文档视界 最新最全的文档下载
当前位置:文档视界 › PEG化磁性锰锌铁氧体纳米晶

PEG化磁性锰锌铁氧体纳米晶

PEG化磁性锰锌铁氧体纳米晶
PEG化磁性锰锌铁氧体纳米晶

随着科学技术的不断发展,越来越多的生物化学物品被发现创造,很多纳米材料开始被应用,本次就分享PEG化磁性锰锌铁氧化体纳米结晶。

PEG化磁性锰锌铁氧体纳米晶是一种纳米性材料,具有极佳的生物相容性及生物分子再修饰能力。磁性锰锌铁氧体纳米晶具有均一的尺寸、高的饱和磁化强度和对比增强成像效果。纳米颗粒表面采用生物相容性的PEG或磷脂PEG进行高密度修饰,水溶性极好,因而具有较长的体内血液循环时间和肿瘤被动靶向能力,抗巨噬细胞吞噬,可用于磁共振T2造影。并且PEG末端具有甲氧基、羧基、氨基等基团,方便与特异性靶向识别分子(如抗体、适配体、靶向肽等)偶联,从而构建靶向纳米探针,用于MRI靶向造影及分子影像研究。此外,PEG 末端或者磷脂层内可以通过化学偶联或疏水相互作用引入荧光、化疗药物等分子,从而构建MRI/光学双模态造影及分子影像研究、磁感应肿瘤热疗研究。

PEG化磁性锰锌铁氧体纳米晶的提取方式有化学沉淀法、水热法、溶胶-凝胶法、超临界流体干燥法四种方式。这种纳米晶对于临床应用有重大意义,PEG 化磁性锰锌铁氧体纳米晶的出现带动了一种新的肿瘤热疗法的出现。这种肿瘤热疗法就是指磁流体热疗法,磁流体(MF)是指微粒尺寸在纳米级的磁性流体材料,

现常用的磁流体材料是Fe.04和锰锌铁氧体如果将磁流体放置在一功率足够大,频率足够高的交变磁场中,给予一些特殊的物理效应,如磁滞效应,弛豫效应等,将交变磁场能量转变为热能,就能使周围介质升温,这种现象称为磁流体的热效应(MFH)。所以PEG化磁性锰锌铁氧体纳米晶的发现对医疗有重大的影响。

以上是对PEG化磁性锰锌铁氧体纳米晶的相关介绍,下面介绍一家生产纳米晶的公司。南京东纳生物科技有限公司是一家集产学研于一体的高新技术型企业,主要从事纳米材料及生物医学纳米技术,功能微球、体外诊断试剂与仪器等研发与生产。公司拥有一批包括多名创业教授、博士后、博士及硕士的自主研发队伍,同时广泛联合各知名高校院所及医院的专家团队。

锰锌铁氧体

锰锌铁氧体 本文来自维库电子市场网https://www.docsj.com/doc/6e610475.html,/news/, 本文地址:https://www.docsj.com/doc/6e610475.html,/news/html/2007-5-24/38340.html 试制高导锰锌铁氧体 试制:氧化物湿法工艺,原材料按下列配方:Fe2O3:52.1mol%,MnO:23.9mol%,ZnO:24mol%,经湿混砂磨一次喷雾造粒(25kg蒸发量)后,850℃预烧,加入少量微量元素如Bi2O3、Zn2O3、MoO3等,再经二次砂磨二次喷雾干燥造粒(25kg蒸发量),压成φ4×2×1.5环形磁芯。在小型钟罩炉中1400℃烧结4~6小时,烧结过程中严格控制氧含量。磁环的磁导率μi通过HP4284ALCR表测量,用电子显微镜SEM观察磁环表面及断面结构,用EDAX分析表面成份。 选择原辅材料及微量添加元素如Bi2O3、In2O3、MoO3等,获得了初始磁导率达32000的高磁导率MnZn 铁氧体材料。经喷雾干燥后铁氧体粉料颗粒外观形状是实心球状,该粉料具有较好的流动性,同时松装比重较高,对铁氧体毛坯成型非常有利。粉料压制特性对毛坯密度及强度的影响,铁氧体粉料颗粒均已破碎,对应毛坯的密度为3.2g/cm3,较高的毛坯密度对于获得较好的电磁性能如高磁导率和低损耗的铁氧体是十分有益的。铁氧体颗粒形态及成型密度对初始磁导率影响还是比较大的。 微量元素是加入0.02wt%的Bi2O3,0.03wt%的Zn2O3,以及0.04wt%的MoO3,材料起始磁导率为32000,测试条件为:f=1kHz,U=0.05V,N=10Ts,25℃,φ4×2×1.5环。平均晶粒直径为45μm。 Bi2O3及ZnO在烧结过程中的挥发性,向铁氧体中加入过量Bi2O3(为0.08wt%,其中主成份及其它微量元素完全相同)后,由于Bi2O3大量挥发,导致铁氧体磁芯表层存在大量不规则气孔。φ4×2×1.5环内表面和外表面EDAX成份谱线。其中内表面成份是:Fe2O3 : MnO : ZnO : Bi2O3=35.36 : 13.27 : 53.60 : 0.40 mol%;外表面成份是:Fe2O3 : MnO : ZnO : Bi2O3=46.62 : 18.82 : 35.28 : 0.09 mol%,经比较不难发现,内表面Bi2O3和ZnO含量分别是外表面的4倍和1.5倍。说明经过1400℃烧结时,Bi2O3的挥发比ZnO更厉害。料浆参数会影响铁氧体喷雾造粒粉料颗粒形状,以及铁氧体粉料的压制特性,从而影响毛坯的密度及机械强度,并最终影响铁氧体的初始磁导率。 通过精心选择原辅材料,添加微量元素Bi2O3、In2O3 以及MoO3等,并通过严格控制烧结工艺参数在小型钟罩炉中烧结,获得了μi=32000的高磁导率MnZn铁氧体材料。对高密度、轻量化、薄型化的高性能电子元器件的需求量大幅度增长。高磁导率MnZn铁氧体材料由于其特殊的电磁性能,在抗电磁干扰(EMI)噪声滤波器、电子电路宽带变压器、脉冲变压器、综合业务数据网(ISDN)、局域网(LAN)、宽域网(WAN)、背景照明、汽车电子等领域具有非常广泛的应用。高磁导率MnZn铁氧体材料特性主要体现在以下七个方面:高初始磁导率;在宽频下具有较高的磁导率;低损耗因数;低总谐波失真(THD);在宽温下具有较高的磁导率;磁导率减落系数要小;磁导率的应力敏感性要小。不同的应用领域对高磁导率MnZn铁氧体上述某个或几个方面的性能具有更高的要求。 环形铁心Le和Ae的计算方法 磁场强度通过测量励磁电流后计算得到,磁感应强度是通过测量感应磁通后计算得到,参与计算的样品有效参数Le和Ae将直接与测量结果相关。 磁场强度的计算公式:H = N xI / Le式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数;I励磁电流(测量值),单位位A;Le为测试样品的有效磁路长度,单位为m。 磁感应强度计算公式:B = Φ / (N xAe)式中:B为磁感应强度,单位为Wb/m^2;Φ为感应磁通(测量值),单位为Wb;N为感应线圈的匝数;Ae为测试样品的有效截面积,单位为m^2。 根据样品尺寸计算样品的有效参数Le和Ae,在不同的行业中,计算方法往往不统一,这可能使测试结果缺乏可比性。在SMTest软磁测量软件中,样品有效参数的计算依照行业标准SJ/T10281。 下面以环形样品为例,讲述样品有效磁路长度Le和有效截面积Ae的计算方法。 第一种情况:指定叠片系数Sx,指定样品的外径A、内径B和高度C。根据SJ/T10281标准,先计算样品的磁芯常数C1和C2,然后根据磁芯常数计算Le和Ae,这是严格按照标准执行的计算方法。 第二种情况:指定材料密度De和样品质量W,指定样品的外径A、内径B和高度C。根据SJ/T10281标准,先计算样品的磁芯常数C1和C2,然后根据磁芯常数计算Le和Ae,并可推算叠片系数Sx,这是另外一种计算

