文档视界 最新最全的文档下载
当前位置:文档视界 › 写出使下列泛函取极值的欧拉-拉格朗日方程

写出使下列泛函取极值的欧拉-拉格朗日方程

写出使下列泛函取极值的欧拉-拉格朗日方程
写出使下列泛函取极值的欧拉-拉格朗日方程

第八讲 变分法

1. 写出使下列泛函取极值的欧拉-拉格朗日方程,并求解:

(1

)1

0x x dx ∫; (2

)10x x dx ∫

规定极值曲线均通过平面上的已知点()00,x y 和()11,x y 。

2. 求锥面222x y z +=上的“短程线”(准确说是测地线)

3. 光在折射率为的介质中传播率为n ds c dt n

ν==, 是真空中的速率,于是光由c A 点()00,x y 传播到点B ()11,x y 的时间便是 ()()()()

11110000,,,,1 x y x y x y x y ds

T n c ν

==∫∫ds 而光由A 到 的实际路径应当使T 取极值。试求光在下列介质中传播时的实际轨迹: B (1);(2)(1n k x =+)2k n x =3

+; (3

)n = 其中均为已知常数,

k 22r x y 2=+。 4. 试写出本征值问题 20

0u u u u n λαβΣ?+=???+=????

? 所对应的泛函极值问题,设0β≠。

5. 用瑞利-里兹方法求出

()()

0,

10,

10y y y y λ′′+=?== 的最低的两个本征值的近似解,取试探函数为

(

)()221211y c x c x x =?+?。

《图解刚体力学——欧拉运动学方程》

本科生毕业论文 论文题目:图解刚体力学——欧拉运动学方程 学生姓名:罗加宽 学号: 2008021152 专业名称:物理学 论文提交日期: 2012年05月17日 申请学位级别:理学学士 论文评审等级: 指导教师姓名:陈洛恩 职称:教授 工作单位:玉溪师范学院 学位授予单位:玉溪师范学院 玉溪师范学院理学院物理系 2012年05月

图解刚体力学—欧拉运动学方程 罗加宽 (玉溪师范学院理学院物理系 08级物理1班云南玉溪 653100) 指导教师:陈洛恩、杨春艳 摘要:本文阐述了描述刚体定点转动的欧拉角及欧拉运动学方程的图解,以期让复杂的问题转 化得简单清晰而易于学习者的理解,抽象的概念变得直观具体而易于学习者的掌握;并能在一 定程度上对提高学习者的空间思维能力、引导和培养学习者的创新思维能力有一定的帮助。 关键字:图解;刚体;欧拉角;欧拉运动学方程 1.引言 理论力学是研究物体机械运动一般规律的科学;依照牛顿的说法,理论力学“是关于力产生的运动和产生任何运动的力的理论,是精确的论述和证明” [1]。理论力学作为使用数学方法的自然知识的一部分,不仅研究实际物体,而且研究其模型—质点、质点系、刚体和连续介质。从研究次序来看,通常先研究描述机械运动现象的运动学,然后再进一步研究机械运动应当遵循哪些规律的动力学。至于研究平衡问题的静力学,对理科来讲可以作为动力学的一部分来处理,但在工程技术上,静力学却是十分的重要,因此,常把它和动力学分开,自成一个系统[2]。本文图解的内容为刚体力学运动学问题之一的刚体的绕定点的转动。 “图解”的方法,较早见于上海科学技术出版社1988年翻译出版的《图解量子力学》,原书名为The Picture Book of Quantum Mechanics,由Springer-Verlag 出版;类似的书还有Springer-Verlag出版的Visual Quantum Mechanics。其特点是通过将理论物理与数值计算相结合实现可视化来讲解物理知识。国外对物理的可视化教学十分重视,早在1995-1996年间Wiley出版社出版了9本有关物理多媒体教学的丛书,是由大学高等物理软件联盟(The Consortium for Upper-Level Physics Software,CUPS)编写该丛书及其所用的教学软件[3]。如今,图解法已经广泛应用于力学、电磁学、模拟电子技术等方面,理论力学方面同样也有不少人已经采用了图解法。如赵宗杰使用3dsmax建立质点外弹道运动规律的虚拟模型和场景[4];乐山师范学院王峰等利用Matlab分别对质点受力仅为位置、速度或时间的函数进行了图解,并说明了Matlab在理论力学中的应用[5];阜阳师范学院孙美娟、韩修林利用Mathematica进行编程作出了落体的位移—时间图像[6]。通过图解,使很多抽象繁难的物理问题在解析时达到空间立体直观,概念形成清晰,逻辑链路晓畅明朗,数式转换准确易见。 理论力学因理论性较强,与高等数学联系密切,一些概念的形成、公式的推导、逻辑推理等较抽象、繁难、复杂,往往使教授者感到教学很难达到预期的效果,学

