文档视界 最新最全的文档下载
当前位置:文档视界 › 汽轮机振动讲义

汽轮机振动讲义

汽轮机振动讲义
汽轮机振动讲义

汽轮机非稳定性振动诊断与分析 (1)

第二篇案例:北京北重汽轮机10万机组振动原因分析 (13)

第三篇汽轮机振动讲义 (17)

汽轮机非稳定性振动诊断与分析

摘要:本文针对抚顺发电有限责任公司2号汽轮发电机组长期出现非稳定性振动现象,根据振动测试、揭缸检查、运行调整所得到的经验与结果,应用振动机理研究中得来的启示,基于综合分析对该机组振动原因进行性质定位,并对下一步工作提出较为稳妥的意见。

关键词:非稳定性综合分析诊断意见

1.前言

1.1 设备简介

抚顺发电有限责任公司2号汽轮发电机组(简称#2机),为东汽制造的200MW三缸两排汽采暖、凝汽两用式机组;该机组轴系较长,由高压转子、中压转子、低压转子、发电机转子和励磁机转子组成,各转子之间为刚性靠背轮联接,共有12个支持轴承及1个推力轴承。2002年5月整套启动、调试,6月移交生产;自调试起,#2机一直频繁出现机组轴系偏心大、振动大问题,且不稳定。

1.2 事件过程简述

2002年10月机组开始第一次小修,用时21天,揭高压缸,重找各对轮中心,问题没能解决。2003年4月进行第二次扩大性小修,用时32天,揭高、中压缸,调整通流间隙和对轮中心;高压内、外缸夹层温差大得到解决,振动缺陷仍然存在。2003年7月为解决轴系振动问题将机组转大修,用时42天,揭高、中、低压三缸进行检查调整,做转子动平衡试验,同时根据东汽意见调整轴瓦:减小了#1、#3瓦顶隙,#1瓦中心上抬10道,开机几天后缺陷再度重现。2003年9月底,我公司改变调门进汽次序,由原1-2-3-4改为4-3-2-1(#3、#4调门在上方),维持几天后,机组振动大问题又呈不稳定性出现。此后,在中电投东北分公司指导下实施《改变阀序抑制2号机间隙激振的方案》,对#2机高压调速汽门的重叠度进行了调整有所好转;10月份共发生18次,11月份仅发生5次,机组偏心、振动发生率得以控制。但在12月份投入采暖抽气后,机组偏心越限、振动大的发生频率和振动幅度均再度加剧,直到2004年2月3日#2机轴振动出现历史最大值,持续运行近6分钟后,机组振动全面回落至今一直处于历史最好水平运行,并且经历了多次机组调峰及甩热负荷的考验。

2.振动特征

2003年10月4日~6日,在机组不停机的情况下,对#2机振动进行了测试,其间多次测到振动增大的过程,发现#2机振动呈现如下特征:

a.异常振动主要表现在#1、#2瓦轴振,它们分别可增大到160微米和240微米,#1瓦瓦振可达32微米,偏心测点振动最大大于450微米。

b.通频振幅增大的主要成分是1倍频分量,即工频,占通频振幅的85%以上;通频振幅增大时,测点1X、1Y、2Y的2倍频、3倍频振幅同时也有增加;大振幅时#1、#2瓦振动中所含的低频分量,如25HZ、28HZ的成分很小,在两瓦测点一倍频振幅增加的同时,没有发现这些低频分量有明显地变化。

表1:测试期间四次振动增加的通频振幅最高值(微米):

测点振幅1X 1Y 2X 2Y 3X 3Y 4X 5X 偏心

150 103 209 103 111 58 104

140 99 226 110 112 98 61 420

156 100 237 108 125 106 63 >445

129 96 236 109 115 96 61 372

c.振幅增大的同时,#1、#2瓦轴振相位有明显增加,最大变化量到500;因测试没有安装键相传感器,只好利用3X和4X作为基准比较得到的相位变化结果如下:

表2:两次振动增加时相位的变化(时间间隔30分钟)

d.测振表明,各次振动增大的过程可以分为两个阶段,第一阶段,1X、2X振幅缓慢增加,1Y、2Y振幅以及各测点间隙电压基本保持不变,持续约一小时左右后,进入第二阶段,偏心读数大于50微米,各测点振幅明显增大,同时,#2瓦、#1瓦轴颈向上偏南(右)移动,这时开始调整负荷,持续数近1小时,振幅达到最高值后,开始缓慢下降,振幅下降恢复需要的时间约2小时,大于增大的时间;

e.振幅增加时,#2瓦轴颈相对轴承向上偏南移动约22~45微米,#1轴颈有类似的移动,移动量较小,偏心测点移动量最大;

表3:两次振动增加时轴颈位置的变化量

测点向上位移1X 1Y 2X 2Y 偏心

0 0.010mm 0.014mm 0.018mm 0.073mm

0.010mm 0.010mm 0.038mm 0.025mm 0.063mm

f.#1、#2瓦振动增大时,#3瓦振动增加量很小,#4、5瓦振幅、相位均基本不变。

3.引起振动原因分析

3.1 排除汽流激振

虽然在过去的处理过程中有单位将#2机的振动定性为汽流激振,但现已经确切排除汽流激振的可能。

汽流激振有两个主要特征:一是应该出现较大量值的低频分量;二是振动的增大受运行参数的影响明显,如负荷,且增大应该呈突发性;这两点#2机均不具备。

在测振中只测到了很低的27~28Hz的分量,有单位称在#2机上测到量值为工频振幅四分之一的28Hz分量,并以此判断为汽流激振。低频振幅大到何种程度才能算做汽流激振?根据现场经验,至少应该接近或等于一倍振幅。如果28Hz振幅为一倍频振幅的四分之一,这个比例过低。试想,如果一倍频振幅为100微米,四分之一的一倍频振幅28Hz分量仅为25微米,两者之和也就是125微米,这种振幅不足以视为振动异常。汽流激振的低频振幅和工频振幅量值相当。

#2机改变调门顺序后一周内振动趋于稳定,对这种情况如何解释?汽轮机的进汽口一般分布为几个连续的圆周弧段,高压蒸汽通过不同弧段的进汽会对转子产生径向作用力,这个力可以改变转子相对于轴承和缸体的径向位置,因此可能产生的不利后果有三:第一,如果造成转子过大的位移,形成通流部分或汽封的径向偏心,当构成适当的间隙参数时,则会发生汽流激振;第二,如果造成转子过大的上移,轴颈在轴承中的偏心减小,轴瓦负载减轻,轴承稳定性降低,则会发生油膜失稳;第三,如果转子偏心过大,会造成通流部分径向间隙或轴端汽封间隙,甚至油档间隙消失,引发动静部件碰磨。

上述三种情况中,前两者均属汽流影响造成的轴系失稳,后者实质是动静碰磨。改变调门开启次序,可以改变转子工作状态的位置(见图2),动静间隙随之变化。如果#2机发生碰磨的位置在上部,#3、#4调门全开自然可以压低高压转子上浮量,减轻或消除碰磨。因此,改变调门次序振动短时间好转实质原因不是因为抑制了汽流激振,而是抑制了碰磨。

3.2 排除转子热变形等

造成在高负荷工况下汽轮机转子以一倍频振幅为主缓慢增大通常还有两个原因:转子热变形和中心孔进油。转子热变形引发的振动特征是一倍频振幅的增加与转子温度和蒸汽参数有密切关系,大都发生在机组冷态启机定速后带负荷阶段,此时转子温度逐渐升高,材质内应力释放引起转子热变形,一倍频振动增大,同时可能伴随相位变化。#2机在正常带负荷运行中振动增大,整个转子和缸体的温度场已经均匀,如果存在内应力,应在这之前早已释放。中心孔进油同样可以造成带负荷阶段转子发生热弯曲,进而出现一倍频振幅缓慢增加的现象。一般情况,由于中心孔进油引发的振动在机组初始几次启机时振动不大,后期随着油逐渐进入孔内,振动问题突出。其特征主要为随负荷增加振动增大,只有减负荷停机,调整其他运行参数均无效。而#2机的情况与此有些类似,但又不完全相象。

关于#2机振动原因,还可以排除高中对轮紧力、标高、对中存在缺陷;同时,也排除转子原始质量不平衡过大为主要原因。从机组调试阶段初始几次启机情况看,过临界的振动不大,况且在去年做了高速动平衡,原始质量不平衡状况良好。

3.3 对历史数据的分析

从历史数据反映,#2机自投运以来,振动状况一起不稳定,主要表现在#1、#2瓦,而且经常在1000rpm暖机时就呈现增大,如:

2002年6月25日,1450rpm暖机#1振动增大,两次冲临界未过;

2002年7月18日,升速过临界#1瓦振动80um,保护动作;

2002年9月26日,汽机振动大跳机;

2002年10月2日,1807rpm#1瓦振动100um;

2002年10月第一次小修后:

2002年11月3日,1000rpm暖机#2瓦轴振123um,上升到256um,降速暖机再升速,1000rpm#2瓦轴振53um;

2003年1月15日,1773rpm跳机,#1瓦振100um,2X300um;

2003年2月16日,带负荷#1、#2瓦轴振增大;

2003年4月第二次小修后:

2003年5月10日,1000rpm暖机偏心增大,#4、#2瓦轴振增大;

2003年7月6日,1710rpm#1瓦振动80um,跳机;

2003年7月7日,#2瓦轴振340um;偏心轴振大事故跳机;

2003年8月大修后振动仍然不稳定:

