文档视界 最新最全的文档下载
当前位置:文档视界 › 标准正态分布N[0,1] - 描述统计

标准正态分布N[0,1] - 描述统计

标准正态分布N[0,1] - 描述统计
标准正态分布N[0,1] - 描述统计

1 / 4

第3章正态分布时的统计决策

第3章 正态分布时的统计决策 在统计决策理论中,涉及到类条件概率密度函数)|(i w x P 。对许多实际的数据集,正态分布通常是合理的近似。如果在特征空间中的某一类样本,较多地分布在这一类均值附近,远离均值点的样本比较少,此时用正态分布作为这一类的概率模型是合理的。另外,正态分布概率模型有许多好的性质,有利于作数学分析。概括起来就是: (1) 物理上的合理性 (2) 数学上的简单性 下面重点讨论正态分布分布及其性质,以及正态分布下的Bayes 决策理论。 3.1 正态分布概率密度函数的定义及性质 1.单变量正态分布 定义:])(21ex p[21 )(2 σμσπρ--= x x (3.1-1) 其中:μ为随机变量x 的期望,也就是平均值; 2σ为 x 的方差,σ为均方差,又称为标准差。 ?∞∞ -?==dx x x x E )()(ρμ (3.1-2) ? ∞∞ -?-=dx x x )()(22 ρμσ (3.1-3) 概率密度函数的一般图形如下:

)(x ρ具有一下性质: )(,0)(∞<<-∞≥x x ρ 1)(=?∞ ∞-dx x ρ (3.1-4) 从)(x ρ的图形上可以看出,只要有两个参数2σμ和就可以完全确定其曲线。为了简单,常记)(x ρ为),(2σμN 。若从服从正态分布的总体中随机抽取样本x ,约有95%的样本落在)2,2(σμσμ+-中。样本的分散程度可以用σ来表示,σ越大分散程度越大。 2.多元正态分布 定义:∑---∑= -)]()(21 ex p[| |)2(1)(12 12μμπρx x x T d (3.1-5) 其中: T d x x x x ],,,[21ΛΛ=为d 维随机向量,对于d 维随机向量x ,它的均值向量μ是d 维的。也就是: T d ],,,[21μμμμΛΛ=为 d 维均值向量。 ∑是d d ?维协方差矩阵,1-∑是∑的逆矩阵,||∑为∑的行列式。协 方差矩阵∑是对称的,其中有2/)1(+?d d 个独立元素。由于)(x ρ可由μ和 ∑完全确定,所以实际上)(x ρ可由2/)1(+?+d d d 个独立元素来确定。 T x )(μ- 是)(μ-x 的转置,且: }{x E =μ }))({(T x x E μμ--=∑ μ、∑分别是向量x 和矩阵T x x ))((μμ--的期望。具体说:若i x 是x 的 第i 个分量,i μ是μ的第i 个分量,2ij σ是∑的第i 、j 个元素。 ? ?∞ ∞ -===i i i i i i dx x x dx x x x E )()(][ρρμ (3.1-6) 其中)(i x ρ为边缘分布,? ?∞ ∞ -∞ ∞-=d i dx dx dx x x ΛΛ21)()(ρρ ―――――――――――――――――――――――――――

统计学三大分布与正态分布的关系

统计学三大分布与正态分布的关系[1] 张柏林 41060045 理实1002班 摘要:本文首先将介绍2χ分布,t 分布,F 分布和正态分布的定义及基本性质, 然后用理论说明2χ分布,t 分布,F 分布与正态分布的关系,并且利用数学软件MATLAB 来验证之. 1. 三大分布函数[2] 1.12χ分布 2()n χ分布是一种连续型随机变量的概率分布。这个分布是由别奈梅 (Benayme)、赫尔默特(Helmert)、皮尔逊分别于1858年、1876年、1900年所发现,它是由正态分布派生出来的,主要用于列联表检验。 定义:若随机变量12n ,,X X …X 相互独立,且都来自正态总体01N (,) ,则称统计量2222 12n =+X X χ++…X 为 服从自由度为n 的2χ分布,记为22~()n χχ. 2χ分布的概率密度函数为 122210(;),2()200n x n x e x n f x n x --?≥??=Γ???? ,2χ分布的密度函数图形是一个只取非负值 的偏态分布,如下图.

卡方分布具有如下基本性质: 性质1:22(()),(())2E n n D n n χχ==; 性质2:若221122(),()X n X n χχ==,12,X X 相互独立,则21212~()X X n n χ++; 性质3:2 n χ→∞→时,( n )正态分布; 性质4:设)(~2 2n αχχ,对给定的实数 ),10(<<αα称满足条件: αχχαχα==>? +∞ ) (222 )()}({n dx x f n P 的点)(2 n α χ为)(2n χ分布的水平α的上侧分位数. 简称为上侧α分位数. 对不同的α与n , 分位数的值已经编制成表供查用. 2()n χ分布的上α分位数 1.2t 分布 t 分布也称为学生分布,是由英国统计学家戈赛特在1908年“student”的笔名首次发表的,这个分布在数理统计中也占有重要的位置. 定义:设2 ~0~X N χ(,1),Y (n ),,X Y 相互独立,,则称统计量 T = 服从自由度为n 的t 分布,记为~()T t n . t 分布的密度函数为