任意拉格朗日欧拉(ALE)理论基础

暨两岸船舶与海洋工程水动力学研讨会文集 拉格朗日、欧拉和任意拉格朗日-欧拉描述的 有限元分析 孙江龙1杨文玉2 杨侠3 (1 华中科技大学船舶与海洋工程学院,武汉 430074;2 华中科技大学机械科学与工程学院,武汉 430074;3 武 汉工程大学机电工程学院,武汉 430073) 摘要:对拉格朗日、欧拉和任意拉格朗日–欧拉三种描述方法进行了分析,为了便于理解给出了三种描述的参考构形和参考坐标系,在参考坐标系下根据物质导数的定义分别得到相应的速度和加速度,并进行比较,将三种描述方法的区别列于表中,清晰地阐述了三种描述之间的相互关系,并进行了有限元分析。 关键词:拉格朗日;欧拉;任意拉格朗日–欧拉;有限元法 1 引言 自由液面大晃动引起的强非线性往往给问题的求解造成很大困难,对大晃动问题进行数值模拟,要先解决描述方法的选择问题。过去通常采用欧拉法[1-3]和拉格朗日法[4-5]来描述非定常自由面流体流动,它们有着各自的优势和局限性。 采用固定网格的欧拉描述,整个计算过程中计算网格始终保持初始状态,从而可以描述流体质点运动的急剧变化,如碎波等现象。欧拉描述虽然可以有效地分析整个流场内部的运动,但很难精确跟踪流体的自由液面,即很难给出准确的自由面形状和位置。 在拉格朗日描述中,网格结点与流体质点在整个运动过程中始终保持重合,流体质点与网格结点之间不存在相对运动,因此很容易跟踪自由液面,适用于线性小晃动问题。这不仅大大地简化了控制方程地求解,而且还能有效地跟踪流体质点的运动轨迹,准确地描述波动的自由液面。但是,在涉及求解带自由面流体大幅运动时,此时的晃动已经具有很强的非线性特征,如果还采用拉格朗日描述,由于流体质点运动的急剧变化,将导致计算网格的扭曲,会面临网格奇异问题,从而使计算无法继续进行。 拉格朗日描述和欧拉描述虽有各自的优点,但也存在较大的缺陷,如果将它们有机地结合在一起,充分利用各自的优点并克服其缺点,则可以解决各自都难于解决的问题,任意拉格朗日–欧拉描述[6-7](ALE)方法就是基于该思路提出的。在任意拉格朗日–欧拉描述中,网格结点的运动方式比较灵活,网格结点可以跟随流体质点一起运动,也可以固定不变,甚至可以采用网格结点在一个方向上固定而在其他方向上随流体质点一起运动等方式。为了更加清晰地理解这三种描述方法,本研究从以下几个方面进行阐述和比较。 - 164 -

对流体力学欧拉运动方程式的修正

第9节 对流体力学欧拉运动方程式的修正(探讨) 内容提要:本文是探讨性的论文。观念正确如否有待学界审视及实践的检验。流体力学的欧拉运动方程式有修正的必要吗?首先,欧拉运动方程式是在《场论》只具有散度和旋度的数学基础为背景的产物;其次,人们注意到,航天器在飞行运动中存在一未知的莫铭的力。这个莫铭的力应该是欧拉方程尚未虑及的因素造成的。作者在研究《超变函数论》过程中揭示了在三维向量场中除了散度、旋度外尚存在一个为目前所未知的副冲量度【见文献3】。 我们所提出的修正意见就是从这里切入的,即在考虑存在副冲量度这一因素后,欧拉运动方程式应该发生怎样的变化。 关键词:理想流体,时变加速度,位变加速度,欧拉运动方程式,副冲量度,冲量力,压扁的四维空间. 分类号: 一,现在的欧拉运动方程式[见文献4,第77页] 在理想流体场中取出一微小六面体流体微团。微团中心的压力为P ,速度为,,x y z ωωω。微团所受的力有表面力(压力)和体积力(质量力)。六面体各面所受的表面力如下图所示。体积力为,,x y z F F F 。设单位质量的的体积力为X,Y,Z ,则在x 轴方向微团所受的力为 ()()22 ()??+-+???=-?dx dx X dxdydz dydz dydz x x X dxdydz x P P ρP - P P ρ 在x 轴方向微团产生加速度的运动力为 x d dxdydz dt ωρ 【注:其中,总加速度 ???????=+++???????????=+++????y x x x z y x x z x y z d x y z dt t x t y t z t t x y z ωωωωωωωωωωωω 该式右侧第一项称为时变加速度;第二、三、四项总称为位变加速度。】

试求下列性能泛函达到极值的必要条件

10-1 试求下列性能泛函达到极值的必要条件 dt t x x g x J f t t ),,()(0 ?? = 给定边界条件为:f f f t x t x x t x ,)(,)(00==自由. 10-2 已知状态初值和终值为: 1,4)(,100>==f t t x t 但自由,,试求试下列性能泛函达到极值的极值曲线 )(t x * dt t x t x x J f t t ? ? +=0 )](2 1)(2[)( 10-3 试利用变分公式 0)]([ =+?? =εεσε σx x J J 求泛函 dt x x x F x J f t t ),,()(0 ? ???= 的变分,并写出欧拉方程。 10-4 求通过x(0)=1,x(1)=2,使下列性能指标为极值的曲线 dt x x J f t t )1()(20 +=? ? 10-5 设x=x(t),10≤≤t ,求从x(0)=0到x(1)=1间的最短曲线.Unknown 求性能指标 dt x x J )1()(210 +=? ? 在边界条件x(0)=0,x(1)自由情况下的极值曲线. 10-6 已知性能指标函数为 dt t tx t x x J )]()([)(21 0+=? 试求:(1)J δ的表达式; (2)当t x t t x 1.0,)(2==δ和t x 2.0=δ时的变分1J δ和2J δ的值. 10-7 试求下列性能指标的变分J δ dt x x t x J f t t )()(22 20 ?++ =? 10-8 试求泛函 dt x x x J )()(222 -=? ?π 在满足边界条件x(0)=1,2)2 (=π x 的极值曲线. 10-9 设泛函

