文档视界 最新最全的文档下载
当前位置:文档视界 › 如何使用MATLAB创建一个最简单的程序

如何使用MATLAB创建一个最简单的程序

如何使用MATLAB创建一个最简单的程序
如何使用MATLAB创建一个最简单的程序

如何使用MATLAB创建一个最简单的程序

网上很多有关于MATLAB的介绍,都是在讲MATLAB有这样那样的功能,但就是没有人讲用如何用MATLAB创建一个最简单的程序,毕竟万事开头难,在这里我就讲一讲如何用MATLAB创建一个最简单的程序。第一步,肯定是打开MATLAB啦

第二步,新建File>new>Script

然后直接输入

n=0:20;k=1;a=0.8;

xn=k*a.^n;

stem(n,xn,’.’);

(这个程序是显示指数序列的图形)

第三步,点击run按钮

会让你选择保存路径,这里我直接保存到了桌面,然后可能会跳出下面这个选项框

意思大概是在文件不是保存在默认的文件路径中的,是要添加路径还是更改当前工作路径。

选择change folder更改当前工作路径更简单一点。

然后显示结果了

很简单的,一看就会,希望可以给五星评价哦

一个简单的Matlab_GUI编程实例

Matlab GUI编程教程(适用于初学者) 1.首先我们新建一个GUI文件:如下图所示; 选择Blank GUI(Default) 2.进入GUI开发环境以后添加两个编辑文本框,6个静态文本框,和一个按钮,布置如下

图所示; 布置好各控件以后,我们就可以来为这些控件编写程序来实现两数相加的功能了。3.我们先为数据1文本框添加代码; 点击上图所示红色方框,选择edit1_Callback,光标便立刻移到下面这段代码的位置。 1. 2. 3.function edit1_Callback(hObject, eventdata, handles) 4.% hObject handle to edit1 (see GCBO) 5.% eventdata reserved - to be defined in a future version of MATLAB

6.% handles structure with handles and user data (see GUIDATA) 7.% Hints: get(hObject,'String') returns contents of edit1 as text 8.% str2double(get(hObject,'String')) returns contents of edit1 as a double 复制代码 然后在上面这段代码的下面插入如下代码: 1. 2.%以字符串的形式来存储数据文本框1的内容. 如果字符串不是数字,则现实空白内容input = str2num(get(hObject,'String')); %检查输入是否为空. 如果为空,则默认显示为0if (isempty(input)) set(hObject,'String','0')endguidata(hObject, handles); 复制代码 这段代码使得输入被严格限制,我们不能试图输入一个非数字。 4.为edit2_Callback添加同样一段代码 5 现在我们为计算按钮添加代码来实现把数据1和数据2相加的目的。 用3中同样的方法在m文件中找到pushbutton1_Callback代码段 如下; 1.function pushbutton1_Callback(hObject, eventdata, handles) 2.% hObject handle to pushbutton1 (see GCBO) 3.% eventdata reserved - to be defined in a future version of MATLAB 4.% handles structure with handles and user data (see GUIDATA) 复制代码

MATLAB简单程序大全

MATLAB简单程序大全 求特征值特征向量 A=[2 3 4;1 5 9;8 5 2] det(A) A' rank(A) inv(A) rref(A) eig(A)%求特征值和特征向量 卫星运行问题 h=200,H=51000,R=6378; a=(h+H+2*R)/2; c=(H-h)/2; b=(a^2-c^2)^(1/2); e=c/a; f=sqrt(1-exp(2).*cos(t)^2); l=int(f,t,0,pi/2) L=4*a.*l 动态玫瑰线 n=3;N=10000; theta=2*pi*(0:N)/N; r=cos(n*theta); x=r.*cos(theta); y=r.*sin(theta); comet(x,y) 二重积分 syms x y f=x^2*sin(y); int(int(f,x,0,1),y,0,pi) ezmesh(f,[0,1,0,pi]) 函数画图 syms x;f=exp(-0.2*x)*sin(0.5*x); ezplot(f,[0,8*pi])

玫瑰线 theta=0:0.01:2*pi; r=cos(3*theta); polar(theta,r,'r') 求x^2+y^2=1和x^2+z^2=1所围成的体积 syms x y z R r=1; Z=sqrt(1-x^2); y0=Z; V=8*int(int(Z,y,0,y0),x,0,1) 求导数及图像 f='1/(5+4*cos(x))'; subplot(1,2,1);ezplot(f) f1=diff(f) subplot(1,2,2);ezplot(f1) 绕x轴旋转 t=(0:20)*pi/10; r=exp(-.2*t).*sin(.5*t); theta=t; x=t'*ones(size(t)); y=r'*cos(theta); z=r'*sin(theta); mesh(x,y,z) colormap([0 0 0]) 某年是否闰年 year=input('input year:='); n1=year/4; n2=year/100; n3=year/400; if n1==fix(n1)&n2~=fix(n2) disp('是闰年') elseif n1==fix(n1)&n3==fix(n3) disp('是闰年') else

