文档视界 最新最全的文档下载
当前位置:文档视界 › 勾股定理全章复习与巩固(相当经典_不容错过)

勾股定理全章复习与巩固(相当经典_不容错过)

勾股定理全章复习与巩固(相当经典_不容错过)
勾股定理全章复习与巩固(相当经典_不容错过)

勾股定理全章复习与巩固

(学习目标)

1.了解勾股定理的历史,掌握勾股定理的证明方法;

2.理解并掌握勾股定理及逆定理的内容;

3.能应用勾股定理及逆定理解决有关的实际问题.

(知识网络)

(要点梳理)

要点一、勾股定理

1.勾股定理:直角三角形两直角边a b 、的平方和等于斜边c 的平方.(即:222a b c +=)

2.勾股定理的应用 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;

(2)利用勾股定理可以证明有关线段平方关系的问题;

(3)求作长度为的线段. 要点二、勾股定理的逆定理

1.原命题与逆命题 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题.

2.勾股定理的逆定理

勾股定理的逆定理:如果三角形的三边长a b c 、、,满足222a b c +=,那么这个三角形是直角三角形.

应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤:

(1)首先确定最大边,不妨设最大边长为c ;

(2)验证2c 与22a b +是否具有相等关系,若222a b c +=,则△ABC 是以∠C 为直角的直角三角形,反之,则不是直角三角形.

3.勾股数 满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.

常见的勾股数:①3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41.

如果(a b c 、、)是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形.观察上面的①、②、④、⑤四组勾股数,它们具有以下特征:

1.较小的直角边为连续奇数;

2.较长的直角边与对应斜边相差1.

3.假设三个数分别为a b c 、、,且a b c <<,那么存在2a b c =+成立.(例如④中存在27=24+25、29=40+41等)

要点三、勾股定理与勾股定理逆定理的区别与联系

区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;

联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关. (典型例题)

类型一、勾股定理及逆定理的应用

1、如图所示,直角梯形ABCD 中,AD ∥BC ,∠B =90°,AD =,AB =BC =

E 是AB 上一点,且AE =E 到CD 的距离E

F .

(思路点拨)连接DE 、CE 将EF 转化为△DCE 一边CD 上的高,根据题目所给的条件,容易求出△CDE 的面积,所以利用面积法只需求出CD 的长度,即可求出EF 的长度,过点D 作DH ⊥BC 于H ,在Rt △DCH 中利用勾股定理即可求出DC .

(答案与解析)

解:过点D 作DH ⊥BC 于H ,连接DE 、CE ,则AD =BH ,AB =DH ,

∴ CH =BC -BH ===AB =

在Rt △CDH 中,22222625CD DH CH =+=+=,∴ CD =25,

∵ CDE ADE BCE ABCD S S S S =--△△△梯形 111()222

AD BC AB AD AE BC BE =+--

111125222

=????= 又∵ 12CDE S DC EF =△,∴ 1251252

EF ?=,∴ EF =10. (总结升华)(1)多边形的面积可通过辅助线转化为多个三角形的面积,利用面积法求三角形一边上的高是一种常用的简易方法.(2)利用勾股定理求边长、面积时要注意边长、面积之间的转换. 举一反三:

(变式)如图所示,在△ABC 中,D 是BC 边上的点,已知AB =13,AD =12,AC =15,BD =5,求DC 的长. (答案)

解:在△ABD 中,由22212513+=可知:

222AD BD AB +=,又由勾股定理的逆定理知∠ADB =90°.

在Rt △ADC 中,9DC ==.

类型二、勾股定理与其他知识结合应用

2、如图所示,牧童在A 处放牛,其家在B 处,A 、B 到河岸的距离分别为AC =400米,BD =200米,CD =800米,牧童从A 处把牛牵到河边饮水后再回家.试问在何处饮水,所走路程最短?最短路程是多少? (思路点拨)作点A 关于直线CD 的对称点G ,连接GB ,交CD 于点E ,利用“两点之间线段最短”可知应在E 处饮水,再根据对称性知GB 的长为所走的最短路程,然后构造直角三角形,利用勾股定理可解决.

(答案与解析)

解:作点A 关于直线CD 的对称点G ,连接GB 交CD 于点E ,由“两点之间线段最短”

可以知道在E 点处饮水,所走路程最短.说明如下:

在直线CD 上任意取一异于点E 的点I ,连接AI 、AE 、BE 、BI 、GI 、GE .

∵ 点G 、A 关于直线CD 对称,∴ AI =GI ,AE =GE .

由“两点之间线段最短”或“三角形中两边之和大于第三边”可得GI +BI >GB

=AE +BE ,于是得证.

最短路程为GB 的长,自点B 作CD 的垂线,自点G 作BD 的垂线交于点H ,在直角三角形GHB 中, ∵ GH =CD =800,BH =BD +DH =BD +GC =BD +AC =200+400=600,

∴ 由勾股定理得222228006001000000GB GH BH =+=+=.∴ GB =1000,即最短路程为1000米. (总结升华)这是一道有关极值的典型题目.解决这类题目,一方面要考虑“两点之间线段最短”;另一方面,证明最值,常常另选一个量,通过与求证的那个“最大”“最小”的量进行比较来证明,如本题中的I 点.本题体现了勾股定理在实际生活中的应用.

举一反三:

(变式)如图所示,正方形ABCD 的AB 边上有一点E ,AE =3,EB =1,在AC 上有一点P ,

使EP +BP 最短.求EP +BP 的最小值.

(答案)

解:根据正方形的对称性可知:BP =DP ,连接DE ,交AC 于P ,ED =EP +DP =EP +BP ,

即最短距离EP +BP 也就是ED .

∵ AE =3,EB =1,∴ AB =AE +EB =4,

∴ AD =4,根据勾股定理得:222223425ED AE AD =+=+= .

∵ ED >0,∴ ED =5,∴ 最短距离EP +BP =5.