泛函和泛函的极值

泛函和泛函的极值 泛函是指某一个量,它的值依赖于其它一个或者几个函数。 变分法的基本问题是求解泛函的极值。 作为变分法的简单例题。考察x,y 平面上连接两个定点的所有曲线中,求满足边界条件的任意曲线y(x)中最短曲线。 设P 1(x 1,y 1)和P 2(x 2,y 2)为平面上给定的两点,y (x )为连接两点的任意曲线。于是,这一曲线的长度为 连接P 1,P 2两点的曲线有无数条,每一条曲线都有一个L 值与其对应。满足边界条件的y (x )称为容许函数,问题是要从这些曲线,容许函数中找出使得曲线长度L 最小的一条。 根据上式,L [y ]依赖于y (x ),而y (x )是x 的函数,因此称y (x )为自变函数;L [y ]是倚赖于自变函数的函数,称为泛函。 求解最短程线问题,即在满足边界条件 在x =x 1时, y (x )=y 1 y'(x 1)= y'1 在x =x 2时, y (x )=y 2 y'(x 1)= y'1 的函数y (x )中,求使得泛函L [y ]为极值的特定函数。因此 y (x )称为容许函数。 上述问题应用变分法可以概括为求解泛函 在边界条件 y (x 1)=y 1, y (x 2)=y 2的极小值问题。

假设函数y(x)是使得泛函L[y]为最小的特定函数(真实的)。变分法有兴趣研究的是邻近于y(x)的任意容许函数引起泛函L []的改变。设 其中ε 为小参数,而η (x)为边界值为零的任意函数。当x固定时,容许函数 与y(x)的差 δ y称为泛函自变函数的变分,即 类似地,容许函数的斜率与y(x)斜率的差δ y', 称为泛函自变函数斜率的变分,即 应该注意δ y与函数y(x)的微分d y之间的差别,d y是自变量x的改变量d x 引起的y(x)的无穷小增量。而变分δ y是y(x)的任意一个微小的改变量。设泛函增量

第二章-泛函极值及变分法(补充内容)

第二章 泛函极值及变分法(补充内容) 2.1 变分的基本概念 2.1.1 泛函和变分 泛函是一种广义的函数,是指对于某一类函数{y (x )}中的每一个函数y (x ),变量J 有一值与之对应,或者说数J 对应于函数y (x )的关系成立,则我们称变量J 是函数y (x )的泛函,记为J [y (x )]。 例1:如果表示两固定端点A (x A ,y A ),B (x B ,y B )间的曲线长度J (图2.1.1),则由微积分相关知识容易得到: dx dx dy J B A x x ? += 2)/(1 (2.1.1) 显然,对于不同的曲线y (x ),对应于不同的长度J ,即J 是函数y (x )的函数,J =J [y (x )]。 图2.1.1 两点间任一曲线的长度 例2:历史上著名的变分问题之一——最速降线问题,如果2.1.2所示。设在不同铅垂线上的两点P 1与P 2连接成某一曲线,质点P 在重力作用下沿曲线由点P 1自由滑落到点P 2,这里不考虑摩擦作用影响,希望得到质点沿什么样的曲线滑落所需时间最短。 图2.1.2 最速降线问题 选取一个表示曲线的函数y (x ),设质点从P 1到P 2沿曲线y =y (x )运动,则其运动速度为:

ds v dt == 其中,S 表示曲线的弧长,t 表示时间,于是: dt = 设重力加速度为g ,则gy v 2=。 因为P 1和P 2点的横坐标分别为x 1到x 2,那么质点从P 1到P 2所用时间便为: 1 [()]x x J y x =? 2 1 1/2 211[()]2[()()]x x y x dx g y x y x ??'+=??-?? ? (2.1.2) 则最速降线问题对应于泛函J [y (x )]取最小值。 回顾函数的微分: 对于函数的微分有两种定义: 一种是通常的定义,即函数的增量: ),()()()(x x x x A x y x x y y ?+?=-?+=?ρ (2.1.3) 其中A (x )与?x 无关,且有?x →0时ρ(x ,?x )→0,于是就称函数y (x )是可微的,其 线性部分称为函数的微分()()dy A x x y x x '=?=?,函数的微分就是函数增量的主部。 函数微分的另外一种定义: 通过引入一小参数ε,对)(x x y ?+ε关于ε求导数,并令ε→0的途径得到,即: dy x x y x x x y d x x dy =?'=??+'=?+→→)()() (00 εεεε ε (2.1.4) 上式说明)(x x y ?+ε在ε=0处关于ε的导数就是函数y (x )在x 处的微分。相应地,在泛函J [y (x )]中,变量函数y (x )的增量在其很小时称为变分,用δy (x )或δy 表示,