2003年8月24日,开机过程1000rpm中速暖机后升到1420rpm,1X、1Y、2X、3X、4X 振动增大,只好降速暖机二次冲临界。

上述记录表明:#1、#2瓦的轴振、瓦振不稳定,不只是在3000rpm和带负荷过程,经常在1000rpm暖机或升速过临界时不稳定。每次振动大停机,均可以发现#2瓦处大轴晃度过大,这表明大轴振动与大轴弯曲密切相关,振动增大是由于大轴弯曲造成的。如果大轴振动和大轴弯曲发生在高参数带负荷过程,最经常的原因是转子存在热应力;像#2机这样,在低转速、低参数下大轴发生弯曲,一个主要可能原因就是碰磨。

碰磨可以发生在任何转速和任何工况下,500rpm、1000rpm、临界转速、3000rpm或高负荷工况。

从#2机情况看,从新机调试起,汽轮机就存在动静碰磨,经过数次检修,情况有所好转,当前开机过程已经较顺利,振幅的增加量小于以往几次启动,但负荷高时仍然不时发生碰磨。

3.4 关于汽缸位移问题的分析

测试中虽然测量到振动增大时#2、#1轴颈有抬高现象,但需要注意,这种抬高是轴颈相对于轴承或轴承座,而不是相对于高压缸缸体。通流间隙取决于转子相对于缸体的位置,严格地说,是相对于高缸内缸的位置。

如果高缸整体定位松动或高内缸定位松动,在运行过程中发生位移,均可能引起间隙性的动静碰磨。

#2机的检修记录还反映出每次检修揭开高缸均发现隔板汽封南侧间隙小。这是一个值得注意的现象,南侧间隙小,意味着南侧可能碰磨,这与测试中大轴振动时#1、#2轴颈向上偏南位移是一致的。

如前分析,测试表明各次振动增大的过程可以分为两个阶段,第一阶段振幅缓慢增加但各测点间隙电压基本保持不变,持续约一小时进入第二阶段,各测点振幅明显增大,同时#2瓦、#1瓦轴颈向上方偏南(右)移动。这说明振动增大在前,轴颈上抬在后。大轴振动发生前,有一段很长的初期形成阶段,振动缓慢增加到一定程度,振幅开始明显增长,如果是碰磨,则在轴颈位移前一小时已经开始发生。先位移后碰磨的推理似乎是不妥的。这样,寻找为何轴颈位移原因的重要性就降为次要的,需要首先分析应该是轴颈发生位移之前振动增大的原因。

3.5 摩擦振动的故障特征和机理

3.5.1 摩擦振动的特征

a.由于转子热弯曲将产生新的不平衡力,因此振动信号的主频仍为工频,但是由于受到冲击和一些非线性因数的影响,可能会出现少量分频、倍频和高频分量,有时波形存在“削顶”现象。

b.发生摩擦时,振动的幅值和相位都具有波动特性,波动持续时间可能比较长。摩擦严重时,幅值和相位不再波动,振幅会急剧增大。

c.降速过临界时的振动一般较正常升速时大,停机后转子静止时,测量大轴的晃度比原始值明显增加。

3.5.2 摩擦振动的机理

对汽轮机转子来讲,摩擦可以产生抖动、涡动等现象,但实际有影响的主要是转子热弯曲。动静摩擦时圆周上各点的摩擦程度是不同的,由于重摩擦侧温度高于轻摩擦侧,导致转子径向截面上温度不均匀,局部加热造成转子热弯曲,产生一个新的不平衡力作用到转子上引起振动。

a.转速低于临界转速时的摩擦振动

如图中,转子原来的不平衡为OA,振动高点为H,由于滞后角小于90°,振动高点H是摩重点,该点温度高于对面一侧,受热弯曲的影响在此方向产生一个热不平衡OH,OH 与OA合成为一个新的不平衡OA1。OA1较原不平衡逆转了一个角度并且大于OA,造成动静摩擦进一步加剧,形成恶性循环,转子弯曲越来越大,很可能造成大轴弯曲事故。

b.工作转速时的摩擦振动

目前,汽轮发电机组的工作转速一般都高于各转子一阶临界转速,而低于二阶临界转速,工作转速下二阶不平衡与其引起的振动之间的滞后角仍小于90°,如果摩擦发生在对二阶不平衡比较敏感的区段,如转轴的端部,激起了比较大的二阶不平衡分量,那么仍可能发生比较严重的摩擦振动。

如果摩擦引起的热弯曲与原不平衡反相,则振动呈减小趋势,一段时间后摩擦消失,动静接触点脱离,径向温差减小,振动恢复原状,此时在原不平衡作用下又会发生摩擦,如此反复,汽封显得相对比较“耐磨”,振幅发生时间长、波动幅度大,# 2机振动与此类似。

4.对振动性质的诊断及处理意见

4.1 振动性质诊断的结论

根据上述特征,现对#2机组#1、#2瓦振动故障确定为高压通流部分动静碰磨,径向碰磨的可能性大于轴向碰磨,#2瓦轴承箱或前箱内存在碰磨的可能性不大。

这个结论的依据主要是:

(1)振动增大的成分是一倍频;

(2)振幅增加的同时,相位增加;振幅减小,相位也随之减小;

(3)振动增大和减小的速率缓慢,与转子热弯曲的振动特征类似;

(4)一倍频振幅增大的同时,三倍频和三倍频分量有少量的增大;

(5)低频振幅小且变化不明显;

(6)在多次发生轻微碰磨,运行一段时间后振动已经自行消失。

4.2 处理意见

尽管#2机振动已经消失,但为慎重起见,对碰磨为#2机振动主要原因的可能性从检修和运行角度做深入地讨论分析;进一步研究分析引起碰磨的原因;建议从以下几点考虑:

高缸运行中位移的可能;

隔板变形或位移的可能;

通流间隙南侧偏小的原因;

高外缸、内缸滑销系统定位不准的可能性;

关于处理方法,可以不考虑安排实施提高轴系稳定性的任何措施,如改瓦,调对中、标高等;不考虑实施消除汽流激振的措施。消除碰磨的工作,主要限于高压缸,如果从缸外部处理,通常是调整轴承标高或抬高缸体,改变缸内通流间隙,消除碰磨点。如果高缸还存在水平位移,则需要查找位移原因,有目标地采取措施。如果认定振动原因是碰磨而又无法肯定碰磨的原因,一个不得已而为之的办法就是根据检查的碰磨具体部位,放大动静间隙。

5.小结

一般机组,碰磨可能发生在轴端汽封、隔板汽封、叶顶汽封;多数是径向碰、也可能是轴向碰。通常情况,引起碰磨的原因很多,较常见的原因有间隙过小、缸胀不畅、缸变形、缸跑偏、支撑标高变化、隔板变形、真空影响(主要对低压转子)、振动过大等。

结合振动测试特征、相关运行参数以及#2机检修记录,分析发现,#2机振动增大与高缸、中缸胀差、膨胀无直接关系;与主蒸汽参数无关;与#1抽压力无关;与油温关系不大。并且可以初步排除碰磨原因来自缸胀不畅和滑销系统存在缺陷造成缸变形引发碰磨的可能;排除调门开启次序不妥造成碰磨的可能;排除转子热弯曲引起的间隙消失导致碰磨。

根据同类机组运行经验,由于动静碰磨而引起的汽轮机非稳定性振动,碰磨点不需要很大,只要有局部范围的动静接触,就可以引起机组足够大的振动,从#2机实际振动增大的幅度和速率看,碰磨并不严重,动静接触范围应该不大,特别是2号机轴系振动出现历史最大值以后,机组振动便一直处于优良状况运行,且未出现任何不稳定趋势;这样,因动静碰磨而引起的汽轮机非稳定性振动运行中自行消失后,揭缸检查也很难以寻找到磨痕。

参考资料:

(1)西安热工研究所,施维新,汽轮发电机组振动

(2)东南大学,陆颂元、王青华,抚顺发电公司2号机振动测试报告

(3)湖南电力试验研究所,王咏梅,大型汽轮机摩擦振动的故障特征分析

(4)抚顺发电有限责任公司:2号汽轮发电机组检修记录

简述汽轮发电机组异常振动的原因及处理

在汽轮发电机组的运行中,机组的异常振动往往是评价一台机组运行好坏的重要标志,也因此成为评价汽轮发电机组运行稳定的重要指标之一。经验证明,汽轮发电机组的大部分事故,尤其是比较严重的设备损坏事故,都在一定程度上表现出某种异常振动。而且在毀机事故过程中都毫不列外地表现出剧烈的振动。因此对于发电厂运行人员及检修人员、电建汽机专业施工人员来说,有必要了解掌握汽轮发电机组产生异常振动的原因及其相应的处理方法。在机组运行中,一旦发生机组振动,能够根据机组振动的特征,及时地对机组发生振动的原因作出正确的判断和恰当的处理,从而有效地防止事故的进一步扩大,避免造成严重的设备损坏或人身伤亡事故。

那么机组振动有哪些危害呢?其主要表现在对设备和人身两个方面。对设备危害主要表现为:

1、机组的动静部分摩擦

2、加速一些零件的磨损

3、造成一些部件的疲劳损坏

4、造成紧固件的断裂和松动

5、损坏基础和周围的建筑物

6、直接或间接造成设备事故

7、降低机组的经济性

对人身的损害主要表现为:

