文档视界 最新最全的文档下载
当前位置:文档视界 › 正态性检验的一般方法汇总

正态性检验的一般方法汇总

正态性检验的一般方法汇总
正态性检验的一般方法汇总

正态性检验的一般方法

姓名:蓝何忠

学号:1101200203 班号:1012201

正态性检验的一般方法

【摘要】:正态分布是自然界中一种最常见的也是最重要的一种分布因此,人们在实际使用统计分析时,总是乐于正态假定,但该假定是否成立,牵涉到正态性检验.在一般性的概率统计教科书中,只是把这个问题放在一般性的分布拟合下作简短处理,而这种"万精油"式的检验方法,对正态性检验不

具有特效.鉴于此,该文从不同角度出发介绍正态性检验的几种常见的方法,并且就各种方法作了优劣比较,

【引言】一般实际获得的数据,其分布往往未知。在数据分析中,经常要判断一组数据的分布是否来自某一特定的分布,比如对于连续性

分布,常判断数据是否来自正态分布,而对于离散分布来说,常判断是否来自二项分布.泊松分布,或判断实际观测与期望数是否一致,然后才运用相应的统计方法进行分析。

几种正态性检验方法的比较。

一、2拟合优度检验:

(1)当总体分布未知,由样本检验总体分布是否与某一理论分布一致。

H0:总体X的分布列为p{X= }= ,i=1,2,……

H1:总体X的分布不为”\

—厲一昭)2

I np i

4=1

其中j 为样本中£发生的实际频数,聊为HO 为真时£发生的理 论频数。

(2)检验原理

若沪二。,则fj =n*意味着对于片,观测频数与期望频数完全一致, 即完全拟合。

观察频数与期望频数越接近,则2值越小。

当原假设为真时,有大数定理,4与》不应有较大差异,即 彳值 应较小。

若2值过大,则怀疑原假设。

拒绝域为R={ 2 d},判断统计量是否落入拒绝域,得出结论。

二、Kolmogorov-Smirnov 正态性检验:

Kolmogorov-Smirnov 检验法是检验单一样本是否来自某一特定 分布。比如检验一组数据是否为正态分布。

它的检验方法是以样本数

Z

构造统计量

t=l

据的累积频数分布与特定理论分布比较, 若两者间的差距很小,则推 论该样本取自某特定分布族。即对于假设检验问题:

H0:样本所来自的总体分布服从某特定分布

H1:样本所来自的总体分布不服从某特定分布

统计原理:Fo ( x )表示分布的分布函数,Fn (x )表示一组随机 样本的累计概率函数。

设D 为Fo(x)与Fn (x )差距的最大值,定义如下式

D=max|F n(x)-Fo(x)|

对于给定的a , P{Dn>d}二a.

例如:35位健康男性在未进食前的血糖浓度如表所示,试测验这组 数据是否来自均值a =80,标准差(T =6的正态分布 87 77 92 68 80 78 84 77 81 80 80 77 92 86 76 80 81 75 77 72 81 90 84 86 80 68 77 87 76 77 78 92 75 80 78 n=35

检验过程如下:

假设H0:健康成人男性血糖浓度服从正态分布

F n (X)

#{x 岂 x,i =12川,n}

n

计算过程如表:

浓度⑶

(f)

累计次

Fn(x)-F a

标准化值

理陀甘

D

0.0571 -2-0C 0.022£ 0.02

-4

r

4 0.1 i4S -1J33 0.4?34 91

75

fi 0 1714 -Q.S3 02033 0.02

r Ar $ 0.2286 -0.6 ? 0.2514 09

77

6 14 0.4(X)0

4150 0.308? 0.03

5 17 0.4?5?

-0.J3 0.3707 旧

6 23 0.?71 0 0.5000 0.02 £1 r 26 07429 0.1

7 0iMT5 28

64 r Ar 2S

0.80Q0 0 67 0J4SS 0.09

丽 1 弭

C.S571 too 0.341 j 15

87

£ 32

09143 1.17 D.S79D

on 贮

5

1.0M0

2.00

50

0.15 71

o.r 54

0.05 14

o.oi 55

0.03 53

0.02

结论:上表中的理论值/(x)是根据标准化值z 查表得到,实际上

查D 值表,故不能拒绝HO 即健康成年男人血糖浓度服从正态分布, 当样本容量n 大时可以用 D a, n=1.36/求得结果,如上述 D0.55, 35=1.36/=0.2299=0.23

结论:当实际观测D>Dn 则接受H1,反之则不拒绝H0假设。

72

拟合优度检验与K-S 正态检验的比较:

72

拟合优度检验与 K-S 正态检验都采用实际频数与期望频数进

行检验。它们之间最大的不同在于前者主要用于类别数据,

而后者主

D=max |Fn (x)-

0.23

总结正态性检验的几种方法

总结正态性检验的几种方法 1.1 正态性检验方法 1)偏度系数 样本的偏度系数(记为1g )的计算公式为 ()233133 1(1)(2)(1)(2)n i i n n g x x n n s n n s μ==-=----∑, 其中s 为标准差,3μ为样本的3阶中心距,即()331 1n i i x x n μ==-∑。 偏度系数是刻画数据的对称性指标,关于均值对称的数据其偏度系数为0,右侧更分散的数据偏度系数为正,左侧更分散的数据偏度系数为负。 (2)峰度系数 样本的峰度系数(记为2g ),计算公式为 ()2424 122 44(1)(1)3(1)(2)(3)(2)(3)(1)(1)3(1)(2)(3)(2)(3)n i i n n n g x x n n n s n n n n n n n n s n n μ=+-=-------+-=------∑, 其中s 为标准差,4μ为样本的3阶中心距,即()441 1n i i x x n μ==-∑。 当数据的总体分布为正态分布时,峰度系数近似为0,;当分布为正态分布的尾部更分散时,峰度系数为正;否则为负。当峰度系数为正时,两侧极端数据较多,当峰度系数为负时,两侧极端数据较少。 (3)QQ 图 QQ 图可以帮助我们鉴别样本的分布是否近似于某种类型的分布。现假设总体为正态分布()2 ,N μσ,对于样本12,,,n x x x L ,其顺序统计量是(1)(2)(),,,n x x x L 。设()x Φ为标准正 态分布()0,1N 的分布函数,1 ()x -Φ是反函数,对应正态分布的QQ 图是由以下的点 1()0.375,,1,2,,0.25i i x i n n -??-??Φ= ? ?+???? L , 构成的散点图,若样本数据近似为正态分布,在QQ 图上这些点近似地在直线上 y x σμ=+, 附近,此直线的斜率是标准差σ,截距式均值,μ,所以利用正态QQ 图可以做直观的正态性检验。若正态QQ 图上的点近似地在一条直线上,可以认为样本的数据来自正态分布总