几类偏泛函微分方程解的动力学行为研究

几类偏泛函微分方程解的动力学行为研究主要运用偏泛函微分方程理论,算子半群理论和无穷维动力系统理论,研究了几类偏泛函微分方程解的动力学行为,包括拉回吸引子的存在性、维数及其上半连续性,平衡解的多项式稳定性和指数稳定性.全文共分六章:第一章介绍了偏泛函微分方程和无穷维动力系统的研究背景和意义,综述了近年来关于偏泛函微分方程与无穷维动力系统的研究现状,并概括了本论文的主要工作.第二章首先运用经典的Faedo-Galerkin逼近方法证明了非自治随机p-Laplace方程弱解的存在唯一性,并利用一致估计和渐近紧性得到了双空间随机吸引子的存在性及其上半连续性;然后结合Galerkin近似和Aubin-Lions紧性证明了时滞p-Laplace 方程弱解的存在唯一性,并运用能量方法得到了拉回吸引子的存在性及其上半连续性.第三章借助泛函微分方程理论证明了无界时滞的Navier-Stokes方程弱解的存在唯一性,运用Lyapunov函数等方法证明了其平衡解的局部稳定性,通过构造合适的Lyapunov泛函得到了该平衡解的渐近稳定性,并在一种特殊的无界时滞的情形下证明了该平衡解具有多项式稳定性;然后使用Ito公式证明了无限时滞的随机Navier-Stokes方程弱解的存在唯一性,通过构造合适的Lyapunov泛函得到了其平衡解的渐近稳定性,并在一种特殊的无界时滞的情形下证明了该平衡解的多项式稳定性.第四章结合能量方法和紧性理论分析了一类时滞不可压缩非Newtonian流体弱解的存在唯一性,并运用一致估计和分解方法证明了拉回吸引子的存在性;然后综合运用Lax-Milgram定理和Schauder不动点定理证明了时滞不可压缩非Newtonian流体平衡解的存在唯一性,最后运用Razumikhin等方法证明了平衡解的指数稳定性.第五章运用算子半群理论证明了无限时滞的分数阶随机反应扩散方程温和解的存在唯一性及其关于初值的连续依赖性,得到了具有有

牛顿—欧拉方程

牛顿-欧拉方程 欧拉方程(Euler equations),是欧拉运动定律的定量描述,欧拉运动定律是牛顿运动定律的延伸,在牛顿发表牛顿运动定律超过半个世纪后,于1750年,欧拉才成功的用欧拉方程表述了该定律: 该方程是建立在角动量定理的基础上的描述刚体的旋转运动时刚体所受外力矩与角加速度的关系式,大多时候可简写成: 其中,分别为刚体坐标系下三个轴的所受的外力矩,分别为刚体三个坐标轴的转动惯量(刚体坐标系下)。 欧拉方程通常与牛顿的平移运动方程被一起写出,称为牛顿-欧拉方程(Newton-Euler equations): 这里对牛顿的平移运动方程不赘述,只对欧拉方程进行讨论。 1.单质点角动量定理 质点旋转时,有动量定理: 对两边叉乘质点位置矢量:

观察: 因为: 故有: 定义角动量,可以看出为外力矩 故有单质点的角动量定理: 2.刚体的角动量定理 定义刚体的角动量为: 其中:下标G表示该向量为大地坐标系下的,的下标i表示该向量为大地坐标下各个质量元的向量。刚体旋转运动参考的惯性系是大地坐标系,不能把采用刚体的本身坐标系作为参考系,本身坐标系的提出只是方便我们某些量的分析与表述,如角速度、惯性张量。

(这里需要特别说明的是因为刚体质量分布不均匀的原因,角动量的方向往往不与刚体角速度方向一致,这也是无力矩进动的原因,即很多时候刚体角速度不守恒但刚体的角动量守恒了,宏观来看就是因为要保证角动量和动量守恒所以才要产生内力作用使角速度变化达到守恒的效果。) 由牛顿第三定律易知内力矩产生的角动量变化相抵,故有刚体的角动量定理: 其中:为外力矩 把上式展开有: 其中:称为惯性矩阵

全欧拉法流固耦合问题

摘要 在这项工作中,我们提出一个关于流固耦合的一个完全欧拉结构(FSI)问题即耦合不可压缩Navier-Stokes超弹性固体方程。完全欧拉结构是一个单一变量结构耦合问题。与此相反的任意拉格朗日欧拉(ALE)坐标也是行之有效的,但是完全欧拉结构,包含两个子问题,液体和固体问题。在欧拉坐标,这个概念绕过与ALE各种困难坐标的联系,因为没有其他人的领域成果可以使用,所以该结构是一种首创全新的方法。本方法主要研究该固体的变形,它作为一种固体变形研究的的扩展,建立在初始点的设置,以此检测连接点的位置。由于涉及到大变形,所以本文尽可能的利用了像固体接触边界的变化或其他固体领域的研究。1介绍 我们为流固耦合问题提供了一种完全统一的可变有限单元法。重点强调于大变形结构领域的应用,处于流域和该流域边界接触的结构的自由运动,和其他自接触结构的应用。这项工作中出现的方程是Eulerian-Eulerian型的,并且这种奇特的方法第一次出现是由Dunne引入的[14,15]。 现在有数不清的不同方法来建模和模拟流固耦合问题。在这些方法中我们专注于单片模型,这种模型整个问题被描述为一种包含固体和流体表面的双系统。单片模型允许含糊的描述方案,大的时间步长并且提供使用基于错误假设的可能和最优化方法。他们已经很好的适用于大流体密度问题中如血液动力学。当流体问题被本质的描述为一种混合欧拉或朗格朗日的结构,材料的描述通常是固体问题的基础。所有的描述流固耦合问题的单片模型不管怎么样都要符合这两种结构。 在拉格朗日法或专一的拉格朗日法中,流体问题被定位于一种涉及域的匹配的位置。经典的方法是ALE法,见[29.4.35]或变空间域/稳态空间法(DSD/SST),见实例[53,51]。这些方程有相同之处,运动学和动力学结合很容易嵌入路径空间并有多种技术支持。拉格朗日法的缺点是流体问题的转化可在大变形或大的固体运动中破坏。 欧拉-拉格朗日法为解决流体问题使用一种欧拉混合计算单元,为解决固体 问题使用朗格朗日单元。通过使用力密度法结合这两种结构的应用于大边界[43]或大表面[39]。其它介绍的方法在于额外的表面不同。这些例子都是虚构的域法,其他最近的方法都是基于扩展有限单元法的。表面混合法的调查由Felippa[17] 给出。欧拉-拉格朗日法是一种表面捕捉的方法。这种表面不是修复的欧拉单元