3、等腰直角△ABC 中,∠ACB =90°,E 、F 为AB 上两点(E 左F 右),且∠ECF =45°,

如图所示:问AE 、EF 、BF 之间有何关系?并说明理由.

(思路点拨):由于∠ACB =90°,∠ECF =45°,所以∠ACE +∠BCF =45°,若将∠ACE 和∠BCF 合在一起则为一特殊角45°,于是想到将△ACE 旋转到△BCF 的右外侧合并,或将△BCF 绕C 点旋转到△ACE 的左外侧合并,旋转后的BF 边与AE 边组成一个直角,联想勾股定理而可得到AE 、EF 、BF 之间的关系. (答案与解析)

解:(1)222AE BF EF +=,理由如下:

将△BCF 绕点C 旋转得△ACF ′,使△BCF 的BC 与AC 边重合,

即△ACF ′≌△BCF ,

∵ 在△ABC 中,∠ACB =90°,AC =BC ,

∴ ∠CAF ′=∠B =45°,∴ ∠EAF ′=90°.

∵ ∠ECF =45°,∴ ∠ACE +∠BCF =45°. ∵ ∠ACF ′=∠BCF ,∴ ∠ECF ′=45°.

在△ECF 和△ECF ′中: 45CE CE ECF ECF CF CF =??'∠=∠=??'=?

°

∴ △ECF ≌△ECF ′(SAS),∴ EF =EF ′.

在Rt △AEF ′中,222AE F A F E ''+=, ∴ 222AE BF EF +=.

(总结升华)若一个角的内部含有同顶点的半角,(如平角内含直角,90°角内含45°角,120°角内含60°角),则常常利用旋转法将剩下的部分拼接在一起组成又一个半角,然后利用角平分线、全等三角形等知识解决问题.

4、已知:如图,△ABC 中,∠CAB =120°,AB =4,AC =2,AD ⊥BC ,D 是垂足,求AD 的长.

(答案与解析)

解:作CE ⊥AB 于E ,则∠CAE=180°-120°=60°,

在Rt△ACE 中,∠CEA=90°,

∵AC =2,∠ACE =30

°∴由勾股定理可得1,AE CE =BE =AB +AE =4+1=5

在Rt△ACE 中,BC

=由三角形面积公式:1122AB CE BC AD ??=??

∴AB CE AD BC ?===(总结升华)勾股定理要在直角三角形中才能应用,没有直角三角形要构造直角三角形.

类型三、本章中的数学思想方法

1.转化的思想方法:我们在求三角形的边或角,或进行推理论证时,常常作垂线,构造直角三角形,将问题转化为直角三角形问题来解决.

5、如图所示,△ABC 是等腰直角三角形,AB =AC ,D 是斜边BC 的中点,E 、F 分别是AB 、AC 边上的点,且DE ⊥DF ,若BE =12,CF =

5.求线段EF 的长.

(答案与解析)

解:连接AD .因为∠BAC =90°,AB =AC .又因为 AD 为△ABC 的中线,所以 AD =DC =DB .AD ⊥BC .

且∠BAD =∠C =45°.

因为∠EDA +∠ADF =90°.又因为∠CDF +∠ADF =90°所以∠EDA =∠CDF .所以△AED ≌△CFD (ASA ). 所以 AE =FC =5.同理:AF =BE =12

在Rt △AEF 中,由勾股定理得:

,所以EF =13.

(

总结升华)此题考查了等腰直角三角形的性质及勾股定理等知识.通过此题,我们可以知道:当已知的线段和所求的线段不在同一三角形中时,应通过适当的转化把它们放在同一直角三角形中求解.

举一反三:

(变式)已知凸四边形ABCD 中,∠ABC =30°,∠ADC =60°,AD =DC ,

求证:

(答案)

解:将△ABD 绕点D 顺时针旋转60°.

由于DC =AD ,故点A 转至点C .点B 转至点E ,连结BE .

∵ BD =DE ,∠BDE =60° ∴ △BDE 为等边三角形,BE =BD

易证△DAB ≌△DCE ,∠A =∠2,CE =AB

∵ 四边形ADCB 中∠ADC =60°,∠ABC =30°∴ ∠A +∠1=360°-60°-30°=270°

∴ ∠1+∠2=∠1+∠A =270°∴ ∠3=360°-(∠1+∠2)=90°

2.方程的思想方法

6、如图所示,已知△ABC 中,∠C =90°,∠A =60°,,求、、的值.

(答案与解析)

解:在Rt △ABC 中,∠A =60°,∠B =90°-∠A =30°,

则 ,由勾股定理,得.

因为 ,所以,,,. (总结升华)在直角三角形中,30°角所对的直角边等于斜边的一半.

举一反三:(变式)直角三角形周长为12cm ,斜边长为5cm ,求直角三角形的面积.

(答案)解:设此直角三角形两直角边长分别是x y ,,根据题意得:

由(1)得:7x y +=, ∴()249x y +=,即22249x xy y ++= (3)

(3)-(2),得:12xy =∴直角三角形的面积是12

xy =12×12=6(2cm ) (巩固练习)

一.选择题

1. 在△ABC 中,若1,2,122+==-=n c n b n a ,则△ABC 是( )

A. 锐角三角形

B. 钝角三角形

C. 等腰三角形

D. 直角三角形

2. 如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )

A .90°

B .60°

C .45°

D .30°

3.在下列说法中是错误的( )

A .在△ABC 中,∠C=∠A 一∠B,则△ABC 为直角三角形.

B .在△AB

C 中,若∠A:∠B:∠C=5:2:3,则△ABC 为直角三角形.

C .在△ABC 中,若35a c =,45

b c =,则△ABC 为直角三角形. D .在△ABC 中,若a :b :c =2:2:4,则△ABC 为直角三角形.

