文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米技术的应用

纳米技术的应用

纳米技术的应用
纳米技术的应用

纳米技术的应用

纳米技术在各领域的应用简述

纳米技术是近年来出现的一门高新技术。“纳米”主要是指在纳米(一种长度计量单位,等于1/1000,000,000米)尺度附近的物质,其表现出来的特殊性能用于不同领域而称之为“纳米技术”。

纳米,只是一个长度单位,1微米为千分之一毫米,1纳米又等于千分之一微米,相当于头发丝的十万分之一,没有任何技术属性。因此,单纯的某一纳米材料若没有特殊的结构和性能表现,还不能称为纳米技术。纳米技术,是指通过特定的技术设计,在纳米粒子的表面实现原子/分子的排列组成,使其产生某种特殊结构,并表现特异的技术性能或功能,这样的纳米材料才可称为是纳米技术。

纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术,研究结构尺寸在0.1至100纳米范围内材料的性质和应用。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物,纳米科学技术又将引发一系列新的科学技术,例如:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学等。

一.纳米技术在化工催化领域的应用

以铂,铑,银,钯等贵金属,以及Ni,Fe,Co等非贵金属纳米颗粒作为催化剂,可加速高分子高聚物的氢化反应。研究表明,铑纳米颗粒在氢化反应中具有极高的活性和良好的选择性。

金属纳米粉粒一般十分活泼,可作为助燃剂在材料中使用,也可掺杂到高能密度材料中,增加爆炸效率;此外,它还可以作为引爆剂。为了提高热燃烧效率,金属纳米颗粒和半导体纳米颗粒常常被掺杂到火箭助推器和煤中,以提高燃烧的效率。现在,纳米银和镍粉已被广泛应用于火箭燃料作助燃剂。纳米颗粒作为光催化剂,有很多优点。首先是粒径小,比表面积大,光催化效率高。其次,纳米颗粒生成的电子、空穴在达到表面结合。因此,电子、空穴能够到达表面的数量多,则化学反应活性高。此外纳米颗粒分散在介质中往往具有透明性,容易运用光学手段和方法来观察界面间的电荷转移,质子转移,半导体能级结构与表面密度的影响。

粉纳米静电屏蔽材料,是纳米技术的另一重要应用。另外,如将纳米TiO

2

体按一定比例加到化妆品中,则可以有效的遮蔽紫外线。研究人员还发现,可以利用纳米碳管独特的孔状结构、大的比表面、较高的机械强度做成纳米反应器,该反应器能够使化学反应局限于一个很小的范围内进行。

二.纳米技术在陶瓷、微电子领域的应用

1)陶瓷领域中的应用

陶瓷材料作为材料的三大支柱之一,在日常生活及工业生产中起着举足轻重的作用。

由于传统陶瓷材料质地较脆,韧性和强度都较差,因而使其应用受到了较大限制,随着纳米技术的广泛应用,纳米陶瓷随之产生。纳米陶瓷,利用纳米技术开发的纳米陶瓷材料是利用纳米粉体对现有陶瓷进行改性,通过往陶瓷中加入或生成纳米级颗粒、晶须、晶片纤维等,使晶粒、晶界以及他们之间的结合都达到纳米水平,使材料的强度、韧性和超塑性大幅度提高。它克服了工程陶瓷的许多不足,并对材料的力学、电学、热学、磁光学等性能产生重要影响,为代替工程陶瓷的应用开拓了新领域。目前,虽然纳米陶瓷还有许多关键技术需要解决,但其优良的保温和高温力学性能,使其在切削刀具、轴承、汽车发动机部件等许多方面都有广泛的应用,并在许多超高温、强腐蚀等苛刻环境下起着其他材料不可替代的作用。

纳米陶瓷材料的结构与常规材料相比发生了很大变化,颗粒组元细小到纳米数量级,界面组元大幅度增加,可使材料的强度、韧性和超塑性等力学性能大为提高,并对材料的热学、光学、磁学、电学等性能产生重要的影响。纳米陶瓷的特性主要在于力学性能方面,包括纳米陶瓷材料的硬度,断裂韧度和低温延展性等。纳米级陶瓷复合材料的力学性能,特别是在高温下使硬度、强度得以较大的提高。有关研究表明,纳米陶瓷具有在较低温度下烧结就能达到致密化的优越性,而且纳米陶瓷出现将有助于解决陶瓷的强化和增韧问题。

在室温压缩时,纳米颗粒已有很好的结合,高于500℃很快致密化,而晶粒大小只有稍许的增加,所得的硬度和断裂韧度值更好,而烧结温度却要比工程陶瓷低400~600℃,且烧结不需要任何的添加剂。其硬度和断裂韧度随烧结温度的增加(即孔隙度的降低)而增加,故低温烧结能获得好的力学性能。

通常,硬化处理使材料变脆,造成断裂韧度的降低,而就纳米晶而言,硬化和韧化由孔隙的消除来形成,这样就增加了材料的整体强度。因此,如果陶瓷材料以纳米晶的形式出现,可观察到通常为脆性的陶瓷可变成延展性的,在室温下就允许有大的弹性形变。

由于纳米陶瓷具有的独特性能,如做外墙用的建筑陶瓷材料则具有自清洁和防雾功能。随着高技术的不断出现,人们对纳米陶瓷寄予很大希望,世界各国的科研工作者正在不断研究开发纳米陶瓷粉体并以此为原料合成高技术纳米陶瓷。

2)微电子领域的应用

纳米电子学是纳米技术的重要组成部分,其主要思想是基于纳米材料的量子效应来设计并制备纳米量子器件,它包括纳米有序(无序)阵列体系、纳米微粒与微孔固体组装体系、纳米超结构组装体系。从80年代开始,科学家就开始探索特征尺寸为纳米量级的电子学,纳米电子学主要研究以扫描隧道显微镜为工具的单原子或单分子操纵技术。这些技术都有可能在纳米量级进行加工,目前已形成纳米量级的、信息存储器,存储状态已维持一个月以上,希图用此

技术去制作16GB的存储器。德国的福克斯博士等更是制出了原子开关,达到了比现今芯片高100万倍的存储容量,获得了莫里斯奖。不难看出系统集成芯片的革命终其所需,需要基础纳米技术的发展以及成熟。如果说微米尺度的加工和结构材料是当代微电子工业的支柱,那么纳米技术(包括制备和加工等)和纳米材料将成为下一代微电子学器件的基础。在纳米科技发展中,纳米材料是它的前导。纳米材料集中体现了小尺寸、复杂构型、高集成度和强相互作用以及高比表面积

等现代科学技术发展的特点,其中最应该指出的是纳米材料是将量子力学效应工程化或技术化的最好场合之一,会产生全新的物理化学现象。量子力学告诉我们,电子与光同时都具有粒子波的特性,今天的微电子学和光电子器件将缩到0.1线宽,电子的波动性质再也不能忽视,把电子视为一种纯粹粒子的半导体理论基础已经动摇。这时电子所表现出来的波动特征和拥有的量子功能就是纳米电子学的任务。纳米电子学有更多诱人之处。而当半导体材料的尺度缩小到纳米范围时,其物理、化学性质将发生显著变化,并呈现出由高表面积或量子效应引起的独特性能。