泛函条件极值

§6.3 泛函的条件极值 一、泛函条件极值问题的提出(等周问题) 求在连接A 、B 长度为L 的所有曲线中与直线AB 所围成面积最大的曲线? AB 弧长:dx y L b a ∫+=2'1 (1) 曲线AB 与直线AB 所围成面积:()∫=b a dx x y S (2) 边界条件:()()0,0== b y a y (3) 在满足约束条件(1)和边界条件(3)的情况下,寻找满足由方程(2)的构成泛函问题的极小曲线函数。 二、一般泛函条件极值的E-L 方程 其中[][]()()2120,,,y b y y a y b a C y y y D ==∈=。 设()x y 是所求泛函的极值函数,取任意光滑函数()[]b a C x ,2 0∈η ()()()x x y x y εη+=1,()()0,0==b a ηη 从而构成一元函数 ()[]()∫++=+=b a dx y y x F y J '',,εηεηεηε? ()L dx y y x G b a =++∫'',,εηεη 利用拉格朗日乘子法,定义新的泛函 ()()()[]∫+++++=Φb a dx y y x G y y x F '',,'',,,εηεηλεηεηλε (4) 其中,λ为常数。 泛函()λε,Φ取极值,即需() 0,0=Φ=εελεd d () ()0'''',''''''''''0=???????+?=??++??+=+++=+++=Φ∫∫∫∫∫∫∫∫∫∫=b a y y y y b a y b a y b a y b a y b a y b a y b a y b a y b a y b a y b a y y y y dx G dx d G F dx d F dx G dx d G dx G dx F dx d F dx F dx G dx G dx F dx F dx G G F F d d ηλληληληληηηηληληηηληληηε λεε

拉格朗日方程

拉格朗日方程 约瑟夫·拉格朗日(Joseph Louis Lagrange),法国数学家、物理学家。他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。 拉格朗日公式(lagrange formula)包括拉格朗日方程、拉格朗日插值公式、拉格朗日中值定理等。 中文名 拉格朗日公式 外文名 lagrange formula 涉及领域 信息科学、数学 发现者 约瑟夫·拉格朗日 发现者职业 法国数学家,物理学家 包括 拉格朗日方程等 目录 .1拉格朗日 .?生平 .?科学成就 .2拉格朗日方程

.?简介 .?应用 .3插值公式 .4中值定理 .?定律定义 .?验证推导 .?定理推广 拉格朗日 约瑟夫·拉格朗日(Joseph Louis Lagrange),法国数学家、物理学家。他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。 生平 拉格朗日1736年1月25日生于意大利西北部的都灵。父亲是法国陆军骑兵里的一名军官,后由于经商破产,家道中落。据拉格朗日本人回忆,如果幼年是家境富裕,他也就不会作数学研究了,因为父亲一心想把他培养成为一名律师。拉格朗日个人却对法律毫无兴趣。 到了青年时代,在数学家雷维里的教导下,拉格朗日喜爱上了几何学。17岁时,他读了英国天文学家哈雷的介绍牛顿微积分成就的短文《论分析方法的优点》后,感觉到“分析才是自己最热爱的学科”,从此他迷上了数学分析,开始专攻当时迅速发展的数学分析。 18岁时,拉格朗日用意大利语写了第一篇论文,是用牛顿二项式定理处理两函数乘积的高阶微商,他又将论文用拉丁语写出寄给了当时在柏林科学院任职的数学家欧拉。不久后,他获知这一成果早在半个世纪前就被莱布尼兹取得了。这个并不幸运的开端并未使拉格朗日灰心,相反,更坚定了他投身数学分析领域的信心。 1755年拉格朗日19岁时,在探讨数学难题“等周问题”的过程中,他以欧拉的思路和结果为依据,用纯分析的方法求变分极值。第一篇论文“极大和极小的方法研究”,发展了欧拉所开创的变分法,为变分法奠定了理论基础。变分法的创立,使拉格朗日在都灵声名大震,并使他在19岁时就当上了都灵皇家炮兵学校的教授,成为当时欧洲公认的第一流数学家。1756年,受欧拉的举荐,拉格朗日被任命为普鲁士科学院通讯院士。 1764年,法国科学院悬赏征文,要求用万有引力解释月球天平动问题,他的研究获奖。接着又成功地运用微分方程理论和近似解法研究了科学院提出的一个复杂的六体问题(木星的四个卫星的运动问题),为此又一次于1766年获奖。

