型的二体势,计算系统能量,熵等关系时早期多采用Lennard-Jones、morse势等双体势模型,对于金属计算,主要采用morse势,但是由于通过实验拟合的对势容易导致柯西关系,与实验不符,因此在后来的模拟中有人提出采用EAM等多体势模型,或者采用第一性原理计算结果通过一定的物理方法来拟合二体势函数。但是对于二体势模型,多体势往往缺乏明确的表达式,参量很多,模拟收敛速度很慢,给应用带来很大困难,因此在一般应用中,通过第一性原理计算结果拟合势函数的L-J,morse等势模型的应用仍非常广泛。 分子动力学计算的基本思想是赋予分子体系初始运动状态之后,利用分子的自然运动在相空间中抽取样本进行统计计算,时间步长就是抽样的间隔,因而时间步长的选取对动力学模拟非常重要。太长的时间步长会造成分子间的激烈碰撞,体系数据溢出;太短的时间步长会降低模拟过程搜索相空间的能力,因此一般选取的时间步长为体系各个自由度中最短运动周期的十分之一。但是通常情况下,体系各自由度中运动周期最短的是各个化学键的振动,而这种运动对计算某些宏观性质并不产生影响,因此就产生了屏蔽分子内部振动或其他无关运动的约束动力学,约束动力学可以有效地增长分子动力学模拟时间步长,提高搜索相空间的能

实验报告总结(精选8篇)

《实验报告总结》 实验报告总结(一): 一个长学期的电路原理,让我学到了很多东西,从最开始的什么都不懂,到此刻的略懂一二。 在学习知识上面,开始的时候完全是老师讲什么就做什么,感觉速度还是比较快的,跟理论也没什么差距。但是之后就觉得越来越麻烦了。从最开始的误差分析,实验报告写了很多,但是真正掌握的确不多,到最后的回转器,负阻,感觉都是理论没有很好的跟上实践,很多状况下是在实验出现象以后在去想理论。在实验这门课中给我最大的感受就是,必须要先弄清楚原理,在做实验,这样又快又好。 在养成习惯方面,最开始的时候我做实验都是没有什么条理,想到哪里就做到哪里。比如说测量三相电,有很多种状况,有中线,无中线,三角形接线法还是Y形接线法,在这个实验中,如果选取恰当的顺序就能够减少很多接线,做实验就应要有良好的习惯,就应在做实验之前想好这个实验要求什么,有几个步骤,就应怎样安排才最合理,其实这也映射到做事情,不管做什么事情,就应都要想想目的和过程,这样才能高效的完成。电原实验开始的几周上课时间不是很固定,实验报告也累计了很多,第一次感觉有那么多实验报告要写,在交实验报告的前一天很多同学都通宵了的,这说明我们都没有合理的安排好自己的时间,我就应从这件事情中吸取教训,合理安排自己的时间,完成就应完成的学习任务。这学期做的一些实验都需要严谨的态度。在负阻的实验中,我和同组的同学连了两三次才把负阻链接好,又浪费时间,又没有效果,在这个实验中,有很多线,很容易插错,所以要个性仔细。 在最后的综合实验中,我更是受益匪浅。完整的做出了一个红外测量角度的仪器,虽然不是个性准确。我和我组员分工合作,各自完成自己的模块。我负责的是单片机,和数码显示电路。这两块都是比较简单的,但是数码显示个性需要细致,由于我自己是一个粗心的人,所以数码管我检查了很多遍,做了很多无用功。 总结:电路原理实验最后给我留下的是:严谨的学习态度。做什么事情都要认真,争取一次性做好,人生没有太多时间去浪费。 实验报告总结(二): 在分子生物学实验室为期两个月的实习使我受益匪浅,我不仅仅学习到了专业知识,更重要的是收获了经验与体会,这些使我一生受用不尽,记下来与大家共勉: 1.手脚勤快,热心帮忙他人。初来匝道,不管是不是自己的份内之事,都就应用心去完成,也许自己累点,但你会收获很多,无论是知识与经验还是别人的称赞与认可。 2.多学多问,学会他人技能。学问学问,无问不成学。知识和经验的收获能够说与勤学好问是成正比的,要记住知识总是垂青那些善于提问的人。 3.善于思考,真正消化知识。有知到识,永远不是那么简单的事,当你真正学会去思考时,他人的知识才能变成你自己的东西。 4.前人铺路,后人修路。墨守陈规永远不会有新的建树,前人的道路固然重要,但是学会另辟蹊径更为重要。