数据正态性检验及正态转化在spss中的实现

数据正态性检验及正态转换在spss中的实现 1数据正态性检验 观察分布,预先判断 主要观察直方图,以及根据峰度和偏度粗略估计研究变量的分布。采用spss中描述统计中的频率分析来实现,具体操作如下: (1)在spss中打开数据资料文件,依次点击“分析—描述统计—频率”,如下图: (2)在弹出的对话框中,选择左边方框中要研究的变量,点击中间的箭头,将其选入右边的对话框,本文选择“胫围”作示例分析,如下图:

(3)之后,选择最右边五个选项卡中的“统计”选项卡,在弹出的对话框中的右下角勾选“偏度”和“峰度”选项,点击“继续”,如下图: (4)再点击“图表”选项卡,在弹出的对话框中勾选“直方图”和“在直方图中显示正态曲线”选项,点击“继续”,如下图: (5)然后点击“确定”选项,得出如下结果:统计一栏中包括有偏度及其标准误差、峰度及其标准误差。由结果可知:(偏度)>*(偏度标准误差);(峰度)>*(峰度标 准误差),推测该胫围数据不符合正态分布。

正态分布显著性检验 采用spss中非参数分析方法对数据资料进行正态性检验,具体步骤如下: (1)在spss中打开数据资料文件,依次点击“分析—非参数检验—单样本k-s”,如下图:

(2)在弹出的对话框中,选择左边方框中要研究的变量,点击中间的箭头,将其选入右边的对话框,本文选择“胫围”作示例分析,如下图: (3)之后,点击最右边的“精确”选项卡,在弹出的对话框中有三个选项,1、“仅渐进法”:是基于渐进分布的显著性水平的检验指标,适用于大样本,如果样本 过小或者分布不好,就会影响检验的效力;2、“蒙特卡洛法”:适用于精确显著 性水平的无偏估计,如果样本过大,数据处理过程太长,就应该使用这个选项; 3、“精确”:精确计算概率值,可以设定数据处理的时间,如果数据处理时间超

资料的正态性检验汇总

资料的正态性检验汇总 作者:huaxie 来源:【整理】发布时间:2009-4-22 浏览: 567 访问者: 58.23.96.242 摘要提示:本文汇总了通常在对资料进行正态性检验时遇到的问题,比如Kolmogorov-Smirnov检验(简称K-S检验),还是Shapiro-Wilk检验, SPSS里面用哪个过程,SAS程序等。 SPSS和SAS常用正态检验方法 如何在spss中进行正态分布检验 一、图示法 1、P-P图 以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。 2、Q-Q图 以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。 以上两种方法以Q-Q图为佳,效率较高。 3、直方图 判断方法:是否以钟形分布,同时可以选择输出正态性曲线。 4、箱式图 判断方法:观测离群值和中位数。 5、茎叶图 类似与直方图,但实质不同。 二、计算法 1、偏度系数(Skewness)和峰度系数(Kurtosis) 计算公式: g1表示偏度,g2表示峰度,通过计算g1和g2及其标准误σg1及σg2然后作U 检验。两种检验同时得出U0.05的结论时,才可以认为该组资料服从正态分布。由公式可见,部分文献中所说的“偏度和峰度都接近0……可以认为……近似服从正态分布”并不严谨。 2、非参数检验方法 非参数检验方法包括Kolmogorov-Smirnov检验(D检验)和Shapiro- Wilk(W 检验)。 SAS中规定:当样本含量n≤2000时,结果以Shapiro – Wilk(W检验)为准,当样本含量n >2000时,结果以Kolmogorov – Smirnov(D检验)为准。 SPSS中则这样规定:(1)如果指定的是非整数权重,则在加权样本大小位于3和50之间时,计算Shapiro-Wilk统计量。对于无权重或整数权重,在加权样

正态性检验的几种方法

正态性检验的几种方法 一、引言 正态分布是自然界中一种最常见的也是最重要的分布。因此,人们在实际使用统计分析时,总是乐于正态假定,但该假定是否成立,牵涉到正态性检验。目前,正态性检验主要有三类方法:一是计算综合统计量,如动差法、Shapiro-Wilk 法(W 检验)、D ’Agostino 法(D 检验)、Shapiro-Francia 法(W ’检验)。二是正态分布的拟合优度检验,如2χ检验、对数似然比检验、Kolmogorov-Smirov 检验。三是图示法(正态概率图Normal Probability plot),如分位数图(Quantile Quantile plot ,简称QQ 图)、百分位数(Percent Percent plot ,简称PP 图)和稳定化概率图(Stablized Probability plot ,简称SP 图)等。而本文从不同角度出发介绍正态性检验的几种常见的方法,并且就各种方法作了优劣比较,还进行了应用。 二、正态分布 2.1 正态分布的概念 定义1若随机变量X 的密度函数为 ()()()+∞∞-∈= -- ,,21 2 2 2x e x f x σμπ σ 其中μ和σ为参数,且()0,,>+∞∞-∈σμ 则称X 服从参数为μ和σ的正态分布,记为()2,~σμN X 。 另我们称1,0==σμ的正态分布为标准正态分布,记为()1,0~N X ,标准正态分布随机变量的密度函数和分布函数分别用()x ?和()x Φ表示。 引理1 若()2,~σμN X ,()x F 为X 的分布函数,则()?? ? ??-Φ=σμx x F 由引理可知,任何正态分布都可以通过标准正态分布表示。 2.2 正态分布的数字特征