如果说微米尺度的加工和结构材料是当代微电子工业的支柱,那么纳米技术(包括制备和加工等)和纳米材料将成为下一代微电子学器件的基础。在纳米科技发展中,纳米材料是它的前导。纳米材料集中体现了小尺寸、复杂构型、高集成度和强相互作用以及高比表面积等现代科学技术发展的特点,其中最应该指出的是纳米材料是将量子力学效应工程化或技术化的最好场合之一,会产生全新的物理化学现象。量子力学告诉我们,电子与光同时都具有粒子波的特性,今天的微电子学和光电子器件将缩到。0.1线宽,电子的波动性质再也不能忽视,把电子视为一种纯粹粒子的半导体理论基础已经动摇。这时电子所表现出来的波动特征和拥有的量子功能就是纳米电子学的任务。纳米电子学有更多诱人之处。而当半导体材料的尺度缩小到纳米范围时,其物理、化学性质将发生显著变化,并呈现出由高表面积或量子效应引起的独特性能。科学家们已经预言,纳米电子学将导致一场电子技术的革命!

三.纳米技术在医药学、生物领域的应用

1)纳米技术在医药,医学领域的应用

目前纳米材料在生物医学领域已经得到广泛的应用,在基础医学、药物学、临床医学和预防医学方面,纳米材料作用的发挥都已不容忽视。纳米材料在生物医学中检测、诊断。药物治疗以及健康预防等方面都取得了很好的发展。

纳米材料在医学检验诊断方面的应用:纳米材料在医学检验诊断技术方面的应用生物医学起源于诊断,没有很好的诊断手段就没有很好的治疗和预防,目前随着科学技术的发展,诊断手段越来越高明、先进,得到了前所未有的发展。纳米材料在检验诊断中主要应用于三个方面:⑴利用纳米材料跟踪生物体内活动,对生物体内元素的积累和排除作出判断。⑵利用纳米颗粒极高的传感灵敏效应对疾病进行早期诊断。⑶利用纳米材料的特性去化验检测试样从而辅

助治疗。在具体应用方面的典型有量子点的荧光效应、磁性纳米材料的磁效应、纳米材料的吸附作用等等。

纳米材料在药物治疗方面的应用:纳米生物材料,具有生物兼容性、可生物降解、药物缓释和药物靶向传递等良好特性已在药物治疗方面取得了很大成功。药物纳米载体具有高度靶向、药物控制释放、提高难溶药物的溶解率和吸收率优点,提高药物疗效和降低毒副作用。纳米颗粒作为基因载体具有一些显著的优点:纳米颗粒能包裹、浓缩、保护核苷酸,使其免遭核酸酶的降解;比表面积大,具有生物亲和性,易于在其表面耦联特异性的靶向分子,实现基因治疗的特异性;在循环系统中的循环时间较普通颗粒明显延长,在一定时间内不会象普通颗粒那样迅速地被吞噬细胞清除;让核苷酸缓慢释放,有效地延长作用时间,并维持有效的产物浓度,提高转染效率和转染产物的生物利用度;代谢产物少,副作用小,无免疫排斥反应等。

1.纳米粒子用作药物载体:磁性纳米颗粒作为药物载体,在外磁场的引导下集中于病患部位,进行定位病变治疗,利于提高药效,减少副作用。如采用金纳米颗粒制成金溶液,接上抗原或抗体,就能进行免疫学的间接凝聚实验,用于快速诊断。生物降解性高分子纳米材料作为药物载体还可以植入到人体的某些特定组织部位,这种给药方式避免了药物直接被消化系统和肝脏分解而代谢掉,并防止药物对全身的作用。如美国麻省理工学院的科学家已研制成以用生物降解性聚乳酸(PLA)制的微芯片为基础,能长时间配选精确剂量药物的药物投送系统,并已被批准用于人体。近年来生物可降解性高分子纳米粒子(NPs)在基因治疗中的DNA载体以及半衰期较短的大分子药物如蛋白质、多肽、基因等活性物质的口服释放载体方面具有广阔的应用前景。药物纳米载体技术将给恶性肿瘤、糖尿病和老年痴呆症的治疗带来变革。

2.纳米抗菌药及创伤敷料:Ag+可使细胞膜上蛋白失去活性从而杀死细菌,添加纳米银粒子制成的医用敷料对诸如黄色葡萄球菌、大肠杆菌、绿浓杆菌等临床常见的40余种外科感染细菌有较好抑制作用。

3.智能—靶向药物:在超临界高压下细胞会“变软”,而纳米生化材料微小易渗透,使医药家能改变细胞基因,因而纳米生化材料最有前景的应用是基因药物的开发。德国柏林医疗中心将铁氧体纳米粒子用葡萄糖分子包裹,在水中溶解后注入肿瘤部位,使癌细胞部位完全被磁场封闭,通电加热时温度达到47℃,慢慢杀死癌细胞。这种方法已在老鼠身上进行的实验中获得了初步成功。美国密歇根大学正在研制一种仅20 nm的微型智能炸弹,能够通过识别癌细胞化学特征攻击癌细胞,甚至可钻入单个细胞内将它炸毁.

2)纳米技术在生物领域的应用

1.纳米机械

生命系统是由纳米尺度上分子的行为所控制的F1-ATPase(F1-三磷酸腺苷酶)是细胞中精巧的分子马达之一它位于线粒体内是一种用于合成ATP(三磷酸腺苷可以用于推动许多生物合成反应在能量循环中起关键作用还充作特殊生理活动作功分泌吸收和传导等的初级能源)的大型嵌膜复合体Boyer曾提出F1-ATPase分子模型Walker等 [2]通过F1-ATPase分子的X射线晶体结构认为该

酶是一个马达Noji突破常规采用精密的方法并通过在膜的F0部分即g子单元的马达的旋转部分系缚一根荧光标记的肌动朊细丝作为巨型探针以提供旋转马达负载并方便观察然后将整个分子固定于Ni-NTA (Ni氨三乙酸配合物)涂敷的玻璃基底上利用一台荧光显微镜观察肌动朊细丝的运动他们直观观察到F1-ATPase分子的单个旋转而且Noji观察到仅当有Mg-ATP存在时F1-ATPase系缚的肌动朊细丝才能旋转从而演示了该分子马达的功能并符合X射线晶体结构预测的方向该实验为Boyer旋转模型提供了直接有力的证据说明尺寸只有10nm的F1-ATPase酶是一种新的马达蛋白在结构上与肌球蛋白等类似,是由自然生物化学过程驱动的功能齐全的旋转马达自然界中有一些细菌可以靠摆动其鞭毛而运动鞭毛的根部就像一个微小的马达它的中心是一个由蛋白质构成的转子转子周围是一个由六个蛋白质结构组成的环每个蛋白质分子都具有ATP酶的活性通过将ATP分解成ADP而获得的能量就可以使转子旋转带动鞭毛摆动Montemagno等在活细胞内能源机制启发下制造出了一种分子马达这种微型马达以三磷酸腺苷酶为基础把金属镍制成的螺旋桨嫁接到三磷酸腺苷酶分子中轴上制造了400个分子马达浸于ATP溶液后其中395个保持不动但另5个则转动起来转速达到8 r/s这种马达只在显微镜下才能被观察到其镍螺旋桨相对来说较长达到750nm 根据拍摄到的画面研究人员观察到一个尘埃粒子先被