欧拉运动微分方程各项的单位

第四章 1 欧 拉 运 动 微 分 方 程 d d u f t p =-?1 ζ 各 项 的 单 位 是: (1) 单 位 质 量 力 (2) 单 位 重 能 量 (3) 单 位 重 的 力 (4) 上 述 回 答 都 不 对 2. 欧 拉 运 动 微 分 方 程 在 每 点 的 数 学 描 述 是: (1)流入的质量流量等于流出的质量流量(2) 单 位 质 量 力 等 于 加 速 度 (3) 能 量 不 随 时 间 而 改 变 (4) 服 从 牛 顿 第 二 定 律 3. 欧 拉 运 动 微 分 方 程: (1) 适 用 于 不 可 压 缩 流 体, 不 适 用 于 可 压 缩 流 体 (2) 适 用 于 恒 定 流, 不 适 用 非 恒 定 流 (3) 适 用 于 无 涡 流, 不 适 用 于 有 涡 流 (4) 适 用 于 上 述 所 提 及 的 各 种 情 况 下 流 体 流 动 4. 水 流 一 定 方 向 应 该 是( ) (1) 从 高 处 向 低 处 流; (2) 从 压 强 大 处 向 压 强 小 处 流; (3) 从 流 速 大 的 地 方 向 流 速 小 的 地 方 流; (4) 从 单 位 重 量 流 体 机 械 能 高 的 地 方 向 低 的 地 方 流。 5. 理 想 流 体 流 经 管 道 突 然 放 大 断 面 时, 其 测 压 管 水 头 线( ) (1) 只 可 能 上 升; (2) 只 可 能 下 降; (3) 只 可 能 水 平; (4) 以 上 三 种 情 况 均 有 可 能。 6 在应用恒定总流的能量方程时,可选用图中的( ) 断 面, 作为计算断面。 (a )1,2,3,4,5 (b )1,3,5 (c )2,4 (d )2,3,4 1 122 3 3 4 4 5 5 7. 设有一恒定汇流,如图所示,Q Q Q 312=+, 根据总流伯努力方程式,则有( ) ()12221111 2 2222 2 3333 2 13 23 z p g V g z p g V g z p g V g h h w w + + ++ + =+ + ++--ραραρα ()()() 22211111 2 22222 2 ρραρραgQ z p g V g gQ z p g V g + + ++ + =++ + ++--ρραρρg Q Q z p g V g gQ h gQ h w w ()()123333 2 12213 23 (3) 上 述 两 式 均 不 成 立, 都 有 错 误;

欧拉方程

欧拉方程 (刚体运动) 莱昂哈德·欧拉用欧拉角来描述刚体在三维欧几里得空间的取向。对于任何一个参考系,一个刚体的取向,是依照顺序,从这参考系,做三个欧拉角的旋转而设定的。所以,刚体的取向可以用三个基本旋转矩阵来决定。换句话说,任何关于刚体旋转的旋转矩阵是由三个基本旋转矩阵复合而成的。 静态的定义 三个欧拉角:() 。蓝色的轴是xyz-轴,红色的轴是XYZ-坐标轴。绿色的线是交点线(N) 。 对于在三维空间里的一个参考系,任何坐标系的取向,都可以用三个欧拉角来表现。参考系又称为实验室参考系,是静止不动的。而坐标系则固定于刚体,随着刚体的旋转而旋转。 参阅右图。设定 xyz-轴为参考系的参考轴。称 xy-平面与 XY-平面的相交为交点线,用英文字母(N)代表。zxz 顺规的欧拉角可以静态地这样定义: ?α是x-轴与交点线的夹角, ?β是z-轴与Z-轴的夹角, ?γ是交点线与X-轴的夹角。

很可惜地,对于夹角的顺序和标记,夹角的两个轴的指定,并没有任何常规。科学家对此从未达成共识。每当用到欧拉角时,我们必须明确的表示出夹角的顺序,指定其参考轴。 实际上,有许多方法可以设定两个坐标系的相对取向。欧拉角方法只是其中的一种。此外,不同的作者会用不同组合的欧拉角来描述,或用不同的名字表示同样的欧拉角。因此,使用欧拉角前,必须先做好明确的定义。 [编辑]角值范围 ?值从0 至2π弧度。 ?β值从0 至π弧度。 对应于每一个取向,设定的一组欧拉角都是独特唯一的;除了某些例外: ?两组欧拉角的α,一个是0 ,一个是2π,而β与γ分别相等,则此两组欧拉角都描述同样的取向。 ?两组欧拉角的γ,一个是0 ,一个是2π,而α与β分别相等,则此两组欧拉角都描述同样的取向。 [编辑]旋转矩阵 前面提到,设定刚体取向的旋转矩阵是由三个基本旋转矩阵合成的: 单独分开作用,每个矩阵各自代表绕着其转动轴的旋转;但是,当它们照次序相乘, ?最里面的(最右的) 矩阵代表绕着z 轴的旋转。 ?最外面的(最左的) 矩阵代表绕着Z 轴的旋转。 ?在中间的矩阵代表绕着交点线的旋转。 经过一番运算, 的逆矩阵是:

泛函的极值word版

第2章 泛函的极值 在讨论泛函的极值以前, 我们先来回顾一下函数的极值问题。 2.1函数的极值性质 2.1.1 函数的连续性 任意一个多元函数12(),(,,...,)T n n f x x x R =∈x x , 0>?ε, 如果0)(>=?εδδ, 当0δ-

第2章泛函的极值

第2章 泛函的极值 在讨论泛函的极值以前, 我们先来回顾一下函数的极值问题。 2.1函数的极值性质 2.1.1 函数的连续性 任意一个多元函数12(),(,,...,)T n n f x x x R =∈x x , 0>?ε, 如果0)(>=?εδδ, 当 0δ-

牛顿—欧拉方程

牛顿-欧拉方程 欧拉方程(Eulerequations),是欧拉运动定律的定量描述,欧拉运动定律是牛顿运动定律的延伸,在牛顿发表牛顿运动定律超过半个世纪后,于1750年,欧拉才成功的用欧拉方程表述了该定律: 该方程是建立在角动量定理的基础上的描述刚体的旋转运动时刚体所受外力矩与角加速度的关系式,大多时候可简写成: 其中,分别为刚体坐标系下三个轴的所受的外力矩,分别为刚体三个坐标轴的转动惯量(刚体坐标系下)。 欧拉方程通常与牛顿的平移运动方程被一起写出,称为牛顿-欧拉方程(Newton-Euler equations): 这里对牛顿的平移运动方程不赘述,只对欧拉方程进行讨论。 1.单质点角动量定理 质点旋转时,有动量定理: 对两边叉乘质点位置矢量:

观察: 因为: 故有: 定义角动量,可以看出为外力矩 故有单质点的角动量定理: 2.刚体的角动量定理 定义刚体的角动量为: 其中:下标G表示该向量为大地坐标系下的,的下标i 表示该向量为大地坐标下各个质量元的向量。刚体旋转运动参考的惯性系是大地坐标系,不能把采用刚体的本身坐标系作为参考系,本身坐标系的提出只是方便我们某些量的分析与表述,如角速度、惯性张量。 (这里需要特别说明的是因为刚体质量分布不均匀的原因,角动量的方向往往不与刚体角速度方向一致,这也是无力矩进动的

原因,即很多时候刚体角速度不守恒但刚体的角动量守恒了,宏观来看就是因为要保证角动量和动量守恒所以才要产生内力作用使角速度变化达到守恒的效果。) 由牛顿第三定律易知内力矩产生的角动量变化相抵,故有刚体的角动量定理: 其中:为外力矩 把上式展开有: 其中:称为惯性矩阵 刚体旋转时,是变化的,但刚体在刚体坐标系下的惯性矩阵不会变,且容易分析得到:

5第3章拉格朗日方程

第3章拉格朗日方程 以动力学普遍方程为基础,拉格朗日导出了两种形式的动力学方程,分别称为第一类和第二类拉格朗日方程。将达朗贝尔原理与虚位移原理相结合,建立起动力学普遍方程,避免了理想约束力的出现;再把普遍方程变为广义坐标形式,进一步转变为能量形式,导出了第二类拉格朗日方程,实现了用最少数目的方程描述动力系统;应用数学分析中的乘子法,采用直角坐标形式的普遍方程和约束方程而建立的一组动力学方程,是第一类拉格朗日方程,便于程式化处理约束动力系统问题。拉格朗日方程是分析力学得以发展之源。 3.1 第二类拉格朗日方程 第二类拉格朗日方程是分析力学中最重要的动力学方程,它给出动力学问题一个普遍、简单而又统一的解法。拉格朗日方程只适用于完整约束的质点系。 3.1.1 几个关系式的推证 为方便起见,在推导拉格朗日方程前,先推证几个关系式。 质点系由n个质点、s个完整的理想约束组成,它的自由度数为k= 3n–s,广义坐标数与自由度数相等。该系统中,任一质点M i的矢径r i可表示成广义坐标q1,q2,…,q k和时间t的函数,即 r i=r i(q1,q2,…,q k,t) i=1,2,…,n 它的速度 (3-1) i=1,2,…,n 式中称为h个广义坐标的广义速度,分别为广义坐标和时间的函数,与广义速度没有直接的关系。式(3-1)对求偏导数,则有 (3-2) 这是推证的第一个关系式,它表明,任一质点的速度对广义速度的偏导数等于其矢径对广义坐标的偏导数。为推证第二个关系式,将式(3-1)对广义坐标q j求偏导数, 或 (3-3) 这是第二个关系式,它表明,任一质点的速度对广义坐标的偏导数等于

泛函和变分

第1章 泛函和变分 1.1引言 以前我们在微积分中遇到的都是类似下面的函数极值问题: 一个足够光滑的连续函数 12(,,...,)n y f x x x =,其在区域n R Ω?内任何一点12(,,...,)T n x x x =x 都可以作以下的 Taylor 展开 2 12 1 2()()()()(|| ||)(),,...,T T T T n f f f f o f f f f x x x +?=+?+??+??????= ? ?????x x x x x x D x x x x ?? (1.1.1) 22221121222 212...()...n n n n f f f x x x x x f f f f x x x x x ??????? ?????? ?? ?=???????????????? D x 函数在某一点有极值的必要条件是 12 ,, 0 n f f f f x x x ?? ???== ??????? 但是,我们这们课程中要讨论的则是另一类极值问题—泛函的极值问题(泛函简单地讲, 就是函数的函数,详细见后面)。 例1.1 一个简单的变分问题: 最短线问题 图1.1最短线问题 假设经过,A B 两点距离最短的曲线方程为 *()y y x = (1.1.2) 另有一任意的连续可导函数()x ηη=,()x η满足两端固定的边界条件 01()()0x x ηη== (1.1.3) 显然()()y y x x αη=+依旧是过固定两点,A B 的连续曲线,其对应的长度为

1 2()1('')d x x L y x ααη=++? (1.1.4) 当0α=,()y y x =时()L α取到极小值,也就是说 0d () |0d L ααα == (1.1.5) 把(1.1.4)代入(1.1.5), 展开后有 ()() 10 1 1 1 000110 000 222233 222 d ()('|d |d 1('') '''d |d 1'1'1'''''''''d d 1'1'1'0 x x x x x x x x x x x x L y x y y y y x x y y y y y y y y x x y y y αααααηηηη===++'?? ?==- ?+++?? ???=--=- ?+ ?++??=????? (1.1.6) 由于(1.1.6) 对于任意的()x ηη=都成立,根据变分引理(见2.2.2节), 我们可以得到 ( ) 3 2 '' 01'y y =+ (1.1.7) 意味着 12y C x C =+ (1.1.9) 因此, 在平面上过固定两点距离最近的光滑曲线是直线。 下面我们来看几类比较典型的变分问题。 例1.2 最速降线问题 图1.2最速降线问题 我们在该铅直平面上取一直角坐标系,以A 为坐标原点,水平为x 轴,向下为y 轴。曲线的方程为()y y x =, A 点坐标00(,)(0,0)x y =, B 点坐标11(,)x y 。曲线上任意一点P 时的速度为 d 2d s v gy t = = (1.1.10)

欧拉运动微分方程各项的单位

欧拉运动微分方程各项的单位

————————————————————————————————作者: ————————————————————————————————日期: ?