实例matlab-非线性规划-作业

实例matlab-非线性规划-作业

现代设计方法-工程优化理论、方法与设计 姓名 学号 班级 研 问题 : 某厂向用户提供发动机,合同规定,第一、二、三季度末分别交货40台、60台、80台。每季度的生产费用为 (元),其中x 是该季生产的台数。若交货后有剩余,可用于下季度交货,但需支付存储费,每台每季度c 元。已知工厂每季度最大生产能力为100台,第一季度开始时无存货,设a=50、b=0.2、c=4,问工厂应如何安排生产计划,才能既满足合同又使总费用最低。讨论a 、b 、c 变化对计划的影响,并作出合理的解释。 问题的分析和假设: 问题分析:本题是一个有约束条件的二次规划问题。决策变量是工厂每季度生产的台数,目标函数是总费用(包括生产费用和存储费)。约束条件是生产合同,生产能力的限制。在这些条件下需要如何安排生产计划,才能既满足合同又使总费用最低。 问题假设: 1、工厂最大生产能力不会发生变化; 2、合同不会发生变更; 3、第一季度开始时工厂无存货; 4、生产总量达到180台时,不在进行生产; 5、工厂生产处的发动机质量有保证,不考虑退货等因素; 6、不考虑产品运输费用是否有厂家承担等和生产无关的因素。 符号规定: x1——第一季度生产的台数; x2——第二季度生产的台数; 180-x1-x2——第三季度生产的台数; y1——第一季度总费用; y2——第二季度总费用; y3——第三季度总费用; y ——总费用(包括生产费用和存储费)。 ()2bx ax x f +=

建模: 1、第一、二、三季度末分别交货40台、60台、80台; 2、每季度的生产费用为 (元); 3、每季度生产数量满足40 ≤x1≤100,0≤x2≤100,100≤x1+x2 ≤180; 4、要求总费用最低,这是一个目标规划模型。 目标函数: y1 2111x b x a Z ?+?= y2()4012222-?+?+?=x c x b x a Z y3()()()10018018021221213 -+?+--?+--?=x x c x x b x x a Z y x x x x x x Z Z Z Z 68644.04.04.0149201 212221321--+++=++= 40≤x1≤100 0≤x2≤100 100≤x1+x2≤180 ()2 bx ax x f +=

matlab源代码实例

1.硬币模拟试验 源代码: clear; clc; head_count=0; p1_hist= [0]; p2_hist= [0]; n = 1000; p1 = 0.3; p2=0.03; head = figure(1); rand('seed',sum(100*clock)); fori = 1:n tmp = rand(1); if(tmp<= p1) head_count = head_count + 1; end p1_hist (i) = head_count /i; end figure(head); subplot(2,1,1); plot(p1_hist); grid on; hold on; xlabel('重复试验次数'); ylabel('正面向上的比率'); title('p=0.3试验次数N与正面向上比率的函数图'); head_count=0; fori = 1:n tmp = rand(1); if(tmp<= p2) head_count = head_count + 1; end p2_hist (i) = head_count /i; end figure(head); subplot(2,1,2); plot(p2_hist); grid on; hold on; xlabel('重复试验次数'); ylabel('正面向上的比率'); title('p=0.03试验次数N与正面向上比率的函数图'); 实验结果:

2.不同次数的随机试验均值方差比较 源代码: clear ; clc; close; rand('seed',sum(100*clock)); Titles = ['n=5时' 'n=20时' 'n=25时' 'n=50时' 'n=100时']; Titlestr = cellstr(Titles); X_n_bar=[0]; %the samples of the X_n_bar X_n=[0]; %the samples of X_n N=[5,10,25,50,100]; j=1; num_X_n = 100; num_X_n_bar = 100; h_X_n_bar = figure(1);