非晶纳米晶软磁材料都有哪些

如果金属或合金的凝固速度非常快(例如用每秒高达一百万度的冷却速率将铁-硼合金熔体凝固),原子来不及整齐排列便被冻结住了,其排列方式类似于液体,是混乱的,这就是非晶合金。非晶纳米晶软磁材料都有哪些?您可以咨询安徽华晶机械有限公司,下面小编为您简单介绍,希望给您带来一定程度上的帮助。 非晶软磁合金材料的种类: 1、铁基非晶合金铁基非晶合金:主要元素是铁、硅、硼、碳、磷等。它们的特点是磁性强(饱和磁感应强度可达1.4-1.7T )、磁导率、激磁电流和铁损等软磁性能优于硅钢片,价格便宜,最适合替代硅钢片,特别是铁损低(为取向硅钢片的1/3-1/5),代替硅钢做配电 变压器可降低铁损60-70%。铁基非晶合金的带材厚度为0.03毫米左右,广泛应用于中低频变压器的铁心(一般在10千赫兹以下) ,

例如配电变压器、中频变压器、大功率电感、电抗器等。 2、铁镍基非晶合金铁镍基非晶合金:主要由铁、镍、硅、硼、磷等组成,它们的磁性比较弱(饱和磁感应强度大约为1T以下),价格较贵,但磁导率比较高,可以代替硅钢片或者坡莫合金,用作高要求的中低频变压器铁心,例如漏电开关互感器。 3、钴基非晶合金钴基非晶合金:由钴和硅、硼等组成,有时为了获得某些特殊的性能还添加其它元素,由于含钴,它们价格很贵,磁性较弱(饱和磁感应强度一般在1T以下),但磁导率极高,一般用在要求严格的军工电源中的变压器、电感等,替代坡莫合金和铁氧体。 4、纳米(超微晶)软磁合金材料由于非晶合金中原子的排列是混乱无序的这种特殊结构,使得非晶合金具有一些独特的性质。

安徽华晶机械有限公司位于安庆长江大桥经济开发区。是人民解放军第4812工厂全资子公司。公司经营以机械制造为主,拥有各类专业生产、检验试验设备94台(套),涉及铸造、橡胶制品、压力容器、制造等多个行业,主要从事非晶软磁设备、空压机及气源设备、橡胶件(含特种橡胶件)、餐余垃圾处理设备、铸件、机械加工等产品的研制、生产、经营和服务。 自成立以来,公司上下高度重视技术创新和产品结构升级工作,建立了以市场为导向,努力满足用户需求的产品研发体系。公司坚持以跨越发展的思想为指导,秉承敬业、高效、求实、创新的优良传统,继续依托军工技术和“中”牌品质,为广大新老客户提供更优良的产品和服务。

铁氧体吸波材料研究进展

铁氧体吸波材料的研究进展 物理科学与技术学院凝聚态物理罗衡102211013 摘要:铁氧体吸波材料是既具有磁吸收的磁介质又具有电吸收的电介质,是性能极佳的一类吸波材料。本文对铁氧体吸波材料的工作原理、研究进展作了系统的介绍,并指出了铁氧体吸波材料的发展趋势。 关键词:铁氧体吸波材料研究进展 0 引言 近年来,随着电磁技术的快速发展,电磁波辐射也越来越多的充斥于我们的生活空间,电磁波辐射已成为继噪声污染、大气污染、水污染、固体废物污染之后的又一大公害。如电磁波辐射产生的电磁干扰(EMI)不仅会影响各种电子设备的正常运行,而且对身体健康也有危害。在军事高科技领域,随着世界各国防御体系的探测、跟踪、攻击能力越来越强,陆,海、空各军兵种军事目标的生存力,突防能力日益受到严重威胁;作为提高武器系统生存、突防,尤其是纵深打击能力的有效手段之一的隐身技术,正逐渐成为集陆、海、空、天、电、磁五位一体之立体化现代战争中最重要、最有效的突防战术手段。 目前一般采用的手段是利用电磁屏蔽材料的技术,来进行抗电磁干扰和电磁兼容设计,但是屏蔽材料对电磁波有反射作用,可能造成二次电磁辐射污染和干扰,所以最好的解决办法是采用吸波材料技术,因为吸波材料可以将投射到它表面的电磁波能量吸收,并使电磁波能量转化为热能或其他形式的能量消耗而不反射[1-3]。 用于隐身技术的雷达吸波材料已达十几种之多,与透波材料相比,吸波材料研究得更为成熟,其中应用较广的几类吸波材料有铁氧体、金属微粉、纳米吸波材料、导电高聚物和铁电吸波材料等。在众多吸波材料中,磁性吸波材料具有明显优势,而且将是主要的研究对象。磁性吸波材料主要包括铁氧体、超细金属粉、多晶铁纤维等几类。其中金属吸收剂具有使用温度高、饱和磁化强度和磁损耗能力大等特点,但也存在一些自身的缺点:如频率展宽有一定难度,这主要是由于其磁损耗不够大,磁导率随频率的升高而降低比较慢的缘故;化学稳定性差;耐腐蚀性能不如铁氧体等[4];而对于铁氧体来说,除了具有吸收强、吸收频带宽、成本低廉、制备工艺简单等优点外,还因为具有较好的频率特性(其相对磁导率较大,而相对介电常较小),更适合制作匹配层,相对于高介电常数高磁导率的金属粉,在低频率拓宽频带方面,更具有良好的应用前景[5-8]。

