文档视界 最新最全的文档下载
当前位置:文档视界 › 双闭环直流电机调速的matlab仿真

双闭环直流电机调速的matlab仿真

双闭环直流电机调速的matlab仿真
双闭环直流电机调速的matlab仿真

双闭环直流电机调速系统的SIMULINK仿真实验

双闭环直流电机调速系统的SIMULINK仿真实验 魏小景张晓娇刘姣 (自动化0602班) 摘要:采用工程设计方法对双闭环直流调速系统进行设计,选择调节器结构,进行参数的计算和校验;给出系统动态结构图,建立起动、抗负载扰动的Matlab Simulink 仿真模型.分析系统起动的转速和电流的仿真波形 ,并进行调试 ,使双闭环直流调速系统趋于合理与完善。 关键词:双闭环调速系统;调节器;Matlab Simulink建模仿真 1.引言 双闭环直流调速系统是目前直流调速系统中的主流设备,具有调速范围宽、平稳性好、稳速精度高等优点,在理论和实践方面都是比较成熟的系统,在拖动领域中发挥着极其重要的作用。由于直流电机双闭环调速是各种电机调速系统的基础,直流电机双闭环调速系统的工程设计主要是设计两个调节器。调节器的设计一般包括两个方面:第一选择调节器的结构,以确保系统稳定,同时满足所需的稳态精度. 第二选择调节器的参数,以满足动态性能指标。本文就直流电机调速进行了较系统的研究,从直流电机的基本特性到单闭环调速系统,然后进行双闭环直流电机设计方法研究,最后用实际系统进行工程设计,并采用Matlab/Sim-ulink进行仿真。 2.基本原理和系统建模 为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串联连接. 把转速调节器ASR 的输出当作电流调节器ACR 的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置GT ,TA为电流传感器,TG 为测速发电机. 从闭环结构上看,电流调节环在里面,叫做内环,转速调节环在外边叫做外环,这样就形了转速、 图1 直流电机双闭环调速系统的动态结构图

直流电动机转速电流双闭环控制系统设计

直流电动机转速/电流双闭环控制系统设计 摘要:提出并介绍了基于转速和电流双闭环直流调速系统的模型,对建立的数学模型在Matlab/Simulink下进行了仿真。从而验证了转速电流双闭环直流调速系统具有较好的动态性能以及在保证系统稳定的前提下实现转速无差。同时对负载变化和电网电压的波动都能起到很好的抗扰作用。 关键词:直流电动机;双闭环;MA TLAB ABSTRACT: Proposed and introduced DC system model based on speed and current double closed loop, the mathematical model is simulated under Matlab / Simulink. Therefore the speed and current double closed loop DC system having good dynamic performance is verified and ensure system achieve stability under the premise of no speed difference. At the same time the load changes and power grid voltage fluctuations can play a very good anti-interference function. Keyword: DC motor; double loop; MA TLAB 0 引言 对直流电动机建立数学模型是对其分析的重要一环。双闭环直流调速系统可以保证系统稳定的前提下实现转速无静差以及满足系统快速起制动、突加负载动态速降小等要求,克服单闭环直流调速系统的不能随意控制电流和转矩的动态过程。双闭环系统可以在电机最大允许电流和转矩受限制的条件下,充分利用电机的过载能力,在过渡过程中保证电流为允许的最大值,使电力拖动系统以最大的加速度起动,到达稳态时,立即让电流降下来,使转矩马上与负载相平衡,从而转入稳态运行。在直流电动机起动时只采用电流负反馈,得到近似的恒流过程,在达到稳态转速后只利用转速负反馈保证系统稳定运行。 1 转速电流双闭环控制系统的组成 系统中设置两个调节器,分别用来调节转速和电流。转速负反馈和电流负反馈实现嵌套连接,转速调节器的输出当作电流调节器的输入,再利用电流调节器的输出控制电力电子变换器,从而形成转速、电流双闭环调速系统。从闭环结构上看,电流环在里面,称为内环,转速环在外面称为外环。为了实现静、动态性能,调节器采用比例部分能够迅速响应控制作用,积分部分最终消除稳态偏差,因此两个调节器都采用PI调节器。同时两个调节器还带有限幅作用,通过限幅作用,转速调节器输出限幅电压决定电流调节器的最大输入,ACR输出的限幅电压限制了电力电子变换器件的最大输出电压。 = 图1 转速、电流双闭环直流调速系统 2 双闭环调速系统的数学模型 2.1 直流调速系统动态数学模型 直流电机运行时的电压和转矩方程分别为 =R (1) (2) 额定励磁下的感应电动势和电磁转矩分别为(3)