spss_数据正态分布检验方法及意义

spss 数据正态分布检验方法及意义判读 要观察某一属性的一组数据是否符合正态分布,可以有两种方法(目前我知道这两种,并且这两种方法只是直观观察,不是定量的正态分布检验): 1:在spss里的基本统计分析功能里的频数统计功能里有对某个变量各个观测值的频数直方图中可以选择绘制正态曲线。具体如下:Analyze-----Descriptive S tatistics-----Frequencies,打开频数统计对话框,在Statistics里可以选择获得各种描述性的统计量,如:均值、方差、分位数、峰度、标准差等各种描述性统计量。在Charts里可以选择显示的图形类型,其中Histograms选项为柱状图也就是我们说的直方图,同时可以选择是否绘制该组数据的正态曲线(With nor ma curve),这样我们可以直观观察该组数据是否大致符合正态分布。如下图: 从上图中可以看出,该组数据基本符合正态分布。 2:正态分布的Q-Q图:在spss里的基本统计分析功能里的探索性分析里面可以通过观察数据的q-q图来判断数据是否服从正态分布。 具体步骤如下:Analyze-----Descriptive Statistics-----Explore打开对话框,选择Plots选项,选择Normality plots with tests选项,可以绘制该组数据的q-q 图。图的横坐标为改变量的观测值,纵坐标为分位数。若该组数据服从正态分布,则图中的点应该靠近图中直线。 纵坐标为分位数,是根据分布函数公式F(x)=i/n+1得出的.i为把一组数从小到大排序后第i个数据的位置,n为样本容量。若该数组服从正态分布则其q-q图应该与理论的q-q图(也就是图中的直线)基本符合。对于理论的标准正态分布,其q-q图为y=x直线。非标准正态分布的斜率为样本标准差,截距为样本均值。 如下图:

正态性检验的一般方法汇总

正态性检验的一般方法 姓名:蓝何忠 学号:1101200203 班号:1012201 正态性检验的一般方法 【摘要】:正态分布是自然界中一种最常见的也是最重要的一种分布.因此,人们在实际使用统计分析时,总是乐于正态假定,但该假定是否成立,牵涉到正态性检验.在一般性的概率统计教科书中,只是把这个

问题放在一般性的分布拟合下作简短处理,而这种万精油式的检验方法,对正态性检验不具有特效.鉴于此,该文从不同角度出发介绍正态性检验的几种常见的方法,并且就各种方法作了优劣比较, 【引言】一般实际获得的数据,其分布往往未知。在数据分析中,经常要判断一组数据的分布是否来自某一特定的分布,比如对于连续性分布,常判断数据是否来自正态分布,而对于离散分布来说,常判断是否来自二项分布.泊松分布,或判断实际观测与期望数是否一致,然后才运用相应的统计方法进行分析。 几种正态性检验方法的比较。 2?一、拟合优度检验: (1)当总体分布未知,由样本检验总体分布是否与某一理论分布一致。 H0: 总体X的分布列为p{X=}=,i=1,2,…… H1:总体 X. 的分布不为 构造统计量 为真时H0发生的理为为样本中发生的实际频数,其中论频数。2)检验原理(2?意味着对于,=,观测频数与期望频数完全一致,若=0,则即完全拟合。 2?观察频数与期望频数越接近,则值越小。 2?当原假设为真时,有大数定理,与不应有较大差异,即值应较小。

2?若值过大,则怀疑原假设。 2?拒绝域为R={d} ,判断统计量是否落入拒绝域,得出结论。 二、Kolmogorov-Smirnov正态性检验: Kolmogorov-Smirnov检验法是检验单一样本是否来自某一特定它的 检验方法是以样本数比如检验一组数据是否为正态分布。分布。. 据的累积频数分布与特定理论分布比较,若两者间的差距很小,则推论该样本取自某特定分布族。即对于假设检验问题: H0:样本所来自的总体分布服从某特定分布 H1:样本所来自的总体分布不服从某特定分布 统计原理:Fo(x)表示分布的分布函数,Fn(x)表示一组随机样本的累计概率函数。 #}n1,2,,x{x?,i?i?)F(x n n : x)差距的最大值,定义如下式Fn为Fo(x)与(D设 D=max|Fn(x)-Fo(x)| P{Dn>d}=a. a,对于给定的位健康男性在未进食前的血糖浓度如表所示,试测验这组35例如: =6的正态分布,标准差数据是否来自均值μ=80σ87 77 92 68 80 78 84 77 81 80 80 77 92 86 76 80 81 75 77 72 81 90 84 86 80 68 77 87 76 77 78 92 75 80 78 n=35 检验过程如下:健康成人男性血糖浓度服从正态分布 H0:假设健康成人男性血糖浓度不服从正态分布 H1: 计算过程如表:

正态分布检验

Shapiro-Wilk 检验含义:Shapiro —Wilk 检验法是S.S.Shapiro 与 M.B.Wilk提出用顺序统计量W来检验分布的正态性,对研究的对象总体先提出假设认为总体服从正态分布,再将样本量为n的样本按大小顺序排列编秩,然后由确定的显著性水平a ,以及根据样本量为n时所对应的系数a i,根据特定公式计算出检验统计量W.最后查特定的正态性W检 验临界值表,比较它们的大小,满足条件则接受假设认为总体服从正态分布,否则拒绝假设,认为总体不服从正态分布? W检验全称Shapiro-Wilk检验,是一种基于相关性的算法。计算可得到一个相关系数,它越接近1就越表明数据和正态分布拟合得越好。 w检验是检验样本容量8< n < 50,样本是否符合正态分布的一种方法。 计算式为: E-Lj k -訓 其检验步骤如下: ①将数据按数值大小重新排列,使x1W,接受正态性假设。