钴铁氧体磁性纳米粉体

溶胶-凝胶法 钴铁氧体磁性微粉具有独特的物理、化学特性,催化特性与磁特性。如矫顽力和电阻率可达到比磁性合金高几十倍的水平,高频磁导率较高,单元铁氧体在室温下的磁晶各向异性常数高达约2.7×10 J·m,在可见光区有较大的磁光偏转角,化学性能稳定且耐蚀、耐磨,因而可以将其粉体粒径与直流磁化参数调节到合适的范围用作磁记录介质,以保证在足够信噪比条件下不断提高记录密度。钴铁氧体磁性微粉还可以作为一种重要的微波吸收剂使用,这主要是因为在微波频率C波段与Ku波段能保持较高的复数磁导率。 目前钴铁氧体磁性微粉合成方法主要有氧化物法、盐类分解法、化学共沉淀法、溶胶-凝胶法等。其中溶胶-凝胶法实验操作简单,便于对材料进行离子掺杂以改善其性能,具有前躯体分解和氧化物形成温度都很低,反应物在合成过程中处于高度均匀分散状态,可获得纳米级的粉体等优点,在实现产业化方面有较强的竞争优势 实验部分 1.1纳米CoFe2O3的制备 将CoCl-2·6HO与FeCl-3·4HO按一定摩尔比投料,加入柠檬酸,溶于少量水中磁力搅拌1 h,生成红色溶胶。再加入少量聚乙二醇,用乙醇稀释至总金属离子浓 度为0.1 mol·L,继续磁力搅拌2 h,超声0.5 h,使体系充分均匀。 1.2分析与测定 采用梅特勒-托利多TGA/SDTA热重分析仪对比分析热分解反应过程,用A V A TAR360(Nicolet)红外光谱仪分析掺杂微粉结构,用SIEMENS-D-500X射线衍射仪分析钴铁氧铁微粉物相及粒度,用VBH-55型震动样品磁强计测定比饱和磁化强度和矫顽力。采用MettlerToledo公司热重分析仪对干凝胶进行热重分析,采用Siemens公司X射线衍射仪分析产物的晶体结构,采用Ricoh公司透射电镜研究产物的形貌,采用南京大学仪器厂震动样品磁强计研究产物的磁性。343 K下蒸发稀溶胶直至得到深褐色凝胶,红外箱中烘干,破碎后分别于473 K,523 K,673 K和773 K下灼烧2 h,进行XRD和IR分析;在773~923 K 范围内不同温度下焙烧样品,并分别灼烧1 h和2 h,进行粒度分析;对产物进行透射电镜分析和磁性分析。 化学共沉淀法 试验 1.1 试剂及仪器 (1)试剂:FeCl-3·6H-2O(AR),CoCl-2·6H-2O(AR), CH3CH2OH(AR),NaOH(AR),C18H24O2(AR),蒸馏水。 (2)实验仪器:85-2型恒温磁力搅拌器;FA1004N分析天平;KDM型电热控温套;800B 台式离心分离机;CQ250超声波清洗器;PHS-3C精密酸度计;量筒;烧杯;研钵;玻璃棒等。 (3)测试仪器:美国BeckmanLS13320型激光粒度分析仪;日本日立公司S-2500扫描电子显微镜(SEM);德国布鲁克公司D8型X射线衍射仪;北京物科光电技术有限公司产的振动样品磁强计。 1.2 纳米CoFe2O4粒子的制备 将一定量一定浓度的FeCl3和CoCl2的混合溶液与一定量一定浓度的NaOH溶液分别加热至某一温度后,再在快速搅拌的同时加入NaOH溶液,高速搅拌保温一定的时间,然后用

锰锌软磁铁氧体磁芯MSDS

材料安全資料表(M SD S)、J 1-11-11司,l'J、/,,X..J l'-IJ Y-!..中可﹒ ""F品中文名林: 戶品英文名林: 制造商或供座商名不示: 制造商或供座商地址: 制造商或供座商屯活/仿真:二、成分/組成信息: 組成成分成分百分比 F e203 52.9wt% MnO 32. 3wt% ZnO 13.6wt% CoO 0.03wt% Coating 1. 17wt% 三、危隘性概述: 最健康危書效庄:猛梓軟磁缺氧体磁芯 THE sofe ferrite cores of Manganese and Zinc CAS NO 危害物反分癸及囡式 1309-37-01 NIA 1317-35-7 NIA 1314-13-2 NIA 1307-96-6 NIA 1633-22-3 NIA 重如果泣敏体反者接蝕而沒有立即清洗,可能辱致脫皮等症狀。 要詞:境影日向:NIA 危物理性及化字性危害:NIA 害 效 特殊危害:NIA !主 主要症狀:NIA 物品危害分笑: 四、急救措施: 不同暴露途徑之急救方法: ﹒皮月夫接她:美t敏体l賞者接他@..立即用水沖洗干淨即可〉 最重要症狀及危害效皮:如果迂敏体庚者接蝕而沒有立1日清洗,可能早致脫皮等症狀。河急救人民之防妒: 文才匿州之提示: 五、芳:火措茄: 道)廿夫:x荊:惰性究体、干粉、水 特殊夫﹔)<程序:趴在安全情況下格可能引燃物品搬高﹔人﹔坊。2、大區域之大型火夾