BP神经网络matlab实例(简单而经典)

p=p1';t=t1'; [pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化 net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx'); %设置网络,建立相应的BP网络 net.trainParam.show=2000; % 训练网络 net.trainParam.lr=0.01; net.trainParam.epochs=100000; net.trainParam.goal=1e-5; [net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP网络 pnew=pnew1'; pnewn=tramnmx(pnew,minp,maxp); anewn=sim(net,pnewn); %对BP网络进行仿真 anew=postmnmx(anewn,mint,maxt); %还原数据 y=anew'; 1、BP网络构建 (1)生成BP网络 = net newff PR S S SNl TF TF TFNl BTF BLF PF (,[1 2...],{ 1 2...},,,) R?维矩阵。 PR:由R维的输入样本最小最大值构成的2 S S SNl:各层的神经元个数。 [ 1 2...] { 1 2...} TF TF TFNl:各层的神经元传递函数。 BTF:训练用函数的名称。 (2)网络训练 [,,,,,] (,,,,,,) = net tr Y E Pf Af train net P T Pi Ai VV TV (3)网络仿真 = [,,,,] (,,,,) Y Pf Af E perf sim net P Pi Ai T {'tansig','purelin'},'trainrp'

Matlab的实际应用设计(经典)

课 程 设 计学院:数学学院 学号:20106496 姓名:黄星奕 辅导老师:陈晓红殷明

实验一 1.1 水手、猴子和椰子问题 一、问题描述 1.1 水手、猴子和椰子问题:五个水手带了一只猴子来到南太平洋的一个荒岛上,发现那里有一大堆椰子。由于旅途的颠簸,大家都很疲惫,很快就入睡了。第一个水手醒来后,把椰子平分成五堆,将多余的一只给了猴子,他私藏了一堆后便又去睡了。第二、第三、第四、第五个水手也陆续起来,和第一个水手一样,把椰子分成五堆,恰多一只猴子,私藏一堆,再去入睡,天亮以后,大家把余下的椰子重新等分成五堆,每人分一堆,正好余一只再给猴子,试问原先共有几只椰子? 二、思考与实验 试分析椰子数目的变化规律,利用逆向递推的方法求解这一问题。 三、问题分析 用递推算法。首先分析椰子数目的变化规律,设最初的椰子数为p 0,即第一个水手所处理之前的椰子数,用p 1、p 2、p 3、p4、p 5分别表示五个水手对椰子动了手脚以后剩余的椰子数目,则根据问题有 再用x表示最后每个水手平分得到的椰子数,于是有 所以 p5 = 5x +1 利用逆向递推的方法,有 但由于椰子数为一正整数,用任意的x作为初值递推出的p0数据不一定是合适的。在实验中可以用for 循环语句结合break语句来寻找合适的x和p0,对任意的x递推计算出p0,当计算结果为正整数时,结果正确,否则选取另外的x再次重新递推计算,直到计算出的结果p0为正整数为止。

四、源程序 n=input('input n:'); for x=1:n p=5*x+1; for k=1:5 p=5*p/4+1; end if p==fix(p) break; end end disp([x,p]); 五、实验结果 六、结果分析 从理论上分析,由于 所以

matlab简单编程21个题目及答案

1、设 ? ? ? ? ? ? + + = ) 1( sin 3 5.0 cos 2 x x x y ,把x=0~2π间分为101点,画出以x为横坐 标,y为纵坐标的曲线。 第一题的matlab源程序: ①考虑cos(x)为一个整体,然后乘以中括号里面的全部 x=0:2*pi/100:2*pi; %x的步长以及范围从0到2*pi y=cos(x).*(0.5+3*sin(x)./(1+x.^2)); %y的表达式 plot(x,y)%画出图形 图如下: ②考虑对整体求解cos,先求x乘以括号中的部分 x=0:2*pi/100:2*pi; %x的步长以及范围从0到2*pi y=cos(x.*(0.5+3*sin(x)./(1+x.^2))); %y的表达式 plot(x,y) %画出图形

图如下: 2、产生8×6阶的正态分布随机数矩阵R1, 求其各列的平均值和均方差。并求该矩阵全体数的平均值和均方差。 第二题的matlab源程序如下: R1=randn(8,6) %产生正态分布随机矩阵 R1 = 1.0933 -0.7697 1.5442 -0.1924 1.4193 0.2157 1.1093 0.3714 0.0859 0.8886 0.2916 -1.1658 -0.8637 -0.2256 -1.4916 -0.7648 0.1978 -1.1480 0.0774 1.1174 -0.7423 -1.4023 1.5877 0.1049 -1.2141 -1.0891 -1.0616 -1.4224 -0.8045 0.7223 -1.1135 0.0326 2.3505 0.4882 0.6966 2.5855 -0.0068 0.5525 -0.6156 -0.1774 0.8351 -0.6669 1.5326 1.1006 0.7481 -0.1961 -0.2437 0.1873 aver=(sum(R1(1:end,1:end)))./8 %产生各行的平均值 aver = 0.0768 0.1363 0.1022 -0.3473 0.4975 0.1044 a=std(R1(1:end,1:end)) %产生各行的均方差也就是标准差 a = 1.0819 0.8093 1.3456 0.8233 0.8079 1.2150 aver1=(sum(R1(:)))./48 %全体数的平均值 aver1 =