正态分布是许多检验的肚础,比如F检验,t检验,卡方检验等在总体不是正太分布是没有任何盘义。因此,対一个样本是否来口正态总、体的检验是至关巫要的。当然,我们无法证明某个数据的确来口正态总体,但如果使用效率高的检验还?无法否认总体是正太的检验,我『]就没有理山否认那些和正太分布有关的检验有意义,下而我就对正态性检验方法进行简单的归纳和比较。 一.图示法 1.P-P 图 以样本的累计频率作为横坐标,以按照正态分布计算的相应累计概率作为纵坐标,以样本值表现为直角坐标系的散点。如果数据服从 F态分布,则样本点应鬧绕第一象限的对角线分布。 2.Q-Q 图 以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为直角坐标系的散点。如果数据服从正太分布,则样本点应围绕第一彖限的对角线分布。 以上两种方法以Q-Q图为佳,效率较高。 3.直方图 判断方法:是否以钟型分布,同时可以选择输出正态性曲线。 4.箱线图 判断方法;观察矩形位置利中位数,若矩形位于中间位置且中位数位于矩形的中间位迓,则分布较为对称,否则是偏态分布。 5.茎叶图

SPSS统计分析1:正态分布检验.

正态分布检验 一、正态检验的必要性[1] 当对样本是否服从正态分布存在疑虑时,应先进行正态检验;如果有充分的理论依据或根据以往积累的信息可以确认总体服从正态分布时,不必进行正态检验。 当然,在正态分布存疑的情况下,也就不能采用基于正态分布前提的参数检验方 法,而应采用非参数检验。 二、图示法 1、P-P图 以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。 2、Q-Q图 以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。 Q-Q图为佳,效率较高。 以上两种方法以 3、直方图 判断方法:是否以钟形分布,同时可以选择输出正态性曲线。 4、箱式图 判断方法:观测离群值和中位数。 5、茎叶图 类似与直方图,但实质不同。 三、计算法 1、峰度(Kurtosis)和偏度(Skewness) (1)概念解释 峰度是描述总体中所有取值分布形态陡缓程度的统计量。这个统计量需要与正态分布相比较,峰度为0表示该总体数据分布与正态分布的陡缓程度相同;峰度大于0表示该总体数据分布与正态分布相比较为陡峭,为尖顶峰;峰度小于0表示该总体数据分布与正态分布相比

较为平坦,为平顶峰。峰度的绝对值数值越大表示其分布形态的陡缓程度与正态分布的差异 程度越大。 峰度的具体计算公式为: 注:SD就是标准差σ。峰度原始定义不减3,在SPSS中为分析方便减3后与0作比较。 偏度与峰度类似,它也是描述数据分布形态的统计量,其描述的是某总体取值分布的对称性。这个统计量同样需要与正态分布相比较,偏度为0表示其数据分布形态与正态分布的偏斜程度相同;偏度大于0表示其数据分布形态与正态分布相比为正偏或右偏,即有一条长尾巴拖在右边,数据右端有较多的极端值;偏度小于0表示其数据分布形态与正态分布相比为负偏或左偏,即有一条长尾拖在左边,数据左端有较多的极端值。偏度的绝对值数值越大表示其分布形态的偏斜程度越大。 偏度的具体计算公式为: 各种正态分布,尽管μ和σ可以分别取不同的值,但偏度都等于0,峰度都等于3,它们的密度函数曲线的形状都是一样的[1]。(SPSS中峰度减3与0比较 (2)适用条件 样本含量应大于200。 (3)检验方法 计算得到的峰度、偏度根据正态分布的值3、0(SPSS中为0、0)来直观判断是 否接近。 应对二者分别进行U检验来定量描述显著性,方法如下[2]:峰度U检验:|峰度-3| / 峰度标准差 <= U0.05 = 1.96(SPSS中将3替换为0)偏度U检验:|偏度-0| / 偏度标准差 <= U0.05 = 1.96 如果上述都成立,则可认为在0.05显著水平符合正态分布(下例偏度可判断不符合。

如何检验数据是否服从正态分布

如何检验数据是否服从正态分布 一、图示法 1、P-P图 以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵 坐标,把样本值表现为直角坐标系中的散点。如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。 2、Q-Q图 以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐 标,把样本表现为指教坐标系的散点。如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。 以上两种方法以Q-Q图为佳,效率较高。 3、直方图 判断方法:是否以钟形分布,同时可以选择输出正态性曲线。 4、箱式图 判断方法:观测离群值和中位数。 5、茎叶图 类似与直方图,但实质不同。 二、计算法 1、偏度系数(Skewness)和峰度系数(Kurtosis) 计算公式: g1表示偏度,g2表示峰度,通过计算g1和g2及其标准误σg1及σg2然后作U检验。两种检验同时得出U0.05的结论时,才可以认为该组资料服从正态分布。由公式可见,部分文献中所说的“偏度和峰度都接近0……可以认为……近似服从正态分布”并不严谨。 2、非参数检验方法 非参数检验方法包括Kolmogorov-Smirnov检验(D检验)和Shapiro- Wilk(W 检验)。 SAS中规定:当样本含量n≤2000时,结果以Shapiro – Wilk(W检验)为准,当样本含量n >2000时,结果以Kolmogorov – Smirnov(D检验)为准。 SPSS中则这样规定:(1)如果指定的是非整数权重,则在加权样本大小位 于3和50之间时,计算Shapiro-Wilk统计量。对于无权重或整数权重,在加权 样本大小位于3和5000之间时,计算该统计量。由此可见,部分SPSS教材里面关于“Shapiro –Wilk适用于样本量3-50之间的数据”的说法是在是理解片面,误人子弟。(2)单样本Kolmogorov-Smirnov检验可用于检验变量(例如income)是否为正态分布。 对于此两种检验,如果P值大于0.05,表明资料服从正态分布。 三、SPSS操作示例