4.若等腰三角形两边长分别为4和6,则底边上的高等于( )A.7 B.7或41 C.24 D.24或7

5. 2,则此三角形的面积为( )A.226.如图,Rt △ABC 中,∠C =90°,CD ⊥AB 于点D ,AB =13,CD =6,则AC +BC 等于( )

A.5

B.135

C.1313

D.59

7. 已知三角形的三边长为a b c 、、,由下列条件能构成直角三角形的是( )

A.()()2222221,4,1a m b m c m =-==+

B.()()22

2221,4,1a m b m c m =-==+

C.()()222221,2,1a m b m c m =-==+

D.()()2222221,2,1a m b m c m =-==+

8. 如图,已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当PA +

PD 取最小值时,△APD 中边AP 上的高为( ) C. D.3

二.填空题

9. 如图,平面上A 、B 两点处有甲、乙两只蚂蚁,它们都发现C 处有食物,已知点C 在A 的东南方向,

在B 的西南方向.甲、乙两只蚂蚁同时从A 、B 两地出发爬向C 处,速度都是30cm /min.结果甲蚂蚁用了2 min ,乙蚂蚁2分40秒到达C 处分享食物,两只蚂蚁原来所处地点相距_______cm .

10.如图,AB=5,AC=3,BC边上的中线AD=2,则△ABC的面积为______.

11.如图所示,有一块直角三角形纸片,两直角边AB=6,BC=8,将直角边AB折叠使它落在斜边AC上,折痕为AD,则BD=______.

12.△ABC中,AB=AC=13,若AB边上的高CD=5,则BC=______.

13.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过四个侧面缠绕一圈到达点B,那么所用细线最短需要_____cm,如果从点A开始经过四个侧面缠绕n圈到达

点B,那么所用细线最短需要_____cm

.

14.已知:△ABC中,AB=15,AC=13,BC边上的高AD=12,BC=_______.

15. 已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A

(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为________.

16. 如图所示,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,BC=________..

三.解答题

17.如图所示,已知D、E、F分别是△ABC中BC、AB、AC边上的点,且AE=AF,BE=BD,CF=CD,AB=4,AC=3,

3

2

BD

CD

,求:△ABC的面积.

18.有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.

19. 有一块直角三角形纸片, 两直角边AC = 6cm, BC = 8cm,

①如图1,现将纸片沿直线AD折叠, 使直角边AC落在斜边AB上, 且与AB重合, 则CD =

_________.

图1 图2

②如图2,若将直角∠C沿MN折叠, 使点C落在AB中点H上, 点M、N分别在AC、BC上, 则

2

AM、2

BN与2

MN之间有怎样的数量关系?并证明你的结论。

20. 如图1,四根长度一定

....的木条,其中AB=6cm,CD=15cm,将这四根木条用小钉绞合在一起,构成一个四边形ABCD(在A、B、C、D四点处是可以活动的)。现固定AB边不动,转动这个四边形,

B

M

A

C B

D

使它的形状改变,在转动的过程中有以下两个特殊位置。

位置一:当点D 在BA 的延长线上时,点C 在线段AD 上(如图2);

位置二:当点C 在AB 的延长线上时,∠C =90°.

(1)在图2中,若设BC 的长为x ,请用x 的代数式表示AD 的长;

(2)在图3中画出位置二的准确..

图形;(各木条长度需符合题目要求) (3)利用图2、图3求图1的四边形ABCD 中,BC 、AD 边的长.

(答案与解析)

一.选择题

1.(答案)D ;(解析)因为()()2222221111c a n n n n -=++-+-+=422n b =,所以222c a b -=,

222a b c +=,由勾股定理的逆定理可知:△ABC 是直角三角形.

2.(答案)C ;(解析)连接AC ,计算AC =BC =

,AB =,根据勾股定理的逆定理,△ABC 是等腰直角

三角形,∴∠ABC =45°. 3.(答案)D ;(解析)D 选项222224+≠,故不是直角三角形.

4.(答案)D ; (解析)底边可能是4,也可能是6,故由勾股定理,底边上的高为24或7.

5.(答案)B ;(解析)因为2222+=,所以此三角形为直角三角形,面积为122?=6.(答案)B ;(解析)()222222AC BC AC BC AC BC AB AB CD +=++?=+?=169+2×13×6=325. 7.(答案)B ; (解析)()()22141m m m -+=+.

8.(答案)C ;(解析)如图,过D 点作DE ⊥BC 于E,则DE =AB ,AD =BE ,EC =BC -BE =3,在Rt △CDE 中,DE =,延长AB 至F ,使AB =BF ,连接DF ,交BC 于P 点,连接AP ,这时候PA +PD 取最小值,

∵AD ∥BC ,B 是AF 中点,∴BP =

.在Rt △ABP 中,AP =. ∵∴=

二.填空题

9.(答案)100;(解析)依题知AC =60cm ,BC =80cm ,∴ AB 100cm .

10.(答案)6;(解析)延长AD 到E ,使DE =AD ,连结BE ,可得△ABE 为直角三角形.

11.(答案)3;(解析)设点B 落在AC 上的E 点处,设BD =x ,则DE =BD =x ,AE =AB =6,CE =4,CD =8-x ,在Rt △CDE 中根据勾股定理列方程.

12.(答案)26或; (解析)当△ABC 为锐角三角形时,BC ===;当

△ABC 为钝角三角形时,BC

13.(答案)10; (解析)10cm =,

绕n =14.(答案)14或4;当△ABC 是锐角三角形时,BC =9+5=14;当△ABC 是钝角三角形时,BC =9-5=4.

15.(答案)(3,4);(2,4);(8,4)(解析)以O 为等腰三角形的顶点,作等腰三角形1OPD ,因为1OP =5,114PH OC ==,所以由勾股定理求得13OH =,所以()13

4p ,,同理,以D 为以O 为等腰三角形的顶点,可求出()()232,4,8,4P P =.如图所示.

16.(答案);(解析)延长AD 到M ,使DM =AD ,易得△ABD ≌△MCD .∴ CM =AB =5 AM =2AD =12

在△ACM 中22251213+= 即222CM AM AC +=∴ ∠AMC =90°在Rt △DCM 中

CD ===∴ BC =2CD =.