机组振动而带来的噪声会给人员带来疲劳感,降低工作效率

机组振动过大会损伤人员的某些器官,存在着人身性命安全隐患

因此,通过了解以上由于机组振动而带来的危害,运行人员和电建人员更应该掌握机组异常振动的原因,以及如何做到正确处理。就此问题下面作以简要的陈述。

汽轮发电机组的振动按激振能源的不同,可分为强迫振动和自激振动两大类。

首先了解强迫振动。强迫振动是在外界干扰力的作用下产生的,这类振动现象比较普遍。振动的主要特征是振动的主频率和转子的转速一致,振动的波形多为正弦波。而强迫振动产生的因素主要有以下几方面及相应处理:

1、转子质量不平衡。

引起转子质量不平衡的原因:一是单个转子在制造厂加工制作过程中而产生的转子上某个部位以转子中心线为对称轴方向上存在质量不平衡。这种不平衡量在转子出厂前,在厂内通过作低速动平衡,加平衡块的方式已经解决。但在安装和运行过程中,也因原平衡块松动,破坏了转子对称质量平衡,造成新的转子质量不平衡,因此,对于以上原因,在转子出厂前必须要求厂家做好,并在转子到现场后,安装检修人员必须对其全面检查,确保转子出厂合格。二是转子上某个部分落破坏了的转子质量平衡而引起振动,尤其是挠性转子的叶片断落最能造成转子质量不平衡引起剧烈振动。例如在1999.9.10 17:23和2000.2.14 3:35天津盘山发电公司800MW汽轮机分别出现的#2机#2低压缸末级960mm叶片第43和84号叶片断裂事故。由此引起的现象有:

1)、汽轮机内或凝汽器内产生突然的声响。

2)、机组振动突然增大或抖动,轴向位移显示增大或摆动。

3)、叶片损坏较多,同样负荷下蒸汽流量增加,监视段压力上升。

4)、凝结水导电度、Na离子、Cl根增加、凝汽器水位上升,凝泵电流增加。

5)、断裂的叶片进入抽汽管道造成逆止门卡涩等。

6)、停机惰走或盘车状态能听到金属磨擦声。

7)、引起轴瓦温度和回油温度升高,同时推力瓦温度上升。

8)、停机过程经过临界转速区时振动明显增加。

这些都是因转子质量平衡遭到破坏而引起的。因此汽轮发电机组运行人员和

安装检修人员必须也了解汽轮机转子叶片断落损坏的主要原因:

1)、外来杂物造成叶片损坏。由于叶片间隙小,叶片在高速旋转过程中,如果外

来杂物进入可使叶片损坏。这种情况出现一般是在新机组调试或大修后初次启动过程中,这是由于安装或检修不良遗留杂物所至。

2)、汽缸内固定零部件脱落造成叶片损坏。此种问题纯属制造与安装原因所致。

3)、轴瓦损坏,胀差超限,大轴弯曲以及产生的强烈振动所造成的动静摩擦,使叶片损坏。4)、水冲击可直接造成叶片损坏。

5)、长时间水蚀严重造成叶片损坏。

6)、叶片本身材料质量问题,长时间运行,超过疲劳极限使叶片损坏。如果叶片的固有频率不合格,运行中产生共振也能损坏叶片,另外叶片设计不当也是损坏叶片的一个原因。7)、叶片过负荷。尤其是末几级由于叶片长度的原因更容易损坏叶片。

8)、汽轮机超速。

9)、汽轮机转子在临界转速区滞留时间过长使振动大造成叶片损坏。

10)、长时间低周波运行,使叶片自激振动增加容易损坏叶片。

11)、汽温过低有两种危害:一是末几级叶片湿度过大,叶片受冲蚀,截面减少,应力集中,引起叶片损坏。二是当汽温降低而出力不降低时,流量势必增加,从而引起叶片过载损坏叶片。

12)、蒸汽品质不合格可使叶片结垢,通流面积减少,各级焓降增加,叶片应力增大。另外,叶片结垢也能引起叶片腐蚀,使强度降低。

13)、真空过高或过低。真空过高时,可能使末级叶片过负荷和湿度增大,加速叶片水蚀。另外真空过低时,若仍保证最大出力不变,也能使末几级叶片过负荷。

14)、启、停机及增减负荷时操作不当,如果速率快可使胀差超限,发生动静摩擦,损坏叶片。

15)、汽轮机在低负荷或空负荷情况下运行时间过长,此时末级叶片在小容积流量工况下会产生汽流在叶片根部的脱流和叶片顶部的涡流现象,使叶片的动应力增加。如果汽轮机在高转速下紧急破坏真空,排汽压力升高,蒸汽比容增大,冲击力增大,可能会激发叶片的颤振,另外摩擦鼓风损失会使叶片局部达到很高的温度。所以后一种情况更为危险。

对于以上原因,应采取如下措施:

1)、电网应保证汽轮发电机组在额定频率和正常允许变动范围内工作。

额定工作频率50Hz,正常变化范围49-50.5Hz,可以长时间运行。

a. 在50.5-51.0Hz,一次运行≯3min,全部累运≯500min。

b. 在49.0-48.0Hz,一次运行≯5min,全部累运≯750min。

c. 在48.0-47.0Hz,一次运行≯1min,全部累运≯180min。

d. 在47.0-46.0Hz,一次运行≯10s,全部累运≯30min

出现上述情况应迅速采取措施加以恢复。并且机组每次偏离周波运行应有认真的记录。2)、避免机组过负荷运行。

a. 任何情况下高压缸调节级的压力≯17.66Mpa,否则应关小调速汽门,机组减负荷。

b. 任何情况下低压缸的入口压力≯0.314MPa。

c. 保证凝汽器工作压力为3.57/4.54KPa(冷却水入口温度16.4℃,流量80000m3/h)。冷却水入口温度变化时按曲线调整主机真空。

d. 只有一列高加运行时,汽机负荷≯785MW,此时调节级汽室蒸汽绝对压力≯14.7Mpa,且无额外抽汽;高压缸第六级后绝对压力≯8.14Mpa。

e. 二列高加全部切除,汽机负荷≯750MW,此时调节级汽室蒸汽绝对压力≯13.34Mpa,且无额外抽汽;高压缸第六级后绝对压力≯7.65Mpa。

f. 汽机在最大进汽量(2650T/H),对应最大负荷为850MW的情况下,不允许切除高压加热器运行,否则,中、低压缸各级叶片过载。

3)、加强机组运行中的监视,尤其是在机组启、停、加减负荷过程中,必须加强对汽压、汽温、出力、真空、胀差、串轴、振动等的监视。精心调整,不允许这些参数剧烈变化,严格执行规程规定。启、停机过程应按操作票和启、停机曲线逐步进行操作。

4)、主、再热蒸汽额定工作温度540℃正常工作范围为530-545℃,机侧主汽温低于470℃,炉侧出口达450℃应停机。

5)、汽轮机空载运行时间不允许≯30min,无蒸汽运行时间≯3min。防止低压转子鼓风发热,对叶片不利。禁止汽轮机在高转速下破坏真空,汽机事故停机情况下也要在转速下降到2000—2500rpm以下才能破坏真空。

6)、加强汽、水品质监督,防止叶片结垢,腐蚀。

汽轮机振动大的原因分析及其解决方法[1]

汽轮机振动大的原因分析及其解决方法 摘要:为了保障城市经济的发展与居民用电的稳定,加强汽轮机组日常保养与维护,保障城市供电已经成为了火力发电厂维护部门的重要任务。文章就汽轮机异常振动的原因进行了分析与故障的排除,在振动监测方面应做的工作进行了简要的论述。 关键词:汽轮机;异常振动;故障排除;振动监测;汽流激振现象 对转动机械来说,微小的振动是不可避免的,振动幅度不超过规定标准的属于正常振动。这里所说的振动,系指机组转动中振幅比原有水平增大,特别是增大到超过允许标准的振动,也就是异常振动。任何一种异常振动都潜伏着设备损坏的危险。比如轴系质量失去平衡(掉叶片、大轴弯曲、轴系中心变化、发电机转子内冷水路局部堵塞等)、动静磨擦、膨胀受阻、轴承磨损或轴承座松动,以及电磁力不平衡等等都会表面在振动增大,甚至强烈振动。 而强烈振又会导致机组其他零部件松动甚至损坏,加剧动静部分摩擦,形成恶性循环,加剧设备损坏程度。异常振动是汽轮发电机运转中缺陷,隐患的综合反映,是发生故障的信号。因此,新安装或检修后的机组,必须经过试运行,测试各轴承振动及各轴承处轴振在合格标准以下,方可将机组投入运行。振动超标的则必须查找原因,采取措施将振动降到合格范围内,才能移交生产或投入正常运行。 一、汽轮机异常振动原因分析 汽轮机组担负着火力发电企业发电任务的重点。由于其运行时间长、关键部位长期磨损等原因,汽轮机组故障时常出现,这严重影响了发电机组的正常运行。汽轮机组异常振动是汽轮机常见故障中较为复杂的一种故障。由于机组的振动往往受多方面的影响,只要跟机本体有关的任何一个设备或介质都会是机组振动的原因,比如进汽参数、疏水、油温、油质、等等。因此,针对汽轮机异常震动原因的分析就显得尤为重要,只有查明原因才能对症维修。针对导致汽轮机异常振动的各个原因分析是维修汽轮机异常振动的关键。 二、汽轮机组常见异常震动的分析与排除 引起汽轮机组异常振动的主要原因有以下几个方面,汽流激振、转子热变形、摩擦振动等。 (一)汽流激振现象与故障排除 汽流激振有两个主要特征:一是应该出现较大量值的低频分量;二是振动的增大受运行参数的影响明显,且增大应该呈突发性,如负荷。其原因主要是由于叶片受不均衡的气体来流冲击就会发生汽流激振;对于大型机组,由于末级较长,气体在叶片膨胀末端产生流道紊乱也可能发生汽流激振现象;轴封也可能发生汽流激振现象。针对汽轮机组汽流激振的特征,其故障分析要通过长时间的记录每次机组振动的数据,连同机组满负荷时的数据记录,做出成组曲线,观察曲线的变化趋势和范围。通过改变升降负荷速率,从5T/h到50T/h的给水量逐一变化的过程,观察曲线变化情况。通过改变汽轮机不同负荷时高压调速汽门重调特性,消除气流激振。简单的说就是确定机组产生汽流激振的工作状态,采用减低负荷变化率和避开产生汽流激振的负荷范围的方式来避免汽流激振的产生。 (二)转子热变形导致的机组异常振动特征、原因及排除 转子热变形引发的振动特征是一倍频振幅的增加与转子温度和蒸汽参数有密切关系,大都发生在机组冷态启机定速后带负荷阶段,此时转子温度逐渐升高,材质内应力释放引起转子热变形,一倍频振动增大,同时可能伴随相位变化。由于引起了转子弯曲变形而导致机组异常振动。转子永久性弯曲和临时性弯曲是