时域有限差分法的Matlab仿真

时域有限差分法的Matlab仿真 关键词: Matlab 矩形波导时域有限差分法 摘要:介绍了时域有限差分法的基本原理,并利用Matlab仿真,对矩形波导谐振腔中的电磁场作了模拟和分析。 关键词:时域有限差分法;Matlab;矩形波导;谐振腔 目前,电磁场的时域计算方法越来越引人注目。时域有限差分(Finite Difference Time Domain,FDTD)法[1]作为一种主要的电磁场时域计算方法,最早是在1966年由K. S. Yee提出的。这种方法通过将Maxwell旋度方程转化为有限差分式而直接在时域求解,通过建立时间离散的递进序列,在相互交织的网格空间中交替计算电场和磁场。经过三十多年的发展,这种方法已经广泛应用到各种电磁问题的分析之中。 Matlab作为一种工程仿真工具得到了广泛应用[2]。用于时域有限差分法,可以简化编程,使研究者的研究重心放在FDTD法本身上,而不必在编程上花费过多的时间。 下面将采用FDTD法,利用Matlab仿真来分析矩形波导谐振腔的电磁场,说明了将二者结合起来的优越性。 1FDTD法基本原理 时域有限差分法的主要思想是把Maxwell方程在空间、时间上离散化,用差分方程代替一阶偏微分方程,求解差分方程组,从而得出各网格单元的场值。FDTD 空间网格单元上电场和磁场各分量的分布如图1所示。 电场和磁场被交叉放置,电场分量位于网格单元每条棱的中心,磁场分量位于网格单元每个面的中心,每个磁场(电场)分量都有4个电场(磁场)分量环绕。这样不仅保证了介质分界面上切向场分量的连续性条件得到自然满足,而且

还允许旋度方程在空间上进行中心差分运算,同时也满足了法拉第电磁感应定律和安培环路积分定律,也可以很恰当地模拟电磁波的实际传播过程。 1.1Maxwell方程的差分形式 旋度方程为: 将其标量化,并将问题空间沿3个轴向分成若干网格单元,用Δx,Δy和Δz 分别表示每个网格单元沿3个轴向的长度,用Δt表示时间步长。网格单元顶点的坐标(x,y,z)可记为: 其中:i,j,k和n为整数。 同时利用二阶精度的中心有限差分式来表示函数对空间和时间的偏导数,即可得到如下FDTD基本差分式: 由于方程式里出现了半个网格和半个时间步,为了便于编程,将上面的差分式改写成如下形式:

各种BP学习算法MATLAB仿真

3.3.2 各种BP学习算法MATLAB仿真 根据上面一节对BP神经网络的MATLAB设计,可以得出下面的通用的MATLAB程序段,由于各种BP学习算法采用了不同的学习函数,所以只需要更改学习函数即可。 MATLAB程序段如下: x=-4:0.01:4; y1=sin((1/2)*pi*x)+sin(pi*x); %trainlm函数可以选择替换 net=newff(minmax(x),[1,15,1],{'tansig','tansig','purelin'},'trainlm'); net.trainparam.epochs=2000; net.trainparam.goal=0.00001; net=train(net,x,y1); y2=sim(net,x); err=y2-y1; res=norm(err); %暂停,按任意键继续 Pause %绘图,原图(蓝色光滑线)和仿真效果图(红色+号点线) plot(x,y1); hold on plot(x,y2,'r+'); 注意:由于各种不确定因素,可能对网络训练有不同程度的影响,产生不同的效果。如图3-8。 标准BP算法(traingd)

图3-8 标准BP算法的训练过程以及结果(原图蓝色线,仿真图+号线)增加动量法(traingdm) 如图3-9。 图3-9 增加动量法的训练过程以及结果(原图蓝色线,仿真图+号线)弹性BP算法(trainrp)如图3-10 图3-10 弹性BP算法的训练过程以及结果(原图蓝色线,仿真图+号线)

动量及自适应学习速率法(traingdx)如图3-11。 图3-11 动量及自适应学习速率法的训练过程以及结果(原图蓝色线,仿真图+号线)共轭梯度法(traincgf)如图3-12。

直流电机双闭环调速大作业

题目(中)直流电机双闭环控制调速 姓名与学号 指导教师 年级与专业

所在学院

目录: 一、电机控制实验目的和要求 (4) 二、双闭环调速控制内容 (4) 三、主要仪器设备和仿真平台 (5) 四、仿真建模步骤及分析 (5) 1.直流电机双闭环调速各模块功能分析 (5) 2.仿真结果分析(转速、转矩改变) (18) 3.转速PI调节器参数对电机运行性能的影响 (24) 4.电流调节器改用PI调节器后的仿真 (27) 5.加入位置闭环后的仿真 (28) 6.速度无超调仿真 (30) 七、实验心得 (32)

一、电机控制实验目的和要求 1、加深对直流电机双闭环PWM调速模型的理解。 2、学会利用MATLAB中的SIMULINK工具进行建模仿真。 3、掌握PI调节器的使用,分析其参数对电机运行性能的影响。 二、双闭环调速控制内容 必做: 1、描述Chopper-Fed DC Motor Drive中每个模块的功能。 2、仿真结果分析:包括转速改变、转矩改变下电机运行性能,并解释相应现象。 3、转速PI调节器参数对电机运行性能的影响。 4、电流调节器改用PI调节器后,对电机运行调速结果的影响。 选做: 5、加入位置闭环 6、速度无超调

三、主要仪器设备和仿真平台 1、MATLAB R2014b 2、Microsoft Officials Word 2016 四、仿真建模步骤及分析 1.直流电机双闭环调速各模块功能分析 参考Matlab自带的直流电机双闭环调速的SIMULINK仿真模型: demo/simulink/simpowersystem/Power Electronics Models/Chopper-Fed DC Motor Drive

直流电机双闭环调速系统设计.