化工原理吸收实验报告总结归纳

一、实验目的 1.了解填料塔的一般结构及吸收操作的流程。 2.观察填料塔流体力学状况,测定压降与气速的关系曲线。 3.掌握总传质系数K x a的测定方法并分析其影响因素。 4.学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。 二、实验原理 本实验先用吸收柱将水吸收纯氧形成富氧水后(并流操作),送入解吸塔再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数K x a,并进行关联,得K x a=AL a V b的关联式。同时对不同填料的传质效果及流体力学性能进行比较。 1.填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。在双对数坐标系中△P/Z对G'作图得到一条斜率为~2的直线(图1中的aa线)。而有喷淋量时,在低气速时(c点以前)压降也比例于气速的~2次幂,但大于同一气速下干填料的压降(图中bc段)。随气速增加,出现载点(图中c点),持液量开始增大。图中不难看出载点的位置不是十分明确,说明汽液两相流动的相互影响开始出现。压降~气速线向上弯曲,斜率变徒(图中cd段)。当气体增至液泛点(图中d点,实验中可以目测出)后在几乎不变的气速下,压降急剧上升。 图1 填料层压降-空塔气速关系 2.传质实验 填料塔与板式塔气液两相接触情况不同。在填料塔中,两相传质主要是在填料有效湿表面上进行。需要完成一定吸收任务所需填料高度,其计算方法有:传质系数法、传质单元法和等板高度法。 本实验对富氧水进行解吸。由于富氧水浓度很小,可认为气液两相平衡服从亨利定律,可用对数平均浓度差计算填料层传质平均推动力。得速率方程式:

相关的填料层高度的基本计算式为: OL OL N Z H = 其中,m x x e OL x x x x x dx N ?-=-=?2 11 2 Ω= a K L H x OL 由于氧气为难溶气体,在水中的溶解度很小,因此传质阻力几乎全部集中于液膜中,即Kx=kx 。由于属液膜控制过程,所以要提高总传质系数Kxa ,应增大液相的湍动程度。 在y-x 图中,解吸过程的操作线在平衡系下方,在实验是一条平行于横坐标的水平线(因氧在水中浓度很小)。 三、实验装置流程 1.基本数据 解吸塔径φ=,吸收塔径φ=,填料层高度(陶瓷拉西环、陶瓷波纹板、金属波纹网填料)和(金属θ环)。 表1 填料参数 2.图2是氧气吸收解吸装置流程图。氧气由氧气钢瓶供给,经减压阀2进入氧气缓冲罐4,稳压,为确保安全,缓冲罐上装有安全阀6,由阀7调节氧气流量,并经转子流量计8计量,进入吸收塔9,与水并流吸收。富氧水经管道在解吸塔的顶部喷淋。空气由风机13供给,经缓冲罐14,由阀16调节流量经转子流量计17计量,通入解吸塔,贫氧水从塔底经平衡罐19排出。自来水经调节阀10,由转子流量计17计量进入吸收塔。 由于气体流量与气体状态有关,所以每个气体流量计前均有表压计和温度计。空气流量前装有计前表压计23。为了测量填料层压降,解析塔装有压差计22。

物理化学实验报告-乙酸乙酯皂化反应动力学

乙酸乙酯皂化反应动力学 一、实验目的 1)了解二级反应的特点。 2)用电导法测定乙酸乙酯皂化反应的速率常数。 3)由不同温度下的速率常数求反应的活化能。 二、实验原理 乙酸乙酯在碱性水溶液中的消解反应即皂化反应,其反应式为: +→+ 反应式是二级反应,反应速率与及的浓度成正比。用分别表示乙酸乙酯和氢氧化钠的初始浓度,表示在时间间隔内反应了的乙酸乙酯或氢 氧化钠的浓度。反应速率为: 为反应速率常数,当时,上式为: 反应开始时,反应物的浓度为,积分上式得: 在一定温度下,由实验测得不同时的值,由上式可计算出值。 改变实验温度,求得不同温度下的值,根据Arrhenius方程的不定积分式有:

以对作图,得一条直线,从直线斜率可求得。 若求得热力学温度时的反应速率常数,也可由Arrhenius方程的定积分式变化为下式求得值: 本实验通过测量溶液的电导率代替测量生成物浓度(或反应物浓度)。乙酸乙酯、乙醇是非电解质。在稀溶液中,非电解质电导率与浓度成正比,溶液的电导率是各离子电导之和。反应前后离子浓度不变,整个反应过程电导率的变化取决于与浓度的变化,溶液中的导电能力约为的五倍,随着反应的进行,浓度降低,的尝试升高,溶液导电能力明显下降。 一定温度下,在稀溶液中反应,为溶液在时的电导率,分别是与、电导率有关的比例常数,于是: ,; ,; ,; 由此得 即