旋转的螺旋桨吸入和甩出的情景Montemagno希望最终有一天能够利用这种装置将某些药品运送到体内的任何地方比如将化疗药物直接运送到肿瘤以减少对正常细胞的损伤该研究小组获得的另一项成果是把光合作用系统同生物马达组合到一起这样只要光存在就能完成相应的功能更深入的研究将允许科学家们利用分子水平上的研究结果将无机装置与自分子马达相结合创造杂交系统和全新纳米机械器件人们设想利用化学能的分子马达驱动的纳米机械与阀泵和传感器组成集成器件这类器件能对肌体内外的变化作出反应例如可探测有害化学物质的纳米传感器当被有害物质激活后这种传感器内的马达就打开阀门释放出可见的物质示警利用小型自给自足能量的器械可以探测并鉴别土壤中的油类或化学污染同时绘制出它的分布和浓度图或是根据探测的体内变化调控药物的施用等纳米机械还可以利用DNA基本元件碱基的配对机制做成采用DNA为燃料的镊子研究人员设计出三条DNA链A B和C利用碱基配对机制使A的一半与B的一半结合A的另一半与C的一半结合在A连接B与C的地方有一个活动枢钮这样就构成了一个可以开合的镊子而其每条臂只有nm长一般情况下镊子保持开的状态利用另一条设计好的DNA链D使它分别与B和C上碱基未配对的部分结合就把B和C两臂拉到一起使镊子合上同时D仍留出一部分未配对的碱基再添加一条DNA链E使它与链D上碱基未配对的部分结合把D拉离镊子即能使镊子重新张开重复添加链D和链E的过程可使镊子反复开合由于这个镊子的开合需要在DNA链D和链E的作用下才能进行故将DNA称为这种镊子的燃料。

2.生物芯片

与微加工技术朝纳米尺度发展一样某些种类的生物芯片的研究也正在向纳米量级发展研究人员发现一些天然分子的生物自组装能力完全可以用于制作纳米器件例如用胶原质做导线抗体做夹子DNA做存储器膜蛋白做泵等等虽然目前尚无成功的纳米芯片出现人们利用分子的自组装特性制作了一些结构如直径为0.5μm长30μm的脂质管直径0.7μm的圆形多肽纳米管和显微分子齿轮等这些利

用分子来设计和装配类似仪器零件的研究为纳米芯片的开发打下了良好的基础生物芯片技术另外一个重要并具有应用价值的发展方向是为新药的开发提供高通量乃至超高通量筛选的技术平台 [17,19]在生物芯片的下列领域纳米技术也充满希望 (1)进一步减小测试尺度增加检测容量在每个实验中允许研究更多基因 (2)提高其灵敏度 (3)探索这类系统在临床甚至作为体内实时传感器等方面的应用。

参考文献

1.沈海军《纳米科技概论》

2.杨志伊《纳米科技》

3.Boyer P D. Biochim. Biophys. Acta., 1993,215:1140.

4.Abrahams J P, Leslie A G W, Lutter R et al. Nature,

1994,621:370.

5.Noji H. Science, 1998,282:1844~1845.

6.张立德,牟季美.纳米材料和纳米结构.北京:科学出版社, 2000:510.

浅谈纳米技术的研究与应用

浅谈纳米技术的研究与应用 1.引言 当集成电路代替电子管和半导体晶体管的初期,1959年美国诺贝尔奖获得者查理·费曼(Richard Phillips Feynman),在美国加州理工学院召开的美国物理年会上预言:“如果人们能够在原子/分子的尺度上来加工材料,制造装置,将会有许多激动人心的新发现,人们将会打开一个崭新的世界。”这在当时只是一个美好的梦想。 如今,这个预言和梦想终于实现了。费曼所预言的材料就是现在的纳米。 今天,不少科学家又在预言,纳米科技将在新世纪里得到惊人的发展,纳米科技将给人类的科学技术和生活带来革命性的变化。科学家认为,纳米时代的到来不会很久,它在未来的应用将远远超过计算机,并成为未来信息时代的核心。 我国著名科学家钱学森早在1991年就指出:“纳米左右和纳米以下的结构将是下一阶段科技发展的重点,会是一次技术革命,从而将是21世纪的又一次产业革命。” 英国理论物理学家斯蒂芬·霍金是继爱因斯坦之后最杰出的物理学家。他预测:“未来一千年人类有可能对DNA基因重新设计。而生化纳米材料则是设计DNA基因所必须具备的医药材料基础。” 近年来,科学家勾画了一幅若干年后的蓝图:纳米电子学将使量子元件代替微电子备件,巨型计算机可装入口袋;通过纳米化,易碎的陶瓷可以变成韧性的;世界还将出现1μm以下的机器甚至机器人;纳米技术还能给药物的传输提供新的方式和途径,对基因进行定点等。 海内外科技界广泛认为,纳米材料和技术的大规模应用可望在10年内实现。现阶段纳米材料和技术正向新材料、微电子、计算机、医学、航天航空、环境、能源、生物技术和农业等诸多领域渗透,并已得到不同程度的应用。 1998年8月20日,《美国商业周刊》发表文章指出,21世纪有三个领域可能取得重大突破:生命科学和生物技术;纳米材料和纳米技术;从外星球获得能源。并指出这是人类跨入21世纪所面临的新的挑战和机遇。诺贝尔奖获得者罗雷尔也曾说过:“70年代重视微米的国家如今都成为发达国家,现在重视纳米技术的国家很可能成为21世纪先进国家。” 1974年,Taniguchi最早使用纳米技术(Nanotechnology)一词描述精细机械加工。1977年美国麻省理工学院的德雷克斯勒也提倡纳米科技的研究。但当时多数主流科学家对此持怀疑态度。1982年发明了扫描隧道显微镜(STM),以空前的分辨率揭示了一个“可见的”原子、分子世界。到80年代末,STM已不仅是一个可观察的手段,而且已成为可以排布原子的工具。STM与AFM(原子力显微镜)