使用元人操作之水寡控制架、水管架或自劫搖摟消防水咕,若不可行則撤寓,監控火燃燒完。消防人民之恃妹防妒浸在「: 六、泄漏赴現方法: 小人座注意﹔事項:N/入 到:境座注意事項:NIA 清理方法:日/A 七、安全赴置勻儲存方法: 赴置:1、遠寓火源、引燃源及不相容物c 2.張 貼“F 禁姻火”的警示你示。 3.保持走道出口暢通元阻。 儲存:1、要儲存在開涼、通夙良好以及附光元法直拉照射的地方。 2、避免接她水及其他有机溶荊等。 3、自然那境溫度下儲存即可。 八、暴露預防措施:工程控制:保持良好通夙。 令人防妒改各: ﹒手部防t戶:建汶迂敏体庚者接她配戴防t戶手套。 其他防妒:1、工作現場禁止吸姻或飲食。2、維持作立場所清浩。辰 一性 翱一℃翩 化一太耐心 3m 一及及一固九九川一性理 一.. 色体何 一定物一太心黑本主祿、一收.... 一九一灰色京度一十物顏熔密一形狀:那型 左乏味:元味內火鳥:NI A 溶解度:不溶于水穩定性:穩定特殊狀況下可能之危害:水、強氧化荊合腐蝕磁芯。庄避免之狀況: NIA IE.避免之物廣:水、強氧化荊等。 危害分解物:NIA 十一、毒性資料: 急、毒性:NIA 致敏感性:世敏件:廣者接她可能早致皮狀迂敏。 慢毒性或長期毒性:NIA 致癌性: NI A 十二、生恣資料: 可能之詞:境影日內/ 王軍境流布:N/A 十三、痠奔赴置方法:

纳米晶软磁材料的应用

纳米晶软磁材料的应用 【摘要】本文首先回顾了纳米晶软磁材料的发展过程,介绍了纳米晶软磁材料的组织结构与磁特性,并介绍了纳米晶软磁合金的应用。 【关键词】纳米晶;软磁材料;铁芯;铁基合金 引言 八十年代以来,由于计算机网络和多媒体技术、高密度记录技术和高频微磁器件等的发展和需要,越来越要求所用各种元器件高质量、小型、轻量,这就要求制造这些器件所用的软磁合金等金属功能材料不断提高性能,向薄小且高稳定性发展[1]。正是根据这种需要,1988年日本的Yoshizawa等人首先发现,在Fe—Si—B非晶合金的基体中加人少量Cu和M(M=Nb,Fa,Mo,W等),经适当的温度晶化退火以后,可获得一种性能优异的具有b.c.c结构的超细晶粒(D 约10nm)软磁合金[2]。这时材料磁性能不仅不恶化,反而非常优良,这种非晶合金经过特殊的晶化退火而形成的晶态材料称为纳米晶合金。其典型成份为Fe73.5CuNb3Si13.5B9,牌号为Finemet。其后,Suzuki等人又开发出了Fe—M—B (M=Zr,Hf,Ta)系。到目前为止,已经开发了许多纳米晶软磁材料,包括:Fe基、Co基、Ni基[3]。由于Co基和Ni基易于形成K、λs、同时为零的非晶态或晶态合金,如果没有特殊情况,实用价值不大。故本文主要介绍铁基纳米晶软磁合金。铁基纳米晶合金是以铁元素为主,加人少量的Nb、Cu、Si、B元素所构成的合金经快速凝固工艺所形成的一种非晶态材料,这种非晶态材料经热处理后可获得直径为l0—20纳米的微晶,弥散分布在非晶母体上,被称为微晶、纳米晶材料或纳米晶材料。纳米晶材料具有优异的综合磁性能:高饱和磁感(1.2T)、高初始磁导率(8万)、低Hc(0.32A/M),高磁感下的高频损耗低(P0.5T/20kH=30W/kg),电阻率为80微欧厘米,比坡莫合金(50—60微欧厘米)高,经纵向或横向磁场处理,可得到高Br(0.9T)或低Br值(1000Gs)。是目前市场上综合性能最好的材料。 1 纳米晶软磁合金的性能 1.1 软磁合金的磁特性 对于纳米晶软磁合金,按性能要求,常分为高Bs型、高0型等。 (1)高型纳米晶合金,其成份至今局限于FeSiB系。以FeCuNbSiB系磁性最佳,其性能参数达到:在磁场0.08A/m下,相对磁导率达14万以上,矫顽力最低已达0 .16A/m,饱和磁感Bs高达135T,在频率lOOkHz和磁感0.2T下铁损低达250kW/1T。值得研究的是饱和磁致伸缩系数21×10-6,而不是0左右。 (2)高Bs型铁基纳米晶合金,其Fe含量在88at%以上,Bs值可达16~1.72T,典型成份为FeMB(M=Zr,Hf等)。对于FeZrB系合金,典型成份为

锰锌软磁铁氧体磁芯术语及定义(精)

1.初始磁导率i μ 初始磁导率是磁性材料的磁导率(B/H )在磁化曲线始端的极限值,即 i μ=01μ0H lim →H B 式中0μ为真空磁导率(4л×710-H/m ) H 为磁场强度(A/m ) B 为磁通密度(T ) 2.有效磁导率e μ 在闭合磁路中,如果漏磁可忽略,可以用有效磁导率来表征磁芯的性能。 e μ=20N L ?μ﹒e e A L 式中 L 为装有磁芯的线圈的电感量(H ) N 为线圈匝数 Le 为有效磁路长度(m ) e A 为有效截面积(2m ) 0μ为真空磁导率(4л×710-H/m ) 3. 饱和磁通密度Bs(T) 磁化到饱和状态的磁通密度。见图1. 4.剩余磁通密度Br(T) 从饱和状态去除磁场后,剩余的磁通密度。见图1.