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 目录 1 绪论 (1) 1.1课题研究背景 (1) 1.2研究双闭环直流调速系统的目的和意义 (1) 2 直流电机双闭环调速系统 (3) 2.1直流电动机的起动与调速 (3) 2.2直流调速系统的性能指标 (3) 2.2.1静态性能指标 (3) 2.2.2动态的性能指标 (4) 2.3双闭环直流调速系统的组成 (6) 3 双闭环直流调速系统的设计 (8) 3.1电流调节器的设计 (8) 3.2转速调节器的设计 (10) 3.3闭环动态结构框图设计 (12) 3.4设计实例 (12) 3.4.1设计电流调节器 (13) 3.4.2设计转速调节器 (15) 4.Matlab仿真 (17) 4.1仿真结果分析 (19) 5 结论 (20) 参考文献 (21)

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊1 绪论 1.1课题研究背景 直流调速是现代电力拖动自动控制系统中发展较早的技术。就目前而言,直流调速系统仍然是自动调速系统的主要形式,电机自动控制系统广泛应用于机械,钢铁,矿山,冶金,化工,石油,纺织,军工等行业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。 以上等等需要高性能调速的场合得到广泛的应用。然而传统双闭环直流电动机调速系统多数采用结构比较简单、性能相对稳定的常规PID控制技术,在实际的拖动控制系统中,由于电机本身及拖动负载的参数(如转动惯量)并不像模型那样保持不变,而是在某些具体场合会随工况发生改变;与此同时,电机作为被控对象是非线性的,很多拖动负载含有间隙或弹性等非线性的因素。因此被控制对象的参数发生改变或非线性特性,使得线性的常参数的PID控制器往往顾此失彼,不能使得系统在各种工况下都保持与设计时一致的性能指标,常常使控制系统的鲁棒性较差,尤其对模型参数变化范围大且具的非线性环节较强的系统,常规PID调节器就很难满足精度高、响应快的控制指标,往往不能有效克服模型参数变化范围大及非线性因素的影响。 1.2研究双闭环直流调速系统的目的和意义 双闭环直流调速系统是性能很好,应用最广的直流调速系统。采用该系统可获得优良的静、动态调速特性。此系统的控制规律,性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础。 20世纪90年代前的大约50年的时间里,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场相互独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的起动,制动和调速性能。尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。因为它具有良好的线性特性,优异的控制性能,高效率等优点。直流调速仍然是目前最可靠,精度最高的调速方法。 通过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,通过对该系统不足之处的完善,可提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。并以此为基础,再对交流调速系统进行研究,最终掌握各种交、直流调速系统的原理,使之能够应用于国民经济各个

内点法matlab仿真doc资料

编程方式实现: 1.惩罚函数 function f=fun(x,r) f=x(1,1)^2+x(2,1)^2-r*log(x(1,1)-1); 2.步长的函数 function f=fh(x0,h,s,r) %h为步长 %s为方向 %r为惩罚因子 x1=x0+h*s; f=fun(x1,r); 3. 步长寻优函数 function h=fsearchh(x0,r,s) %利用进退法确定高低高区间,利用黄金分割法进行求解h1=0;%步长的初始点 st=0.001; %步长的步长 h2=h1+st; f1=fh(x0,h1,s,r); f2=fh(x0,h2,s,r); if f1>f2 h3=h2+st; f3=fh(x0,h3,s,r); while f2>f3 h1=h2; h2=h3; h3=h3+st; f2=f3; f3=fh(x0,h3,s,r); end else st=-st; v=h1; h1=h2; h2=v; v=f1; f1=f2; f2=v; h3=h2+st; f3=fh(x0,h3,s,r); while f2>f3 h1=h2; h2=h3; h3=h3+st; f2=f3;

f3=fh(x0,h3,s,r); end end %得到高低高的区间 a=min(h1,h3); b=max(h1,h3); %利用黄金分割点法进行求解 h1=1+0.382*(b-a); h2=1+0.618*(b-a); f1=fh(x0,h1,s,r); f2=fh(x0,h2,s,r); while abs(a-b)>0.0001 if f1>f2 a=h1; h1=h2; f1=f2; h2=a+0.618*(b-a); f2=fh(x0,h2,s,r); else b=h2; h2=h1; f2=f1; h1=a+0.382*(b-a); f1=fh(x0,h1,s,r); end end h=0.5*(a+b); 4. 迭代点的寻优函数 function f=fsearchx(x0,r,epson) x00=x0; m=length(x0); s=zeros(m,1); for i=1:m s(i)=1; h=fsearchh(x0,r,s); x1=x0+h*s; s(i)=0; x0=x1; end while norm(x1-x00)>epson x00=x1; for i=1:m s(i)=1; h=fsearchh(x0,r,s);