即 而即 上式变形为: 以对作图为一直线,斜率为,由此可求出。三、仪器和试剂 恒温槽、电导率仪、电导电极、叉形电导池、秒表、碱式滴定管、10ml、25m移液 管、100mL,50ml容量瓶、乙酸乙酯(A.R.)、氢氧化钠溶液(0.04mol·) 四、实验步骤 1.准备溶液: 1)打开恒温槽,设置温度为25℃。将叉形电导池洗净、烘干。同时清洗两个100ml、一个50ml的容量瓶;

酶促反应动力学实验报告

酶促反应动力学实验报告 杨恩原 实验目的: 1.观察底物浓度对酶促反应速度的影响 2.观察抑制剂对酶促反应速度的影响 3.掌握用双倒数作图法测定碱性磷酸酶的Km值 实验原理: 一、底物浓度对酶促反应速度的影响 在温度、pH及酶浓度恒定的条件下,底物浓度对酶的催化作用有很大的影响。在一般情况下,当底物浓度很低时,酶促反应的速度(v)随底物浓度[S]的增加而迅速增加,但当底物浓度继续增加时,反应速度的增加率就比较小,当底物浓度增加到某种程度时反应速度达到一个极限值(即最大速度Vmax)。底物浓度和反应速度的这种关系可用米氏方程式来表示(Michaelis-Menten方程)即: 式中Vmax为最大反应速度,Km为米氏常数,[S]为底物浓度 当v=Vmax/2时,则Km=[S],Km是酶的特征性常数,测定Km是研究酶的一种重要方法。但是在一般情况下,根据实验结果绘制成的是直角双曲线,难以准确求得Km和Vmax。若将米氏方程变形为双倒数方程(Lineweaver-Burk方程),则此方程为直角方程,即: 以1/V和1/[S]分别为横坐标和纵坐标。将各点连线,在横轴截距为-1/Km,据此可算出Km值。

本实验以碱性磷酸酶为例,测定不同浓度底物时的酶活性,再根据1/v和1/[S]的倒数作图,计算出其Km值。 二、抑制剂对酶促反映的影响 凡能降低酶的活性,甚至使酶完全丧失活性的物质,成为酶的抑制剂。酶的特异性抑制剂大致上分为可逆性和不可逆性两类。可逆性抑制又可分为竞争性抑制和非竞争性抑制等。竞争性抑制剂的作用特点是使该酶的Km值增大,但对酶促反映的最大速度Vmax值无影响。非竞争性抑制剂的作用特点是不影响[S]与酶的结合,故其Km值不变,然而却能降低其最大速度Vmax。本实验选取Na2HPO4作为碱性磷酸酶的抑制物,确定其抑制作用属于哪种类型。 实验步骤: 实验一:底物浓度对酶促反应速度的影响 管号 试剂 1.取试管9支,将L基质液稀释成下列不同浓度:

分子模型实验报告

分子模型实验报告 篇一:分子模拟实验实验报告生物大分子 分子模拟实验作业——生物大分子 一、实验部分 12-3-1获得PDB号为“1HCK”的蛋白(human-cyclin-dependent kinase 2,i,e.,CKD2和ATP的结合晶体结构),并采用不同的模型观察其特点 ①分别用卡通模型和丝带模型显示生物大分子结构,并用球棍模型、棒状模型显示其中小分子、金属离子等。 参考文献: Analysis of CDK2 Active-Site Hydration: A Method to Design New Inhibitors Zdeneˇk Krˇ?′z PROTEINS: Structure, Function, and Bioinformatics 55:258–274 (XX) 12.2 分子对接 ①聚合物对接前效果图 ②聚合物对接后效果图 对接后实际距离和设置的最优值 12-3-2在样本文件中,创建冰的晶体结构,分别做温度为260K,273K,298K,373K下的分子动力学模拟(10 ps),观察晶体机构的变化情况,并做定性解释。