第四章 1 欧 拉 运 动 微 分 方 程 d d u f t p =-?1 ζ 各 项 的 单 位 是: (1) 单 位 质 量 力 ? ?(2) 单 位 重 能 量 ?(3) 单 位 重 的 力 ? (4) 上 述 回 答 都 不 对 2. 欧 拉 运 动 微 分 方 程 在 每 点 的 数 学 描 述 是: (1)流入的质量流量等于流出的质量流量(2) 单 位 质 量 力 等 于 加 速 度 (3) 能 量 不 随 时 间 而 改 变?(4) 服 从 牛 顿 第 二 定 律? 3. 欧 拉 运 动 微 分 方 程: (1) 适 用 于 不 可 压 缩 流 体, 不 适 用 于 可 压 缩 流 体? (2) 适 用 于 恒 定 流, 不 适 用 非 恒 定 流? (3) 适 用 于 无 涡 流, 不 适 用 于 有 涡 流? (4) 适 用 于 上 述 所 提 及 的 各 种 情 况 下 流 体 流 动 4. 水 流 一 定 方 向 应 该 是( ) (1) 从 高 处 向 低 处 流; (2) 从 压 强 大 处 向 压 强 小 处 流; (3) 从 流 速 大 的 地 方 向 流 速 小 的 地 方 流; (4) 从 单 位 重 量 流 体 机 械 能 高 的 地 方 向 低 的 地 方 流。 5. 理 想 流 体 流 经 管 道 突 然 放 大 断 面 时, 其 测 压 管 水 头 线( ) (1) 只 可 能 上 升; ??(2) 只 可 能 下 降; (3) 只 可 能 水 平;? (4) 以 上 三 种 情 况 均 有 可 能。 6 在应用恒定总流的能量方程时,可选用图中的( ) 断 面, 作为计算断面。 (a)1,2,3,4,5?(b )1,3,5 (c )2,4?(d )2,3,4 1 122 3 3 4 4 5 5 7. 设有一恒定汇流,如图所示,Q Q Q 312=+, 根据总流伯努力方程式,则有(?) ()12221111 2 2222 2 3333 2 13 23 z p g V g z p g V g z p g V g h h w w + + ++ + =+ + ++--ραραρα

拉格朗日方程的应用及举例08讲

1 拉格朗日方程的应用及举例 拉格朗日方程有以下几个特点:(1)拉格朗日方程适用于完整系统,可以获得数目最少的运动微分方程,即可以建立与自由度数目相同的n 个方程,是一个包含n 个二阶常微分方程组,方程组的阶数为2n 。求解这个方程组可得到以广义坐标描述的系统运动方程。(2)拉格朗日方程的形式具有不变性。对于任意坐标具有统一的形式,即不随坐标的选取而变化。特别是解题时有径直的程序可循,应用方便。(3)所有的理想约束的约束反力均不出现在运动微分方程中。系统的约束条件愈多,这个特点带来的便利越突出。(4)拉格朗日方程是以能量的观点建立起来的方程,只含有表征系统运动的动能和表征主动力作用的广义力,避开了力、速度、加速度等矢量的复杂运算。(5)拉格朗日方程不但可以建立相对惯性系的运动,还可以直接建立相对非惯性系的动力学方程,只要写出的动能是绝对运动的动能即可,至于方程所描述的运动是对什么参考系的运动,则取决于所选的广义坐标。 纵观拉格朗日方程,看出分析力学在牛顿力学的基础上,提出严密的分析方法,从描述系统的位形到建立微分方程都带有新的飞跃。我们还应看到,虽然拉格朗日方法在理论上和应用上都有重要的价值,但是,牛顿力学的价值并未降低,特别是它的几何直观性和规格化的方法使人乐于应用,由于计算机的广泛使用,牛顿一欧拉方法又有所发展。我们将会看到,用拉格朗日方程求解,在获得数量最少的运动微分方程时,其求导过程有时过于繁琐,并有较多的耦合项。 应用拉格朗日方程建立动力学方程时,应首先建立以广义坐标q 和广义速度q 表示的动能函数和广义力Q 。为此,首先讨论动能的计算和广义力的计算,在此基础上,再讨论拉格朗日方程的应用。 一、动能的计算 对于系统的动能,可以写出关于广义速度q 的齐次函数的表达式。在实际计算中,应用理论力学的有关知识就可以建立以广义坐标和广义速度所表达的动能函数。 例1-1 已知质量为m ,半径为r 的均质圆盘D ,沿OAB 直角曲杆的AB 段只滚不滑。圆盘的盘面和曲杆均放置在水平面上。已知曲杆以匀角速度ω1绕通过O 点的铅直轴转动,试求圆盘的动能。 解:取广义坐标x 和?,x 为圆盘与曲杆接触点到曲杆A 点的距离,?为曲杆OAB 的转角,? = ω1t 。 应用柯尼希定理求圆盘的动能。为此,先求圆盘质心C 的速度和相对于质心平动坐标

相关文档
相关文档 最新文档