PID控制算法的matlab仿真

PID 控制算法的matlab 仿真 PID 控制算法就是实际工业控制中应用最为广泛的控制算法,它具有控制器设计简单,控制效果好等优点。PID 控制器参数的设置就是否合适对其控制效果具有很大的影响,在本课程设计中一具有较大惯性时间常数与纯滞后的一阶惯性环节作为被控对象的模型对PID 控制算法进行研究。被控对象的传递函数如下: ()1d s f Ke G s T s τ-= + 其中各参数分别为30,630,60f d K T τ===。MATLAB 仿真框图如图1所示。 图1 2 具体内容及实现功能 2、1 PID 参数整定 PID 控制器的控制参数对其控制效果起着决定性的作用,合理设置控制参数就是取得较好的控制效果的先决条件。常用的PID 参数整定方法有理论整定法与实验整定法两类,其中常用的实验整定法由扩充临界比例度法、试凑法等。在此处选用扩充临界比例度法对PID 进行整定,其过程如下: 1) 选择采样周期 由于被控对象中含有纯滞后,且其滞后时间常数为 60d τ=,故可选择采样周期1s T =。 2) 令积分时间常数i T =∞,微分时间常数0d T =,从小到大调节比例系数K , 使得系统发生等幅震荡,记下此时的比例系数k K 与振荡周期k T 。 3) 选择控制度为 1.05Q =,按下面公式计算各参数:

0.630.490.140.014p k i k d k s k K K T T T T T T ==== 通过仿真可得在1s T =时,0.567,233k k K T ==,故可得: 0.357,114.17,32.62, 3.262p i d s K T T T ==== 0.0053.57 p s i i p d d s K T K T K T K T === = 按此组控制参数得到的系统阶跃响应曲线如图2所示。 01002003004005006007008009001000 0.20.40.60.811.21.41.6 1.8 图2 由响应曲线可知,此时系统虽然稳定,但就是暂态性能较差,超调量过大,且响应曲线不平滑。根据以下原则对控制器参数进行调整以改善系统的暂态过程: 1) 通过减小采样周期,使响应曲线平滑。 2) 减小采样周期后,通过增大积分时间常数来保证系统稳定。 3) 减小比例系数与微分时间常数,以减小系统的超调。 改变控制器参数后得到系统的阶跃响应曲线如图3所示,系统的暂态性能得到明显改善、

双闭环直流电机调速系统

双闭环直流电机调速系统 摘要: 关键词: 引言:速度和电流双臂环直流调速系统,是由单闭环调速系统发展而来的,调速系统采用比例积分调节器,实现了转速的无静差调速。又采用直流截止负反馈环节,限制了启(制)动时的最大电流。这对一般要求不太高的调速系统,基本已能满足要求。但是由于电流截止反馈限制了最大电流,再加上电动机反电动势随着电机转速的上升而增加,使电流达最大值后便迅速将下来。此时,电机的转矩也减小,使启动过程变慢,启动时间较长。 一、双闭环直流调速系统的组成 转速、电流双闭环直流调速系统原理如图 1 所示。系统的组成框图如图2所示。

图1 转速-电流双闭环直流调速系统 图2 转速-电流双闭环直流电机调速系统组成框图 由图可见,该系统由两个反馈构成两个闭环回路,其中一个是由电流调节器ACR和电流检测——反馈环节构成的电流环,另一个是由速度调节器ASR和转速检测——反馈环节构成的速度环。由于速度环包围电流环,因此称电流环为内环,称速度环为外环。在电路中,ASR和ACR实行串级联接,即由ASR去“驱动”ACR,再由ACR去控制“触发电路”。图中ASR和ACR均为PI调节器。ASR、ACR的输入、输出量的极性主要视触发电路对控制电压的要求而定。 (一)直流电机各物理量间的关系 直流电动机的电路图如图3所示。由图可知,直流电动机有两个独立回路,一个是电枢回路,另一个是励磁回路。

1.电枢绕组的电磁转矩和转矩平衡关系: 2.电枢回路电压平衡关系 结合以上公式可推出即e e T a e a T K K R K U n ?Φ -Φ= 2 其中,Φ ?= e a K U n 0,称为电机理想空载转速,e e T a T K K R n ?Φ=?2为电机转速降,故 直流电机的调速方法 改变电压调速,采用此方法的特性曲线如下图6所示: 图6 改变U 时的机械曲线特性 3.直流电动机的系统框图 (二)转速调节器与速度调节器—比例积分电路(PI 调节器) PI 调节器的电路原理图如图7所示:

实验一 典型环节的MATLAB仿真汇总

实验一 典型环节的MATLAB 仿真 一、实验目的 1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、SIMULINK 的使用 MATLAB 中SIMULINK 是一个用来对动态系统进行建模、仿真和分析的软件包。利用SIMULINK 功能模块可以快速的建立控制系统的模型,进行仿真和调试。 1.运行MATLAB 软件,在命令窗口栏“>>”提示符下键入simulink 命令,按Enter 键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK 仿真 环境下。 2.选择File 菜单下New 下的Model 命令,新建一个simulink 仿真环境常规模板。 3.在simulink 仿真环境下,创建所需要的系统 三、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。 ① 比例环节1)(1=s G 和2)(1=s G 实验处理:1)(1=s G SIMULINK 仿真模型