①不同温度下冰晶体结构图: 原始冰晶体结构图 由冰晶体在不同温度下的结构可见,随温度升高,冰晶体的各个水分子之间的距离不断增加,晶体结构趋向于分散无序状。 ②不同温度下,冰晶体分子动力学模拟图 ③不同温度下体系的总能量与势能 由曲线形状可见,经过分子动力学模拟之后,体系的能量降低,变得更加稳定。 由计算结果可见,体系的总能量和势能随温度的升高而增大。因为当温度升高时,分子的热运动加剧,使分子的伸缩、转动、振动势能增加从而使分子总能量增加,而体系的是能增加是因为非键相互作用尤其是分子间氢键相互作用减弱。 二、实验心得与体会 本次实验主要进行了生物大分子的模拟。生物大分子一般包含上千个原子,目前还不能应用量子化学从头计算方法模拟,常用的方法有QM/MM方法,和纯粹的分子动力学模型。 1.关于分子力学要求掌握四点内容:(1)分子力学中,离子间的相互作用势能函数是什么?(2)势函数中存在特定的参数,怎么给参数赋初值?(3)原子类型怎样确定?(4)力场有哪些?各自的适用范围是什么?下面详细解释:

大学物理实验气垫导轨实验报告

气轨导轨上得实验 ——测量速度、加速度及验证牛顿第二运动定律 一、实验目得 1、学习气垫导轨与电脑计数器得使用方法。 2、在气垫导轨上测量物体得速度与加速度,并验证牛顿第二定律. 3、定性研究滑块在气轨上受到得粘滞阻力与滑块运动速度得关系。 二、实验仪器 气垫导轨(QG—5—1。5m)、气源(DC-2B型)、滑块、垫片、电脑计数器(MUJ-6B型)、电子天平(YP1201型) 三、实验原理 1、采用气垫技术,使被测物体“漂浮”在气垫导轨上,没有接触摩擦,只用气垫得粘滞阻力,从而使阻力大大减小,实验测量值接近于理论值,可以验证力学定律。 2、电脑计数器(数字毫秒计)与气垫导轨配合使用,使时间得测量精度大大提高( Array如图,设U ;越小(越小), 4 或

5、牛顿第二定律得研究 若不计阻力,则滑块所受得合外力就就是下滑分力,。假定牛顿第二定律成立,有,,将实验测得得与进行比较,计算相对误差。如果误差实在可允许得范围内(<5%),即可认为,则验证了牛顿第二定律。(本地g取979。5cm/s2) 6、定性研究滑块所受得粘滞阻力与滑块速度得关系 实验时,滑块实际上要受到气垫与空气得粘滞阻力.考虑阻力,滑块得动力学方程为,,比较不同倾斜状态下得平均阻力与滑块得平均速度,可以定性得出f与v 得关系。 四、实验内容与步骤 1、将气垫导轨调成水平状态 先“静态"调平(粗调),后“动态"调平(细调),“静态”调平应在工作区间范围内不同得位置上进行2~3次,“动态”调平时,当滑块被轻推以50cm/s左右得速度(挡光宽度1cm,挡光时间20ms左右)前进时,通过两光电门所用得时间之差只能为零点几毫秒,不能超过1毫秒,且左右来回得情况应基本相同.两光电门之间得距离一般应在50cm~70cm之间。 2、测滑块得速度 ①气垫调平后,应将滑块先推向左运动,后推向右运动(先推向右运动,后推向左运动,或者让滑块自动弹回),作左右往返得测量; ②从电脑计数器上记录滑块从右向左或从左向右运动时通过两个光电门得时间、,然后按转换健,记录滑块通过两个光电门速度、,如此重复3次,将测得得实验数据计入表1,计算速度差值。 3、测量加速度,并验证牛顿第二定律 在导轨得单脚螺丝下垫2块垫片,让滑块从最高处由静止开始下滑,测出速度、与加速度,重复4次,取.再添2块(或1块)垫片,重复测量4次。然后取下垫片,用游标卡尺测量两次所用垫片得高度h,用钢卷尺测量单脚螺丝到双脚螺丝连线得距离L.计算,进比较与,计算相对误差,写出实验结论。 4、用电子天平称量滑块得质量m,计算两种不同倾斜状态下滑块受到得平均阻力,并考察两种倾斜状态下滑块运动得平均速度(不必计算),通过分析比较得出f与v得定性关系,写出实验结论。 五、注意事项 1、保持导轨与滑块清洁,不能碰砸。未通气时,不能将滑块放在导轨上滑动.实验结束时,先取下滑块,后关闭气源。 2、注意用电安全。 六、数据记录与处理

相关文档