浅谈纳米技术及其应用

浅谈纳米技术及其应用 1 概述 1.1 引言 纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物。纳米技术兴起于20世纪80年代,随着它的逐步发展和完善,人类将必然在认识和改造自然方面进入一个前所未有的新阶段。 1.2 纳米技术的发展 最早提出纳米尺度上科学和技术问题的是著名物理学家、诺贝尔奖获得者理查德·费曼教授[1]。1959年他在一次题为《在底部还有很大空间》的演讲中提出:物理学的规律不排除用单个原子制造物品的可能。也就是说,人类能够用最小的机器制造更小的机器。直至达到分子或原子状态,最后可以直接按意愿操纵原子并制造产品。这正是关于纳米技术最早的构想。 20世纪70年代,科学家开始从不同角度提出有关纳米技术的构想。美国康奈尔大学Granqvist和Buhrman[2]利用气相凝集的手段制备出纳米颗粒,提出了纳米晶体材料的概念,成为纳米材料的创始者。之后,麻省理工学院教授德雷克斯勒[3]积极提倡纳米科技的研究并成立了纳米科技研究小组。 纳米科技的迅速发展是在20世纪80年代末、90年代初。1981年发明了可以直接观察和操纵微观粒子的重要仪器——扫描隧道显微镜(STM)、原子力显微镜(AFM),为纳米科技的发展起到了积极的促进作用。1984年德国学者格莱特[4]把粒径6nm的金属粉末压成纳米块,经研究其内部结构,指出了它界面奇异结构和特异功能。1987年,美国实验室用同样的方法制备了纳米TiO 多晶体。 2

纳米技术的应用.

纳米技术的应用 用含有纳米材料技术的一种特殊整理剂对羊绒衫进行加工处理纳米技术目前已成功用于许多领域,包括医学、药学、化学及生物检测、制造业、光学以及国防等等。本词条为纳米技术应用的总纲,包括如下领域: 1.纳米技术在新材料中的应用 2.纳米技术在微电子、电力等领域中的应用 3.纳米技术在制造业中的应用 4.纳米技术在生物、医药学中的应用 5.纳米技术在化学、环境监测中的应用 6.纳米技术在能源、交通等领域的应用 7.纳米技术在农业中的应用 8.纳米技术在日常生活中的应用

衣在纺织和化纤制品中添纳米微粒,可以除味杀菌。化纤布挺括结实,但有烦人的静电现象,加入少量金属纳米微粒就可消除静电现象。 食利用纳米材料,冰箱可以抗菌。纳米材料做的无菌餐具、无菌食品包装用品已经面世。利用纳米粉末,可以使废水彻底变清水,完全达到饮用标准,纳米食品色香味俱全,还有益健康。 住纳米技术的运用,使墙面涂料的耐洗刷性可提高10倍。玻璃和瓷砖表面涂上纳米薄层,可以制成自洁玻璃和自洁瓷砖,根本不用擦洗。含有纳米微粒的建筑材料,还可以吸收对人体有害的紫外线。 行纳米材料可以提高和改进交通工具的性能指标。纳米陶瓷有望成为汽车、轮船、飞机等发动机部件的理想材料,能大大提高发动机效率、工作寿命和可靠性。纳米卫星可以随时向驾驶人员提供交通信息,帮助其安全驾驶。 医利用纳米技术制成的微型药物输送器,可携带一定剂量的药物,在体外电磁信号的引导下准确到达病灶部位,有效地起到治疗作用,并减轻药物的不良反应。用纳米制造成的微型机器人,其体积小于红细胞,通过向病人血管中注射,能疏通脑血管的血栓,清除心脏动脉的脂肪和沉淀物,还可“嚼碎”泌尿系统的结石等。纳米技术将是健康生活的好帮手。 纳米技术应用前景十分广阔,经济效益十分巨大,美国权威机构预测,2010年纳米技术市场估计达到14400亿美元,纳米技术未来的应用将远远超过计算机工业。纳米复合、塑胶、橡胶和纤维的改性,纳米功能涂层材料的设计和应用,将给传统产生和产品注入新的高科技含量。专家指出,纺织、建材、化工、石油、汽车、军事装备、通讯设备等领域,将免不了一场因纳米而引发的“材料革命”。现在我国以纳米材料和纳米技术注册的公司有近100个,建立了10多条纳米材料和纳米技术的生产线。纳米布料、服装已批量生产,像电脑工作装、无静电服、防紫外线服等纳米服装都已问世。加入纳米技术的新型油漆,不仅耐

纳米光电子技术的发展及应用

纳米光电子技术的发展及应用 摘要:纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术,研究结构尺寸在0.1至100纳米范围内材料的性质和应用。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学和现代技术结合的产物,由纳米技术而产生一些先进交叉学科技术,本文主要讲述的纳米光电子技术就是纳米技术与光电技术的结合的一个实例,随着纳米技术的不断成熟和光电子技术的不断发展,两者的结合而产生的纳米光电子器件也在不断的发展,其应用也在不断扩大。 关键词:纳米技术纳米光电子技术纳米光电子器件应用 一、前言 纳米材料与技术是20世纪80年代末才逐步发展起来的前沿性,交叉性的学科领域,为21世纪三大高新科技之一。而如今,纳米技术给各行各业带来了崭新的活力甚至变革性的发展,该性能的纳米产品也已经走进我们的日常生活,成为公众视线中的焦点。[2 纳米技术的概念由已故美国著名物理学家理查德。费因曼提出,而不同领域对纳米技术的看法大相径庭,就目前发展现状而言大体分为三种:第一种,是美国科学家德雷克斯勒博士提出的分子纳米技术。而根据这一概念,可以制造出任何种类的分子结构;第二种概念把纳

米技术定位为微加工技术的极限,也就是通过纳米技术精度的“加工”来人工形成纳米大小的结构的技术;第三种概念是从生物角度出发而提出的,而在生物细胞和生物膜内就存在纳米级的结构 二、纳米技术及其发展史 1993年,第一届国际纳米技术大会(INTC)在美国召开,将纳米技术划分为6大分支:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学,促进了纳米技术的发展。由于该技术的特殊性,神奇性和广泛性,吸引了世界各国的许多优秀科学家纷纷为之努力研究。纳米技术一般指纳米级(0.1一100nm)的材料、设计、制造,测量、控制和产品的技术。纳米技术主要包括:纳米级测量技术:纳米级表层物理力学性能的检测技术:纳米级加工技术;纳米粒子的制备技术;纳米材料;纳米生物学技术;纳米组装技术等。其中纳米技术主要为以下四个方面 1、纳米材料:当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。 2、纳米动力学:主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等. 3、纳米生物学和纳米药物学:如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分