SPSS 正态性检验方法

正态性检验方法的比较 理论部分 正态分布是许多检验的基础,比如F检验,t检验,卡方检验等在总体不是正太分布是没有任何意义。因此,对一个样本是否来自正态总体的检验是至关重要的。当然,我们无法证明某个数据的确来自正态总体,但如果使用效率高的检验还无法否认总体是正太的检验,我们就没有理由否认那些和正太分布有关的检验有意义,下面我就对正态性检验方法进行简单的归纳和比较。 一、图示法 1. P-P图 以样本的累计频率作为横坐标,以按照正态分布计算的相应累计概率作为纵坐标,以样本值表现为直角坐标系的散点。如果数据服从正态分布,则样本点应围绕第一象限的对角线分布。 2. Q-Q图 以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为直角坐标系的散点。如果数据服从正太分布,则样本点应围绕第一象限的对角线分布。 以上两种方法以Q-Q图为佳,效率较高。 3. 直方图(频率直方图) 判断方法:是否以钟型分布,同时可以选择输出正态性曲线。 4. 箱线图 判断方法:观察矩形位置和中位数,若矩形位于中间位置且中位数位于矩形的中间位置,则分布较为对称,否则是偏态分布。 5. 茎叶图 判断方法:观察图形的分布状态,是否是对称分布。

二、偏度、峰度检验法(冒牌K-S 检验法): 1. S ,K 的极限分布 样本偏度系数() 3 32 2B S B =;该系数用于检验对称性,S>0时,分布呈正偏态,S<0时, 分布呈负偏态。 样本峰度系数() 4 2 23B K B = -;该系数用于检验峰态,K>0时为尖峰分布,S<0时为 扁平分布;当S=0,K=0时分布呈正态分布。 0H :F(x)服从正态分布 1H :F(x)不服从正态分布 当原假设为真时,检验统计量 ~N(0,1) ~N (0,1) 对于给定的α, R ||={| >λ?| >λ} 其中14 u α - λ= 2. Jarque-Bera 检验(偏度和峰度的联合分布检验法) 检验统计量为 JB 22164n k S K -??= + ??? ()2 2χ~,JB 过大或过小时,拒绝原假设。 三、非参数检验方法 1. Kolmogorov-Smirnov 正态性检验(基于经验分布函数(ECDF )的检验) ()()0max ||n D F x F x =- ()n F x 表示一组随机样本的累计概率函数,()0F x 表示分布的分布函数。 当原假设为真时,D 的值应较小,若过大,则怀疑原假设,从而,拒绝域为 {}R D d =>。对于给定的α,{}p P D d α=>=,又?{}n n p P D D =≥ 2. Lilliefor 正态性检验 该检验是对Kolmogorov-Smirnov 检验的修正,参数未知 时,由22??,X S μσ==可计算得检验统计量?n D 的值。 3. Shapiro-Wilk(W 检验) 检验统计量:

正态性检验

利用SPSS检验数据是否符合正态分布 1.下面我们来看一组数据,并检验“期初平均分”数据是否呈正态分布(此数据已在SPSS 里输入好) 2.在SPSS里执行“分析—>描述统计—>频数统计表”(菜单见下图,英文版的可以找到相 应位置),然后弹出左边的对话框,变量选择左边的“期初平均分”,再点下面的“图表” 按钮,弹出图中右边的对话框,选择“直方图”,并选中“包括正态曲线”

3.设置完后点“确定”,就后会出来一系列结果,包括2个表格和一个图,我们先来看看 最下面的图,见下图, 4.上图中横坐标为期初平均分,纵坐标为分数出现的频数。从图中可以看出根据直方图绘 出的曲线是很像正态分布曲线。如何证明这些数据符合正态分布呢,光看曲线还不够,还需要检验: 检验方法一:看偏度系数和峰度系数 我们把SPSS结果最上面的一个表格拿出来看看(见下图): 偏度系数Skewness=-0.333;峰度系数Kurtosis=0.886;两个系数都小于1,可认为近似于正态分布

检验方法二:单个样本K-S检验 若有分组,先分组,“数据”-“拆分文件”,“分组方式”中移入组别变量。 在SPSS里执行“分析—>非参数检验—>单个样本K-S检验,弹出对话框,检验变量选择“期初平均分”,检验分布选择“正态分布”,然后点“确定”。

检验结果为: 从结果可以看出,K-S检验中,Z值为0.493,P值 (sig 2-tailed)=0.968>0.05,因此数据呈近似正态分布 检验方法三:Q-Q图检验 在SPSS里执行“图表—>Q-Q图”,弹出对话框,见下图: 变量选择“期初平均分”,检验分布选择“正态”,其他选择默认,然后点“确定”,最后可以得到Q-Q图检验结果,结果很多,我们只需要看最后一个图,见下图。

正态性检验方法的比较

11统计1 201130980122 温汶琪 正态性检验方法 正态分布是许多检验的基础,比如F 检验,t 检验,卡方检验等在总体不是正态分布是没有任何意义。因此,对一个样本是否来自正态总体的检验是至关重要的。当然,我们无法证明某个数据的确来自正态总体,但如果使用效率高的检验还无法否认总体是正态的检验,我们就没有理由否认那些和正态分布有关的检验有意义。 一. W 检验 W 适用于小样本 (3≤n ≤50) (1)0:H 总体服从正态分布 (2)检验统计量为2 ()12 2 1 1 [()()]()()n i i i n n i i i i a a X X W a a X X ===--= --∑∑∑ (3)检验原理与拒绝域:当原假设为真时, 的值应接近于1,若其值过小,则怀疑原假设,从而,拒绝域为 {}R W c =≤ 其中,对于给定的 ,有 {}P W c α≤=查表,可得临界值 二、偏度、峰度检验法: 1、偏度系数 (1)0:H 10β= (2)总体偏度系数33 13322 2 2()() [()] E X EX E X EX νβν-= = -