标准正态分布

标准正态分布 标准正态分布(英语:standard normal distribution,德语Standardnormalverteilung),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。期望值μ=0,即曲线图象对称轴为Y轴,标准差σ=1条件下的正态分布,记为N(0,1)。 定义: 标准正态分布又称为u分布,是以0为均数、以1为标准差的正态分布,记为N(0,1)。标准正态分布曲线下面积分布规律是:在-1.96~+1.96范围内曲线下的面积等于0.9500,在-2.58~+2.58范围内曲线下面积为0.9900。统计学家还制定了一张统计用表(自由度为∞时),借助该表就可以估计出某些特殊u1和u2值范围内的曲线下面积。 正态分布的概率密度函数曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是位置参数均数为0, 尺度参数:标准差为1的正态分布 特点: 密度函数关于平均值对称 平均值与它的众数(statistical mode)以及中位数(median)同一数值。 函数曲线下68.268949%的面积在平均数左右的一个标准差范围内。 95.449974%的面积在平均数左右两个标准差的范围内。 99.730020%的面积在平均数左右三个标准差的范围内。 99.993666%的面积在平均数左右四个标准差的范围内。 函数曲线的反曲点(inflection point)为离平均数一个标准差距离的位置。 标准偏差:

深蓝色区域是距平均值小于一个标准差之内的数值范围。在正态分布中,此范围所占比率为全部数值之68%,根据正态分布,两个标准差之内的比率合起来为95%;三个标准差之内的比率合起来为99%。 在实际应用上,常考虑一组数据具有近似于正态分布的概率分布。若其假设正确,则约68.3%数值分布在距离平均值有1个标准差之内的范围,约95.4%数值分布在距离平均值有2个标准差之内的范围,以及约99.7%数值分布在距离平均值有3个标准差之内的范围。称为“68-95-99.7法则”或“经验法则”

正态概率图normalprobability plot

正态概率图(normal probability plot) 方法演变:概率图,分位数-分位数图( Q- Q) 概述 正态概率图用于检查一组数据是否服从正态分布。是实数与正态分布数据之间函数关系的散点图。如果这组实数服从正态分布,正态概率图将是一条直线。通常,概率图也可以用于确定一组数据是否服从任一已知分布,如二项分布或泊松分布。 适用场合 ·当你采用的工具或方法需要使用服从正态分布的数据时; ·当有50个或更多的数据点,为了获得更好的结果时。 例如: ·确定一个样本图是否适用于该数据; ·当选择作X和R图的样本容量,以确定样本容量是否足够大到样本均值服从正态分布时; ·在计算过程能力指数Cp或者Cpk之前; ·在选择一种只对正态分布有效的假设检验之前。

实施步骤 通常,我们只需简单地把数据输入绘图的软件,就会产生需要的图。下面将详述计算过程,这样就可以知道计算机程序是怎么来编译的了,并且我们也可以自己画简单的图。 1将数据从小到大排列,并从1~n标号。 2计算每个值的分位数。i是序号: 分位数=(i-0.5)/n 3找与每个分位数匹配的正态分布值。把分位数记到正态分布概率表下面的表A.1里面。然后在表的左边和顶部找到对应的z值。 4根据散点图中的每对数据值作图:每列数据值对应个z值。数据值对应于y轴,正态分位数z值对应于x轴。将在平面图上得到n个点。

5画一条拟合大多数点的直线。如果数据严格意义上服从正态分布,点将形或一条直线。将点形成的图形与画的直线相比较,判断数据拟合正态分布的好坏。请参阅注意事项中的典型图形。可以计算相关系数来判断这条直线和点拟合的好坏。 示例 为了便于下面的计算,我们仅采用20个数据。表5. 12中有按次序排好的20个 值,列上标明“过程数据”。 下一步将计算分位数。如第一个值9,计算如下: 分位数=(i-0.5)/n=(1-0.5)/20=0.5/20=0.025同理,第2个值,计算如下: 分位数=(i-0.5)/n=(2-0.5)/20=1.5/20=0.075可以按下面的模式去计算:第3个分位数=2.5÷20,第4个分位数=3 5÷20 以此类推直到最后1个分位数=19. 5÷20。 现在可以在正态分布概率表中查找z值。z的前两 个阿拉伯数字在表的最左边一列,最后1个阿拉伯数 字在表的最顶端一行。如第1个分位数=0. 025,它 位于-1.9在行与0.06所在列的交叉处,故z=- 1.96。用相同的方式找到每个分位数。 如果分位数在表的两个值之间,将需要用插值法进行求解。例如:第4个分位数为0.