波形图为: 实验处理:2)(1=s G SIMULINK 仿真模型 波形图为: 实验结果分析:增加比例函数环节以后,系统的输出型号将输入信号成倍数放大. ② 惯性环节11)(1+= s s G 和15.01)(2+=s s G 实验处理:1 1 )(1+=s s G SIMULINK 仿真模型

波形图为: 实验处理:1 5.01 )(2+= s s G SIMULINK 仿真模型 波形图为: 实验结果分析:当1 1 )(1+= s s G 时,系统达到稳定需要时间接近5s,当

直流电机双闭环控制系统分析报告与设计

基于MATLAB 的直流电机 双闭环调速系统的设计与仿真 设计任务书: 1. 设置该大作业的目的 在转速闭环直流调速系统中,只有电流截止负反馈环节对电枢电流加以保护,缺少对电枢电流的精确控制,也就无法充分发挥直流伺服电动机的过载能力,因而也就达不到调速系统的快速起动和制动的效果。通过在转速闭环直流调速系统的基础上增加电流闭环,即按照快速起动和制动的要求,实现对电枢电流的精确控制,实质上是在起动或制动过程的主要阶段,实现一种以电动机最大电磁力矩输出能力进行启动或制动的过程。此外,通过完成本大作业题目,让学生体会反馈校正方法所具有的独特优点:改造受控对象的固有特性,使其满足更高的动态品质指标。 2. 大作业具体容 设一转速、电流双闭环直流调速系统,采用双极式H 桥PWM 方式驱动,已知电动机参数为: 额定功率200W ; 额定电压48V ; 额定电流4A ; 额定转速=500r/min ; 电枢回路总电阻8=R Ω; 允许电流过载倍数λ=2; 电势系数=e C 0.04Vmin/r ; 电磁时间常数=L T 0.008s ; 机电时间常数=m T 0.5s ; 电流反馈滤波时间常数=oi T 0.2ms ; 转速反馈滤波时间常数=on T 1ms ; 要求转速调节器和电流调节器的最大输入电压==* *im nm U U 10V ; 两调节器的输出限幅电压为10V ;

f10kHz; PWM功率变换器的开关频率= K 4.8。 放大倍数= s 试对该系统进行动态参数设计,设计指标: 稳态无静差; σ5%; 电流超调量≤ i 空载起动到额定转速时的转速超调量σ≤ 25%; t0.5 s。 过渡过程时间= s 3. 具体要求 (1) 计算电流和转速反馈系数; (2) 按工程设计法,详细写出电流环的动态校正过程和设计结果; (3) 编制Matlab程序,绘制经过小参数环节合并近似后的电流环开环频率特性曲线和单位阶跃响应曲线; (4) 编制Matlab程序,绘制未经过小参数环节合并近似处理的电流环开环频率特性曲线和单位阶跃响应曲线; (5) 按工程设计法,详细写出转速环的动态校正过程和设计结果; (6) 编制Matlab程序,绘制经过小参数环节合并近似后的转速环开环频率特性曲线和单位阶跃响应曲线; (7) 编制Matlab程序,绘制未经过小参数环节合并近似处理的转速环开环频率特性曲线和单位阶跃响应曲线; (8) 建立转速电流双闭环直流调速系统的Simulink仿真模型,对上述分析设计结果进行仿真; (9) 给出阶跃信号速度输入条件下的转速、电流、转速调节器输出、电流调节器输出过渡过程曲线,分析设计结果与要求指标的符合性;

双闭环直流电机控制完整版.

双闭环直流电机调速系统设计 摘要 转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。根据晶闸管的特性,通过调节控制角α大小来调节电压。基于设计题目,直流电动机调速控制器选用了转速、电流双闭环调速控制电路。在设计中调速系统的主电路采用了三相全控桥整流电路来供电。本文首先确定整个设计的方案和框图。然后确定主电路的结构形式和各元部件的设计,同时对其参数的计算,包括整流变压器、晶闸管、电抗器和保护电路的参数计算。接着驱动电路的设计包括触发电路和脉冲变压器的设计。最后,即本文的重点设计直流电动机调速控制器电路,本文采用转速、电流双闭环直流调速系统为对象来设计直流电动机调速控制器。为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈,二者之间实行嵌套联接。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称做外环。这就形成了转速、电流双闭环调速系统。先确定其结构形式和设计各元部件,并对其参数的计算,包括给定电压、转速调节器、电流调节器、检测电路、触发电路和稳压电路的参数计算然后最后采用MATLAB/SIMULINK对整个调速系统进行了仿真分析,最后画出了调速控制电路的电气原理图。 关键词:双闭环;转速调节器;电流调节器 目录 前言0 第1章绪论1 1.1直流调速系统的概述1 1.2研究课题的目的和意义1 1.3设计内容和要求1 1.3.1设计要求1 1.3.2设计内容1 第2章双闭环直流调速系统设计框图3 第3章系统电路的结构形式和双闭环调速系统的组成4