纳米技术的应用与前景

纳米技术的应用与前景 纳米技术作为一种高新科技,我认为其本质不亚于当年的电子与半导体科技,有着我们未所发掘到潜能与实用价值,在这个世代,各种技术的发展迅速,随着纳米技术的进一步发展,可以作为一种催化剂,促使各行各业的迅猛发展。 纳米技术是近年来出现的一门高新技术。“纳米”主要是指在纳米(一种长度计量单位,等于1/1000,000,000米)尺度附近的物质,其表现出来的特殊性能用于不同领域而称之为“纳米技术”,其具体定义见词条“纳米科技”。 纳米技术目前已成功用于许多领域,包括医学、药学、化学及生物检测、制造业、光学以及国防等等。本词条为纳米技术应用的总纲,包括如下领域: 1、纳米技术在新材料中的应用 2、纳米技术在微电子、电力等领域中的应用 3、纳米技术在制造业中的应用 4、纳米技术在生物、医药学中的应用 5、纳米技术在化学、环境监测中的应用 6、纳米技术在能源、交通等领域的应用 尽管从理论到实践是一个相当困难的过程,但纳米技术已经证明,可以利用扫描隧道电子显微镜等工具移动原子个体,使它们形成在自然界中永远不可能存在的排列方式,如IBM 公司的标志图案、比例为百亿分之一的世界地图、或一把琴弦只有50纳米粗的亚显微吉他。纳米材料的应用有着诱人的技术潜力,它的应用范围包括从制造工业、航天工业到医学领域等。美国全国科学基金会曾发表声明说:“当我们进入21世纪时,纳米技术将对世界人民的健康、财富和安全产生重大的影响,至少如同20世纪的抗生素、集成电路和人造聚合物那样。”科学家们预计,纳米技术在新世纪中的应用前景广阔,已经涵盖了材料、测量、机械、电子、光学、化学、生物等众多领域,信息技术与纳米技术的关系已密不可分。 从纳米科技发展的历史来看,人们早在1861年建立所谓肢体化学时即开始了对纳米肢体的研究。但真正对纳米进行独立的研究,则是1959年,这一年,著名美国物理学家、诺贝尔奖金获得者德·费曼在美国物理学年会上作了一次报告。他在报告中认为,能够用宏观的机器来制造比其体积小的机器,而这较小的机器又可制作更小的机器,这样一步步达到分子程度。费曼还幻想在原子和分子水平上操纵和控制物质。 在70年代末,美国MIT(麻省理工大学)的W.R.Cannon等人发明了激光气相法合成数十纳米尺寸的硅基陶瓷粉末。80年代初,德国物理学家H.Gleiter等人用气体冷凝发制备了具有清洁表面的纳米颗粒,并在超真空条件下原位压制了多晶纳米固体。现在看来,这些研究都属于纳米材料的初步探索。 科学家预言,尺寸为分子般大小、厚度只有一根头发丝的几百万分之一的纳米机械装置将在今后数年内投入使用。学术实验室和工业实验室的研究人员在开发分子马达、自组装材料等纳米机械部件方面取得了飞速进展。纳米机器具有可以操纵分子的微型“手指”和指挥这些手指如何工作、如何寻找所需原材料的微型电脑。这种手指完全可以由碳纳米管制成,碳纳米管是1991年发现的一种类似头发的碳分子,其强度是钢的100倍,直径只有头发的五万分之一。美国康奈尔大学的研究人员利用有机物和无机物组件开发出一个分子大小的马达,一些人称之为纳米技术领域的“T型发动机”。 纳米科技中具有主导或牵头作用的是纳米电子学,因为它是微电子学发展的下一代。纳米电子学是来自电子工业,是纳米技术发展的一个主要动力。纳米电子学立足于最新的物理理论和最先进的工艺手段,按照全新的理念来构造电子系统,并开发物质潜在的储存和处理

纳米科技在生活中的应用举例

纳米科技在生活中的应用举例 1.听说过EPS吗就是汽车的汽油燃烧装置,她是应用纳米技术将汽油分子分割成纳米为单位的质子保证充分燃烧,这样应用的后果是,气体燃烧完全有助于动力提升,节约能源等等。 2.现在流行纳米洗涤,譬如说用纳米分子Na(OH)2制造的肥皂可以充分溶解于液体,有助于衣服污汁的分解,彻底洗尽衣物! 3.现在医学上纳米手术已经达到比较成熟的状态,科学家运用纳米为单位的手术刀,可以最小的精确手术伤口的切割,保证血液的最少流动! 纳米技术应用领域 纳米技术在新世纪将推动信息技术、医学、环境科学、自动化技术及能源科学的发展,像抗生素、集成电路和人造聚合物在二十世纪发挥了重要作用一样,纳米技术在新世纪将人类的生活带来深远影响。 纳米技术将给医学带来变革:纳米级粒子将使药物在人体内的传输更为方便,用数层纳米粒子包裹的智能药物进入人体后可主动搜索并攻击癌细胞或修补损伤组织;在人工器官外面涂上纳米粒子可预防移植后的排异反应;使用纳米技术的新型诊断仪器只需检测少量血液,就能通过其中的蛋白质和DNA(脱氧核糖核酸)诊断出各种疾病。 在电子领域,可以从阅读硬盘上读取信息的纳米级磁读卡机以及存储容量为目前芯片上千倍的纳米级存储器芯片都已投入生产。可以预见,未来以纳米技术为核心的计算机处理信息的速度将更快,效率将更高。 环境科学领域将出现功能独特的纳米膜。这种膜能够探测到由化学和生物制剂造成的污染,并能够对这些制剂进行过滤,从而消除污染。 尽管纳米技术前景诱人,但是在科学家真正掌握纳米技术之前,还有许多工作要做。 目前世界上许多实验室仍在研究如何自由地操纵原子和分子问题,这对於进一步探究如何将一个个原子重新组合成新的物质来说非常重要。 科学家认为,细胞本身就是“纳米技术大师”,细胞中所有的酶都是能完成独特任务的“纳米机器”。它们在微观世界里能极其精确地制造物质,而这正是科学家希望通过纳米技术实现的梦想。科学家希望通过对细胞的研究来进一步掌握纳米技术。 纽约大学一实验室最近研制出了一个纳米级机器人,机器人有两个用DNA制作的手臂,能在固定的位置间旋转。研究人员认为,这一成果预示着,科学家有朝一日能够研制出在纳米级工厂里制造分子的纳米机器人。