正态分布推导72927

正态分布的推导 斯特林(Stirling)公式的推导 斯特林(Stirling)公式: 这个公式的推导过程大体来说是先设一个套,再兜个圈把结果套进来,同时把公式算出来。Stirling太强了。 1,Wallis公式 证明过程很简单,分部积分就可以了。 由x的取值可得如下结论: 即 化简得 当k无限大时,取极限可知中间式子为1。所以

第一部分到此结束,k!被引入一个等式之中。 2,Stirling公式的求解 继续兜圈。 关于lnX的图像的面积,可以有三种求法,分别是积分,内接梯形分隔,外切梯形分隔。分别是: 显然, 代入第一部分最后公式得

(注:上式中第一个beta为平方) 所以得公式: 正态分布推导 在一本俄国的概率教材上看到以下一段精彩的推导,才知道原来所谓正态分布并不是哪位数学家一拍脑门想起来的。记得大学时的教材上只告诉了我们在抽样实验中当样本总量很大时,随机变量就服从正态分布,至于正态分布是怎么来的一点都不提。大学之前,我始终坚信数学是世界上最精致的艺术。但是上了大学之后,发现很多数学上很多问题教材中都是语焉不详,而且很多定义没有任何说明的就出来了,就像一致连续,一致收敛之类的,显得是那么的突兀。这时候数学就像数学老师一样蛮横,让我对数学极其反感,足足有四年之久。只到前些日子,在CSDN上读到孟岩的一篇并于矩阵的文章,才重新对数学发生兴趣。最近又读到了齐民友所写的《重温微积分》以及施利亚耶夫所写的《概率》,才知道原来每一个定义,和每一个定理都有它的价值和意义。 前几天在网上遇到老文,小小的探讨了一下这个问题,顺便问起他斯特林公式的证明过程。他说碰巧最近很是在研究这个公式,就写出来放在百度上以供来者瞻仰吧。于是就有了这篇文章: 斯特林(Stirling)公式的推导 如果哪位在读本篇之前想要知道斯特林公式是怎么来的,请阅读之。 本来是想和老文一块发的,怎奈一个小小的公式编辑器让我费了两个晚上才搞定。于是直至今日,方才有这篇小文字。 本篇是斯特林公式的一个应用。本篇的推导全部抄自施利亚耶夫著《概率》,本文的证明完成了棣莫弗——拉普拉斯定理推导的前半部分,后半部分以及其与伯努利大数定律的关系在以后再往上贴吧。其实也不是很难,自己动动手也是能推出来的。 这次推导可以说是“连续性随机变量”第一次出现在该书中,作为理解连续性随机变量的基础,正态分布是十分重要的。 斯特林公式: 根据斯特林公式,

(完整word版)统计学三大分布与正态分布的关系

统计学三大分布与正态分布的关系 [1] 张柏林 41060045 理实1002班 摘要:本文首先将介绍 2分布,t 分布,F 分布和正态分布的定义及基本性质, 然后 用理论说明2分布,t 分布,F 分布与正态分布的关系,并且利用数学软件 MATLAB 来验证之. 1.三大分布函数[2] 1.1 2分布 2(n )分布是一种连续型随机变量的概率分布。这个分布是由别奈梅 (Benayme )赫尔默特(Helmert )、皮尔逊分别于1858年、1876年、1900年所发 现,它是由正态分布派生出来的,主要用于列联表检验。 定义:若随机变量X 1,X 2,…X n 相互独立,且都来自正态总体 N (0,,),则称 统计量 2 =x ; X ;…+X ;为服从自由度为n 的2分布,记为 2 2 ~ (n ). 2 分布的概率密度函数为 1 x e 2 x 0 J x 0 其中伽玛函数(X ) e t t x 1dt,x 0, 2 分布的密度函数图形是一个只取非负值 的偏态分布,如下图? x 2 n 2° f(x; n)

2(n2) ,X!,X2相互独立,则X! X2~ 2g n2); 性质3: n 时,2(n) 正态分布; 性质4:设2~ 2(n),对给定的实数 (0 1),称满足条件: P{ 2 2(n)} 2(、f(x)dx (n) 的点2(n)为2(n)分布的水平的上侧分位数. 简称为上侧分位数.对不同的与n,分位 数的值已经编制成表供查 分布,是由英国统计学家戈赛特在1908年“student的'笔名 布在数理统计中也占有重要的位置. 1), Y?2(n), X,Y相互独立,,则称统计量T —X VY/ n 分布,记为T~t( n). 为 性质1: E( 2(n)) n,D( 2(n)) 2n ; 性质2:若X! 2(nJ,X2

正态分布概率公式(部分)

Generated by Foxit PDF Creator ? Foxit Software https://www.docsj.com/doc/74163896.html, For evaluation only.
图 62正态分布概率密度函数的曲线 正态曲线可用方程式表示。 n 当 →∞时,可由二项分布概率函数方程推导出正态 分布曲线的方程:
fx= (61 ) () .6
式中: x—所研究的变数; fx —某一定值 x出现的函数值,一般称为概率 () 密度函数 (由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某 一区间的概率, 不能计算变量取某一值, 即某一点时的概率, 所以用 “概率密度” 一词以与概率相区分),相当于曲线 x值的纵轴高度; p—常数,等于 31 .4 19……; e— 常数,等于 2788……; μ 为总体参数,是所研究总体 5 .12 的平均数, 不同的正态总体具有不同的 μ , 但对某一定总体的 μ 是一个常数; δ 也为总体参数, 表示所研究总体的标准差, 不同的正态总体具有不同的 δ , 但对某一定总体的 δ 是一个常数。 上述公式表示随机变数 x的分布叫作正态分布, 记作 N μ ,δ2 ), “具 ( 读作 2 平均数为 μ,方差为 δ 的正态分布”。正态分布概率密度函数的曲线叫正态 曲线,形状见图 62。 (二)正态分布的特性
1、正态分布曲线是以 x μ 为对称轴,向左右两侧作对称分布。因 =