3.1主电路的选择与确定4 3.2 双闭环调速系统的组成6 3.3 稳态结构框图和动态数学模型7 3.3.1稳态结构框图7 3.3.2 动态数学模型9 第4章主电路各器件的选择和计算10 4.1变流变压器容量的计算和选择10 4.2 整流元件晶闸管的选型12 4.3 电抗器设计13 4.4 主电路保护电路设计15 4.4.1过电压保护设计15 4.4.2过电流保护设计17 第5章驱动电路的设计18 5.1晶闸管的触发电路18 5.2脉冲变压器的设计20 第6章双闭环调速系统调节器的动态设计22 6.1 电流调节器的设计23 6.2 转速调节器的设计24 第7章基于MATLAB/SIMULINK的调速系统的仿真28 小结31 致谢32 参考文献33 附表34 附图35

LMMSE算法信道均衡MATLAB仿真

一.信道均衡的概念 实际的基带传输系统不可能完全满足无码间串扰传输条件,因而码间串扰是不可避免的。当串扰严重时,必须对系统的传输函数 进行校正,使其达到或接近无码间串扰要求的特性。理论和实践表明,在基带系统中插入一种可调滤波器就可以补偿整个系统的幅频,和相频特性从而减小码间串扰的影响这个对系统校正的过程称为均衡,实现均衡的滤波器称为均衡器。 均衡分为频域均衡和时域均衡。频域均衡是从频率响应考虑,使包括均衡器在内的整个系统的总传输函数满足无失真传输条件。而时域均衡,则是直接从时间响应考虑,使包括均衡器在内的整个系统的冲激响应满足无码间串扰条件。 频域均衡在信道特性不变,且传输低速率数据时是适用的,而时域均衡可以根据信道特性的变化进行调整,能够有效地减小码间串扰,故在高速数据传输中得以广泛应用。 时域均衡的实现方法有多种,但从实现的原理上看,大致可分为预置式自动均衡和自适应式自动均衡。预置式均衡是在实际传数之前先传输预先规定的测试脉冲(如重复频率很低的周期性的单脉冲波形),然后按“迫零调整原理”自动或手动调整抽头增益;自适应式均衡是在传数过程中连续测出距最佳调整值的误差电压,并据此电压去调整各抽头增益。一般地,自适应均衡不仅可以使调整精度提高,而且当信道特性随时间变化时又能有一定的自适应性,因此很受重视。这种均衡器过去实现起来比较复杂,但随着大规模、超大规模集成电路和微处理机的应用,其发展十分迅速。 二.信道均衡的应用 1.考虑如图所示的基带等效数据传输系统,发送信号k x 经过ISI 失真信道传输,叠加高斯加性噪声。 图1基带等效数据传输模型 设发送信号采用QPSK 调制,即(1)k x j =±±ISI 信道的冲击响应以向量的形式表示为h 2211[,,,]T L L L h h h --+=???。典型的ISI 信道响应向量有三种: h [0.04,0.05,0.07,0.21,0.5,0.72,0.36,0,0.21,0.03,0.07]T A =--- h [0.407,0.815,0.407]T B = h [0.227,0.46,0.6888,0.46,0.227]T C = k ω为实部与虚部独立的复高斯白噪声,其均值为零,方差为2 ωσ。 2.实现目的

神经网络学习算法matlab仿真

东南大学自动化学院 智能控制概论 神经网络学习算法研究 学院: 姓名: 学号: 日期:

目录 1 任务要求叙述 ..................................................... 错误!未定义书签。 2 系统分析及设计原理 ......................................... 错误!未定义书签。 3 设计实现.............................................................. 错误!未定义书签。4仿真验证.. (6) 5 讨论与分析.......................................................... 错误!未定义书签。

一.任务要求叙述 (1)任务 (a) 运行算法,观察和分析现有学习算法的性能; clear all;close all; nu=20;pi=3.1415926; for i=1:nu p(i)=2*pi*i/nu; t(i)=0.5*(1+cos(p(i))); end minmax=[min(p(:)) max(p(:))] net = newff([ 0 7],[6 1],{'logsig' 'purelin'},'traingd');% traingd traingdm trainlm net.trainParam.epochs = 10000; net.trainParam.goal = 0.0001; net.trainParam.show=200; net.trainParam.lr=0.1; net.trainParam.mc=0.6; %0.9 default value; available for momentum net = train(net,p,t); y1 = sim(net,p); figure(2); plot(p,t,'*-',p,y1,'r--') %************** test data ****************** nu2=nu*3/2; for i=1:(nu2) p2(i)=2*pi*i/(nu2); t2(i)=0.5*(1+cos(p2(i))); end y2 = sim(net,p2); figure(3); plot(t2,'*-');hold on; plot(y2,'r'); xlabel('times');ylabel('outputs'); figure(4); plot(t2-y2); xlabel('times');ylabel('error'); (b) 为了进一步提高学习逼近效果,可以采取那些措施,调节规律如何?根据所提的每种措施,修改算法程序,给出仿真效果验证、过程以及相应的曲线图,给出适当的评述;(c) 联系、结合前向神经网络的算法样本学习、测试等过程,谈谈本人对神经网络系统的一些认识和看法。 (2)要求 提交完整的报告,包括:封面(题目、个人学号姓名等信息)、目录、任务要求叙述、系