5.矫顽力Hc(A/m) 从饱和状态去除磁场后,磁芯继续被反向磁场磁化,直至磁通密度减为零,此时的磁场强度称为矫顽力。见图1. 6.损耗因数 tanδ 损耗因数是磁滞损耗、涡流损耗和剩余损耗三者之和 tanδ =tan h δ+tan e δ+tan r δ 式中tan h δ为磁滞损耗因数 tan e δ为涡流损耗因数 tan r δ为剩余损耗因数 7.相对损耗因数 tanδ/μ 相对损耗因数是损耗因数与磁导率之比 tanδ/i μ(适用于材料) t anδ/e μ(适用于磁路中含有气隙的磁芯) 8.品质因数Q 品质因数为损耗因数的倒数: Q=1/tanδ 9.温度系数μα(1/K ) 温度系数为温度在T1和T2范围内变化时,每变化1K 相应的磁导率的相对变化量: μα=1 2112T T 1-?-μμμ (T2>T1) 式中1μ 为温度为1T 时的磁导率 2μ 为温度为2T 时的磁导率 10.相对温度系数r μα(1/k) 温度系数和磁导率之比:r μα=1222 12T T 1-?-μμμ (T2>T1)

新型纳米晶软磁合金及其应用(二)

综述·动态·评论 新型纳米晶软磁合金及其应用 张世远 南京大学物理系 3 Fe-Si-B-Cu-Nb纳米晶合金 这种纳米晶合金是最先发现的新型软磁材 料 因此 研究退火过程中微结构的变化十分重要 图 3 为晶化过程示意图 在退火的 开始阶段通过调幅分解或成 核机理成分接近于30at% Cu 的Cu团簇Fe的浓度也会出现涨落 体心立方晶态相的晶核密度明显增大 而Nb和B则因为不溶 于α-FeSi 相中而在残余非晶相中富集 当晶化继续时 最后富Cu颗粒顺磁相的直径达到5 nm 左右 然而 它的析出不会对软 磁性能造成有害影响 图4是最佳热处 理后合金中所观察到的微结构 α-FeSi相含 ~20at% Si 残余非晶相 ~5at% Si 富Cu相 Si Nb中每一种都小于5at% 差热分析和X射线衍射实验表明[20] 以上温 度退火Fe 2 B相一经析出 由于硼化铁具有大的磁 晶各向异性常数L o ≈ 5 nm 即使Fe 2 B的体积分数只有百分之几 如图5所示除了可以有 效阻止α-FeSi相长大之外 的温度下才析出 图3 FINEMET合金的纳米晶化过程[20] 图4 FINEMET合金用透射电镜观察到 的典型微结构[21]

3.2 饱和磁化强度 Fe 73.5Si 13.5B 9Cu 1Nb 3纳米晶合金的饱和磁化强度J s 主要由α-FeSi 晶粒的成分及体积分数决定 这种合金在淬态下 为单一的非晶相 J s (T ) = J 0 (122 T C 是居里温度因此 合金在经过520 J s 1/β ~T 由两段斜率不同的直线组成 处 显然内部包含残余非晶相和纳米α-FeSi 相两个铁磁相 和T C2 =600因此在室温下 可将总磁化强度分成 两项之和 23 RT RT 经过对图6的拟合 从T C 2值可根据Fe-Si 合金的已知数据推断出纳米晶粒中的Si 含量约为23%该相的J 2 (RT ) =1.3T 由非晶相的体积 分数V 1 = 1 将两相组织等效于一球形晶粒被一薄层的 非晶相所包围则可从近似公式V 1=3δ /D 推算出α-FeSi 晶粒间距δ ≈1.2nm 约为80% 顺便指出 非晶相的体积分数约为34%与磁极化强度分析结果稍有差别 残存非晶相的磁晶各向 异性可以忽略 πδ≈(A / )1/2 将A ≈10 ≈ 0.5 J/m 3代入 对于一无应变样品可以估计出畴壁厚度为2μm 畴壁预计还要窄得多比值 δ /D 似乎要更大或许可达200左右该图中实际上 在这种材料中 因此畴壁 钉扎很小 其典型值为 100 MPa 左右 为使磁性优化 然而 1 退火温度T a / 图5 退火温度对纳米晶磁性的影响[9] 图6 非晶态和纳米晶合金饱和磁极化 强度的温度依赖性 [8] 图7 纳米晶材料中180

1纳米铁氧体磁性材料的制备

材料科学前沿 题目:纳米铁氧体磁性材料学院:理学院 班级:Y130802 姓名:陈国红 学号:S1*******

摘要:铁氧体纳米磁性材料是一类非常重要的无机功能材料,其应用涉及到电子、信息、航天航空、生物医学等领域。综述了纳米结构铁氧体磁性材料化学制备方法的研究进展,以及它们的应用,分析了其存在的问题,展望了研究和开发纳米结构铁氧体磁性材料的新性能和新技术的应用前景。 关键词:纳米磁性材料;铁氧体;制备;应用

铁氧体是从20世纪40年代迅速发展起来的一种新型的非金属磁性材料。与金属磁性材料相比,铁氧体具有电阻率大、介电性能高、在高频时具有较高的磁导率等优点。随着科学技术的发展,铁氧体不仅在通讯广播、自动控制、计算技术和仪器仪表等电子工业部门应用日益广泛,已经成为不可缺少的组成部分,而且在宇宙航行、卫星通讯、信息显示和污染处理等方面,也开辟了广阔的应用空间。在生产工艺上,铁氧体类似于一般的陶瓷工艺,操作方便易于控制,不像金属磁性材料那样要轧成薄片或制成细粉介质才能应用。由于铁氧体性能好、成本低、工艺简单、又能节约大量贵金属,已成为高频弱电领域中很有发展前途的一种非金属磁性材料 l铁氧体的晶体结构 铁氧体作为一种具有铁磁性的金属氧化物,是由铁和其他一种或多种金属组成的复合氧化物。实用化的铁氧体主要有以下几种晶体类刑 1.1尖晶石型铁氧体 尖晶石型铁氧体的化学分子式为MnFe 20 4 或M0Fe 2 3 ,M是指离子半径与二价 铁离子相近的二价金属离子(Mn2+、Zn2+、Cu2+、Ni2+、Mg2+、Co2+等)或平均化学价为 二价的多种金属离子组(如Li 0.5Fe 0.53 )。以Mn2+替代Fe2+所合成的复合氧化物 MnFe 20 4 称为锰铁氧体,以Zn2+替代Fe2+所合成的复合氧化物ZnFe 2 4 称为锌铁氧体。 通过控制替代金属,可以达到控制材料磁特性的目的。由一种金属离子替代而成的铁氧体称为单组分铁氧体。由两种或两种以上的金属离子替代可以合成出双组 分铁氧体和多组分铁氧体。锰锌铁氧体(Mn—ZnFe 2O 4 )和镍锌铁氧体(Ni—ZnFe 2 4 ) 就是双组分铁氧体,而锰镁锌铁氧体(Mn—Mg—ZnFe 2O 4 )则是多组分铁氧体。 1.2磁铅石型铁氧体 磁铅石型铁氧体是与天然矿物——磁铅石Pb(Fe 7.5Mn 3.5 Al o.5 Ti 0.5 )0 19 有类似晶 体结构的铁氧体,属于六角晶系,分子式为MFe l20 19 或Bao·6Fe 2 3 ,M为二价金 属离子Ba2+、Sr2+、Pb2+等。通过控制替代金属,也可以获得性能改善的多组分铁氧体。 1.3石榴石型铁氧体 石榴石型铁氧体是指一种与天然石榴石(Fe,Mg) 3A1 2 (Si0 4 ) 3 有类似晶体结构