数值无论正负, 只要其绝对值相等, 代入公式 61 ) ( .6 所得的 fx 是相等的, () 即在平均数 μ 的左方或右方,只要距离相等,其 fx 就相等,因此其分布是 () 对称的。在正态分布下,算术平均数、中位数、众数三者合一位于 μ 点上。

正态分布概率公式(部分)

图 6-2 正态分布概率密度函数的曲线 正态曲线可用方程式表示。当n→∞时,可由二项分布概率函数方程推导出正态分布曲线的方程: f(x)= (6.16 ) 式中: x —所研究的变数; f(x) —某一定值 x 出现的函数值,一般称为概率密度函数(由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某一区间的概率,不能计算变量取某一值,即某一点时的概率,所以用“概率密度”一词以与概率相区分),相当于曲线 x 值的纵轴高度; p —常数,等于 3.14 159 ……; e —常数,等于 2.71828 ……;μ为总体参数,是所研究总体的平均数,不同的正态总体具有不同的μ,但对某一定总体的μ是一个常数;δ也为总体参数,表示所研究总体的标准差,不同的正态总体具有不同的δ,但对某一定总体的δ是一个常数。 上述公式表示随机变数 x 的分布叫作正态分布,记作 N( μ , δ2 ) ,读作“具平均数为μ,方差为δ 2 的正态分布”。正态分布概率密度函数的曲线叫正态曲线,形状见图 6-2 。 (二)正态分布的特性 1 、正态分布曲线是以 x= μ为对称轴,向左右两侧作对称分布。因的数值无论正负,只要其绝对值相等,代入公式( 6.16 )所得的 f(x) 是相等的,即在平均数μ的左方或右方,只要距离相等,其 f(x) 就相等,因此其分布是对称的。在正态分布下,算术平均数、中位数、众数三者合一位于μ点上。

2 、正态分布曲线有一个高峰。随机变数 x 的取值范围为( - ∞,+ ∞ ),在( - ∞ ,μ)正态曲线随 x 的增大而上升,;当 x= μ时, f(x) 最大;在(μ,+ ∞ )曲线随 x 的增大而下降。 3 、正态曲线在︱x-μ︱=1 δ处有拐点。曲线向左右两侧伸展,当x →± ∞ 时,f(x) →0 ,但 f(x) 值恒不等于零,曲线是以 x 轴为渐进线,所以曲线全距从 -∞到+ ∞。 4 、正态曲线是由μ和δ两个参数来确定的,其中μ确定曲线在 x 轴上的位置 [ 图 6-3] ,δ确定它的变异程度 [ 图 6-4] 。μ和δ不同时,就会有不同的曲线位置和变异程度。所以,正态分布曲线不只是一条曲线,而是一系列曲线。任何一条特定的正态曲线只有在其μ和δ确定以后才能确定。 5 、正态分布曲线是二项分布的极限曲线,二项分布的总概率等于 1 ,正态分布与 x 轴之间的总概率(所研究总体的全部变量出现的概率总和)或总面积也应该是等于 1 。而变量 x 出现在任两个定值 x1到x2(x1≠x2)之间的概率,等于这两个定值之间的面积占总面积的成数或百分比。正态曲线的任何两个定值间的概率或面积,完全由曲线的μ和δ确定。常用的理论面积或概率如下: 区间μ ± 1 δ面积或概率 =0.6826 μ ± 2 δ =0.9545 μ ± 3 δ=0.9973 μ± 1.960δ=0.9500 μ ±2.576 δ =0.9900

统计正态分布

利用SPSS检验数据是否符合正态分布 (2011-04-24 06:30:42) 正态分布也叫常态分布,在我们后面说的很多东西都需要数据呈正态分布。下面的图就是正态分布曲线,中间隆起,对称向两边下降。 下面我们来看一组数据,并检验“期初平均分” 数据是否呈正态分布(此数据已在SPSS里输入好) 在SPSS里执行“分析—>描述统计—>频数统计表”(菜单见下图,英文版的可以找到相应位置),然后弹出左边的对话框,变量选择左边的“期初平均分”,再点下面的“图表”按钮,弹出图中右边的对话框,选择“直方图”,并选中“包括正态曲线”

设置完后点“确定”,就后会出来一系列结果,包括2个表格和一个图,我们先来看看最下面的图,见下图,

上图中横坐标为期初平均分,纵坐标为分数出现的频数。从图中可以看出根据直方图绘出的曲线是很像正态分布曲线。如何证明这些数据符合正态分布呢,光看曲线还不够,还需要检验: 检验方法一:看偏度系数和峰度系数 我们把SPSS结果最上面的一个表格拿出来看看(见下图):

偏度系数Skewness=-0.333;峰度系数Kurtosis=0.886;两个系数都小于1,可认为近似于正态分布。 检验方法二:单个样本K-S检验 在SPSS里执行“分析—>非参数检验—>单个样本K-S检验,弹出对话框,检验变量选择“期初平均分”,检验分布选择“正态分布”,然后点“确定”。 检验结果为: 从结果可以看出,K-S检验中,Z值为0.493,P值(sig 2-tailed)=0.968>0.05,因此数据呈近似正态分布检验方法三:Q-Q图检验