汽轮机轴瓦温度高的原因分析及处理

汽轮机轴瓦温度高的原因分析及处理 李守伦,张清宇 (焦作电厂,河南焦作 454159) [摘 要] 对几种典型轴瓦温度高的现象进行分析,并通过适当处理,清除了故障,使轴瓦温度恢复正常。[关键词] 汽轮机;轴瓦;轴瓦温度 [中图分类号]T K263.6 [文献标识码]B [文章编号]10023364(2003)03006202 汽轮机轴瓦温度是机组运行控制的重要参数之一。轴瓦温度高会严重威胁机组的安全运行,本文对几种典型轴瓦温度高的现象进行了分析,并介绍对其的处理方法及结果。 1 300MW 汽轮机2号轴瓦(东方汽轮 机厂) (1)河南省某厂2号机为东方汽轮机厂(东汽)生产的N300 16.7(170)/537/537 ó型(合缸)汽轮 机。机组大修后运行情况良好,在做甩负荷试验时,当转速降至1100r/min 时,2号轴瓦瓦温突然升高,由68e 急剧升至92e ,且随转速降低有升高趋势,后被迫停机。 该机2号轴瓦系带球面套的椭圆轴承,自动调整,双侧进油,为强迫液体润滑轴承。 停机后解体检查,发现该轴承下侧钨金磨损严重,顶轴油孔被钨金全部填塞,油囊已磨平,两侧油孔亦有钨金堆积现象,轴承顶隙增大0.20mm,其它检修尺寸无异常变化。查大修及运行记录,大修时中心调整在制造厂的标准内。启动时油膜压力:1号为4.2MPa,2号为3.8M Pa,3号为4.6M Pa 。冲转后油膜压力:1号为2.6MPa,2号为2.1MPa,3号为2.7MPa 。油膜压力均与中心调整值相吻合,无异常现象。但是,根据现场记录,随运行时间的增加,2号瓦的油膜压力随缸温的增加而逐渐增高,最高达到2.6M Pa 。 (2)东汽型机组2号瓦中心高差设计时预留(0.30~0.36)m m,预留中心高差时已考虑运行中的负荷分配情况。现场观察轴瓦钨金带有磨损痕迹而非烧毁痕迹,判断钨金为运行中磨损。由于停机时1100r/min 为顶轴油泵开启转速,而顶轴油孔被堵死,导致无法形成轴瓦油膜,造成大轴与轴瓦直接磨擦,引起瓦温迅速升高。根据机组运行中2号瓦油膜压力逐渐增高的趋势,判断2号瓦标高随机组运行渐入稳态而逐渐升高,由于预留中心高差不足,导致运行中磨损。 (3)由于3号瓦未磨损,2号瓦被磨损约0.20mm,故仅修刮2号瓦下瓦被磨损的钨金;开出顶轴油囊,疏通顶轴油孔;2号瓦结合面镗去0.20mm 后将轴瓦恢复,预留中心高差增大0.20mm,最终达到(0.50~0.56)mm 。 (4)处理后,机组运行情况良好,2号瓦温度一直在标准范围内,其间因锅炉原因再次停机时瓦温亦无变化。 2 200MW 汽轮机2号轴瓦(东方汽轮 机厂) (1)河南省某电厂6号机为东方汽轮机厂生产的N200 130/535/535型汽轮机。在2000年9月的大 修中进行了通流部分改造。因为更换新转子,致使2号轴瓦处间隙过大,便更换了2号轴承。该轴承为推力支持联合轴承,支持部分为三油楔形式,瓦枕和瓦为球面定位方式。大修后开机过程中,瓦温随转速升高而逐渐升高,当瓦温达到94e 时,被迫打闸停机,其间油膜压力无变化,振动亦保持在30L m 以下。停机后翻瓦检查,发现此瓦支持部分上瓦钨金磨损,下瓦无磨损痕迹,其余部分无异常。瓦各紧力、扬度无变化,顶 技术交流 q w 热力发电#2003(3)

汽轮机组振动分析探讨

汽轮机组振动分析探讨 发表时间:2018-11-13T20:29:03.847Z 来源:《电力设备》2018年第20期作者:胡海勃 [导读] 摘要:电力行业作为我国国民经济的重要支柱性产业,其安全稳定的运行对于经济和社会的发展至关重要。 (北京石景山热电厂北京 100041) 摘要:电力行业作为我国国民经济的重要支柱性产业,其安全稳定的运行对于经济和社会的发展至关重要。汽轮机作为电力企业重要的发电设备,是确保电力企业安全运行的基础,但汽轮机作为机械设备,在运行过程中不可避免的会发生一些常见故障。振动就是汽轮机运行过程中较为常见的故障之一,一旦振动故障发生,不仅会导致无法达到工作质量的标准,而且还会影响机组的整体运行,如果不能及时对振动故障进行处理,则会导致严重的后果发生。文章从汽轮机振动的特点入手,对汽轮机振动故障的原因和危害进行了分析,并进一步对汽轮机振动故障的处理措施进行了具体的阐述。 关键词:汽轮机;振动故障;故障处理 前言 涿州京源热电一期两台燃煤直流超临界机组,锅炉为北京巴威公司BW1242-25.4-M型,最大蒸发量为1242T/H,汽轮机为东方汽轮机CJK350/277-24.2/566/566型双缸双排汽抽汽凝汽式机组。自机组于2017年11月正式投产以来,多次出现机组2瓦X相振动大的问题,特别是机组带高负荷及满负荷时,当参数稍有变化,更加明显。 1 振动类型及产生的原因 热力发电厂产生振动的原因是包括多种类型: 1.1转子不平衡 转子不平衡引起的振动故障,主要源于转子自身的转子质量偏心及转子部件制造过程中存在的缺陷。转子系统的质量偏心跟转子本身的制造质量有很大的关系。如果制造过程中出现制造误差、装配过程造成误差、材质错误造成的误差都会最终引起转子产生偏心。这就需要制造厂家在生产过程中严格按照工艺要求进行生产,同时用户的监造人员要认真审核,确保达到用户标准要求。 转子部件残缺主要由腐蚀、磨损、冲击、疲劳等因素引起,这些原因可能造成设备的零部件部分磨损或脱落,导致转子不平衡而引起机组振动产生。 1.2转子弯曲 转子的弯曲包括永久弯曲和临时弯曲两种。转子弯曲是非常危险和严重的汽轮机事故。永久弯曲主要是转子出现弓背行弯曲状态,产生的原因有很多,包括结构设计不合理,制造误差过大,安装工艺水平低,运行操作出现严重的失误等。临时弯曲主要是由于机组启动过程暖机不足,升速过快,参数不匹配等原因,特别是热态开机时,冲车参数过低,造成转子收缩,胀差减少,以及加热不均匀,上下缸温差大等极易造成机组振动,转子弯曲。一般临时性弯曲经调整参数,延长盘车时间等转子弯曲均可慢慢恢复原值。 1.3转子不对中 转子不对中也是常有的振动故障。所谓转子不对中,就是由于施工及检修过程中安装产生的误差,设备变形,机器厂房等沉降不均衡等造成转子轴线出现不均衡。转子不对中是很严重的问题,即使偏移量极小,如果不能及时解决,都有可能造成机组振动增大,联轴器磨损,轴承损坏等事故。 1.4汽流激振:主要受两方面因素影响,属于一种自激振动,主要跟负荷及机组参数有关,发生在大型汽轮机组的高中压转子段。而且主要发生在负荷较高的阶段,经常振动突然增大。经查相关数据,通过对涿州热电机组振动的分析,二瓦轴振X/Y向振动都出现在高负荷、低汽温期间,且0.5倍频分量为主,振动主要是自激振动特征。 2 机组振动故障的表现特征 2.1部件间振动传递 汽轮发电机组振动的,当某种原因引起某瓦振动以后,会引起相邻瓦、甚至是整个轴系的振动。此时不仅可以通过表记判断出机组振动,就地也会感到有比较强的振动感。 2.2振动噪声 汽轮机发生故障的时候,会伴有明显的噪声。故障之初,检查轴承振动会发现轴承振动加大而且会伴有噪声。这主要是轴承共振引起的,随着振动的加剧,噪声也逐渐加大。 3涿州热电机组振动大的处理措施 涿州热电振动大保护关系:任意瓦X相或Y相轴振动达到危险值250μm,与其它任意瓦轴振动达到报警值125μm,保护动作,机组掉闸。当机组振动突然增大时,对机组安全稳定运行还是影响极大的。往往稍一迟疑,就可能造成保护动作,机组掉闸事故的发生。 3.1减少外界对机组的扰动。 主要是在高负荷及满负荷时,维持汽压、汽温稳定在额定值附近,尽量减少波动,特别是对于主、再热汽温的维持在额定值,防止汽温大幅波动或短时大幅下降,防止产生振动。 3.2调整轴承间隙。 轴承的稳定性在一定程度上决定了发电机组是否发生振动,轴颈偏心率大,轴承稳定性好,偏心率与轴承间隙成反比。也就是说轴承间隙越小的偏心率越大,轴承越稳定。通过查看资料和与厂家沟通,针对2瓦X相振动大的问题,将2瓦上下间隙减少2mm,提高2瓦的稳定性。 3.3调整轴承标高。 适当的调整轴承标高,也是处理振动的重要方法。轴承标高的不合理会直接导致轴承比压下降,就会大大降低轴承的稳定性。 3.4调试润滑油温度。 润滑油温度也会影响汽轮机组的正常运行,提高润滑油温,就可以降低润滑油粘度,相应的减少阻碍,促进轴承偏心率的提高,进而提高轴承的稳定性,减少振动的产生。将机组润滑油温由原来正常值的40℃--45℃的区间范围,调整到维持油温上限45摄氏度运行,在保