(3) 10β> 总体分布正偏(右长尾) 10β= 总体分布关于EX 对称 10β< 总体分布负偏(左长尾) 样本偏度系数SK 332 2() B S B = 2、峰度系数 (1)0:H 23β= (2)峰度系数 4 42222 2()33()[()]E X EX E X EX νβν-=-=-- (3) 20β> 总体分布高峰态 20β= 总体分布正峰态 20β< 总体分布低峰态 峰度系数KU 4 2 23()B K B =- 三、Kolmogorov 检验 (1)双侧检验 001 :()():() ()H F x F x x H F x F x x = ?≠? 单侧检验 0010:()():()()H F x F x x H F x F x x ≥?? (2)检验统计量: 双侧检验 0s u p |()()|n x D F x F x =-

判断正态性的几种方法总结

判断正态性的几种方法总结 展开全文 数据服从正态分布是很多分析方法的前提条件,在进行方差分析、回归分析等分析前,首先要对数据的正态性进行分析,确保方法选择正确。如果不满足正态性特质,则需要考虑使用其他方法或对数据进行处理。 检测数据正态性的方法有很多种,以下为几种常见方法:图示法、统计检验法、描述法等。 01. 正态图正态分布图可直观地展示数据分布情况,并结合正态曲线判断数据是否符合正态分布。

操作方法:SPSSAU→可视化→正态图 分析时,选择【正态图】分析方法,拖拽分析项到右侧分析框内,点击“开始正态图分析”即可得到结果。 正态图 若数据基本符合正态分布,则会呈现出中间高、两侧低、左右基本对称的“钟形”分布曲线。 若数据为定类数据或数据量较少,一般很难呈现出标准的正态分布,此时建议只要图形呈现出“钟形”也可接受数据服从正态分布。 若数据分布完全偏离正态,则说明数据不符合正态分布。02. P-P图/Q-Q图P-P图和Q-Q图,都是通过散点与正态分布的预测直线法重合程度以说明数据是否服从正态分布。 P-P图是将实际数据累积比例作为X轴,将对应正态分布累积比例作为Y轴,作散点图,反映实际累积概率与理论累积概率的符合程度。 Q-Q图将实际数据作为X轴,将对应正态分布分位数作为Y 轴,作散点图,反映变量的实际分布与理论分布的符合程度。如数据服从正态分布,则散点分布应近似呈现为一条对角直线。反之则说明数据非正态。P-P图和Q-Q图的功能一致,

使用时没有区别。 03. 正态性检验利用统计图分析正态性,往往是依靠分析者的主观判断进行。因而容易产生结果偏差。因此需要结合其他方法,对数据的正态性指标进行统计描述。 正态性检验分析定量数据是否具有正态分布特质。 操作步骤:选择【正态性检验】分析方法,拖拽分析项到右侧分析框内,点击“开始正态性检验”即可得到结果。 分析结果 如果样本量大于50,则应该使用Kolmogorov-Smirnov检验结果,反之则使用Shapro-Wilk检验的结果。 上图中,样本量为300,因而选择K-S检验。P值=0.149>0.05,说明数据服从正态分布。 04. 描述法描述法即通过描述数据偏度和峰度系数检验数据的正态性。 偏度和峰度可通过描述性分析得到,也可在正态性检验中直接查看。 理论上讲,标准正态分布偏度和峰度均为0,但现实中数据无法满足标准正态分布,因而如果峰度绝对值小于10并且偏度绝对值小于3,则说明数据虽然不是绝对正态,但基本

正态性检验方法比较.doc

正态性检验方法的比较 正态分布是许多检验的基础,比如F 检验,t 检验,卡方检验等在总体不是正太分布是没有任何意义。因此,对一个样本是否来自正态总体的检验是至关重要的。当然,我们无法证明某个数据的确来自正态总体,但如果使用效率高的检验还无法否认总体是正太的检验,我们就没有理由否认那些和正太分布有关的检验有意义,下面我就对正态性检验方法进行简单的归纳和比较。 一.图示法 1.P-P 图 以样本的累计频率作为横坐标,以按照正态分布计算的相应累计概率作为纵坐标,以样本值表现为直角坐标系的散点。如果数据服从正态分布,则样本点应围绕第一象限的对角线分布。 2. Q-Q 图 以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为直角坐标系的散点。如果数据服从正太分布,则样本点应围绕第一象限的对角线分布。 以上两种方法以Q-Q 图为佳,效率较高。 3.直方图 判断方法:是否以钟型分布,同时可以选择输出正态性曲线。 4.箱线图 判断方法:观察矩形位置和中位数,若矩形位于中间位置且中位数位于矩形的中间位置,则分布较为对称,否则是偏态分布。 5.茎叶图 判断方法:观察图形的分布状态,是否是对称分布。 二.偏度、峰度检验法: 1. S,K 的极限分布 样本偏度系数() 3 322B S B = 该系数用于检验对称性,S>0时,分布呈正偏态,S<0时,分布呈负偏态。 样本峰度系数()4 223B K B =- 该系数用于检验峰态,K>0时为尖峰分布,S<0时为扁平分布;当S=0,K=0时分布呈正态分布。 0H :F(x)服从正态分布 1H :F(x)不服从正态分布 当原假设为真时,检验统计量 ~N(0,1) ~N(0,1) 对于给定的α R ||={|>λ?|>λ} 其中14u α -λ= 2. Jarque-Bera 检验(偏度和峰度的联合分布检验法)