纳米技术在医学领域的应用和重要影响

纳米技术在医学领域的应用 和重要影响 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

纳米技术在医学领域的应用和重要影响 摘要:纳米技术与生物医学的结合, 为医学界提供了全新的思路和便利, 纳米材料在医学领域的应用取得了显著效果。随着纳米材料在生物医学领域更广泛的应用, 临床医疗将变得节奏更快、效率更高, 诊断、检查更准确, 治疗更有效, 人们的生命安全将得到更大的保障。 关键词:纳米材料,纳米技术,生物医学,应用,重要影响 “纳米(nm)”是一种度量长度的单位,一个纳米是百万分之一毫米,也就是十亿分之一米,大约相当于45个原子串起来的长度。根据2011年10月18日欧盟委员会通过的纳米材料的定义,纳米材料是一种由基本颗粒组成的粉状或团块状天然或人工材料,这一基本颗粒的一个或多个三维尺寸在1nm-100nm之间,并且这一基本颗粒的总数量在整个材料的所有颗粒总数中占50%以上。简单来说就是,一种由具有尺寸在100nm以下的微小结构的固体颗粒组成的材料。纳米技术是指一种在单个原子与分子层次上对物质的数量、种类和结构形态等进行精确的识别、观测和控制的技术,并在纳米尺度(1—100nm)内研究物质的特性和相互作用来达到创制新物质的高新技术。这项技术是在20世纪80年代末、90年代初才逐步发展起来的前沿、交叉性新兴学科,它具有创造新生产工艺、新物质和新产品的巨大潜能和前景,它将在21世纪掀起一场新的产业革命。 科技快速发展的今天, 科学技术的各个领域相互融合、渗透,其中纳米科技的发展促进了高新技术一体化的进程, 引起了科技界的高度重视。我国著名科学家钱学森曾经预言“纳米左右和纳米以下的结构将是下一阶段科技发展的重点,会是一次技术革命, 从而将是21世纪的又一次产业革命”。纳米技术的发展正越来越成为世界各国科技界所关注的焦点,谁能在这一领域取得领先,谁就能占据21世纪科学的制高点。 美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域迅猛发展。随着纳米技术在癌症诊断和生物分子追踪的应用,医学纳米技术已经被列为美国优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断,2004年,美国国立卫生研究院所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、

纳米材料及其应用前景

纳米材料及其应用前景 摘要:21世纪,纳米技术、纳米材料在科技领域将扮演重要角色。纳米技术是当今世界最有前途的决定性技术之一。本文简要地概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并简单展望了纳米材料的应用前景。 关键词:纳米材料;功能;应用; 一、纳米材料的基本特性 所谓纳米材料是指材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料。由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增 殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和 增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50 多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直 难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、 强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。 使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油 钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用 变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面 有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作 用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的 隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体 器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管 放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室 温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研 制出由碳纳米管组成的逻辑电路。

微纳米加工技术及其应用

绪论 1:纳米技术是制造和应用具有纳米量级的功能结构的技术,这些功能结构至少在一个方向的几何尺寸小于100nm。 2:微纳米技术包括集成电路技术,微系统技术和纳米技术;而微纳米加工技术可获得微纳米尺度的功能结构和器件。 3:平面集成加工是微纳米加工技术的基础,其基本思想是将微纳米机构通过逐层叠加的方式筑在平面衬底材料上。(类似于3d打印机?) 4:微纳米加工技术由三个部分组成:薄膜沉积,图形成像(必不可少),图形转移。如果加工材料不是衬底本身材料需进行薄膜沉积,成像材料的图形需转化为沉积材料的图形时需进行图形转移。(衬底材料,成像材料,沉积材料的区别和联系) 5:图形成像工艺可分为三种类型:平面图形化工艺,探针图形化工艺,模型图形化工艺。平面图形化工艺的核心是平行成像特性,其主流的方法是光学曝光即“光刻“技术;探针图形化工艺是一种逐点扫描成像技术,探针既有固态的也有非固态的,由于其逐点扫描,故其成像速度远低于平行成像方法;模型图形化工艺是利用微纳米尺寸的模具复制出相应的微纳米结构,典型工艺是纳米压印技术,还包括模压和模铸技术。 6:微米加工和纳米加工的主要区别体现在被加工结构的尺度上,一般以100nm 作为分界点。 光学曝光技术 1:光学曝光方式和原理 可分为掩模对准式曝光和投影式曝光。其中,掩模对准式曝光又可分为接触式曝光和邻近式曝光,投影式曝光又可分为1∶1投影和缩小投影(一般为1∶4和1∶5)。 接触式曝光可分为硬接触和软接触。其特点是:图形保真度高,图形质量高,但由于掩模与光刻胶直接接触,掩模会受到损伤,使得掩模的使用寿命较低。采用邻近式曝光可以克服以上的缺点,提高掩模寿命,但由于间隙的存在,使得曝光的分辨率低,均匀性差。 掩模间隙与图形保真度之间的关系 W=k√ 其中w为模糊区的宽度。 掩模对准式曝光机基本组成包括:光源(通常为汞灯),掩模架,硅片台。 适用范围:掩模对准式曝光已不再适用于大规模集成电路的生产,但却广泛应用于小批量,科研性质的以及分辨率要求不高的微细加工中。 投影式曝光:投影式曝光广泛应用于大批量大规模集成电路的生产。 评价曝光质量的两个参数:分辨率和焦深。