纳米晶带材简介

铁基纳米晶合金 一、简介: 铁基纳米晶合金是由铁元素为主,加入少量的Nb、Cu、Si、B元素所构成的合金经快速凝固工艺所形成的一种非晶态材料,这种非晶态材料经热处理后可获得直径为的,弥散分布在非晶态的基体上,被称为微晶、纳米晶材料或纳米晶材料。微晶直径10-20 nm, 适用频率范围50Hz-100kHz. 二、背景介绍: 1988年日本的Yoshizawa等人首先发现,在Fe-S-iB非晶合金的基体中加入少量Cu和 M(M=Nb,Ta,Mo,W等),经适当的温度晶化退火以后,可获得一种性能优异的具有bcc结构的超细晶粒(D约10nm)软磁合金。这时材料磁性能不仅不恶化,反而非常优良,这种非晶合金经过特殊的晶化退火而形成的晶态材料称为纳米晶合金。其典型成份为 Fe7315Cu1Nb3Si1315B9,牌号为Finemet。其后,Suzuki等人又开发出了Fe-M- B(M=Zr,Hf,Ta)系,即Nanoperm系。到目前为止,已经开发了许多纳米晶软磁材料,包括:Fe基、Co基、Ni基[2]。由于Co基和Ni基不易于形成K、Ks同时为零的非晶态或晶态合金,如果没有特殊情况,实用价值不大。 三、铁基纳米晶软磁合金的制备方法 纳米晶软磁合金的制备一般采用非晶晶化法。它是在用快淬法、雾化法、溅射法等制得非晶合金的基础上,对非晶合金在一定的条件下(等温、真空、横向或纵向磁场等)进行退火,得到含有一定颗粒大小和体积分数的纳米晶相。近年来,也有一些研究者采用高能球磨法制备纳米晶软磁合金。 四、纳米晶软磁合金的结构与性能 纳米晶软磁合金的典型成份为Fe7315Cu1Nb3Si1315B9。随着研究的不断进行,合金化元素几乎遍及整个元素周期表。从合金的化学成份在合金中的作用看,可以分为4类: (1). 铁磁性元素:Fe、Co、Ni。由于Fe基合金具有高Bs的优势,且纳米晶合金可以实现K和Ks同时为零,因而使L值很高、损耗很低,价格便宜,成为当今研究开发的中心课题。 (2). 非晶形成元素:主要有Si、B、P、C等。对于纳米晶软磁合金带材,一般都是先形成非晶带,然后通过退火使材料出现纳米晶,因而非晶化元素是基本元素。特别是B对形成非晶有利,成为几乎所有纳米晶软磁合金的构成元素,含量在5at%~15at%之间。Si也是

磁性纳米材料制备

合肥学院 Hefei University 化学与材料工程系 题目:磁性纳米材料的合成 班级:13化工(3)班 组员:赵康智、蒋背背、朱英维、高宗强、 1303023045、1303023004、1303023039、学号: 1303023036、13030230

摘要 磁性纳米材料由于具有表面效应、量子尺寸效应,以及超顺磁性等优异的特性,引起了世界各国研究工作者的高度重视。磁性纳米材料的性能与其组成、结构及纳米粒子的稳定性密切相关,因此制备粒径均匀,组成、结构稳定的纳米粒子是其应用的关键。 关键词: 磁性纳米材料;化学合成 正文 一、磁性纳米材料的性能 磁性纳米材料具有纳米材料所共有的表面效应、小尺寸效应、量子尺寸效应、宏观量子隧道效应等。同时由于与磁相关的特征物理长度恰好处于纳米量级,如磁单畴尺寸、超顺磁性临界尺寸、交换作用长度、以及电子平均自由路程等。当磁性材料结构尺寸与这些特征物理长度相当时,就会呈现反常的磁学性质,从而体现出与块体材料和原子团簇不同的特性。磁性纳米材料主要的磁特性可归纳如下:(1)饱和磁化强度;(2)矫顽力;(3)单磁畴结构;(4)居里温度;(5)超顺磁性。 二、磁性纳米材料的合成制备方法 当粒子尺寸减小到纳米量级时,颗粒的尺寸、形貌和晶体结构都会影响材料的性能和应用。而能够制备出尺寸、形貌和晶体结构可控的磁性金属纳米颗粒一直是人们研究的重点和难题。因此,探索通过简单的方法制备出满足应用需要的,尺寸、形貌及晶体结构可控的金属磁性纳米材料对推动纳米科技的发展的具有重要意义。常用的制备磁性金属纳米粒子的方法主要包括:溅射法、机械研磨法和化学合成方法。机械研磨法往往需要要高纯度的金属原材料,并消耗大量能量用于均匀化反应物,反应时间长,而且易引入杂质,所得晶粒不够完整,分散性不够好。同时,为弥补金溅射法属在熔化过程中的挥发损失,往往需要过量的稀土元素。化学方法在制备金属磁性纳米材料方面却能够有效减少成本,反应物易于均匀化,反应过程易于操作,且显著降低了反应所需温度。另外,化学合成法在控制产物组成和颗粒尺寸方面也具有一定的优越性。因此,化学合成法成为合成纳米材料的重要方法。

非晶纳米晶软磁材料应用市场概况

非晶/纳米晶软磁材料应用市场概况 非晶态软磁合金材料为20世纪70年代问世的一种新型材料,因具有铁芯损耗小、电阻率高、频率特性好、磁感应强度高、抗腐蚀性强等优点,引起了人们的极大重视,被誉为21世纪新型绿色节能材料。其技术特点为:采用超急冷凝固技术使合金钢液到薄带材料一次成型;采用纳米技术,制成介于巨观和微观之间的纳米态(10-20nm)软磁物质。非晶、纳米晶合金的优异软磁特性都来自于其特殊的组织结构,非晶合金中没有晶粒和晶界,易于磁化;纳米晶合金的晶粒尺寸小于磁交换作用长度,导致平均磁晶各向异性很小,并且通过调整成分,可以使其磁致伸缩趋近于零。【表1】列出了非晶/纳米晶软磁材料的典型性能及主要应用领域。 表1 非晶/纳米晶软磁材料的典型性能及主要应用领域