在SPSS里执行“图表—>Q-Q图”,弹出对话框,见下图: 变量选择“期初平均分”,检验分布选择“正态”,其他选择默认,然后点“确定”,最后可以得到Q-Q图检验结果,结果很多,我们只需要看最后一个图,见下图。

统计学三大分布及正态分布的关系

统计学三大分布与正态分布的关系 [1] 张柏林 41060045 理实1002班 摘要:本文首先将介绍2χ分布,t 分布,F 分布和正态分布的定义及基本性质, 然后用理论说明2χ分布,t 分布,F 分布与正态分布的关系,并且利用数学软件MATLAB 来验证之. 1.三大分布函数[2] 1.12χ分布 2()n χ分布是一种连续型随机变量的概率分布。这个分布是由别奈梅(Benayme)、赫尔默特(Helmert)、皮尔逊分别于1858年、1876年、1900年所发现,它是由正态分布派生出来的,主要用于列联表检验。 定义:若随机变量12n ,,X X …X 相互独立,且都来自正态总体01N (,) ,则称统计量222 212n =+X X χ++…X 为服从自由度为n 的2χ分布, 记为22~()n χχ. 2χ分布的概率密度函数为 122210(;),2()200n x n x e x n f x n x --?≥??=Γ???? ,2χ分布的密度函数图形是一个只取非负值的偏态分布,如下图.

卡方分布具有如下基本性质: 性质1:22(()),(())2E n n D n n χχ==; 性质2:若221122(),()X n X n χχ==,12,X X 相互独立,则21212~()X X n n χ++; 性质3:2 n χ→∞→时,( n )正态分布; 性质4:设)(~2 2n α χχ,对给定的实数),10(<<αα称满足条 件:αχχα χα ==>?+∞ ) (2 22)()}({n dx x f n P 的点)(2 n α χ为)(2n χ分布的水平α的上侧分位数. 简称为上侧α分位数. 对不同的α与n , 分位数的值已经编制成表供查 用. 2()n χ分布的上α分位数 1.2t 分布 t 分布也称为学生分布,是由英国统计学家戈赛特在1908年“student ”的笔名 首次发表的,这个分布在数理统计中也占有重要的位置. 定义:设2 ~0~X N χ(,1),Y (n ),,X Y 相互独立,,则称统计量/T Y n = 服从自由度为n 的t 分布,记为~()T t n .

统计学三大分布与正态分布的差异

申请大学学士学位论文 大学 学士学位论文 统计学三大分布与正态分布的差异年级专业: 学生: 指导教师:

统计学三大分布与正态分布的差异 中文摘要 统计学是应用数学的一个分支,主要通过利用概率论建立数学模型,收集所观察系统的数据,进行量化的分析、总结,并进而进行推断和预测,为相关决策者提供依据和参考。它被广泛的应用在各门学科之上,从物理和社会科学到人文科学,甚至被用来工商业及政府的情报决策之上。而对数据的分析过程中就需要利用到数据的分布来研究分类。 在实际遇到的许多随机现象都服从或近似服从正态分布。而由正态分布构造的三大分布在实际中有广泛的应用,因为这三大分布不仅有明确的背景,而且其抽样分布的密度函数有明显表达式,研究三大分布与正态分布有助于研究实际事例,比如经济安全与金融保险领域、人口统计等。 本文讨论了三大分布与正态分布,并将它们之间的密度函数进行比较说明. 第二章介绍了正态分布的定义、性质,三大分布的定义、性质。 第三章介绍了正态分布与三大分布的密度函数,并将它们之间的密度函数进行比较关键词:正态分布;三大分布;密度函数 The Difference between the Three Statistical Distributions and the Normal Distribution Abstract Statistics is a branch of applied mathematics, the mathematical models are mainly established by the probability and statistics theory based on the collecting

概率论正态分布计算实验报告

概率论实验报告 电子3班 一、实验目的 1.掌握正态分布的有关计算 2.掌握正态分布在实际问题中的应用 3掌握数据分析的一些方法和MATLAB软件在概率计算中的应用 4.掌握正态总体均值(参数)的置信区间的计算方法 二、实验内容 问题一:某公司准备通过考试招收320人,其中正式工280人,临时 工40人,报考人数1821人,考试满分为400分。考后知平均分μ=166分,360分以上有31人。甲的分为256分,问他可否被录取?可否 聘为正式工? 问题二:从一批火箭推力装置中抽取10个进行试验,测得燃烧时间为: 50.7 54.9 54.3 44.8 42.2 69.8 53.4 66.1 48.1 34.1 设燃烧时间~N(μ,2σ),取1-α=0.9,求μ和2σ的置信区间。 三、实验任务及结果 问题一: 分析: (1). 已知条件考试平均成绩μ=166,P(x>=360)=31/1821;

由于x只服从正态分布而不服从标准正态分布,故先标准化。 即X=(x-μ)/σ~N(0,1)。则有: P{X<=(360-166)/σ}=1-31/1821; 据此由函数σ=(360-166)/norminv(1790/1821,0,1)可求出考试成绩方差σ。 (2).至此,又b=P{X<=(256-166)/σ},可由函数b=1-normcdf(a,0,1)求得 (3).近似排名num=1821*b,根据排名可知甲能否被录取。程序: %假设考试成绩服从正态分布% P1=1-31/1821 %正态分布表% z1=norminv(P1,0,1) %可求得参数? % o=(360-166)/z1 a=(256-166)/o %由正态分布表% p2=normcdf(a,0,1) rank=1821*(1-p2) a=rank if a<280 mystring='zhengshiyuangong'; elseif 280320 mystring='NO!'; end y=mystring 实验结果:P1 =0.9830 z1 = 2.1195 o = 91.5305 a =0.9833