matlab经典编程例题

以下各题均要求编程实现,并将程序贴在题目下方。 1.从键盘输入任意个正整数,以0结束,输出那些正整数中的素数。 clc;clear; zzs(1)=input('请输入正整数:');k=1; n=0;%素数个数 while zzs(k)~=0 flag=0;%是否是素数,是则为1 for yz=2:sqrt(zzs(k))%因子从2至此数平方根 if mod(zzs(k),yz)==0 flag=1;break;%非素数跳出循环 end end if flag==0&zzs(k)>1%忽略0和1的素数 n=n+1;sus(n)=zzs(k); end k=k+1; zzs(k)=input('请输入正整数:'); end disp(['你共输入了' num2str(k-1) '个正整数。它们是:']) disp(zzs(1:k-1))%不显示最后一个数0 if n==0 disp('这些数中没有素数!')%无素数时显示 else disp('其中的素数是:') disp(sus) end 2.若某数等于其所有因子(不含这个数本身)的和,则称其为完全数。编程求10000以内所有的完全数。 clc;clear;

wq=[];%完全数赋空数组 for ii=2:10000 yz=[];%ii的因子赋空数组 for jj=2:ii/2 %从2到ii/2考察是否为ii的因子 if mod(ii,jj)==0 yz=[yz jj];%因子数组扩展,加上jj end end if ii==sum(yz)+1 wq=[wq ii];%完全数数组扩展,加上ii end end disp(['10000以内的完全数为:' num2str(wq)])%输出 3.下列这组数据是美国1900—2000年人口的近似值(单位:百万)。 (1)若. 2c + = y+ 与试编写程序计算出上式中的a、b、c; 的经验公式为 t at bt y (2)若.bt 的经验公式为 y= 与试编写程序计算出上式中的a、b; y ae t (3)在一个坐标系下,画出数表中的散点图(红色五角星),c + =2中 ax bx y+拟合曲线图(蓝色实心线),以及.bt y=(黑色点划线)。 ae (4)图形标注要求:无网格线,横标注“时间t”,纵标注“人口数(百万)”,图形标题“美国1900—2000年的人口数据”。 (5)程序中要有注释,将你的程序和作好的图粘贴到这里。 clf;clc;clear %清除图形窗、屏幕、工作空间 t=1900:10:2000; y=[76 92 106 123 132 151 179 203 227 250 281]; p1=polyfit(t,y,2);%二次多项式拟合

三个遗传算法matlab程序实例

遗传算法程序(一): 说明: fga.m 为遗传算法的主程序; 采用二进制Gray编码,采用基于轮盘赌法的非线性排名选择, 均匀交叉,变异操作,而且还引入了倒位操作! function [BestPop,Trace]=fga(FUN,LB,UB,eranum,popsize,pCross,pMutation,pInversion,options) % [BestPop,Trace]=fmaxga(FUN,LB,UB,eranum,popsize,pcross,pmutation) % Finds a maximum of a function of several variables. % fmaxga solves problems of the form: % max F(X) subject to: LB <= X <= UB % BestPop - 最优的群体即为最优的染色体群 % Trace - 最佳染色体所对应的目标函数值 % FUN - 目标函数 % LB - 自变量下限 % UB - 自变量上限 % eranum - 种群的代数,取100--1000(默认200) % popsize - 每一代种群的规模;此可取50--200(默认100) % pcross - 交叉概率,一般取0.5--0.85之间较好(默认0.8) % pmutation - 初始变异概率,一般取0.05-0.2之间较好(默认0.1) % pInversion - 倒位概率,一般取0.05-0.3之间较好(默认0.2) % options - 1*2矩阵,options(1)=0二进制编码(默认0),option(1)~=0十进制编 %码,option(2)设定求解精度(默认1e-4) % % ------------------------------------------------------------------------ T1=clock; if nargin<3, error('FMAXGA requires at least three input arguments'); end if nargin==3, eranum=200;popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==4, popsize=100;pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==5, pCross=0.8;pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==6, pMutation=0.1;pInversion=0.15;options=[0 1e-4];end if nargin==7, pInversion=0.15;options=[0 1e-4];end if find((LB-UB)>0) error('数据输入错误,请重新输入(LB