为何需要正态分布和方差齐性的检验

为何需要正态分布和方差齐性的检验? 很多时候,我们都需要使用从单一样本中获取的样本信息利用统计推断的方法来估计总体的参数信息,这是一种非常有用的统计方法,但在执行相关推断之前,我们需要验证一些假定,任何一条假定若是不能满足,则得到的统计结论就是无效的。 通常数据的分析假设为:随机数据,独立的,正态分布,等方差,稳定,当然,测量系统的精确性和准确性也是要满足测量要求的。 什么是正态分布假定? 在再进行统计分析之前,需要识别出数据的分布,否则,错误的统计检验将带来一定的风险,许多统计方法在执行之前嘉定数据服从正态分布,比如,单/双样本-T检验,过程能力分析,I-MR和方差分析等。如果数据不满足正态分布,则需要使用非参数方法,利用中位数进行检验而不是均值,也可以使用BOX-COX转换或JOHNSON变换的方法把数据转换为正态分布。 但是需要知道许多统计工具虽然假定数据满足正态但实际上当样本量大于15或20的时候就不需要正态分布了,但是如果样本量小于15且数据不满足正态分布,P值得数据就是错误的,相关统计结论就需要特别注意了。 在Minitab中,有许多方法可以判断数据的分布是否满足正态,下面我们来了解两种比较常用的方法:正态检验和图形化汇总 Minitab的正态检验将生成概率图和执行单样本假设检验来判断数据的分布是否来自满足正态的分布总体,原假设是数据满足正态分布而备择假设是不满足 选择统计—基本统计量—正态检验 下面我们先看看数据的正态检验

图形中的数据点应该在直线的附近,如果有些数据点在尾巴上远离直线也可以接受,但前提条件是必须在置信区间内才可以。 图形中的数据点应该靠近你和分布直线且通过“粗笔检验”,用一只“粗笔”盖在拟合直线上,如果铅笔能盖住所有数据点,则数据满足正态分布 与之相连的Anderson-Darling检验统计量应该很小 P值应该大于选择的Alpha风险(通常取或) Anderson-Darling统计量用来衡量数据点远离拟合直线的程度,是每个数据点到直线距离的平方和,对于一组给定的数据分布来说,分布拟合的越好,该值就会越小。 Minitab描述性统计输出通过图形化汇总直观的展示数据分布和计算了Anderson-Darling数值和P 值,图形化汇总输出四张图形:带有正态拟合线的直方图,箱线图,均值和中位数的95%置信区间图。 接下来分析图形化汇总中的正态检验: 数据通过直方图展示出来,查看图形的分布行形状(对称还是有偏度),数据在图形中是如何延伸的,且需要查看是否存在异常数据 与之相关的Anderson-Darling统计量数值应该很小 P值应该大于选择的Alpha风险(通常取或) 对于一些流程来说,比如时间和循环周期的数据,数据永远不会满足正态分布的,不满足正态分布的数据对于一些统计方法是适用的,但需要明确数据需要满足一些特殊需求。 什么是等方差假定? 通常,方差是指数据的分布离散程度,统计分析中,比如方差分析(ANOVA)中,嘉定虽然不同的样本数据来自不同均值的抽样总体,它们应该有相同的方差,方差齐性是指不同样本的方差大体相同,如果方差非齐性会影响第一类风险且导致错误的结论,如果比较两个或两个以上样本均值,比如双样本T检验和ANOVA中,如果方差显著有差异将会掩盖掉均值的差异信息并导致错误的结论。 Minitab提供了几种可以执行等方差检验的方法,可以参考Minitab的帮助来决定基于不同的数据类型该选择哪种方法,当然,也可以通过使用Minitab协助来验证该假定(技巧:当使用协助,点

正态性检验

正态性检验 安德森-达令检验、柯尔莫哥洛夫-斯米诺夫检验、雅克-贝拉检验、偏度检验、峰度检验、爱泼斯-普利检验、夏皮洛-威尔克检验。 有些统计方法只适用于正态分布或近似正态分布资料,如用均数和标准差描述资料的集中或离散情况,用正态分布法确定正常值范围及用t检验两均数间相差是否显著等,因此在用这些方法前,需考虑进行正态性检验。 正态分布的特征是对称和正态峰。分布对称时众数和均数密合,若均数-众数>0,称正偏态。因为有少数变量值很大,使曲线右侧尾部拖得很长,故又称右偏态;若均数-众数<0称负偏态。因为有少数变量值很小,使曲线左侧尾部拖得很长,故又称左偏态,见图7.1(a)。 正态曲线的峰度叫正态峰,见图7.1(b)中的虚线,离均数近的或很远的变量值都较正态峰的多的称尖峭峰,离均数近或很远变量值都较正态峰的少的称平阔峰。 图7.1频数分布的偏度和峰度 正态性检验的方法有两类。一类对偏度、峰度只用一个指标综合检验,另一类是对两者各用一个指标检验,前者有W法、D法、正态概率纸法等,后者有动差法亦称矩法。现仅将W法与动差法分述于下; 1.W法此法宜用于小样本资料的正态性检验,尤其是n≤50时,检验步骤如下; (1)将n个变量值Xi从小至大排队编秩。 X1 见表7.5第(1)栏,表中第(2)、第(3)栏是变量值,第(2)栏由上而下从小至大排列,第(3)栏由下而上从小至大排列。第(4)栏是第(3)栏与第(2)栏之差。 (2)由附表5按n查出ain系数列入表7.5第(5)栏,由于当n为奇数时,对应于中位数秩次的ain为0,所以中位数只列出,不参加计算。第(6)栏是第(5)栏与第(4)栏的乘积。 (3)按式(7.8)计算W值 (7.8) 式中分子的∑,当n是偶数时,为的缩写,当n是奇数时为的缩写,表7.5 第(6)栏的合计平方后即为分子。分母按原始资料计算。 (4)查附表6得P值,作出推断结论,按n查得W(n,α),α是检验前指定的检验水准,若W>W(n,α)则在α水准上按受H0,资料来自正态分布总体,或服从正态分布;若W≤W(n,α),则在α水准上拒绝H0,接受H1,资料非正态。 例7.8测得20例40—49岁健康人右侧腓总神经的传导速度(m/sec)如表7.5第(2)、第(3)栏,试检验此资料是否服从正态分布。 H0:总体服从正态分布 H1:总体为非正态分布 α=0.05 计算表7.5各栏。