统计学第5-6章 正态分布、 统计量及其抽样分布讲解学习

第5-6章 统计量及其抽样分布 5.1正态分布 5.1.1定义:当一个变量受到大量微小的、独立的随机因素影响时,这个变量一般服从正态分布或近似服从正态分布。 概率密度曲线图 例如:某个地区同年龄组儿童的发育特征:身高、体重、肺活量等 某一条件下产品的质量 如果随机变量X 的概率密度为 22 ()21 (),2x f x e x μσπσ --=-∞<<∞ 则称X 服从正态分布。 记做 2 (,)X N μσ:,读作:随机变量X 服从均值为μ,方差为2 σ的正态分布 其中, μ-∞<<∞,是随机变量X 的均值,0σ>是是随机变量X 的标准差 5.1.2正态密度函数f(x)的一些特点: ()0f x ≥,即整个概率密度曲线都在x 轴的上方。 曲线 ()f x 相对于x μ=对称,并在 x μ=处达到最大值,

1 () 2 fμ πσ = 。 1 μ< 2 μ< 3 μ 曲线的陡缓程度由 σ 决定:σ越大,曲线越平缓;σ越小,曲线越陡峭当 x 趋于无穷时,曲线以x轴为其渐近线。 标准正态分布 当 0,1 μσ == 时, 2 2 1 () 2 x f x e π - = , x -∞<<∞ 称 (0,1) N 为标准正态分布。

标准正态分布的概率密度函数: ()x ? 标准正态分布的分布函数: ()x Φ 任何一个正态分布都可以通过线性变换转化为标准正态分布 设 2 (,) X Nμσ : ,则 (0,1) X Z N μ σ - =: 变量 2 11 (,) X Nμσ :与变量2 22 (,) Y Nμσ :相互独立,则有 22 1212 +(+,+) X Y Nμμσσ : 5.1.3 正态分布表:可以查的正态分布的概率值()1() x x Φ-=-Φ 例:设 (0,1) X N :,求以下概率 (1) ( 1.5) P X< (2) (2) P X> (3) (13) P X -<≤

数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布)生存分析贝叶斯概率公式全概率公式讲解

数学期望:随机变量最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。它是简单算术平均的一种推广。例如某城市有10 万个家庭,没有孩子的家庭有1000 个,有一个孩子的家庭有9 万个,有两个孩子的家庭有6000 个,有 3 个孩子的家庭有3000 个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X ,它可取值0,1,2,3,其中取0 的概率为0.01,取 1 的概率为0.9,取 2 的概率为0.06,取 3 的概率为0.03,它的数学期望为 0×0.01+1×0.9+2×0.06+3×0.03 等于 1.11,即此城市一个家庭平均有小孩 1.11 个,用数学式子表示为:E(X)=1.11。 也就是说,我们用数学的方法分析了这个概率性的问题,对于每一 个家庭,最有可能它家的孩子为 1.11 个。 可以简单的理解为求一个概率性事件的平均状况。 各种数学分布的方差是: 1、一个完全符合分布的样本 2、这个样本的方差 概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。比如某地某次考试的成绩近似服从均值为 80 的正态分布,即平均分是80 分,由正态分布的图形知 x=80 时的函数值最大,即随机变量在 80 附近取值最密集,也即考试成绩在 80 分左右的人最多。 下图为概率密度函数图(F(x)应为f(x) ,表示概率密度):

离散型分布:二项分布、泊松分布 连续型分布:指数分布、正态分布、X2分布、t 分布、F 分布 抽样分布 抽样分布只与自由度,即样本含量(抽样样本含量)有关 二项分布(binomial distribution):例子抛硬币 1、重复试验(n 个相同试验,每次试验两种结果,每种结果概率恒定 伯努利试验) 2、