三.解答题

17.(解析)解:∵ 32

BD CD =,设BD =3x ,则CD =2x ,由AE =AF ,BE =BD ,CF =CD , 即AF =3-2x ,AE =4-3x ,∴ 3-2x =4-3x ,解得x =1.∴ BC =3x +2x =5

又∵ 222345+=,即222AC AB BC +=

∴ △ABC 是直角三角形,∠A =90°∴ 1143622

ABC S AB AC ==??=△ 18.(解析)

解:在Rt △ABC 中,∠ACB =90°,AC =8,BC =6

由勾股定理得:AB =10,扩充部分为Rt △ACD ,扩充成等腰△ABD ,应分以下三种情况. ①如图1,当AB =AD =10时,可求CD =CB =6得△ABD 的周长为32m .

P H M C B

A

②如图2,当AB =BD =10时,可求CD =

4

由勾股定理得:54=AD ,得△ABD

的周长为(20m +.

③如图3,当AB 为底时,设AD =BD =x ,则CD =x -6,

图3 由勾股定理得:325=x ,得△ABD 的周长为803

m 19. (解析)

解:①3;

② 2AM +2BN =2MN

证明:过点B 作BP ∥AC 交MH 延长线于点P, ∴∠A =∠PBH

在△AMH 和△BPH 中

∠A =∠PBH

AH =BH

∠AHM =∠BHP

∴△AMH ≌△BPH ∴AM =BP ,MH =PH

又∵NH ⊥MP ∴MN =NP

∵BP ∥AC ,∠C =90? ∴∠NBP =90?

∴222NP BN BP =+∴2AM +2BN =2MN

20.(解析)

解:(1)∵ 在四边形ABCD 转动的过程中,BC 、AD 边的长度始终保持不变,BC =x ,

∴ 在图2中,AC =BC -AB =x -6,AD =AC +CD =x +9.

(2)位置二的图形见图3.

(3)∵ 在四边形ABCD 转动的过程中,BC 、AD 边的长度始终保持不变,

∴ 在图3中,BC =x ,AC =AB +BC =6+x ,AD =x +9.

在△ACD 中,∠C =90°

由勾股定理得222AC CD AD +=.

∴ 222(6)15(9)x x ++=+.

整理,得2212362251881x x x x +++=++.

化简,得6x =180.

解得x=30.

即 BC=30.∴ AD=39.

北师大八年级上《第一章勾股定理》单元测试卷(含答案解析)

2018年秋八年级上学期第一章勾股定理单元测试卷 数学试卷 考试时间:120分钟;满分:150分 学校:___________姓名:___________班级:___________考号:___________ 题号一二三总分 得分 评卷人得分 一.选择题(共10小题,满分40分,每小题4分) 1.(4分)如图①,美丽的弦图,蕴含着四个全等的直角三角形.已知每个直角三角形较长的直角边为a,较短的直角边为b,斜边长为c.如图②,现将这四个全图②等的直角三角形紧密拼接,形成飞镖状,已知外围轮廓(实线)的周长为24,OC=3,则该飞镖状图案的面积() A.6 B.12 C.24 D.24 2.(4分)如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为() A.4 B.8 C.16 D.64 3.(4分)如图,有四个三角形,各有一边长为6,一边长为8,若第三边分别为6,8,10,12,则面积最大的三角形是

() A.B.C.D. 4.(4分)下列各组数中,是勾股数的为() A.1,2,3 B.4,5,6 C.3,4,5 D.7,8,9 5.(4分)如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为() A.5cm B.12cm C.16cm D.20cm 6.(4分)如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了() A.2cm B.3cm C.4cm D.5cm 7.(4分)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是() A.B.C.D. 8.(4分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交

勾股定理全章知识点总结大全

C A B D 勾股定理全章知识点总结大全 专题一:直接考查勾股定理及逆定理 1.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积。 2、已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD 的面积。 3、(1).已知?ABC 的三边a 、b 、c 满足0)()(22=-+-c b b a ,则?ABC 为 三角形 4.在?ABC 中,若2a =(b +c )(b -c ),则?ABC 是 三角形,且∠ ?90 5、已知2512-++-y x x 与25102+-z z 互为相反数,试判断以x 、y 、z 为三边的三角形的形状。 6、.若?ABC 的三边a 、b 、c 满足条件2a c b a c b 26241033822+ +=+++,试判断 ?ABC 的形状。 7.已知,0)10 (8262=-+-+-c b a 则以a 、b 、c 为边的三角形是 8.已知一直角三角形的斜边长是2,周长是2+6,求这个三角形的面积. 专题二 勾股定理的证明 1、利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图.从图中可以看到:大正方形面积=小正方形面积+四个直角三角形面积.因而 c 2 = + .化简后即为c 2 = . . a b c

A B C 专题三网格中的勾股定理 1、如图,小正方形边长为1,连接小正方形的三个得到,可得△ABC,则边AC 上的高为() A. 2 2 3 B. 5 10 3 C. 5 5 3 D. 5 5 4 专题四实际应用建模测长 1、如图(8),水池中离岸边D点1.5米的C处,直立长着一根芦苇,出水部分BC的 长是0.5米,把芦苇拉到岸 边,它的顶端B恰好落到D 点,并求水池的深度AC. 2、有一个传感器控制的灯,安装在门上方,离地高4.5米的墙上,任何东西只要移至5 米以内,灯就自动打开,一个身高1.5米的学生,要走到离门多远的地方灯刚好打开? 专题五梯子问题 1、如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米? 2、一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的 顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑 动了几米? 专题六最短路线 1、如图,一只蚂蚁从一个棱长为1米,且封闭的正方体盒子外部的顶点A向顶点B爬行,问这 只蚂蚁爬行的最短路程为多少米? A A′ B B′ O 第20题图 B A

(完整版)勾股定理应用题专项练习(经典)