MATLAB中简单的数据拟合方法与应用实例①

MATLAB中简单的数据拟合方法与应用实例 仅供努力学习matlab的同学们参考参考,查阅了M多资料,总结了以下方法 按步骤做能够基本学会matlab曲线拟合的 1.1数据拟合方法 1.1.1多项式拟合 1.多项式拟合命令 polyfit(X,Y,N):多项式拟合,返回降幂排列的多项式系数。 Polyval(P,xi):计算多项式的值。 其中,X,Y是数据点的值;N是拟合的最高次幂;P是返回的多项式系数;xi是要求的横坐标 拟合命令如下: x=[1 2 3 4 5 6 7 8 9]; y=[9 7 6 3 -1 2 5 7 20]; P=polyfit(x,y,3); xi=0:.2:10; yi=polyval(P,xi); plot(xi,yi,x,y,'r*'); 拟合曲线与原始数据如图1-1 图1-1 2图形窗口的多项式拟合 1)先画出数据点如图1-2 x=[1 2 3 4 5 6 7 8 9]; y=[9 7 6 3 -1 2 5 7 20]; plot(x,y,'r*');

图1-2 2)在图形窗口单击Tools—Basic Fitting,如图1-3勾选. 图1-3 图1-3右方分别是线性、二阶、三阶对数据进行多项式拟合。下面的柱状图显示残差,可以看出,三阶多项式的拟合效果是最好的。 1.1.2指定函数拟合 已知M组数据点和对应的函数形式f t (t)=acos(kt)e X Y 编写M文件:

syms t x=[0;0.4;1.2;2;2.8;3.6;4.4;5.2;6;7.2;8;9.2;10.4;11.6;12.4;13.6;14.4;15]; y=[1;0.85;0.29;-0.27;-0.53;-0.4;-0.12;0.17;0.28;0.15;-0.03;-0.15;-0.071;0.059;0.08;0.032;-0.015;-0.02]; f=fittype('a*cos(k*t)*exp(w*t)','independent','t','coefficients',{'a','k','w'}); cfun=fit(x,y,f) xi=0:.1:20; yi=cfun(xi); plot(x,y,'r*',xi,yi,'b-'); 图1-4 运行程序,在命令窗口可达到以下运行结果,图像如图1-4 Warning: Start point not provided, choosing random start point. > In fit>handlewarn at 715 In fit at 315 In Untitled2 at 5 cfun = General model: cfun(t) = a*cos(k*t)*exp(w*t) Coefficients (with 95% confidence bounds): a = 0.9987 ( 0.9835, 1.014) k = 1.001 (0.9958, 1.006) w = -0.2066 (-0.2131, -0.2002) 从结果可以看出,拟合的曲线为: (0.2066) ()0.9987cos(1.001)*t f t t e- =。拟 合曲线给出了数据大致趋势,并给出了各参数的置信区间。

图论算法及matlab程序的三个案例

图论实验三个案例 单源最短路径问题 Dijkstra 算法 Dijkstra 算法是解单源最短路径问题的一个贪心算法。其基本思想是,设置一个顶点集合S 并不断地作贪心选择来扩充这个集合。一个顶点属于集合S 当且仅当从源到该顶点的最短路径长度已知。设v 是图中的一个顶点,记()l v 为顶点v 到源点v 1的最短距离,,i j v v V ?∈,若 (,)i j v v E ?,记i v 到j v 的权ij w =∞。 Dijkstra 算法: ① 1{}S v =,1()0l v =;1{}v V v ??-,()l v =∞,1i =,1{}S V v =-; ② S φ=,停止,否则转③; ③ ()min{(),(,)} j l v l v d v v =, j v S ∈,v S ?∈; ④ 存在1 i v +,使 1()min{()} i l v l v +=,v S ∈; ⑤ 1{} i S S v +=U , 1{} i S S v +=-,1i i =+,转②; 实际上,Dijkstra 算法也是最优化原理的应用:如果121n n v v v v -L 是从1v 到 n v 的最 短路径,则 121 n v v v -L 也必然是从1v 到 1 n v -的最优路径。 在下面的MATLAB 实现代码中,我们用到了距离矩阵,矩阵第i 行第j 行元素表 示顶点i v 到j v 的权ij w ,若i v 到j v 无边,则realmax ij w =,其中realmax 是MATLAB 常量,表示最大的实数+308)。 function re=Dijkstra(ma) %用Dijkstra 算法求单源最短路径 %输入参量ma 是距离矩阵 %输出参量是一个三行n 列矩阵,每列表示顶点号及顶点到源的最短距离和前顶点 n=size(ma,1);%得到距离矩阵的维数 s=ones(1,n);s(1)=0;%标记集合S 和S 的补 r=zeros(3,n);r(1,:)=1:n;r(2,2:end)=realmax;%初始化 for i=2:n;%控制循环次数 mm=realmax; for j=find(s==0);%集合S 中的顶点 for k=find(s==1);%集合S 补中的顶点