双闭环直流电机调速系统设计参考案例

《运动控制系统》课程设计指导书 一、课程设计的主要任务 (一)系统各环节选型 1、主回路方案确定。 2、控制回路选择:给定器、调节放大器、触发器、稳压电源、电流截止环节,调节器锁零电路、电流、电压检测环节、同步变压器接线方式(须对以上环节画出线路图,说明其原理)。 (二)主要电气设备的计算和选择 1、整流变压器计算:变压器原副方电压、电流、容量以及联接组别选择。 2、晶闸管整流元件:电压定额、电流定额计算及定额选择。 3、系统各主要保护环节的设计:快速熔断器计算选择、阻容保护计算选择计算。 4、平波电抗器选择计算。 (三)系统参数计算 1、电流调节器ACR 中i i R C 、 计算。

2、转速调节器ASR 中n n R C 、 计算。 3、动态性能指标计算。 (四)画出双闭环调速系统电气原理图。 使用A1或A2图纸,并画出动态框图和波德图(在设计说明书中)。 二、基本要求 1、使学生进一步熟悉和掌握单、双闭环直流调速系统工作原理,了解工程设计的基本方法和步骤。 2、熟练掌握主电路结构选择方法,主电路元器件的选型计算方法。 3、熟练掌握过电压、过电流保护方式的配置及其整定计算。 4、掌握触发电路的选型、设计方法。 5、掌握同步电压相位的选择方法。 6、掌握速度调节器、电流调节器的典型设计方法。 7、掌握电气系统线路图绘制方法。 8、掌握撰写课程设计报告的方法。 三、 课程设计原始数据

有以下四个设计课题可供选用: A 组: 直流他励电动机:功率P e =1.1KW ,额定电流I e =6.7A ,磁极对数P=1, n e =1500r/min,励磁电压220V,电枢绕组电阻R a =2.34Ω,主电路总电阻R =7Ω,L ∑=246.25Mh(电枢电感、平波电感和变压器电感之和),K s =58.4,机电时间常数 T m =116.2ms ,滤波时间常数T on =T oi =0.00235s ,过载倍数λ=1.5,电流给定最大值 10V U im =*,速度给定最大值 10V U n =* B 组: 直流他励电动机:功率P e =22KW ,额定电压U e =220V ,额定电流I e =116A,磁极对 数P=2,n e =1500r/min,励磁电压220V,电枢绕组电阻R a =0.112Ω,主电路总电阻R = 0.32Ω,L ∑=37.22mH(电枢电感、平波电感和变压器电感之和),电磁系数 C e =0.138 Vmin /r ,K s =22,电磁时间常数T L =0.116ms ,机电时间常数T m =0.157ms , 滤波时间常数T on =T oi =0.00235s ,过载倍数λ=1.5,电流给定最大值 10V U im =*,速度给定最大值 10V U n =* C 组: 直流他励电动机:功率Pe =145KW ,额定电压Ue=220V ,额定电流Ie=733A,磁极对数P=2,ne=430r/min,励磁电压220V,电枢绕组电阻Ra=0.0015Ω,主电路总电阻R =0.036Ω,Ks=41.5,电磁时间常数TL=0.0734ms ,机电时间常数

直流电机双闭环系统设计

直流电机双闭环系统设计 院系:机电工程学院 班级:电气自动化一班 姓名: 学号: 1 1 0 2 0 3 0 1 4 2 指导教师: 目录

1引言 2调速系统的性能指标 2.1调速系统的稳态指标 2.2调速系统的动态性能指标 2.3系统结构选择 3数字直流电机调速系统的数字PID控制3.1基于单片机控制的直流电机双闭环调速系统3.2 PID调节器的基本原理 4总结与展望 4.1工作总结 4.2研究展 参考文献 直流电机双闭环系统设计摘要

近年来,自动化控制系统在各行业中得到了广泛的应用和发展,而直流调速系统作为电力拖动系统的主要方式之一,在现代化生产中起着十分重要的作用。随着微电子技术的不断发展,计算机在调速系统中的应用使控制系统得到简化,体积减小,可靠性提高,而且各种经典和智能算法也都分别在调速系统中得到了灵活。 以单片机为控制核心的数字直流调速系统有着许多优点:由于速度给定和测速采用了数字化,能够在很宽的范围内高精度测速,所以扩大了调速的范围,提高了测速控制系统的精度;由于硬件的高度集成化,所以使得零部件数量大大减少;由于很多功能都是由软件实现的,使硬件得以简化,因此故障率小;单片机以数字信号工作,控制方法灵活便捷,抗干扰能力较强。 关键词:直流电动机;调速;双闭环 1引言 按照拖动的电动机的类型来划分,自动调速系统可以分为直流调速系统和交流调速系统两大类。由于直流电动机的电压、电流和磁通的耦合较弱,使直流电动机具有良好的运行性能和控制特性,能够在大范围内平滑调速,启动、制动性能良好,其在20世纪70年代以来一直在高精度,大调速范围的传动领域内占据主导地位。在要求高起、制动转矩,快速响应和较宽速度调节范围的电气传动领域中,采用直流电动机作为调速系统的执行电机。由于直流电动机具有良好的机械特性和调速特性,调速平滑,方便,易于在大范围内进行平滑调速,过载能力较大,能够承受频繁的冲击负载,可