勾股定理应用题 1.为了庆祝国庆,八年级(1)班的同学做了许多拉花装饰教室,小玲抬来一架 2.5米长的 梯子,准备将梯子架到2.4米高的墙上,则梯脚与墙角的距离是( ) A.0.6米 B.0.7米 C.0.8米 D.0.9米 2.如图1所示,有一块三角形土地,其中∠C =90°,AB =39米,BC =36米,则其面积 是( ) A.270米2 B.280米2 C.290米2 D.300米 2 3.有一个长为40cm ,宽为30cm 的长方形洞口,环卫工人想用一个圆盖盖住此洞口,那么 圆盖的直径至少是( ) A.35cm B.40cm C.50cm D.55cm 4.下列条件不能判断三角形是直角三角形的是 ( ) A.三个内角的比为3:4:5 B.三个内角的比为1:2:3 C.三边的比为3:4:5 D.三边的比为7:24:25 5.若三角形三边的平方比是下列各组数,则不是直角三角形的是( ) A. 1:1:2 B. 1:3:4 C. 9:16:25 D. 16:25:40 6.若三角形三边的长分别为6,8,10,则最短边上的高是( ) A.6 B.7 C.8 D.10 7.如图2所示,在某建筑物的A 处有一个标志物,A 离地面9米,在离建筑物12米处有一 个探照灯B ,该灯发出的光正好照射到标志物上,则灯离标志物____米 8.小芳的叔叔家承包了一个长方形鱼塘,已知其面积是48平方米, 其对角线长为10米.若要建围栏,则要求鱼塘的周长,它的周长 是____米. 9.公园内有两棵树,其中一棵高13米,另一棵高8米,两树相距 12米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,则小鸟至少 要飞_____米. 10.若把一个直角三角形的两条直角边同时扩大到原来的3倍,则斜边扩大到原来的____倍. 11.若△ABC 的三边长分别是2,2,2===c b a ,则∠A =____,∠B =____,∠C =____. 12.某三角形三条边的长分别为9、12、15,则用两个这样的三角形所拼成的长方形的周长 是______,面积是_____. 13.如图4所示,AB 是一棵大树,在树上距地面10米的D 处有两只猴子,它们同时发现C 处有一筐桃子,一只猴子从D 往上爬到树顶A ,又沿滑绳AC 滑到C 处,另一只猴子从D 处下滑到B ,又沿B 跑到C ,已知两只猴子所通过的路程均为15米,求树高AB . C B 图1 B C 图4 A C 图3

勾股定理全章分类练习题及答案

勾股定理 测试1 勾股定理(一) 学习要求 掌握勾股定理的内容及证明方法,能够熟练地运用勾股定理由已知直角三角形中的两条边长求出第三条边长. 课堂学习检测 一、填空题 1.如果直角三角形的两直角边长分别为a、b,斜边长为c,那么______=c2;这一定理在我国被称为______. 2.△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边. (1)若a=5,b=12,则c=______; (2)若c=41,a=40,则b=______; (3)若∠A=30°,a=1,则c=______,b=______; (4)若∠A=45°,a=1,则b=______,c=______. 3.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A→B→C所走的路程为______.

4.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______.5.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______. 二、选择题 6.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( ). (A)8 (B)4 (C)6 (D)无法计算7.如图,△ABC中,AB=AC=10,BD是AC边上的高线,DC=2,则BD等于( ). (A)4 (B)6 (C)8 (D)10 2 8.如图,Rt△ABC中,∠C=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为( ). (A)150cm2 (B)200cm2 (C)225cm2(D)无法计算 三、解答题

9.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别 为a、b、c. (1)若a∶b=3∶4,c=75cm,求a、b; (2)若a∶c=15∶17,b=24,求△ABC的面积; (3)若c-a=4,b=16,求a、c; (4)若∠A=30°,c=24,求c边上的高h c; (5)若a、b、c为连续整数,求a+b+c. 综合、运用、诊断 一、选择题 10.若直角三角形的三边长分别为2,4,x,则x的值可能有( ).

勾股定理全章知识点归纳总结

全国中考信息资源门户网站 https://www.docsj.com/doc/6a1970425.html, 勾股定理全章知识点归纳总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2+b 2=c 2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在A B C ?中,90C ∠=? ,则22 c a b = +, 2 2 b c a = -,22 a c b = -) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理 如果三角形的三边长:a 、b 、c ,则有关系a 2+b 2=c 2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意: (1)首先确定最大边,不妨设最长边长为:c ; (2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形 (若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2

全国中考信息资源门户网站 https://www.docsj.com/doc/6a1970425.html, 3:勾股定理与勾股定理逆定理的区别与联系 区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4:互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。 4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2,?那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法. 5.?应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解. 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 5:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ? +=正方形正方形ABCD ,22 14()2 ab b a c ? +-=,化简可证. c b a H G F E D C B A

勾股定理知识点、经典例题及练习题带答案

【趣味链接】我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3.若S 1,S 2,S 3=10,则S 2的值是多少呢? 【知识梳理】 1、勾股定理定义:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2 +b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方 A B C a b c 弦股勾 勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边 勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形。 2、勾股数:满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数, 那么ka ,kb ,kc 同样也是勾股数组。) *附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,13 3、判断直角三角形:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2 ,那么这个三角形是 直角三角形。

(经典直角三角形:勾三、股四、弦五) 其他方法:(1)有一个角为90°的三角形是直角三角形。 (2)有两个角互余的三角形是直角三角形。 用它判断三角形是否为直角三角形的一般步骤是: (1)确定最大边(不妨设为c); (2)若c2=a2+b2,则△ABC是以∠C为直角的三角形; 若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边); 若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边) 4、注意:(1)直角三角形斜边上的中线等于斜边的一半 (2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。 (3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。 5、勾股定理的作用: (1)已知直角三角形的两边求第三边。 (2)已知直角三角形的一边,求另两边的关系。 (3)用于证明线段平方关系的问题。 (4)利用勾股定理,作出长为n的线段 【经典例题】【例1】(2016山东烟台)如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角