matlab中GUI的使用

今天由于要帮一朋友用matlab处理一幅图片,处理图片的要求其实很简单,就是把图片加载进matlab中,然后显示出想要的某一列的趋势图来。如果用代码写的话,程序如下: x=imread(‘文件路径\*.jpg’); figure(1); plot(x(:,100)); %假如要显示的是图像的第100列的趋势图 显示效果如下图所示: 虽然用M文件写两句很简单,不过带着感情,追求更好是我们永恒的动力,首先用M文件时候人机界面不友好,的看很多的代码,尤其对不太熟悉M编程的的人而言即使很简单也看着比较郁闷,因此我们接下来用matlab中的GUI来完成这个简单的例子,当然编程起来比这个复杂多,但是对使用者而言确很简单清楚。这个就如同VC中的MFC和WINDOWSFORMS一样。做成的都是人机交互界面。不废话了,看例子。 首先打开MATLAB,要新建一个MATLAB GUI 程序有三种方法,这里我直接在命令窗口里输入guide,新建一个空的GUI程序,选择如下图: 新建好的GUI编程界面如下图,上面无非就是菜单,工具,还有编程用到的控件,还有编程的用户窗口。这个和LABVIEW有点像。不过LABVIEW的前面板都是用控件拖出来的,后面板也是拖控件

画出来的。而GUI的显示界面是拖控件画出来的,其中一些属性参数要设置下,而后面的执行这些控件的都是写的M函数,即后面板都是要写代码的,这个比LABVIEW单纯的画程序要难,当然灵活性也大,不过个人感觉没一个简单的,都难呀。至于上面控件的意思,怎么拖请自己看吧,若学过MFC或者WINDOWSFORMS的人就会很容易理解的,这之间是太像了,呵呵。 我们的目的是显示图片,并且显示需要的某一列的趋势图。为了使人机交互更好点,我们可以使加载图片时和我们选择打开文件夹那样完成,即自己选择路径,而不用每次在M文件里改路径。还有我们要求在加载图片完成时立马显示出这幅图片的大小信息,即多少行,多少列。应该显示哪一列的趋势图,这个列数我们应该可以自己更加图片的信息来选择的,即从界面上面输入。完了之后我们还需要一个推出按键来退出GUI程序。 好,我们按照这些要求来完成前面板的空间摆放,其中需要两个axes控件,用来显示图片和画出的趋势图。还有若干个static text用来标注和显示输出信息。一个edit text用来输入需要画的列的信息。面板画出来如下:我就真没啥审美感了,所以摆出来总觉得哪里怪怪的,就凑合着看吧,重要的是方法。

matlab函数计算的一些简单例子1

MATLAB作业一1、试求出如下极限。 (1) 23 25 (2)(3) lim (5) x x x x x x x ++ + →∞ ++ + ,(2) 23 3 1 2 lim () x y x y xy x y →- → + + ,(3) 22 22 22 1cos() lim ()x y x y x y x y e+ → → -+ + 解:(1)syms x; f=((x+2)^(x+2))*((x+3)^(x+3))/((x+5)^(2*x+5)) limit(f,x,inf) =exp(-5) (2)syms x y; f=(x^2*y+x*y^3)/(x+y)^3; limit(limit(f,x,-1),y,2) =-6; (3)syms x y; f=(1-cos(x^2+y^2))/(x^2+y^2)*exp(x^2+y^2); limit(limit(f,x,0),y,0) =0 2、试求出下面函数的导数。 (1 )() y x=, (2)22 atan ln() y x y x =+ 解; (1)syms x; f=sqrt(x*sin(x)*sqrt(1-exp(x))); g= diff(f,x); g== (sin(x)*(1 - exp(x))^(1/2) + x*cos(x)*(1 - exp(x))^(1/2) - (x*exp(x)*sin(x))/(2*(1 - exp(x))^(1/2)))/(2*(x*sin(x)*(1 - exp(x))^(1/2))^(1/2)) pretty(g)= (2)syms x y; f=atan(y/x)-log(x^2+y^2) pretty(-simple(diff(f,x)/diff(f,y)))= 2 x + y =------- x - 2 y (3) 假设1 cos u- =,试验证 22 u u x y y x ?? = ???? 。 解:syms x y; u=1/cos(sqrt(x/y)); diff(diff(u,x),y)-diff(diff(u,y),x)=0; 所以: 22 u u x y y x ?? = ????