纳米技术在生物医药中的应用

科技创业 PIONEERINGWITHSCIENCE&TECHNOLOGYMONTHLY 月刊 科技创业月刊2007年第8期 1990年在美国召开了第一届纳米技 术国际学术会议,成为纳米科技发展进步的一个重要标志。1999年,美国的RobertAFreitasJr出版了《 纳米医学》,表明了纳米科技的发展已促使人们开始多方面考虑并且探索纳米科技在医学临床诊治、药物学等方面的应用。纳米技术作为一项新兴技术,在生物医药领域具有十分广阔的应用前景。 1纳米技术 纳米是英文nanometre的译名,像米、 厘米、毫米等一样,是一个长度单位。1纳米(nm)为10-9米,也即百万分之一毫米,相当于一根头发丝直径的五万分之一。更形象地讲,如果把1nm的物体放在乒乓球上,就像一个乒乓球放在地球上。在纳米尺度上,由于物质的量子效应,物质的局域性和巨大的表面、界面效应,形成的材料性能发生了由量变到质变的飞跃,从而突变或产生奇异的新现象。 纳米技术是指在纳米尺度上研究物质(包括原子、分子的操纵)的特性,通过组建和利用纳米材料来实现特有功能和智能作用的高科技先进技术。这一基本概念普遍认为由美国著名物理学家、诺贝尔物理奖获得者RichardFeynman在一次题为《在物质底层有很大的空间》的演讲中提出,“为什么我们不可以从另外一个方向出发,从单个的分子甚至原子开始组装,以达到我们的要求……如果有一天能按照人们的意志安排一个个原子和分子,将会产生什么样的奇迹”。 纳米技术涵盖领域广泛,包括纳米材料学、纳米生物学和纳米显微学等方面,它建立了一种崭新的思维方式,使人类能够 利用越来越小、越来越精确的物质和越来越精细的技术成品来满足更高层次的要求。目前,由于纳米技术具有的独特优势以及人们对健康和重大疾病防治等问题的日益关注,纳米技术开始广泛应用于生物医药领域。 2纳米技术在生物医药中的应用 方兴未艾的纳米技术把人类对微观世 界的认识带入了一个全新的境界,同时也为人类战胜疾病、提高健康水平提供了更为有力的武器。就目前而言,纳米技术在生命领域的应用前景已逐渐展现,并且许多设想已经逐渐实现,可以预见纳米技术将渗透至生物医药研究和应用的方方面面。 2.1万能的机器人 1986年,美国预见研究所的工程师埃 里克?德雷克斯勒说:“我们为什么不制造出成群的、肉眼看不见的微型机器人,让它们在地毯或书架上爬行,把灰尘分解成原子,再将这些原子组装成各种物品。这些微型机器人不仅是搬运原子的建筑工人,同时还具有绝妙的自我复制和自我修复能力。” 同时,还有些科学家设想将蛋白质芯片或基因芯片组装成尺寸比人体红细胞还小的纳米机器人,使其具有某些酶的功能,它是纳米机械装置与生物系统的有机结合,在生物医学工程中可充当微型医生,解决传统医生难以解决的问题。将这些纳米机器人注入血管内,可按照预定程序,直接打通脑血栓,清洁心脏动脉脂肪沉积物等,达到预防和治疗心脑血管疾病的目的。 除此以外,不同的组合方案还可组装出其他功能的纳米机器人,例如,有的可以吞噬病菌、杀死癌细胞;有的可以作为人体 器官的修复工具,修复损伤的器官和组织等,以完成整容手术或其他器官修复手术;有的可以进行基因装配工作,除去基因中错误或有害的DNA片段,并将正常的 DNA片段装配进染色体,使机体正常运 作。 2.2灵敏的检测器 癌症是人类死亡率极高的疾病之一, 但以目前的医疗诊断水平,癌症一旦被确诊通常已发展到晚期,即已无药可救或已过最佳治疗时期。科学家设想,可制造出纳米传感器植入体内,监控早期癌变信号分子的产生,通过与外界特定的声信号或其他信号的相互作用,将内部信号转化为外部信号。 另外,近年来科学家正尝试应用纳米技术的新型检测仪器和诊断试剂,只需检测少量血液中蛋白质和DNA就可诊断出某人患各种疾病的可能性。国内外研究者正致力于脑肿瘤、肝癌、肺癌、白血病等癌症的早期纳米诊断手段的研究,并取得了一定的成绩。 2.3多彩的标记物 科学家根据CD唱机中激光二极管的 发光原理,研制出半导体纳米晶体。这种微型的无机晶体被称作量子点,可通过对其大小的控制,使其经同一光源激发后,发出红、黄、蓝等多种颜色的光。又因量子点比传统有机染色小分子更稳定,目前得到了广泛应用。例如,研究者可用量子点附着在不同基因序列组成的DNA分子上,通过比较标记的基因序列与已知序列找出哪些基因在特定细胞或组织中表达较为活跃;当用量子点标记蛋白质或其他物质时,技术人员可动态跟踪标记物在体内的过程,从而使其应用于一些疾病的诊断。 纳米技术在生物医药中的应用 夏 涛 (华中师范大学第一附属中学 湖北 武汉 430223) 摘 要 纳米技术是在纳米尺度上研究物质的特性,通过组建和利用纳米材料来实现特有功能和智能作用 的高科技先进技术。介绍了纳米技术在生物医药中的应用现状和前景,并分析了纳米技术在生物医药领域应用中的纳米材料安全性和成本问题。 关键词 纳米技术 纳米材料 生物医药 中图分类号 TD383:R319文献标识码 A 收稿日期:2007-04-17 86

纳米技术及其应用资料

纳米技术及其应用资料-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

纳米技术 科技名词定义 中文名称:纳米技术 英文名称:nanotechnology 定义:能操作细小到0.1~100nm物件的一类新发展的高技术。生物芯片和生物传感器等都可归于纳米技术范畴。 应用学科:生物化学与分子生物学(一级学科);方法与技术(二级学科) 本内容由全国科学技术名词审定委员会审定公布 纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子

和扫描隧道显微镜技术、核分析技术)结合的产物,纳米科学技术又将引发一系列新的科学技术,例如纳电子学、纳米材科学、纳机械学等。 基本概况 纳米技术(nanotechnology),也称毫微技术,是研究结构尺寸在0.1至100纳米范围内材料的性质和应用。 1981年扫描隧道显微镜发明后,诞生了一门以0.1到100纳米长度为研究分子世 利用纳米技术将氙原子排成IBM 界,它的最终目标是直接以原子或分子来构造具有特定功能的产品。因此,纳米技术其实就是一种用单个原子、分子射程物质的技术。 纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。纳米科学与技术主要包括:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学等。这七个相对独立又相互渗透的学科和纳米材料、纳米器件、纳米尺度的检测与表征这三个研究领域。纳米材料的制备和研究是整个纳米科技的基础。其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容。

纳米技术在生活中的应用

陕西国防工业职业技术学院题目:纳米技术在生活中的应用 专业:应用电子技术 姓名:支丹阳 指导教师(职称):王兴君 二0一一年十一月1日

纳米技术在生活中的应用 电子信息学院 应用电子技术 支丹阳 31309126 [摘要]具有纳米量级的超微粒构成的固体物质的纳米材料在治理有害气体方面、污水处理方面、汽车等领域都有一定的研究。本文综述了纳米材料在以上各个方面的应用。随着纳米材料和纳米技术在环保方面的应用更深入的研究,将会给我国乃至全世界在治理环境污染方面带来新的机会。 [关键词]纳米技术有害气体和污水处理生物技术与器件

目录 引言..................................................................................................................................................... - 4 - 1纳米简介.......................................................................................................................................... - 4 - 2、纳米材料的特殊性质................................................................................................................... - 5 - 3、纳米技术在治理有害气体方面的应用....................................................................................... - 5 - 4、纳米技术在污水处理方面的应用 ............................................................................................... - 6 - 5、纳米新材料在汽车上的应用 ....................................................................................................... - 6 - 5.1纳米技术在汽车润滑油上的应用 (6) 5.2纳米生物技术与器件 (7) 6、纳米材料在工程上的应用........................................................................................................... - 7 - 7、纳米材料在在催化方面的应用 ................................................................................................... - 8 - 8、纳米材料在涂料方面的应用 ....................................................................................................... - 8 - 9、纳米材料在精细化工方面的应用 ............................................................................................... - 8 - 10、纳米技术的应用前景................................................................................................................. - 9 -参考文献........................................................................................................................................... - 12 -