(完整word版)汽轮机异常振动分析及处理

汽轮机异常振动分析及处理 一、汽轮机设备概述 国华宝电汽轮机为上海汽轮机有限公司制造的超临界、一次中间再热、两缸两排汽、单轴、直接空冷凝汽式汽轮机,型号为NZK600-24.2/566/566。具有较高的效率和变负荷适应性,采用数字式电液调节(DEH)系统,可以采用定压和定—滑—定任何一种运行方式。定—滑—定运行时,滑压运行范围40~90%BMCR。本机设有7段非调整式抽汽向三台高压加热器、除氧器、三台低压加热器组成的回热系统及辅助蒸汽系统供汽。 高中压转子、低压转子为无中心孔合金钢整锻转子,高中压转子和低压转子之间装有刚性法兰联轴器,低压转子和发电机转子通过联轴器刚性联接。整个轴系轴向位置是靠高压转子前端的推力盘来定位的,由此构成了机组动静之间的相对死点。整个轴系由 7个支持轴承支撑,高中压缸、低压缸和碳刷共五个支持轴承为四瓦块可倾瓦,发电机两个轴承为可倾瓦端盖式轴承,推力轴承安装在前轴承箱内。推力轴承采用LEG轴承,工作瓦块和定位瓦块各八块。盘车装置安装在发电机与低压缸之间,为链条、蜗轮蜗杆、齿轮复合减速摆动啮合低速盘车装置,盘车转速为2.38r/min。 运行中为提高机组真空严密性,将机组轴封密封蒸汽压力由设计28kp提高至 40kp—60kp(以轴封漏汽量而定)。虽然提高了运行经济性但也增大了轴封漏汽量,可能会使润滑油带水并影响到机组胀差和振动,现为试验中,无法得出准确结论。#1机组大修后启机发生过因转子质量不平衡引起多瓦振动,经调整平衡块后得以改善。正常停机时出现过因胀差控制不当造成多瓦振动,也可能和滑销系统卡涩有一定关系。#2机组正常运行中(无负荷变化)偶尔会出现单各瓦振动上升现象,不做运行调整,振动达到高点之后迅速回落,一段时间后又会恢复正常,至今未查明原因。机组采用顺序阀运行时,在高低负荷变换时会发生#1瓦振动短时增大现象,暂定为高压调阀开关时汽流激振引起的振动。机组异常振动是经常发生又十分复杂的故障,要迅速做出判断处理,才能将危害降到最低。 二、机组异常振动原因 1、机组运行中心不正引起振动 (1)汽轮机启动时,如暖机时间不够,升速或加负荷过快,将引起汽缸受热膨胀不均匀,或滑销系统有卡涩,使汽缸不能自由膨胀,均会造成汽缸对转子发生相对偏斜,机组出现不正常的位移,产生振动。 (2)机组运行中,若真空下降,将使低压缸排汽温度升高,后轴承座受热上抬,因而破坏机组的中心,引起振动。

关于汽轮机振动分析及处理

关于汽轮机振动分析及处理 火力发电是我们公司主要安装的机组为了保证机组运行稳定,我们安装必须按照图纸施工。汽轮机作为发电系统的重要组成部分,其故障率的减少对于整个系统都有着重要的意义。汽轮机异常振动是发电厂常见故障中比较难确定故障原因的一种故障,针对这样的情况,加强汽轮机异常振动分析,为安装部门提供基础分析就显得极为必要。 一、汽轮机异常振动原因分析。 由于机组的振动往往受多方面的影响,只要跟机本体有关的任何一个设备或介质都会是机组振动的原因,比如进汽参数、疏水、油温、油质、等等。因此,针对汽轮机异常震动原因的分析就显得尤为重要,只有查明原因才能对症维修。针对导致汽轮机异常振动的各个原因分析是维修汽轮机异常振动的关键。 二、汽轮机组常见异常震动的分析与排除。 引起汽轮机组异常振动的主要原因有以下几个方面,汽流激振、转子热变形、摩擦振动等。针对着三个主要方面以下进行了详细的论述。 (一)汽流激振现象与故障排除(安装不需考虑)。 汽流激振有两个主要特征:一是应该出现较大量值的低频分量;二是振动的增大受运行参数的影响明显,如负荷,且增大应该呈突发性。其原因主要是由于叶片受不均衡的气体来流冲击就会发生汽流激振;对于大型机组,由于末级较长,气体在叶片膨胀末端产生流道紊乱也可能发生汽流激振现象;轴封也可能发生汽流激振现象。针对汽轮机组汽流激振的特征,其故障分析要通过长时间(一年以上)记录每次机组振动的数据,连同机组满负荷时的数据记录,做出成组曲线,观察曲线的变化趋势和范围。通过改变升降负荷速率,从5T/h到50/h 的给水量逐一变化的过程,观察曲线变化情况。通过改变汽轮机不同负荷时高压调速汽门重调特性,消除气流激振。简单的说就是确定机组产生汽流激振的工作状态,采用减低负荷变化率和避开产生汽流激振的负荷范围的方式来避免汽流激振的产生。 (二)转子热变形导致的机组异常振动特征、原因及排除。 转子热变形引发的振动特征是一倍频振幅的增加与转子温度和蒸汽参数有密切关系,大都发生在机组冷态启机定速后带负荷阶段,此时转子温度逐渐升高,材质内应力释放引起转子热变形,一倍频振动增大,同时可能伴随相位变化。由于引起了转子弯曲变形而导致机组异常振动。转子永久性弯曲和临时性弯曲是两种不同的故障,但其故障机理相同,都与转子质量偏心类似,因而都会产生与质量偏心类似的旋转矢量激振力。 与质心偏离不同之处在于轴弯曲会使两端产生锥形运动,因而在轴向还会产生较大的工频振动。另外,转轴弯曲时,由于弯曲产生的弹力和转子不平衡所产生的离心力相位不同,两者之间相互作用会有所抵消,转轴的振幅在某个转速下会有所减小,即在某个转速上,转轴的振幅会产生一个“凹谷”,这点与不平衡转子动力特性有所不同。当弯曲的作用小于不衡量时,振幅的减少发生在临界转速以下;当弯曲作用大于不平衡量时,振幅的减少就发生在临界转速以上。针对转子热变形的故障处理就是更换新的转子以减低机组异常振动。没有了振动力的产生机组也就不会出现异常振动。 (三)摩擦振动的特征、原因与排除 摩擦振动的特征:一是由于转子热弯曲将产生新的不平衡力,因此振动信号的主频仍为工频,但是由于受到冲击和一些非线性因数的影响,可能会出现少量分频、倍频和高频分量,有时波形存在“削顶”现象。二是发生摩擦时,振动的幅值和相位都具有波动特性,波动持续时间可能比较长。摩擦严重时,幅值和相位不再波动,振幅会急剧增大。三是降速过临界时的振动一般较正常升速时大,停机后转子静止时,测量大轴的晃度比原始值明显增加。摩

汽轮机影响振动的原因

汽轮发电机组振动的主影响因素 汽轮发电机组振动的大小直接关系到机组能否安全运行,而对于发电厂来 说安全就是最大的经济效益。引起机组振动过大或者不正常的原因有很多,既 有设计制造方面的原因,也有运行方面的原因,还有安装和检修等方面的原因,下面就这几个影响因素分别介绍。 1设计制造方面 汽轮发电机转子是一个高速旋转机械,如果转子的质心与旋转中心不 重合则会因为转子的不平衡而产生一个离心力,这个离心力对轴承产生一个激 振力使之引起机组振动,如果这个离心力过大,则机组的振动就会异常。所以,汽轮发电机转子在装配时每装配一级叶片都应该对该级叶片进行动平衡试验, 整个转子装配完成后在出厂之前还应该对整个转子进行低速和高速动平衡,以 确保转子的不平衡量在一个合格的范围内。 在制造厂家,转子不平衡量较大的原因主要由是机械加工精度不够和 装配质量较差引起,所以必须提高加工精度,同时保证装配质量,从而才能保 证转子的原始不平衡量不致于太大。另外,如果机组的设计不当也会引起机组 的振动。例如,在设计阶段轴承的选用是非常重要的,如果轴承选取不当,则 会因为轴承稳定性太差而转子极小的不平衡量也可能引起机组较大的振动,或 者油膜形成不好而极易诱发油膜振动。 2安装和检修方面 安装和检修对机组振动的影响非常大,根据对现场机组振动的经验, 现场很多机组的振动过大都是由于安装和检修不当引起的,或者说机组的振动 很多时候都是可以通过安装或检修来解决的。针对现场情况,下面重点介绍对 机组振动有明显影响的几个方面。 2.1轴承标高 不管是汽轮机还是发电机转子,其两端都是由轴承支撑的,如果两端 的轴承标高不在一个合理的范围内,则两端轴承的负荷分配就不合理。因此在 机组大修或者安装期间,应该根据制造厂家的建议,再结合各厂的实际情况对 机组轴承标高进行认真的调整。因为制造厂家提供的数据是根据机组冷态时的