数字信号处理实验全部程序MATLAB

实验一熟悉MATLAB环境 一、实验目的 (1)熟悉MATLAB的主要操作命令。 (2)学会简单的矩阵输入和数据读写。 (3)掌握简单的绘图命令。 (4)用MATLAB编程并学会创建函数。 (5)观察离散系统的频率响应。 二、实验内容 认真阅读本章附录,在MATLAB环境下重新做一遍附录中的例子,体会各条命令的含义。在熟悉了MATLAB基本命令的基础上,完成以下实验。 上机实验内容: (1)数组的加、减、乘、除和乘方运算。输入A=[1 2 3 4],B=[3 4 5 6],求C=A+B,D=A-B,E=A.*B,F=A./B,G=A.^B并用stem语句画出A、B、C、D、E、F、G。 实验程序: A=[1 2 3 4]; B=[3 4 5 6]; n=1:4; C=A+B;D=A-B;E=A.*B;F=A./B;G=A.^B; subplot(4,2,1);stem(n,A,'fill');xlabel ('时间序列n');ylabel('A'); subplot(4,2,2);stem(n,B,'fill');xlabel ('时间序列n ');ylabel('B'); subplot(4,2,3);stem(n,C,'fill');xlabel ('时间序列n ');ylabel('A+B'); subplot(4,2,4);stem(n,D,'fill');xlabel ('时间序列n ');ylabel('A-B'); subplot(4,2,5);stem(n,E,'fill');xlabel ('时间序列n ');ylabel('A.*B'); subplot(4,2,6);stem(n,F,'fill');xlabel ('时间序列n ');ylabel('A./B'); subplot(4,2,7);stem(n,G,'fill');xlabel ('时间序列n ');ylabel('A.^B'); 运行结果:

matlab程序设计实例

MATLAB 程序设计方法及若干程序实例 樊双喜 (河南大学数学与 信息科学学院开封475004) 摘要本文通过对 MATLAB 程序设计中的若干典型问题做简要的分析和总结,并在此基础上着重讨论了有关算法设计、程序的调试与测试、算法与程序的优化以及循环控制等方面的问题.还通过对一些程序实例做具体解析,来方便读者进行编程训练并掌握一些有关MATLAB 程序设计方面的基本概念、基本方法以及某些问题的处理技巧等.此外,在文章的最后还给出了几个常用数学方法的算法程序, 供读者参考使用.希望能对初学者进行 MATLAB 编程训练提供一些可供参考的材料,并起到一定的指导和激励作用,进而为MATLAB 编程入门打下好的基础. 关键字算法设计;程序调试与测试;程序优化;循环控制 1 算法与程序 1.1 算法与程序的关系算法被称为程序的灵魂,因此在介绍程序之前应先了 解什么是算法.所谓算 法就是对特定问题求解步骤的一种描述.对于一个较复杂的计算或是数据处理的问题,通常是先设计出在理论上可行的算法,即程序的操作步骤,然后再按照算法逐步翻译成相应的程序语言,即计算机可识别的语言. 所谓程序设计,就是使用在计算机上可执行的程序代码来有效的描述用于解决特定问题算法的过程.简单来说,程序就是指令的集合.结构化程序设计由于采用了模块分化与功能分解,自顶向下,即分而治之的方法,因而可将一个较复杂的问题分解为若干子问题,逐步求精.算法是操作的过程,而程序结构和程序流程则是算法的具体体现. 1.2MATLAB 语言的特点 MATLAB 语言简洁紧凑,使用方便灵活,库函数极其丰富,其语法规则与科技人员的思维和书写习惯相近,便于操作.MATLAB 程序书写形式自由,利用其丰富

matlab仿真实例

matlab 仿真实例 实验五MATLAB 及仿真实验一、控制系统的时域分析 (一)稳定性 1、系统传递函数为G(s),试判断其稳定性。 程序: >> nu m=[3,2,5,4,6]; >> den=[1,3,4,2,7,2]; >> sys=tf( nu m,de n); >> figure(1); >> pzmap(sys); >> title(' 零极点图') 由图可知:在S 右半平面有极点,因此可知系统是不稳定的。 2、用MATLA 求 出 G(s)=(s A 2+2*s+2)/(s A 4+7*s A 3+5*s+2) 的极点。 程序及结果: >> sys=tf([1,2,2],[1,7,3,5,2]); >> p=pole(sys) 矿'. 赳 _ ■ —