正态分布及其经典习题和答案

专题:正态分布 例:(1)已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值为 A .n=4,p=0.6 B .n=6,p=0.4 C .n=8,p=0.3 D .n=24,p=0.1 答案:B 。解析:()4.2==np X E ,()44.1)1(=-=p np X V 。 (2)正态曲线下、横轴上,从均数到∞+的面积为( )。 A .95% B .50% C .97.5% D .不能确定(与标准差的大小有关) 答案:B 。解析:由正态曲线的特点知。 (3)某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是 ( ) A 32 B 16 C 8 D 20 答案:B 。解析:数学成绩是X —N(80,102), 8080 9080(8090)(01)0.3413,480.34131610 10P X P Z P Z --??≤≤=≤≤=≤≤≈?≈ ???。 (4)从1,2,3,4,5这五个数中任取两个数,这两个数之积的数学期望为___________ 。 ∴E(X)=8.5. (5)如图,两个正态分布曲线图: 1为)(1 ,1x σμ?,2为)(22x σμ?, 则1μ 2μ,1σ 2σ答案:<,>。解析:由正态密度曲线图象的特征知。【课内练习】 1.标准正态分布的均数与标准差分别为( )。 A .0与1 B .1与0 C .0与0 D .1与1 答案:A 。解析:由标准正态分布的定义知。 2.正态分布有两个参数μ与σ,( )相应的正态曲线的形状越扁平。 A .μ越大 B .μ越小 C .σ越大 D .σ越小 答案: C 。解析:由正态密度曲线图象的特征知。 3.已在n 个数据n x x x ,,,21Λ,那么() ∑=-n i i x x n 1 21是指 A .σ B .μ C .2σ D .2 μ( ) 答案:C 。解析:由方差的统计定义知。 4.设),(~p n B ξ,()12=ξE ,()4D ξ=,则n 的值是 。 答案:4。解析:()12==np E ξ,()(1)4D np p ξ=-= 5.对某个数学题,甲解出的概率为2 3 ,乙解出的概率为34,两人独立解题。记X 为解出该题的人数,则E (X )= 。 答案:1712。解析:11121145(0),(1),3412343412P X P X ==?===?+?=231 (2)342 P X ==?=。

正态分布、概率

信息系统项目管理师重点知识点:完工概率计算总结 例图: 活动BCD的乐观(o)工期都是9天,最可能(m)工期为12天,最悲观(p)工期都是15天,那么在14天内完成单项活动的概率和完成全部这三项活动的概率是多少 首先计算平均工期(PERT):公式--(乐观时间+4*最可能时间+悲观时间)/ 6 (9+4*12+15)/6=12天; 其次计算标准差:公式--(悲观时间-乐观时间)/ 6 ; (15-9)/6=1天 再计算偏离平均工期:方法--[给出的天数计算(14)-计算出来的平均工期(12)]/标准差(1) (14-12)/1=2 备注:此时得出来的为几,之后就是使用几西格玛 (Sigma)(1σ=68,37%)(2σ=95.46%)(3σ=99.73%)(6σ=99.99966%百万分之三点四) 计算每一项活动在14天内完工的概率是:方法--正态分布概率+西格玛/偏离平均工期数 50%+95.46%/2=97.73% 备注:50%参考正态分布图,95.46参考2西格玛值; 计算全部活动在14天内完工概率是:方法--每一项活动的概率相乘 97.73%*97.73%*97.73%=93.34% 下图为简要正态分布图:

备注:正态分布有50%成功,有50%不成功 如计算将上面的14天,修改为13天; 偏离平均工期就是1天,计算方法:(13-12)/1=1天,则应该使用1西格玛; 计算每一项活动在13天内完工的概率是:方法--正态分布概率+西格玛/偏离平均工期数 50%+68.37%/2=84.19% 备注:50%参考正态分布图,68.37参考1西格玛值; 计算全部活动在13天内完工概率是:方法--每一项活动的概率相乘 84.19%*84.19%*84.19%=59.67% 如果计算为11-15天的概率:最小值的概率+最大值的概率 68.37/2+99.75/2=84.06%

统计学教案习题03正态分布

第三章 正态分布 一、教学大纲要求 (一) 掌握内容 1.正态分布的概念和特征 (1)正态分布的概念和两个参数; (2)正态曲线下面积分布规律。 2.标准正态分布 标准正态分布的概念和标准化变换。 3.正态分布的应用 (1)估计频数分布; (2)制定参考值范围。 (二) 熟悉内容 标准正态分布表。 (三) 了解内容 1.利用正态分布进行质量控制 2.正态分布是许多统计方法的基础 二、教学内容精要 (一)正态分布 1.正态分布 若X 的密度函数(频率曲线)为正态函数(曲线) ) 2() (22 21 )(σμπ σ--= X e X f +∞<<∞-X (3-1) 则称X 服从正态分布,记号X ~),(2 σμN 。其中μ、σ是两个不确定常数,是正态分布的参数,不同的μ、不同的 σ对应不同的正态分布。 正态曲线呈钟型,两头低,中间高,左右对称,曲线与横轴间的面积总等于1。 2.正态分布的特征 服从正态分布的变量的频数分布由μ、σ完全决定。 (1)μ是正态分布的位置参数,描述正态分布的集中趋势位置。正态分布以x μ=为对称轴,左右完全对称。正态分布的均数、中位数、众数相同,均等于μ。 (2)σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。σ也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。 (二)标准正态分布 1.标准正态分布是一种特殊的正态分布,标准正态分布的0=μ,12 =σ ,通常用u (或Z )表示服从标准正 态分布的变量,记为u ~N (0,2 1)。 2.标准化变换:σ μ -=X u ,此变换有特性:若X 服从正态分布),(2 σμN ,则u 就服从标准正态分布,故该 变换被称为标准化变换。