双闭环直流电机调速的matlab仿真

双闭环直流电机调速系统的设计与MATLAB 仿真 双闭环调速系统的工作原理 转速控制的要求和调速指标 生产工艺对控制系统性能的要求经量化和折算后可以表达为稳态和动态性能指标。设计任务书中给出了本系统调速指标的要求。深刻理解这些指标的含义是必要的,也有助于我们构想后面的设计思路。在以下四项中,前两项属于稳态性能指标,后两项属于动态性能指标 调速范围D 生产机械要求电动机提供的最高转速和最低转速之比叫做调速范围,即 m in m ax n n D = (1-1) 静差率s 当系统在某一转速下运行时,负载由理想空载增加到额定值所对应的转速降落,与理想空载转速之比,称作静差率,即 %1000 ??= n n s nom (1-2) 静差率是用来衡量调速系统在负载变化下转速的稳定度的。 跟随性能指标 在给定信号R (t )的作用下,系统输出量C (t )的变化情况可用跟随性能指标来描述。具体的跟随性能指标有下列各项:上升时间r t ,超调量σ,调节时间s t . 抗扰性能指标 此项指标表明控制系统抵抗扰动的能力,它由以下两项组成:动态降落%max C ?,恢复时间v t . 调速系统的两个基本方面 在理解了本设计需满足的各项指标之后,我们会发现在权衡这些基本指标,即

1) 动态稳定性与静态准确性对系统放大倍数的要求; 2) 起动快速性与防止电流的冲击对电机电流的要求。 采用转速负反馈和PI 调节器的单闭环调速系统,在保证系统稳定的条件下,实现转速无静差,解决了第一个问题。但是,如果对系统的动态性能要求较高,例如要求快速启制动,突加负载动态速降小等等,则单闭环系统就难以满足要求。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流和转矩。 在电机最大电流受限的条件下,希望充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流为允许的最大值,使电力拖动系统尽可能用最大的加速度起动,到达稳态后,又让电流立即降低下来,使转速马上与负载相平衡,从而转入稳态运行。在单闭环调速系统中,只有电流截止负反馈环节是专门用来控制电流的,但它只是在超过临界电流I dcr 值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。带电流截止负反馈的单闭环调速系统起动时的电流和转速波形如图1-1a 所示。 a) b) 图1-1 调速系统启动过程的电流和转速波形 a) 带电流截止负反馈的单闭环调速系统的启动过程 b) 理想快速启动过程 当电流从最大值降低下来以后,电机转矩也随之减小,因而加速过程必然拖 I d t 0 I 0 t

时域有限差分法对平面TE波的MATLAB仿真

时域有限差分法对平面TE波的 MATLAB仿真 摘要 时域有限差分法是由有限差分法发展出来的数值计算方法。自1966年Yee 在其论文中首次提出时域有限差分以来,时域有限差分法在电磁研究领域得到了广泛的应用。主要有分析辐射条线、微波器件和导行波结构的研究、散射和雷达截面计算、分析周期结构、电子封装和电磁兼容的分析、核电磁脉冲的传播和散射以及在地面的反射及对电缆传输线的干扰、微光学元器件中光的传播和衍射特性等等。 由于电磁场是以场的形态存在的物质,具有独特的研究方法,采取重叠的研究方法是其重要的特点,即只有理论分析、测量、计算机模拟的结果相互佐证,才可以认为是获得了正确可信的结论。时域有限差分法就是实现直接对电磁工程问题进行计算机模拟的基本方法。在近年的研究电磁问题中,许多学者对时域脉冲源的传播和响应进行了大量的研究,主要是描述物体在瞬态电磁源作用下的理论。另外,对于物体的电特性,理论上具有几乎所有的频率成分,但实际上,只有有限的频带内的频率成分在区主要作用。 文中主要谈到了关于高斯制下完全匹配层的差分公式的问题,通过MATLAB 程序对TE波进行了仿真,模拟了高斯制下完全匹配层中磁场分量瞬态分布。得到了相应的磁场幅值效果图。 关键词:时域有限差分完全匹配层MATLAB 磁场幅值效果图

目录 摘要 (1) 目录 (3) 第一章绪论 (4) 1.1 课题背景与意义 (4) 1.2 时域有限差分法的发展与应用 (4) 2.1 Maxwell方程和Yee氏算法 (7) 2.2 FDTD的基本差分方程 (9) 2.3 时域有限差分法相关技术 (11) 2.3.1 数值稳定性问题 (11) 2.3.2 数值色散 (12) 2.3.3 离散网格的确定 (13) 2.4 吸收边界条件 (13) 2.4.1 一阶和二阶近似吸收边界条件 (14) 2.4.2 二维棱边及角顶点的处理 (17) 2.4.3 完全匹配层 (19) 2.5 FDTD计算所需时间步的估计 (23) 第三章MATLAB的仿真的程序及模拟 (25) 3.1 MATLAB程序及相应说明 (25) 3.2 出图及结果 (28) 3.2.1程序部分 (28) 3.2.2 所出的效果图 (29) 第四章结论 (31) 参考文献 (32)

相关文档
相关文档 最新文档