汽轮机及其振动

汽轮机及其振动 介绍 汽轮机是热机,是将热能转化为机械能的机械。汽轮机可以是功率小、设计/结构简单的小型汽轮机,也可以是功率大、设计复杂、多级、多轴的大型汽轮机。汽轮机及其产品系列品类繁多,不同的制造商分类不同,不一而足。但汽轮机的基础是相同的,功能相同、主要部件及其支撑系统类似,而其失效机理也是大同小异的。本文仅按最主要的应用和常见的故障进行分类和讨论。无疑地,汽轮机可靠运行是很关键的,对其进行有效的状态监测是必须的、也是行业的共识,包括监测其运行状态、水/蒸汽品质、蒸汽透平的健康等等。 ?凝汽式透平–排汽在高度真空状态下进入冷凝器凝结成水,主要用于发电厂。单缸汽轮机的蒸汽从进汽到排汽都在一个缸内,而对于多缸汽轮机组,高压蒸汽要经过高压缸到一个或者多个逐级降低压力的汽缸,充分膨胀后排汽。 ?背压式透平–排汽为正压,高于大气压。主要用于油气类工艺装置中。 其排出的蒸汽压力取决于工艺设计和生产要求,需送往下一流程再使用,此时透平类似于一个减压阀。 ?再热凝汽式透平–排汽为真空凝汽式,但中间级部分蒸汽会抽出来,返回锅炉再加热到初始压力,送回下一级或中压透平。 ?抽汽式透平–排汽可以是真空凝汽式或者正压式。主要用于油气类工艺装置中。中间多处抽出部分蒸汽可用于工艺蒸汽,或者为了中间多处补汽,以得到更高的功率。

本文仅按蒸汽的供汽压力分为高压、中压和低压透平。所有的蒸汽透平都有如下主要部件: ?缸体 ?转子 ?轴承 ?密封 ?联轴器 ?盘车装置(小机器可能不需要) 高压透平 高压透平的结构、部件:

凝汽式或背压式高压缸实图: 高压透平可能和中压透平合缸(HP/IP):

汽轮机振动大的原因分析及其解决办法

汽轮机振动大的原因分析及其解决办法 发表时间:2017-09-06T10:38:48.377Z 来源:《电力设备》2017年第14期作者:唐昊 [导读] 摘要:为了保障城市经济的发展与居民用电的稳定,加强汽轮机组日常保养与维护,保障城市供电已经成为了火力发电厂维护部门的重要任务。 (阜新金山煤矸石热电有限公司辽宁省阜新市 123000) 摘要:为了保障城市经济的发展与居民用电的稳定,加强汽轮机组日常保养与维护,保障城市供电已经成为了火力发电厂维护部门的重要任务。文章就汽轮机异常振动的原因进行了分析与故障的排除,在振动测方面应做的工作进行了简要的论述。 关键词:汽轮机;异常振动;故障排除;振动监测;汽流激振现象 前言 对转动机械来说,微小的振动是不可避免的,振动幅度不超过规定标准的属于正常振动。这里所说的振动,系指机组转动中振幅比原有水平增大,特别是增大到超过允许标准的振动,也就是异常振动。任何一种异常振动都潜伏着设备损坏的危险。比如轴系质量失去平衡(掉叶片、大轴弯曲、轴系中心变化、发电机转子内冷水路局部堵塞等)、动静磨擦、膨胀受阻、轴承磨损或轴承座松动,以及电磁力不平衡等等都会表面在振动增大,甚至强烈振动。而强烈振又会导致机组其他零部件松动甚至损坏,加剧动静部分摩擦,形成恶性循环,加剧设备损坏程度。异常振动是汽轮发电机运转中缺陷,隐患的综合反映,是发生故障的信号。因此,新安装或检修后的机组,必须经过试运行,测试各轴承振动及各轴承处轴振在合格标准以下,方可将机组投入运行。振动超标的则必须查找原因,采取措施将振动降到合格范围内,才能移交生产或投入正常运行。 1.机组异常振动原因 汽轮机组担负着火力发电企业发电任务的重点。由于其运行时间长。关键部位长期磨损 等原因,汽轮机组故障时常出现,这严重影响了发电机组的正常运行。汽轮机组异常振动是汽轮机常见故障中较为复杂的一种故障。由于机组的振动往往受多方面的影响,只要跟机本体有关的任何一个设备或介质都会是机组振动的原因,比如进汽参数、疏水、油温、油质等。因此,针对汽轮机异常震动原因的分析就显得尤为重要,只有查明原因才能对症维修。针对导致汽轮机异常振动的各个原因分析是维修汽轮机异常振动的关键。 2.汽轮机组常见异常震动的分析与排除 引起汽轮机组异常振动的主要原因有以下几个方面,汽流激振转子热变形、摩擦振动等。 2.1汽流激振现象与故障排除 汽流激振有两个主要特征:一是应该出现较大量值的低频分量;二是振动的增大受运行参数的影响明显,且增大应该呈突发性,如负荷。其原因主要是由于叶片受不均衡的气体来流冲击就会发生汽流激振;对于大型机组,由于末级较长,气体在叶片膨胀末端产生流道紊乱也可能发生汽流激振现象;轴封也可能发生汽流激振现象。针对汽轮机组汽流激振的特征,其故障分析要通过长时间的记录每次机组振动的数据,连同机组满负荷时的数据记录,做出成组曲线,观察曲线的变化趋势和范围。通过改变升降负荷速率,从5T/h到50T/h的给水量逐一变化的过程,观察曲线变化情况。通过改变汽轮机不同负荷时高压调速汽门重调特性,消除气流激振。简单的说就是确定机组产生汽流激振的工作状态,采用减低负荷变化率和避开产生汽流激振的负荷范围的方式来避免汽流激振的产生。 2.2转子热变形导致的机组异常振动特征、原因及排除 转子热变形引发的振动特征是一倍频振幅的增加与转子温度和蒸汽参数有密切关系,大都发生在机组冷态启机定速后带负荷阶段,此时转子温度逐渐升高,材质内应力释放引起转子热变形,一倍频振动增大,同时可能伴随相位变化。由于引起了转子弯曲变形而导致机组异常振动。转子永久性弯曲和临时性弯曲是两种不同的故障,但其故障机理相同,都与转子质量偏心类似,因而都会产生与质量偏心类似的旋转矢量激振力。与质心偏离不同之处在于轴弯曲会使两端产生锥形运动,因而在轴向还会产生较大的工频振动。另外,转轴弯曲时,由于弯曲产生的弹力和转子不平衡所产生的离心力相位不同,两者之间相互作用会有所抵消,转轴的振幅在某个转速下会有所减小,即在某个转速上,转轴的振幅会产生一个凹谷,这点与不平衡转子动力特性有所不同。当弯曲的作用小于不衡量时,振幅的减少发生在临界转速以下;当弯曲作用大于不平衡量时,振幅的减少就发生在临界转速以上。针对转子热变形的故障处理就是更换新的转子以减低机组异常振动。没有了振动力的产生机组也就不会出现异常振动[1]。 2.3摩擦振动的特征、原因与排除 摩擦振动的特征:一是由于转子热弯曲将产生新的不平衡力,因此振动信号的主频仍为工频,但是由于受到冲击和一些非线性因数的影响,可能会出现少量分频、倍频和高频分量,有时波形存在削顶+现象。二是发生摩擦时,振动的幅值和相位都具有波动特性,波动持续时间可能比较长。摩擦严重时,幅值和相位不再波动,振幅会急剧增大。三是降速过临界时的振动一般较正常升速时大,停机后转子静止时,测量大轴的晃度比原始值明显增加。摩擦振动的机理:对汽轮机转子来讲,摩擦可以产生抖动、涡动等现象,但实际有影响的主要是转子热弯曲。动静摩擦时圆周上各点的摩擦程度是不同的,由于重摩擦侧温度高于轻摩擦侧,导致转子径向截面上温度不均匀,局部加热造成转子热弯曲,产生一个新的不平衡力作用到转子上引起振动。 3.如何查找汽轮机的异常震动 生产中经常遇到瓦盖振、轴振的异常变化,引起振动异常的原因很多。根据振动产生的集中原因,在查找振动主要来源时要注意下面几个要素:振动的频率是 1X,2X等。振动的相位是否有变化及相邻轴承相位的关系。振动的稳定性如何(指随转速、负荷、温度、励磁电流、时间、等的变化是否变化)。例如汽轮机转子质量不平衡会有下列现象:升速时振动与转速的二次方成正比,转速高振动大。特别过临界时振动比以往大得多。振动的频率主要是1X。振动的相位一般不变化及相邻轴承相位出现同或反相,振动的稳定性好(在振动没有引起磨擦的情况下),且重复性好,根据振动特征与日常检测维修记录多方面分析,找出故障原因最终排除。另外对于一些原本设计上有通病的机组,要做好心理准备并牢记其故障点,一旦出现情况首先要检查设计缺陷部件。 4.在振动监测方面应做好的工作 目前200M W 及以上的机组大都装设了轴系监控装置,对振动实施在线监控,给振动监测工作创造了良好的条件。其他中小型机组有的虽装有振动监测表,但准确度较差,要靠携带型振动表定期测试核对,有的机组仅靠推带振动表定期测试记录。对中小型机组的振动监