附表标准正态分布累积概率函数表

附表:标准正态分布累积概率函数表 当)(0x N x 时≤表 这个表表示了当)(0x N x 时≤的值。使用这张表时可与内插法结合起来使用。例如: )]13.0()12.0([34.0)12.0()1234.0(-----=-N N N N 4509 .0)4483.04522.0(34.04522.0=-?-= x .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 -0.0 -0.1 -0.2 -0.3 -0.4 0.5000 0.4602 0.4207 0.3821 0.3446 0.4960 0.4562 0.4168 0.3783 0.3409 0.4920 0.4522 0.4129 0.3745 0.3372 0.4880 0.4483 0.4090 0.3707 0.3336 0.4840 0.4443 0.4052 0.3669 0.3300 0.4801 0.4404 0.4013 0.3632 0.3264 0.4761 0.4364 0.3974 0.3594 0.3228 0.4621 0.4325 0.3936 0.3557 0.3192 0.4681 0.4286 0.3897 0.3520 0.3156 0.4641 0.4247 0.3859 0.3483 0.3121 -0.5 -0.6 -0.7 -0.8 -0.9 0.3085 0.2743 0.2420 0.2119 0.1841 0.3050 0.2709 0.2389 0.2090 0.1814 0.3015 0.2676 0.2358 0.2061 0.1788 0.2981 0.2643 0.2327 0.2033 0.1762 0.2946 0.2611 0.2296 0.2005 0.1736 0.2912 0.2578 0.2266 0.1977 0.1711 0.2877 0.2546 0.2236 0.1949 0.1685 0.2843 0.2514 0.2206 0.1922 0.1660 0.2810 0.2483 0.2177 0.1894 0.1635 0.2776 0.2451 0.2148 0.1867 0.1611 -1.0 -1.1 -1.2 -1.3 -1.4 0.1587 0.1357 0.1151 0.0968 0.0808 0.1562 0.1335 0.1131 0.0951 0.0793 0.1539 0.1314 0.1112 0.0934 0.0778 0.1515 0.1292 0.1093 0.0918 0.0764 0.1492 0.1271 0.1075 0.0901 0.0749 0.1469 0.1251 0.1056 0.0885 0.0735 0.1446 0.1230 0.1038 0.0869 0.0721 0.1423 0.1210 0.1020 0.0853 0.0708 0.1401 0.1190 0.1003 0.0838 0.0694 0.1379 0.1170 0.0985 0.0823 0.0681 -1.5 -1.6 -1.7 -1.8 -1.9 0.0668 0.0548 0.0446 0.0359 0.0287 0.0655 0.0537 0.0436 0.0351 0.0281 0.0643 0.0526 0.0427 0.0344 0.0274 0.0630 0.0516 0.0418 0.0336 0.0268 0.0618 0.0505 0.0409 0.0329 0.0262 0.0606 0.0495 0.0401 0.0322 0.0256 0.0594 0.0485 0.0392 0.0314 0.0250 0.0582 0.0475 0.0384 0.0307 0.0244 0.0571 0.0465 0.0375 0.0301 0.0239 0.0559 0.0455 0.0367 0.0294 0.0233 -2.0 -2.1 -2.2 -2.3 -2.4 0.0228 0.0179 0.0139 0.0107 0.0082 0.0222 0.0174 0.0136 0.0104 0.0080 0.0217 0.0170 0.0132 0.0102 0.0078 0.0212 0.0166 0.0129 0.0099 0.0075 0.0207 0.0162 0.0125 0.0096 0.0073 0.0202 0.0158 0.0122 0.0094 0.0071 0.0197 0.0154 0.0119 0.0091 0.0069 0.0192 0.0150 0.0116 0.0089 0.0068 0.0188 0.0146 0.0113 0.0087 0.0066 0.0183 0.0143 0.0110 0.0084 0.0064 -2.5 -2.6 -2.7 -2.8 -2.9 0.0062 0.0047 0.0035 0.0026 0.0019 0.0060 0.0045 0.0034 0.0025 0.0018 0.0059 0.0044 0.0033 0.0024 0.0018 0.0057 0.0043 0.0032 0.0023 0.0017 0.0055 0.0041 0.0031 0.0023 0.0016 0.0054 0.0040 0.0030 0.0022 0.0016 0.0052 0.0039 0.0029 0.0021 0.0015 0.0051 0.0038 0.0028 0.0021 0.0015 0.0049 0.0037 0.0027 0.0020 0.0014 0.0048 0.0036 0.0026 0.0019 0.0014 -3.0 -3.1 -3.2 -3.3 -3.4 0.0014 0.0010 0.0007 0.0005 0.0003 0.0013 0.0009 0.0007 0.0005 0.0003 0.0013 0.0009 0.0006 0.0005 0.0003 0.0012 0.0009 0.0006 0.0004 0.0003 0.0012 0.0008 0.0006 0.0004 0.0003 0.0011 0.0008 0.0006 0.0004 0.0003 0.0011 0.0008 0.0006 0.0004 0.0003 0.0011 0.0008 0.0005 0.0004 0.0003 0.0010 0.0007 0.0005 0.0004 0.0003 0.0010 0.0007 0.0005 0.0003 0.0002 -3.5 -3.6 -3.7 -3.8 -3.9 -4.0 0.0002 0.0002 0.0001 0.0001 0.0000 0.0000 0.0002 0.0002 0.0001 0.0001 0.0000 0.0000 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 附表:当0≥x 时)(x N 表 这个表表示了当0≥x 时)(x N 的值。使用这张表时可与内插法结合起来使用。例如: )]62.0()63.0([78.0)62.0()6278.0(N N N N -+= 7350 .0)7324.07357.0(78.07324.0=-?+=

相关文档
相关文档 最新文档