勾股定理全章复习与小结

第17章勾股定理小结与复习 一、课件说明 本课是对全章知识的回顾和复习,通过知识整理,进一步理解勾股定理及其逆定理,体会勾股定理在距离(线段长度)计算中的作用,理解勾股定理与它的逆定理之间的关系,并尝试综合运用这两个定理解决简单的实际问题. 二、学习目标: 知识与技能: 1、进一步理解勾股定理入其逆定理,弄清两定理之间的关系。 2、回顾本章知识,在回顾过程中主动构建起本章知识结构; 过程与方法: 1、} 2、复习直角三角形的有关知识,形成知识体系。 2、思考勾股定理及其逆定理的发现证明和应用过程,体会出入相补思想、数形结合思想、转化思想在解决数学问题中的作用. 情感态度恶劣与价值观: 通过运用勾股定理及其逆定理解决问题,体会到数学来源于生活,应用于生活。 三、学习重点: 勾股定理及其逆定理的应用. 四、教学过程: (一)创设情境引出课题 ;

问题1 如图,这是矗立在萨摩斯岛上的雕像,这个雕像给你怎样的数学联想(出示图形) (背景介绍:我们知道,古希腊数学家毕达哥拉斯发现了勾股定理.在西方,勾股定理又称为“毕达哥拉斯定理”.人们为了纪念这位伟大的科学家,在他的家乡建了这个雕像.) (二)层层提问,讲练相融 追问1 在本章我们学习了直角三角形一个重要的定理,你能叙述这个定理吗 如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2 知识点一:勾股定理的运用: 1.已知直角三角形两边,直接利用勾股定理求出第三边. 基础练习1 在Rt△ABC中,已知a=1,b=3,∠B=90°,则第三边c 的长为. ' 变式在Rt△ABC中,已知a=1,b=3,则第三边c的长为. 温馨提示:求第三边时应看清题目中所说的边是直角边还是斜边,如果题中没有说明,则应分两种情况求. 2.未已知直角三角形的两边,则一般通过设未知数列方程解决。 基础练习2 小明想知道学校旗杆的高,他发现旗杆的绳子垂到地面还多1 m,当他把绳子的下端拉开5 m后,发现下端刚好接触地面,则旗杆的高为(). A.8 m B.10 m C.12 m D.14 m

八年级上册数学第一章勾股定理知识点与练习

八年级上册数学第一章勾股定理知识点与练习 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

勾股定理 知识点一:勾股定理 勾股定理: . 勾股数: . 常见勾股数:3、4、5; 6、8、10; 5、12、13; 8、15、17; 7、24、25。 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边 (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 例1、若Rt ABC 中,90C ?∠=且a=5,b=12,则c= , 例2、Rt △ABC 中,若c=10,a ∶b=3∶4,则a= ,b= . 例3、如图,由Rt△ABC 的三边向外作正方形,若最大正方形的边长为8cm , 则正方形M 与正方形N 的面积之和为2_____cm 4、下列各组数:①0.3,0.4,0.5;②9,12,16;③4,5,6;④a 8,a 15,a 17(0≠a ); ⑤9,40,41。其中是勾股数的有( )组 A 、1 B 、2 C 、3 D 、4 练习 1、在△ABC 中,∠C=90°,c=37,a=12,则b=( ) A 、50 B 、35 C 、34 D 、26 2、在Rt △ABC 中,∠C=90°,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别是( ) A.5、4、3 B.13、12、5 C.10、8、6 D.26、24、10 3、若一个直角三角形的三边分别为a 、b 、c, 22144,25a b ==,则2c =( ) A 、169 B 、119 C 、169或119 D 、13或25 知识点二:勾股定理的逆定理 勾股定理的逆定理: 例1、三角形的三边长a,b,c满足2ab=(a+b)2 -c2 ,则此三角形是 ( ).

勾股定理知识点与常见题型总结

第18章 勾股定理复习 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,2214()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A 方法二: b a c b a c c a b c a b 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,2112S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证

a b c c b a E D C B A 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=?, 则c ,b = ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形; ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数) 2222,2,m n mn m n -+(,m n >m ,n 为正整数) 7.勾股定理的应用 勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用 勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的

(完整版)勾股定理专题复习(经典一对一教案哟)

卓越教育教案专用 学生姓名授课时间:授课科目:数学 教学课题勾股定理知识点解析(二) 重点、难点能准确证明勾股定理,并能将以灵活运用。 教师姓名年级:初二课型:复习课 一、作业检查 作业完成情况:优□良□中□差□ 二、课前回顾 对上次家庭作业进行检查并评讲 三、知识整理 知识点1.勾股定理 (1)勾股定理:直角三角形两直角边的平方和等于斜边的平方。如果用a,b和c分别表示直角三角形的两直角边和斜边(即:a2+b2=c2) 注意:○1勾股定理揭示的是直角三角形三边关系的定理,只适用于直角三角形。○2应用勾股定理时,要注意确定那条边是直角三角形的最长边,也就是斜边,在Rt△ABC中,斜边未必一定是c,当∠A=90时,a2=b2 +c2 ;当∠B=90时,b2=a2 +c2 例1.(1)如图1所示,在Rt△ABC中,∠C=90,AC=5,BC=12,求AB的长; (2)如图2所示,在Rt△ABC中,∠C=90,AB=25,AC=20,求BC的长 (3)在Rt△ABC中,AC=3,BC=4,求AB2的值 A C B 图1 C B A 图2