汽轮机异常振动分析与排除 贾峰

汽轮机异常振动分析与排除贾峰 发表时间:2018-11-18T20:20:10.497Z 来源:《防护工程》2018年第20期作者:贾峰王舰[导读] 在我们国家,广大的北方区域因为水少,大多是依靠火力来发电的。只有做好了电力供应才可以确保城市的稳定。 抚顺石化工程建设有限公司第七分公司辽宁抚顺 113008 摘要:在我们国家,广大的北方区域因为水少,大多是依靠火力来发电的。只有做好了电力供应才可以确保城市的稳定。为确保供电合理,电厂的维修机构都会在规定的时间中对设备开展详细的分析和维护。然而汽轮机作为发电体系中非常关键的一个构成要素,它的问题率的降低对于综合体系的发展来讲,意义非常多关键。它的不正常振动是目前来讲,非常难以应对的一个问题。对于这种状态,强化对 其不正常振动的探索,为维修机构提供必需的分析就变得非常的关键。 关键词:汽轮机;异常振动成因;排除措施 1汽轮机异常振动的原因 1.1汽流激振现象造成的异常振动 当大型汽轮机在运行过程中出现异常振动问题时,首先应当分析是否是由汽流激振造成的故障问题。由于大型汽轮机的末级较长,当汽轮机在运行时极易出现叶片膨胀造成汽流流道紊乱的情况,从而造成汽流激振现象。汽流激振现象具有两个较为明显的特征:第一,当汽轮机出现汽流激振现象会出现较大值的低频分量;第二,运行参数会突然增大影响汽轮机的振动情况。在判断汽轮机是否出现汽流激振现象时,需要通过大量汽轮机振动记录信息进行判断,通过对汽轮机长时间的振动数据进行分析,可以有效判断汽轮机的汽流激振现象。 1.2转子热变形造成的异常振动 汽轮机在运行过程中会出现转子热变形造成的异常振动情况,需要工作人员对转子热变形的成因进行分析,尽可能避免汽轮机的异常振动情况。造成汽轮机转子热变形的原因有很多,主要原因包括:汽轮机运行引发转子热度过热、汽轮机气缸出现进水情况、气缸中进入冷空气与气缸造成摩擦、汽轮机中心孔进油、汽轮机发电机转子冷却温度出现差异,以上原因均能造成汽轮机转子热变形情况的发生。当转子由于温度过热出现变形问题时,会直接造成汽轮机的异常振动,由于转子热变形情况可能是临时危害,也可能是永久危害,需要工作人员对转子热变形的危害情况进行判断,避免转子热变形对汽轮机的正常运行造成过于严重的影响。 1.3摩擦造成的异常振动 汽轮机由于长时间运行,对各个零部件均会造成不同程度的摩擦损伤,当零部件的摩擦损害过于严重时,则会造成汽轮机的异常振动问题。汽轮机摩擦出现异常振动的特征如下:第一,转子热变形会对汽轮机造成不平衡力,使汽轮机的振动信号受到影响,会出现少量分频、倍频以及高频分量等现象;第二,当汽轮机发生摩擦时,汽轮机的振动会出现波动,波动的持续时间较长。而汽轮机摩擦过于严重时,汽轮机的振动幅度会大幅增加;第三,汽轮机在延缓运行过程中,下降速度超过临界点时,汽轮机的振动幅度会增大。当汽轮机停止转动后,汽轮机的测量轴会出现明显晃动。简而言之,汽轮机由于摩擦出现异常振动是由于摩擦致使汽轮机温度升高,局部温度过热造成转子热变形,产生不平衡力造成的异常振动。 2汽轮机组常见异常振动排除 引起汽轮机组异常振动的主要原因有以下几个方面,汽流激振、转子热变形、摩擦振动等。针对着三个主要方面以下进行了详细的论述。 2.1汽流激振现象与故障排除 汽流激振有两个主要特征:一是应该出现较大量值的低频分量;二是振动的增大受运行参数的影响明显,如负荷,且增大应该呈突发性。其原因主要是由于叶片受不均衡的气体来流冲击就会发生汽流激振;对于大型机组,由于末级较长,气体在叶片膨胀末端产生流道紊乱也可能发生汽流激振现象;轴封也可能发生汽流激振现象。针对汽轮机组汽流激振的特征,其故障分析要通过长时间(一年以上)记录每次机组振动的数据,连同机组满负荷时的数据记录,做出成组曲线,观察曲线的变化趋势和范围。通过改变升降负荷速率,从5T/h到50T/h的给水量逐一变化的过程,观察曲线变化情况。通过改变汽轮机不同负荷时高压调速汽门重调特性,消除气流激振。简单的说就是确定机组产生汽流激振的工作状态,采用减低负荷变化率和避开产生汽流激振的负荷范围的方式来避免汽流激振的产生。 2.2转子热变形导致的机组异常振动特征原因及排除 转子热变形引发的振动特征是一倍频振幅的增加与转子温度和蒸汽参数有密切关系,大都发生在机组冷态启机定速后带负荷阶段,此时转子温度逐渐升高,材质内应力释放引起转子热变形,一倍频振动增大,同时可能伴随相位变化。由于引起了转子弯曲变形而导致机组异常振动。转子永久性弯曲和临时性弯曲是两种不同的故障,但其故障机理相同,都与转子质量偏心类似,因而都会产生与质量偏心类似的旋转矢量激振力。与质心偏离不同之处在于轴弯曲会使两端产生锥形运动,因而在轴向还会产生较大的工频振动。另外,转轴弯曲时,由于弯曲产生的弹力和转子不平衡所产生的离心力相位不同,两者之间相互作用会有所抵消,转轴的振幅在某个转速下会有所减小,即在某个转速上,转轴的振幅会产生一个“凹谷”,这点与不平衡转子动力特性有所不同。当弯曲的作用小于不衡量时,振幅的减少发生在临界转速以下;当弯曲作用大于不平衡量时,振幅的减少就发生在临界转速以上。针对转子热变形的故障处理就是更换新的转子以减低机组异常振动。没有了振动力的产生机组也就不会出现异常振动。 2.3摩擦振动的特征原因与排除 一是由于转子热弯曲将产生新的不平衡力,因此振动信号的主频仍为工频,但是由于受到冲击和一些非线性因数的影响,可能会出现少量分频、倍频和高频分量,有时波形存在“削顶”现象。二是发生摩擦时,振动的幅值和相位都具有波动特性,波动持续时间可能比较长。摩擦严重时,幅值和相位不再波动,振幅会急剧增大。三是降速过临界时的振动一般较正常升速时大,停机后转子静止时,测量大轴的晃度比原始值明显增加。摩擦振动的机理:对汽轮机转子来讲,摩擦可以产生抖动、涡动等现象,但实际有影响的主要是转子热弯曲。动静摩擦时圆周上各点的摩擦程度是不同的,由于重摩擦侧温度高于轻摩擦侧,导致转子径向截面上温度不均匀,局部加热造成转子热弯曲,产生一个新的不平衡力作用到转子上引起振动。

汽轮机振动大的原因分析及其解决方法[1]..

汽轮机振动大的原因分析及其解决方法[1]..

汽轮机振动大的原因分析及其解决方法 摘要:为了保障城市经济的发展与居民用电的稳定,加强汽轮机组日常保养与维护,保障城市供电已经成为了火力发电厂维护部门的重要任务。文章就汽轮机异常振动的原因进行了分析与故障的排除,在振动监测方面应做的工作进行了简要的论述。 关键词:汽轮机;异常振动;故障排除;振动监测;汽流激振现象 对转动机械来说,微小的振动是不可避免的,振动幅度不超过规定标准的属于正常振动。这里所说的振动,系指机组转动中振幅比原有水平增大,特别是增大到超过允许标准的振动,也就是异常振动。任何一种异常振动都潜伏着设备损坏的危险。比如轴系质量失去平衡(掉叶片、大轴弯曲、轴系中心变化、发电机转子内冷水路局部堵塞等)、动静磨擦、膨胀受阻、轴承磨损或轴承座松动,以及电磁力不平衡等等都会表面在振动增大,甚至强烈振动。 而强烈振又会导致机组其他零部件松动甚至损坏,加剧动静部分摩擦,形成恶性循环,加剧设备损坏程度。异常振动是汽轮发电机运转中缺陷,隐患的综合反映,是发生故障的信号。因此,新安装或检修后的机组,必须经过试运行,测试各轴承振动及各轴承处轴振在合格