近年来,随着信息处理和电力电子技术的快速发展,各种电器设备趋向高频化、小型化、节能化。 在电力领域,非晶、纳米晶合金均得到大量应用。其中铁基非晶合金的最大应用是配电变压器铁芯。由于非晶合金的工频铁损仅为硅钢的1/5~1/3,利用非晶合金取代硅钢可使配电变压器的空载损耗降低60﹪~70﹪。因此,非晶配电变压器作为换代产品有很好的应用前景。纳米晶合金的最大应用是电力互感器铁芯。电力互感器是专门测量输变电线路上电流和电能的特种变压器。近年来高精度等级(如级、级、级)的互感器需求量迅速增加。传统的冷轧硅钢片铁芯往往达不到精度要求,虽然高磁导率玻莫合金可以满足精度要求,但价格高。而采用纳米晶铁芯不但可以达到精度要求、而且价格低于玻莫合金。 在电力电子领域,随着高频逆变技术的成熟,传统大功率线性电源开始大量被高频开关电源所取代,而且为了提高效率,减小体积,开关电源的工作频率越来越高,这就对其中的软磁材料提出了更高的要求。硅钢高频损耗太大,已不能满足使用要求。铁氧体虽然高频损耗较低,但在大功率条件下仍然存在很多问题,一是饱

聚合物无机物纳米复合材料

聚合物/无机物纳米复合材料 张凌燕 牛艳萍 (武汉理工大学资源与环境工程学院,武汉,430070) E-mail:zhly@https://www.docsj.com/doc/6e610475.html,或niuyanping2004@https://www.docsj.com/doc/6e610475.html, 摘 要:本文从聚合物/无机物纳米复合材料的类型、各种制备方法及原理、优异性能及应用等方面,总结了聚合物/无机物纳米复合材料的研究进展。 关键词:聚合物/无机物纳米复合材料;增韧;表面改性 1 前 言 纳米材料是指材料二相显微结构中至少有一相的一维尺度达到纳米级尺寸(100nm以下)的材料。纳米复合材料是指2种或2种以上的吉布斯固相至少在一个方向以纳米级大小(1~100nm)复合而成的复合材料[1]。聚合物/无机物纳米复合材料(简称OINC)是以聚合物为基体(连续相)、无机物以纳米尺度(小于100nm)分散于基体中的新型高分子复合材料[2]。按照无机物纳米粒子形态结构,OINC可分为聚合物/无机粒子纳米复合材料、聚合物/无机纤维纳米复合材料、聚合物/片层状无机物纳米复合材料。用于制备OINC的无机物包括:粘土类如滑石粉、蒙脱土、云母、水辉石等,陶瓷如SiO2、TiO2、Al2O3、AlN、ZrO2、SiC、Si3N4等,聚硅氧烷,CaCO3,分子筛,金属氧化物如V2O5、MoO3、WO3等,层状过渡金属二硫化物或硫代亚磷酸盐如MoS2、TiS2、TaS2、MPS3(M=Mn、Cd等),层状金属盐类化合物、双氢氧化物,以及碳黑、碳纤维等[3]。与传统的复合材料相比,由于纳米粒子带来的纳米效应和纳米粒子与基体间强的界面相互作用,聚合物纳米复合材料具有优于相同组分常规聚合物复合材料的力学、热学性能,为制备高性能、多功能的新一代复合材料提供了可能。 2 无机纳米粒子的增韧机理及表面修饰 2.1 增韧机理 (1)在变形中,刚性无机粒子不会产生大的伸长变形,在大的拉应力作用下,基体和无机粒子的界面部分脱粘形成空穴,使裂纹钝化,不致发展成破坏性裂缝;无机粒子的存在产生应力集中效应,引发粒子周围的树脂基体屈服(空化、银纹、剪切带)。这种界面脱粘和屈服都需要消耗更多的能量,从而起到增韧作用。 (2)由于纳米粒子的比表面积大,表面的物理和化学缺陷越多,粒子与高分子链发生物理或化学结合的机会越多,因而与基体接触面积增大,材料受冲击时,会产生更多的微开裂,吸收更多的冲击能[4]。 2.2 表面修饰 刚性无机粒子的粒径越小,与基体接触面积越大,若能均匀分布,增韧增强的效果就越 1