-6.6553 0.0327 + 0.8555i 0.0327 - 0.8555i -0.4100 (二)阶跃响应 1、二阶系统G(s)=10/s A2+2*s+10 1)键入程序,观察并记录单位阶跃响应曲线: 程序: >> sys=tf(10,[1,2,10]); >> step(sys); >> title('G(s)=10/sA2+2*s+10 单位阶跃响应曲线') 2)计算系统闭环跟、阻尼比、无阻尼振荡频率,并记录程序及结果: >> sys=tf(10,[1,2,10]); >> p=pole(sys)

p = -1.0000 + 3.0000i -1.0000 - 3.0000i >> [wn,z]=damp(sys) wn = 3.1623 3.1623 z = 0.3162 0.3162 3)记录实际测取的峰值大小,峰值时间和过渡过程时间,并填表实际值理论值峰值Cmax 1.35s 峰值时间tp 1.05s 过渡时间+5% 3.54s ts +2% 3.18s 程序: >> sys=tf(10,[1,2,10]); >> step(sys); >> title('G(s)=10/sA2+2*s+10 单位阶跃响应曲线')

matlab函数计算的一些简单例子2

MATLAB 作业二 1、请将下面给出的矩阵A 和B 输入到MATLAB 环境中,并将它们转换成符号矩阵。若某一 矩阵为数值矩阵,另以矩阵为符号矩阵,两矩阵相乘是符号矩阵还是数值矩阵。 57651653 5501232310014325462564206441211346,3 9636623 51521210760077410120172440773 473 78 124867217110 7 681 5A B ???? ?????????? ????? ?==?????? ????? ?---????????--??? ? 解:A 转换为符号矩阵;a=sym(A) a=[5,7,6,5,1,6,5] [2,3,1,0,0,1,4][6,4,2,0,6,4,4][3,9,6,3,6,6,2][10,7,6,0,0,7,7][7,2,4,4,0,7,0][4,8,6,7,2,1,7]B 转换为符号矩阵;b=sym(B)b = [3,5,5,0,1,2,3][3,2,5,4,6,2,5][1,2,1,1,3,4,6][3,5,1,5,2,1,2][4,1,0,1,2,0,1][-3,-4,-7,3,7,8,12][1,-10,7,-6,8,1,5] 若某一矩阵为数值矩阵,另以矩阵为符号矩阵,两矩阵相乘是符号矩阵例;a*B= [48,3,64,48,159,106,194][17,-26,47,-8,62,26,59][48,-8,52,12,108,64,124][59,22,41,69,151,101,184][43,-22,91,13,175,121,220][22,39,4,53,88,94,147][75,11,115,36,151,70,151] 2、利用MATLAB 语言提供的现成函数对习题1中给出的两个矩阵进行分析,判定它们是否 为奇异矩阵,得出矩阵的秩、行列式、迹和逆矩阵,检验得出的逆矩阵是否正确。 解:由于a=det(A)=3.7396e+04;故A 是非奇异矩阵。B=det(B)=0,故B 是奇异矩阵; 由于a=rank(A)=7,故A 的秩为7;由于b=rank(B)=5,故B 的秩为5;由于a=trace(A)=27,b=trace(B)=26,故A,B 的迹为27,26;由a=inv(A)得A 的逆矩阵如下;

Matlab简单运用

学院:船舶学院班级:0701104 学号:070110418 姓名:施鹏

作业一:有初始状态为0的二阶微分方程x"+0.2x'+0.4x=0.2u (t), 其中u(t)是单位阶跃函数,试建立系统模型并仿真。 方法1:用积分器直接构造求解微分方程的模型。 方法2:利用传递函数模块建模。 方法3:利用状态方程模块建模。 解:x’’+0.2x’+0.4x=0.2u(t) x’’=-0.2x’-0.4x+0.2u(t) u(t)=1(t) 方法一: 0102030405060708090100

方法二:x ’’+0.2x ’+0.4x=0.2u(t) L 氏变换后得:s 2X(s)+0.2sX(s)+0.4X(s)=0.2U(s) G(s)=0.2/(s 2+0.2s+0.4) 10 20 30 40 50 60 70 80 90 100 0.10.20.30.40.50.60.70.8

方法三: 输出同上。 作业2: 封装蹦极系统。要求:封装后的蹦极子系统只有一个输出端口,封装后子系统的参数设置包括蹦极者的体重、弹性绳索的弹性常数。通过仿真分析蹦极系统在下述情况下是否安全,并绘制响应的响应曲线: (1)蹦极者体重80 kg,弹性绳索的弹性常数为30; (2)蹦极者体重70 kg,弹性绳索的弹性常数为20。 解:蹦极跳时一种挑战身体极限的运动,蹦极者系着一根弹性绳从高处的桥梁(或山崖等)向下跳。在下落的过程中,蹦极者几乎处于失重状态。按照牛顿运动规律,自由下落的物体由下式确定: m为人体的质量,g为重力加速度。位置x的基准为桥梁的基准面. 12 m x m g a x a x x ????? =--

相关文档