知识点2.勾股定理的证明 (1)勾股定理的证明方法很多,可以用测量计算,可以用代数式的变形,可以用几何证明,也可以用面积(拼图)证明,其中拼图证明是最常见的一种方法。 思路: ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可 证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 知识点3.直角三角形的判别条件 (1)如果三角形的三边长啊a ,b ,c ,满足a 2+b 2=c 2足,那么这个三角形为直角三角形(此判别条件也称为勾股定理的逆定理) 注意:○1在判别一个三角式是不是直角三角形时,a 2+b 2是否等于c2时需通过计算说明,不能直接写成a 2+b 2=c 2。○2验证一个三角形是不是直角三角形的方法是:(较小边长)+(较长边长)=(最大边长)时,此三角形为直角三角形;否则,此三角形不是直角三角形. 例1. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( ) c b a H G F E D C B A b a c b a c c a b c a b

勾股定理全章复习学案

勾股定理全章复习 主备人: 审核人:初二数学组 课型:新授 学习目标:复习勾股定理及其逆定理,能利用它们求三角形的边长或证明三角形是直角 三角形. 学习重点:勾股定理及其逆定理的应用。 学习难点:利用定理解决实际问题。 学习过程 一、知识要点1:直角三角形中,已知两边求第三边 1.勾股定理:若直角三角形的三边分别为a ,b ,c ,ο 90=∠C ,则 。 公式变形①:若知道a ,b ,则=c ; 公式变形②:若知道a ,c ,则=b ; 公式变形③:若知道b ,c ,则=a ; 例1:求图中的直角三角形中未知边的长度: =b ,=c . (1)在Rt ABC ?中,若ο 90=∠C ,4=a ,=b 3,则=c . (2)在Rt ABC ?中,若o B 90=∠,9=a ,41=b ,则=c . (3)在Rt AB C ?中,若ο 90=∠A ,7=a ,5=b ,则=c . 二、知识要点2:利用勾股定理在数轴找无理数。 例2:在数轴上画出表示5的点. 在数轴上作出表示10的点. 三、知识要点3:判别一个三角形是否是直角三角形。 例3:分别以下列四组数为一个三角形的边长:(1)3、4、5(2)5、12、13(3)8、15、17(4)4、5、6,试找出哪些能够成直角三角形。 1、在下列长度的各组线段中,能组成直角三角形的是( ) A .12,15,17 B .9,16,25 C .5a ,12a ,13a (a>0) D .2,3,4 2、判断由下列各组线段a ,b ,c 的长,能组成的三角形是不是直角三角形,说明理由. (1)5.6=a ,5.7=b ,4=c ; (2)11=a ,60=b ,61=c ; 9 15 b 24 c

第一章勾股定理测试题

第一章勾股定理测试题 一.填空题(每题4分,共32分) 1. 如图在△ABC 中,∠C=?90,已知两直角边 A b C a 和 b ,求斜边 c 的关系式是__________________; 已知斜边c 和一条直角边b (或a ),求另一直角边 a a (或 b )的关系式是________________ 或_______________. 2.在△ABC 中,若222BC AB AC =+,则∠B+∠C=_____°. 3.在Rt △ABC 中,∠C=?90, 若a=40,b=9,则c=__________; A 4.如图,△ABC 中,AB=AC , BC=16,高AD=6,则 腰长AB=________________. B D C 第4题图 5.木工师傅做一个宽60cm ,高80cm 的矩形木柜,为稳固起见,制作时需在对角顶点间 加一根木条,则木条长为___________________cm . 6.一艘轮船以16Km /h 的速度离开港口向东北方向航行,另一艘轮船同时离开港口以 12Km /h 的速度向东南方向航行,它们离开港口1小时后相距_________________Km . 7.如图,已知△ABC 中,∠ACB=?90, 以△ABC 各边为边向三角形外作三个正方形, A 3S 1S 、2S 、3S 分别表示这三个正方形的面积, 1S 1S =81,3S =225,则2S =__________________. C 2S B 8.等腰三角形的腰长为13cm ,底边上的高为5cm ,则它的面积为_____________. 二.选择题(每题4分,共28分) 9. 在△ABC 中,已知AB=12cm ,AC=9cm ,BC=15,cm 则△ABC 的面积等于 ( ) A.1082cm B.542cm C.1802cm D.902 cm 10.以下列各组数为三边的三角形中不是直角三角形的是 ( ) A .9、12、15 B .41、40、9 C .25、7、24 D .6、5、4

勾股定理全章知识点总结大全46431

勾股定理全章知识点总结大全 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2+b 2=c 2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在ABC ?中,90C ∠=?,则22c a b +, 22b c a -,22a c b -) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理 如果三角形的三边长:a 、b 、c ,则有关系a 2+b 2=c 2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意: (1)首先确定最大边,不妨设最长边长为:c ; (2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形 (若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2

(完整版)《勾股定理》典型练习题

《勾股定理》典型例题分析 一、知识要点: 1、勾股定理 勾股定理:直角三角形两直角边的平方和等于斜边的平方。也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。公式的变形:a2 = c2- b2, b2= c2-a2 。 2、勾股定理的逆定理 如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。这个定理叫做勾股定理的逆定理. 该定理在应用时,同学们要注意处理好如下几个要点: ①已知的条件:某三角形的三条边的长度. ②满足的条件:最大边的平方=最小边的平方+中间边的平方. ③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角. ④如果不满足条件,就说明这个三角形不是直角三角形。 3、勾股数 满足a2 + b2= c2的三个正整数,称为勾股数。注意:①勾股数必须是正整数,不能是分数或小数。②一组勾股数扩大相同的正整数倍后,仍是勾股数。常见勾股数有: (3,4,5)(5,12,13) (6,8,10)(7,24,25)(8,15,17)(9,12,15) 4、最短距离问题:主要 5、运用的依据是两点之间线段最短。 二、考点剖析 考点一:利用勾股定理求面积 1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.

2. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系. 3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( ) A. S 1- S 2= S 3 B. S 1+ S 2= S 3 C. S 2+S 3< S 1 D. S 2- S 3=S 1 4、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。 5、(难)在直线上依次摆放着七个正方形(如图4所示)。已知斜放置的三个正方形的面积分别是 1、2、3,正放置的四个正方形的面积依次是 、 =_____________。 考点二:在直角三角形中,已知两边求第三边 1.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长为 . S 3 S 2 S 1

北师版八年级数学第一章勾股定理知识点与常见题型总结及练习

北师版八年级数学第1章 勾股定理 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A 方法二: b a c b a c c a b c a b 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证

a b c c b a E D C B A 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=? ,则c ,b = ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形; ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数); 2221,22,221n n n n n ++++(n 为正整数) 2222,2,m n mn m n -+(,m n >m ,n 为正整数) 7.勾股定理的应用 勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用 勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体

勾股定理全章知识点总结大全教学提纲

勾股定理全章知识点 总结大全

勾股定理全章知识点总结大全 一.基础知识点: 1:勾股定理 直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2)要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在ABC ?中,90 C ∠=?,则 c,b=,a) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理 如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c; (2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形 (若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2

(定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边) 3:勾股定理与勾股定理逆定理的区别与联系 区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4:互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 5:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:,4EFGH S S S ?+=正方形正方形ABCD 2214()2 ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积.

勾股定理典型分类练习题

勾股定理典型分类练习题 题型一:直接考查勾股定理 例1.在ABC C ∠=?. ?中,90 ⑴已知6 BC=.求AB的长 AC=,8 ⑵已知17 AC=,求BC的长 AB=,15 变式1:已知,△ABC中,AB=17cm,BC=16cm,BC边上的中线AD=15cm,试说明△ABC 是等腰三角形。 变式2:已知△ABC的三边a、b、c,且a+b=17,ab=60,c=13, △ABC是否是直角三角形?你能说明理由吗? 题型二:利用勾股定理测量长度 例1如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米? 例2如图,水池中离岸边D点1.5米的C处,直立长着一根芦苇,出水部分BC的长是0. 5米,把芦苇拉到岸边,它的顶端B恰好落到D点,并求水池的深度AC.

题型三:勾股定理和逆定理并用 例3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1 那么 △DEF 是直角三角形吗?为什么 题型四:旋转中的勾股定理的运用: 例4、如图,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能及 △ACP ′重合,若AP=3,求PP ′的长。 变式:如图,P 是等边三角形ABC 内一点,PA=2,PB=23,PC=4,求△ABC 的边长. 分析:利用旋转变换,将△BPA 绕点B 逆时针选择60°,将三条线段集中到同一个三角形中,根据它们的数量关系,由勾股定理可知这是一个直角三角形. 题型五:翻折问题 例5:如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一点,将矩形纸片沿 AE 折叠,点B 恰好落在CD 边上的点G 处,求BE 的长. P A P C B

北师大版八年级上册数学第一章勾股定理全章知识点及习题(经典)

第一章 勾股定理 知识点一:勾股定理定义 画一个直角边为3cm 和4cm 的直角△ABC ,量AB 的长;一个直角边为5和12的直角△ABC ,量AB 的长 发现32 +42 与52 的关系,52 +122 和132 的关系,对于任意的直角三角形也有这个性质吗? 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2 +b 2 =c 2 ) 1.如图,直角△ABC 的主要性质是:∠C=90°,(用几何语言表示) ⑴两锐角之间的关系: ; ⑵若D 为斜边中点,则斜边中线 ; ⑶若∠B=30°,则∠B 的对边和斜边: ;(给出证明) ⑷三边之间的关系: 。 知识点二:验证勾股定理 知识点三:勾股定理证明(等面积法) 例1。已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。 求证:a 2 +b 2 =c 2 。 证明: 例2。已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。 求证:a 2 +b 2 =c 2 。 证明: 知识点四:勾股定理简单应用 在Rt △ABC 中,∠C=90° (1) 已知:a=6, b=8,求c b b b A B

如果三角形的三边长为c b a ,,,满足2 22c b a =+,那么,这个三角形是直角三角形. 利用勾股定理的逆定理判别直角三角形的一般步骤: ①先找出最大边(如c ) ②计算2c 与22 a b +,并验证是否相等。 若2c =22 a b +,则△ABC 是直角三角形。 若2 c ≠22 a b +,则△ABC 不是直角三角形。 1.下列各组数中,以a ,b ,c 为边的三角形不是Rt △的是( ) A.a=7,b=24,c=25 B.a=7,b=24,c=24 C.a=6,b=8,c=10 D.a=3,b=4,c=5 2.三角形的三边长为ab c b a 2)(2 2 +=+,则这个三角形是( ) A. 等边三角形 B. 钝角三角形 C. 直角三角形 D. 锐角三角形 3.已知0)10(862=-+-+-z y x ,则由此z y x ,,为三边的三角形是 三角形. 知识点六:勾股数 (1)满足2 2 2 c b a =+的三个正整数,称为勾股数. (2)勾股数中各数的相同的整数倍,仍是勾股数,如3、4、5是勾股数,6、8、10也是勾股数. (3)常见的勾股数有:①3、4、5②5、12、13;③8、15、17;④7、24、25; ⑤11、60、61;⑥9、40、41. 1.设a 、b 、c 是直角三角形的三边,则a 、b 、c 不可能的是( ). A.3,5,4 B. 5,12,13 C.2,3,4 D.8,17,15 1. 若线段a ,b ,c 组成Rt △,则它们的比可以是( ) A.2∶3∶4 B.3∶4∶6 C.5∶12∶13 D.4∶6∶7 知识点七:确定最短路线 1.一只长方体木箱如图所示,长、宽、高分别为5cm 、4cm 、3cm, 有一只甲虫从A 出发,沿表面爬到C ',最近距离是多少? 2.如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π 取3)是 . 知识点八:逆定理判断垂直 1.在△ABC 中,已知AB 2 -BC 2 =CA 2 ,则△ABC 的形状是( ) A .锐角三角形; B .直角三角形; C .钝角三角形; D .无法确定. 2.如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是( ) A B C D A ' B ' C D 'B C

相关文档
相关文档 最新文档