正态性检验和正态转换的方法以在SPSS中的实现

正态性检验的方法以及在SPSS中的实现 本文将汇总正态检验常用的方法以及各种方法的适用条件和在SPSS中的实现,此外,还将提及将非正态分布转化为正态分布的方法,以及选择转化方法的依据。 一、正态检验方法 1.1观察分布,预先判断 先做直方图看看是否大概符合正态分布,Graph-->legacy dialogs-->histogram-->选入变量--》OK.如果距离正态分布的样子太远了,就不要做以下工作了。 1.2计算偏度(Skewness)和峰度(Kurtosis) ,当它们接近0时,为正态 这是一种比较直观的方法,用于初步判断。 1)在SPSS中通用菜单栏Analyze—Reports—Case Summaries分析过程Statistics的选择项中计算 偏度(Skewness)和峰度(Kurtosis) ; 2)通过Analyze—Reports—Report Summaies in Row s分析过程Report 的Summary 的选择项 计算偏度、峰度;或者通过Reprts—Report Summaries in Columns 分析过程的Summary 选择项计算偏度和峰度; 3)通过Analyze—Descriptive Statistics—Frequencies分析过程的Statistics的选择项Distribution 中计算偏度、峰度; 4)通过Analyze—Descriptive Statist ics—Descr iptives分析过程的Opt ions的选择项Distribution 中计算偏度、峰度; 5)通过Analyze—Compare means—means 分析过程的Options 的选择项Statistics 中选择统计 量Skewness (偏度)、Kurto sis (峰度)来对数据资料进行正态性检验。 附偏度和峰度统计意义: 偏度主要是研究分布形状是否对称: 约等于0 则可以认为分布是对称的;>0 则可以认为右偏态,此时在均值右边的数据更为分散;<0 则可以认为左偏态,此时在均值左边的数据更为分散。 峰度它是以正态分布为标准,比较两侧极端数据分布情况的指标: 等于0说明该变量分布的峰态正合适,不胖也不瘦(正态分布),>0 此说明该变量的分布峰态太陡峭(瘦高个);反之,如果Kurtosis为负值,该变量的分布峰态太平缓(矮胖子)。 1.3用正态概率图的P-P 或Q-Q 法对数据资料进行正态性检验。 P-P图和QQ图可以判断的分布很多,对于正态分布的检验也不仅限于标准正态分布。P-P 图是根据变量的累积概率对应于所指定的理论分布累积概率绘制的散点图,用于直观地检测样本

16种常用的数据分析方法汇总

一、描述统计 描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。 1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策树法。 2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W检验、动差法。 二、假设检验 1、参数检验 参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。 1)U验使用条件:当样本含量n较大时,样本值符合正态分布 2)T检验使用条件:当样本含量n较小时,样本值符合正态分布 A 单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别; B 配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似;

C 两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。 2、非参数检验 非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。 A 虽然是连续数据,但总体分布形态未知或者非正态; B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下; 主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。 三、信度分析 检査测量的可信度,例如调查问卷的真实性。 分类: 1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度 2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。 四、列联表分析 用于分析离散变量或定型变量之间是否存在相关。

数学建模常用各种检验方法及常用方法

数学建模各种检验方法 1.单个总体2 Nμσ的均值μ的检验: (,) 2 σ已知,关于均值的检验用ztest命令来实现. [h,p,ci]=ztest(x,mu,sigma,alpha,tail) 2 σ已知,关于均值的检验用ttest命令来实现. [h,p,ci]=ttest(x,mu,alpha,tail) 2.两个正态总体均值差的检验(t 检验) 还可以用t 检验法检验具有相同方差的2 个正态总体均值差的假设。在Matlab 中 由函数ttest2 实现,命令为: [h,p,ci]=ttest2(x,y,alpha,tail) 3.分布拟合检验 在实际问题中,有时不能预知总体服从什么类型的分布,这时就需要根据样本来检 验关于分布的假设。下面介绍2χ检验法和专用于检验分布是否为正态的“偏峰、峰度 检验法”。 2 χ检验法 0 H :总体x的分布函数为F(x) , 1 H : 总体x的分布函数不是F(x). 在用下述χ 2检验法检验假设0 H 时,若在假设0 H 下F(x)的形式已知,但其参数

值未知,这时需要先用极大似然估计法估计参数,然后作检验。 偏度、峰度检验 4.其它非参数检验 Wilcoxon秩和检验 在Matlab中,秩和检验由函数ranksum实现。命令为: [p,h]=ranksum(x,y,alpha) 其中x,y可为不等长向量,alpha为给定的显著水平,它必须为0和1之间的数量。p返回 产生两独立样本的总体是否相同的显著性概率,h返回假设检验的结果。如果x和y的总 体差别不显著,则h为零;如果x和y的总体差别显著,则h为1。如果p 接近于零,则可对 原假设质疑。 5.中位数检验 在假设检验中还有一种检验方法为中位数检验,在一般的教学中不一定介绍,但在 实际中也是被广泛应用到的。在Matlab中提供了这种检验的函数。函数的使用方法简单, 下面只给出函数介绍。 signrank函数 signrank Wilcoxon符号秩检验 [p,h]=signrank(x,y,alpha)

相关文档
相关文档 最新文档