软磁铁氧体材料基本类别及主要应用Featuresand

软磁铁氧体材料基本类别及主要应用(Features and applicat ion of Soft magnet) 软磁铁氧体按成份一般分为MnZn、NiZn系尖晶石和平面型两大类。前者主要用于低、中频(MnZn)和高频(NiZn),后者可用于特高频范围;从应用角度又可分高磁导率μi、高饱和磁通密度Bs、高电阻率及高频大功率(又称功率铁氧体)等几大类。由于软磁铁氧体在高频作用下具有高导磁率、高电阻率、低损耗等特点,同时还具有陶瓷的耐磨性,因而被广泛用于工业和民用等领域。工业产品主要用于计算机、通信、电磁兼容等用开关电源、滤波器和宽带变压器等方面;民用产品主要用于电视机、收录机等电子束偏转线圈、回扫变压器、中周变压器、电感器及轭流圈部分等。 一:国内外研发现状: 在软磁铁氧体磁性材料中一般以μi>5000的材料称为高磁导率,该材料近年来产量不断递增,尤其是随着当今数字技术和光纤通信的高速发展,以及市场对电感器、滤波器、轭流圈、宽带和脉冲变压器的需求大量增加,它们所使用的磁性材料都要求μi>10000以上,从而可使磁芯体积缩小很多,以适应元器件向小型化、轻量化发展要求。另外为满足使用需求,这类高磁导率小磁芯表面必须很好,平滑圆整,没有毛刺,且表面上须涂覆一层均匀、致密、绝缘、美观的有机涂层,针对这一技术难点,高磁导率软磁铁氧体产业需求中迫切希望再提高该功能材料的磁导率(μi>10000)。 上世纪90年代后,一些国外知名公司如日本TDK、TOKIN、HITACHI、IROX-NKK、FDK、KAWATETSU等、德国SIEMENS、荷兰Philips、美国SPANG磁性分公司等相继研发出新一代超高磁导率H5D(?i=15000)、H5E(?i=18000)铁氧体材料。日本TDK公司是全球磁性材料最富盛名的领头羊企业,他们在早期生产的H5C2(?i=10000)基础上,又先后开发了H5C3(?i=12000)、H5D(?i=15000)和H5E(?i=18000)等系列高?软磁铁氧体材料;90年代末已试验成功?i=20000的超高磁导率Mn-Zn铁氧体材料。TOKIN公司已向市场推出了12000H(?i=12000)、15000H(?i=15000)和18000H(?i=18000)的铁氧体材料。德国西门子、荷兰飞利浦、美国SPANG公司分别开发的高磁导率软磁铁氧体T42、T46、T56、3E6、3E7和MAT-W、MAT-H材料,其中T46:?i=15000、3E7:?i=15000、MA T-H:?i=15000,2000年西门子和飞利浦公司研制的T56、3E9材料最高磁导率已超过?i=18000。 虽然,我国软磁铁氧体工业发展较快,现有的生产厂家通过技术改造和工艺改进已取得不少成果,产品质量和产量得到明显提高,但目前国内只能大量生产?i=5000-7000的低档铁氧体材料,在高磁导率锰锌铁氧体材料研发生产上,国内与国外的水平与距离相差甚远,且大多数企业生产规模还太小,年产量普遍在1000吨以下,μi>10000的材料生产厂家更是屈指可数,而初具规模的国外公司一般年产软磁铁氧体在3000吨以上,TDK、FDK等公司年产量更是高达20000吨以上。依据我国磁性行业协会的统计,1999年我国生产μi=8000-10000材料的产量很少,但2000年后生产这类中低档软磁铁氧体材料却有较大改观。上海、浙江、

镍铁氧体纳米晶的制备及电磁性能研究(精)

收稿日期:2006206228 基金项目:辽宁省自然科学基金资助项目(2040189)? 作者简介:马瑞廷(1968-),男,辽宁沈阳人,东北大学博士研究生,沈阳理工大学讲师;田彦文(1946-),女,辽宁沈阳人,东北大 学教授,博士生导师? 第28卷第6期2007年6月东北大学学报(自然科学版)Journal of Northeastern University (Natural Science )Vol 128,No.6J un.2007 镍铁氧体纳米晶的制备及电磁性能研究 马瑞廷1,田彦文1,毕韶丹2,张春丽2 (1.东北大学材料与冶金学院,辽宁沈阳 110004; 2.沈阳理工大学材料科学与工程学院,辽宁沈阳 110168) 摘 要:通过高分子凝胶法制备了尖晶石型镍铁氧体(NiFe 2O 4)纳米晶?采用FT 2IR ,X 射线,TEM 和波导等方法对产物以及产物的电磁性能进行了表征?结果表明,干凝胶为无定型状态,当煅烧温度高于400℃时,形成纯相的尖晶石型纳米晶?煅烧温度为400,600和800℃时,由透射电镜照片可知粉体平均粒径分别约为8,25和40nm ,红外光谱显示金属-氧离子(M —O )键的特征吸收峰出现了红移,该峰红移23cm -1;纳米晶在8~12GHz 的测试频率范围内具有介电损耗与磁损耗,随着热处理温度的升高,镍铁氧体纳米晶的介电损耗和磁损耗明显增大?关 键 词:高分子凝胶法;纳米晶体;镍铁氧体;电磁性能;制备中图分类号:TB 383 文献标识码:A 文章编号:100523026(2007)0620847204 Preparation of N anocrystalline Nickel Ferrite and Its E lectrom agnetic Properties M A R ui 2ti ng 1 ,TIA N Y an 2wen 1 ,B I S hao 2dan 2 ,ZHA N G Chun 2li 2 (1.School of Materials &Metallurgy ,Northeastern University ,Shenyang 110004,China ;2.Materials Science &Engineering College ,Shenyang Ligong University ,Shenyang 110168,China.Corres pondent :MA Rui 2ting ,E 2mail :mrt 21118@https://www.docsj.com/doc/6e610475.html, ) Abstract :Nanocrystalline nickel ferrite was prepared by polyacrylamide gel ,taking acrylamide as monomer and N ,N 2methylenediacrylamide as lattice agent.F T 2IR spectrometer ,XRD ,TEM and waveguide were used to characterize the gel ,products and their electromagnetic properties after calcining.XRD patterns showed that the dried gel is amorphous ,the spinel nickel ferrite formed at not lower than 400℃.The grain sizes and M —O characteristic absorption bonds are dependant on heat treatment temperature.When the calcining temperatures are 400,600and 800℃,the grain sizes are 8,25and 40nm ,respectively ,as identified by TEM.The F T 2IR spectra illustrated that the M —O characteristic absorption bonds shift from 590cm -1to 613cm -1.The nanocrystalline presents not only dielectric loss but magnetic loss in the frequency range of measurement ,and both the losses of spinel 2type nanocrystalline increases obviously with increasing heat treatment temperature. K ey w ords :polyacrylamide gel ;nanocrystalline ;nickel ferrite ;electromagnetic property ;preparation 尖晶石型铁氧体的晶体结构属于立方晶系(氧原子为面心立方密堆积),它与天然矿物尖晶石MgAl 2O 4的结构相同?反向尖晶石型NiFe 2O 4纳米晶作为一种各向异性的软磁性材料,具有较高的居里温度和饱和磁化强度,这些特性源于其独特的结构,在反向尖晶石型NiFe 2O 4晶体中,Fe 3+占据四面体的位置,Ni 2+占据八面体的位 置,二者非平行旋转产生了较强的磁力矩[1]?因 此被广泛地应用在高频磁记录、磁共振装置、传感器[2]和电磁波吸收材料[3]等领域?目前,纳米晶NiFe 2O 4的制备方法主要有:共沉淀方法[4],回流 法[5]和电子脉冲法[6]等?这些方法有的可以得到较细的粉体,但对设备要求高,难以大规模生产;有的需要较高的热处理温度,且难以解决纳米粒子的团聚问题? 高分子凝胶法利用丙烯酰胺自由基聚合反

相关文档