标准以下,方可将机组投入运行。振动超标的则必须查找原因,采取措施将振动降到合格范围内,才能移交生产或投入正常运行。 一、汽轮机异常振动原因分析 汽轮机组担负着火力发电企业发电任务的重点。由于其运行时间长、关键部位长期磨损等原因,汽轮机组故障时常出现,这严重影响了发电机组的正常运行。汽轮机组异常振动是汽轮机常见故障中较为复杂的一种故障。由于机组的振动往往受多方面的影响,只要跟机本体有关的任何一个设备或介质都会是机组振动的原因,比如进汽参数、疏水、油温、油质、等等。因此,针对汽轮机异常震动原因的分析就显得尤为重要,只有查明原因才能对症维修。针对导致汽轮机异常振动的各个原因分析是维修汽轮机异常振动的关键。 二、汽轮机组常见异常震动的分析与排除 引起汽轮机组异常振动的主要原因有以下几个方面,汽流激振、转子热变形、摩擦振动等。 (一)汽流激振现象与故障排除 汽流激振有两个主要特征:一是应该出现较大量值的低频分量;二是振动的增大受运行参数的影响明显,且增大应该呈突发性,如负荷。其原因主要是由于叶片

汽轮机叶轮振动分析

汽轮机叶轮振动分析 摘要汽轮机是机组的重要组成部分,汽轮机的振动对机组的稳定安全的运行有很大的影响。本文选择I—DEAS软件对叶轮振动进行建模和网格划分,对不同阶叶轮的振动频率进行分析,研究汽轮机叶轮的振动特性,为汽轮机叶轮的设计和安全运行提供参考。 关键词汽轮机;叶轮;振动;频率 汽轮机是机组的重要组成部分,叶轮在高速的旋转之下会产生振动,过大的振动会带来大的噪音,也会影响叶轮和叶片的使用寿命。因此,对汽轮机的叶轮振动特性进行分析,不仅能够减少汽轮机在运行过程中的损耗,对整个机组的安全稳定运行也具有非常重要的意义。汽轮机的叶轮在高速旋转之下会产生离心力,加上流场不均匀,很容易使叶片的升力发生变化,叶轮受到影响而发生振动。在叶轮本身固有的频率和激振力的频率一样或者成整数倍的情况下,就会产生共振现象,影响叶轮的正常运转。 1 叶轮计算模型 1.1 叶轮计算模型的建立 本文研究的叶轮计算模型的建模,选择采用I-DEAS软件进行模型的建立和功能计算。汽轮机的叶轮建模主要分为两个部分,一个是轮盘模型的建立,另一个是叶片模型的建立。对于轮盘部分的模型绘制,通过旋转命令即可建档的绘制出来。相比之下,叶片是呈曲面的,空间曲面比较复杂,所以叶片的建模采用的是三维实体扫描仪,配合使用建模软件进行模型的建立。根据非均匀有理样条函数B-rep进行插值,将点阵进行连接从而形成一个曲面,然后将曲面在建模软件I-DEAS中导入进去缝合,完成缝合后的曲面能够生成一个边界为曲面的叶片实体。在这个实体基础上输入阵列命令,在经过布尔运算最终生成一个汽轮机叶轮的模型。本文研究分析的汽轮机叶轮模型如图1(a)所示: 图1叶轮计算模型 1.2 模型的网格划分 本文研究分析的叶轮的轮盘和叶片铸造材料为铝合金,设定密度为2880kg·m-3,叶轮轮盘的弹性模量是67680N·mm-2。对模型进行网格划分采用的软件为I-DEAS软件,设定节点的数量是7590,单元数是28317,在0至980Hz 的范围内对模型的模态频率进行计算,再对0至450Hz的范围内对动态频率进行计算,需要注意的是在进行动频的计算的过程中,要对叶轮内孔和转轴之间的过盈量加以充分的考虑。 2 叶轮的振型和固有频率的分析

汽轮机振动分析与故障排除

成人高等教育毕业设计 题目:汽轮机振动分析与故障排除 学院(函授站):机械工程学院 年级专业:热能与动力工程 层次:本科 学号: 姓名:张华 指导教师: 起止时间:年月日~月日

内容摘要 我国经济的快速发展对我国电力供应提出了更高的要求。为了保障城市经济的发展与居民用电的稳定,加强汽轮机组日常保养与维护,保障城市供电已经成为了火力发电厂维护部门的重要任务。汽轮机组作为发电厂重要组成部分其异常振动对于整个发电系统都有着重要的影响,汽轮机组异常振动是汽轮机常见故障中较为复杂的一种故障。由于机组的振动往往受多方面的影响,只要跟机本体有关的任何一个设备或介质都会是机组振动的原因。因此,针对汽轮机异常震动原因的分析就显得尤为重要,只有查明原因才能对症维修。针对导致汽轮机异常振动的各个原因分析是维修汽轮机异常振动的关键。文章就汽轮机异常振动的原因进行了分析与故障的排除,在振动监测方面应做的工作进行了简要的论述。 关键词:汽轮机;异常振动;分析;排除

内容摘要 0 前言 (3) 第一章振动原因查找和分析 (4) 第2章汽轮机组常见异常震动的分析与排除 (4) 2.1汽流激振现象与故障排除 (5) 2.2转子热变形导致的机组异常振动特征、原因及排除 (5) 2.3摩擦振动的特征、原因与排除 (6) 第三章运行方面 (6) 3.1 机组膨胀 (6) 3.2 润滑油温 (6) 3.3轴封进汽温度 (7) 3.4机组真空和排汽缸温度 (7) 3.5 发电机转子电流 (7) 3.6断叶片 (7) 第四章关于汽轮机异常振动故障原因查询步骤的分析 (7) 第五章在振动监测方面应做好的工作 (8) 结论 (10)

电厂汽轮机振动过大原因及处理办法示范文本

电厂汽轮机振动过大原因及处理办法示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

电厂汽轮机振动过大原因及处理办法示 范文本 使用指引:此管理制度资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 该文针对电厂汽轮机振动过大的一些原因进行分析讨 论,给出了汽轮机振动大的原因以及格尔木300MW燃气 电站汽轮机组常遇到的振动大的原因,并给出了减小汽轮 机振动的措施。 一、前言 格尔木300MW燃气电站汽轮机系上海汽轮机厂生 产,汽轮机型号:LZN55-5.6/0.65。下表是格尔木 300MW燃气电站转子振动值与轴承振动值的相关参数。 二、汽轮机发生振动的原因 (一) 机组在运行中中心不正引起的振动

(1) 汽轮机启机过程中,若暖机时间不够,升速或者加负荷过快,将引起气缸受热膨胀不均匀,或者滑销系统有卡涩,使气缸不能自由膨胀,将导致气缸相对于转子发生歪斜,机组产生不正常的位移,发生过大振动。 (2) 机组在运行当中如真空下降,将引起排气温度过高,后轴承上抬,破坏机组的中心,引起振动。 (3) 机组在进汽温度超过设计规范的条件下运行。将使胀差和汽缸变形增加,这样会造成机组中心移动超过允许的限度,引起振动。 (5) 间隙振荡。当转子因某种原因与汽缸不同心时,可能产生间隙振荡,造成机组振动值升高。 (二) 转子质量不平衡引起的振动 (1) 弹性弯曲而引起的振动。这种振动表现为轴向振动,尤其当通过临界转速时,其轴向振幅增大得更为显著。

汽轮机运行中振动大的原因及危害

汽轮机运行中振动大的原因及危害 一、汽轮机异常振动原因分析 汽轮机组担负着火力发电企业发电任务的重点。由于其运行时间长、关键部位长期磨损等原因,汽轮机组故障时常出现,这严重影响了发电机组的正常运行。汽轮机组异常振动是汽轮机常见故障中较为复杂的一种故障。由于机组的振动往往受多方面的影响,只要跟机本体有关的任何一个设备或介质都会是机组振动的原因,比如进汽参数、疏水、油温、油质、等等。因此,针对汽轮机异常震动原因的分析就显得尤为重要,只有查明原因才能对症维修。针对导致汽轮机异常振动的各个原因分析是维修汽轮机异常振动的关键。 二、汽轮机组常见异常震动的分析与排除 引起汽轮机组异常振动的主要原因有以下几个方面,汽流激振、转子热变形、摩擦振动等。 (一)汽流激振现象与故障排除 汽流激振有两个主要特征:一是应该出现较大量值的低频分量;二是振动的增大受运行参数的影响明显,且增大应该呈突发性,如负荷。其原因主要是由于叶片受不均衡的气体来流冲击就会发生汽流激振;对于大型机组,由于末级较长,气体在叶片膨胀末端产生流道紊乱也可能发生汽流激振现象;轴封也可能发生汽流激振现象。针对汽轮机组汽流激振的特征,其故障分析要通过长时间的记录每次机组振动的数据,连同机组满负荷时的数据记录,做出成组曲线,观察曲线的变化趋势和范围。通过改变升降负荷速率,从5T/h到50T/h的给水量逐一变化的过程,观察曲线变化情况。通过改变汽轮机不同负荷时高压调速汽门重调特性,消除气流激振。简单的说就是确定机组产生汽流激振的工作状态,采用减低负荷变化率和避开产生汽流激振的负荷范围的方式来避免汽流激振的产生。 (二)转子热变形导致的机组异常振动特征、原因及排除 转子热变形引发的振动特征是一倍频振幅的增加与转子温度和蒸汽参数有密切关系,大都发生在机组冷态启机定速后带负荷阶段,此时转子温度逐渐升高,材质内应力释放引起转子热变形,一倍频振动增大,同时可能伴随相位变化。由于引起了转子弯曲变形而导致机组异常振动。转子永久性弯曲和临时性弯曲是两种不同的故障,但其故障机理相同,都与转子质量偏心类似,因而都会产生与质量偏心类似的旋转矢量激振力。

相关文档
相关文档 最新文档