纳米技术的应用

纳米技术的应用 纳米技术在各领域的应用简述

纳米技术是近年来出现的一门高新技术。“纳米”主要是指在纳米(一种长度计量单位,等于1/1000,000,000米)尺度附近的物质,其表现出来的特殊性能用于不同领域而称之为“纳米技术”。 纳米,只是一个长度单位,1微米为千分之一毫米,1纳米又等于千分之一微米,相当于头发丝的十万分之一,没有任何技术属性。因此,单纯的某一纳米材料若没有特殊的结构和性能表现,还不能称为纳米技术。纳米技术,是指通过特定的技术设计,在纳米粒子的表面实现原子/分子的排列组成,使其产生某种特殊结构,并表现特异的技术性能或功能,这样的纳米材料才可称为是纳米技术。 纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术,研究结构尺寸在0.1至100纳米范围内材料的性质和应用。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物,纳米科学技术又将引发一系列新的科学技术,例如:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学等。 一.纳米技术在化工催化领域的应用 以铂,铑,银,钯等贵金属,以及Ni,Fe,Co等非贵金属纳米颗粒作为催化剂,可加速高分子高聚物的氢化反应。研究表明,铑纳米颗粒在氢化反应中具有极高的活性和良好的选择性。 金属纳米粉粒一般十分活泼,可作为助燃剂在材料中使用,也可掺杂到高能密度材料中,增加爆炸效率;此外,它还可以作为引爆剂。为了提高热燃烧效率,金属纳米颗粒和半导体纳米颗粒常常被掺杂到火箭助推器和煤中,以提高燃烧的效率。现在,纳米银和镍粉已被广泛应用于火箭燃料作助燃剂。纳米颗粒作为光催化剂,有很多优点。首先是粒径小,比表面积大,光催化效率高。其次,纳米颗粒生成的电子、空穴在达到表面结合。因此,电子、空穴能够到达表面的数量多,则化学反应活性高。此外纳米颗粒分散在介质中往往具有透明性,容易运用光学手段和方法来观察界面间的电荷转移,质子转移,半导体能级结构与表面密度的影响。 粉纳米静电屏蔽材料,是纳米技术的另一重要应用。另外,如将纳米TiO 2 体按一定比例加到化妆品中,则可以有效的遮蔽紫外线。研究人员还发现,可以利用纳米碳管独特的孔状结构、大的比表面、较高的机械强度做成纳米反应器,该反应器能够使化学反应局限于一个很小的范围内进行。 二.纳米技术在陶瓷、微电子领域的应用 1)陶瓷领域中的应用

纳米技术简介及应用.doc

纳米技术 纳米科技是20世纪80年代末刚刚诞生,并正在飞速崛起的专门研究1-100纳米之间原子、分子物质层次的结构、组成和特殊规律性能的高科技;它的最高境界是直接操纵原子、分子来构建具有特定功能的纳米结构、纳米材料和纳米器件;是一门多学科交叉和综合的高新科技。 纳米技术的三个特征是:1、它们必须至少有一个维有1纳米到100纳米的尺度。2、它们的设计过程必须体现微观操控的能力,即能够从根本上左右分子尺度的结构的物理性质与化学性质。3、它们能够组合起来形成更大的结构且具有优异的电气、化学、机械与光学性能。 纳米机器人 纳米生物学的近期设想,是在纳米尺度上应用生物学原理,发现新现象,研制可编程的分子机器人,也称纳米机器人。目前涉及的内容可归纳为以下三个方面: ①在纳米尺度上了解生物大分子的精细结构及其与功能的联系。 ②在纳米尺度上获得生命信息,例如,利用扫描隧道显微镜获取细胞膜和细胞表面的结构信息等。 ③纳米机器人的研制。纳米机器人是纳米生物学中最具有诱惑力

的内容,第一代纳米机器人是生物系统和机械系统的有机结合体,这种纳米机器人可注入人体血管内,进行健康检查和疾病治疗。还可以用来进行人体器官的修复工作、作整容手术、从基因中除去有害的DNA,或把正常的DNA安装在基因中,使机体正常运行。第二代纳米机器人是直接从原子或分子装配成具有特定功能的纳米尺度的分子装臵,第三代纳米机器人将包含有纳米计算机,是一种可以进行人机对话的装臵。这种纳米机器人一旦问世将彻底改变人类的劳动和生活方式。 量子尺寸效应 当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象和纳米半导体微粒存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级,能隙变宽现象均称为量子尺寸效应。早在20世纪60年代,久保(Kubo)采用一电子模型求得金属纳米晶粒的能级间距δ为: 式中:Ef为费米势能,N为粒子中的总电子数。该式指出能级的平均间距与组成粒子中的自由电子总数成反比。能带理论表明,金属费米能级附近电子能级一般是连续的,这一点只有在高温或宏观尺寸情况下才成立。对于只有有限个导电电子的超微粒子来说,低温下能级是离散的,对于宏观物质包含无限个原子(即导电电子数N→∞),

纳米技术及其应用简介

纳米技术及其应用简介 黄靖凯 (XX大学自动化系福建厦门学号:XXXXXX) 摘要:纳米技术与分子生物学的结合将开创分子仿生学新领域。分子仿生学模仿细胞生命过程的各个环节,以分子水平上的生物学原理为参照原型,设计制造各种各样的可对纳米空间进行操作的“功能分子器件”———纳米机器人。纳米机器人的研制和开发将成为21世纪科学发展的一个重要方向。 关键词:纳米技术;机器人 1引言 1990年,世界上最小的I、B、M3个字母在实验室中诞生了。这3个英文字母总共用了35个原子。从拍摄的照片中,我们可以清楚地看到人类所创造的最微乎其微的伟大奇迹。IBM这个当时计算机行业的巨型企业名字,被一丝不苟地刻画到长宽均不超过一个病毒的面积上。纳米技术是指0.1~100纳米的尺度里,研究电子、原子和分子内的运动规律和特性的一项崭新技术。 纳米是英文nanometer的译名。纳米是一种度量定位,也是一个长度单位。把1米分成10亿份,每一份就是1纳米。纳米材料构筑的物质,是看不到、摸不着的微细物质。我们常常用细如发丝来形容纤细的东西。其实人的头发一般直径为20—50微米,而纳米只有1微米的千分之一!纳米结构通常是指存在100纳米以下的微小结构。 目前,世界很多国家都在开展对纳米技术的研究。纳米技术之所以重要,是因为当金属或非金属被制成相当于100纳米的物质时,它的物理性能和化学性质会发生出乎意料的变化。主要表现在强度、韧度、比热、导电磁吸收性等方面。因此,人类可以利用纳米技术制造出各种各样具有特殊功能的新材料。将具有特殊功能的新材料添加到产品中,从而使产品表现出意想不到的新性能。目前,纳米新材料已经在电子、化工、通信、环保、医药等领域得到广泛应用。 2纳米技术的发展 2.1纳米技术应运而生

纳米技术及运用

纳米技术及运用 纳米(nanometer):长度单位的一种,1纳米=10-9米,即十亿分之一米。大约相当于头发粗细的八万分之一。“nanometer“"源自拉丁文,意思是"矮小"。纳米的确微乎其微,然而纳米构建的世界却是神奇而宏大的。21世纪,信息科学技术、生命科学技术和纳米科学技术是科学技术发展的主流。人们普遍认为,纳米技术是信息和生命科学技术能够进一步发展的共同基础。纳米技术所带动的技术革命及其对人类的影响,远远超过电子技术。 纳米技术包含下列四个主要方面: ⒈纳米材料:当物质到纳米尺度以后,大约是在1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,象铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。 ⒉纳米动力学,主要是微机械和微电机,或总称为微型电动机械系统,用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等.用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。在研究方面还要相应地检测准原子尺度的微变形和微摩擦等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。 ⒊纳米生物学和纳米药物学,如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,dna的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。 ⒋纳米电子学,包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料的表征,以及原子操纵和原子组装等。当前电子技术的趋势要求器件和系统更小、更快、更冷,更小,是指响应速度要快。更冷是指单个器件的功耗要

(完整版)纳米材料在实际生活中的应用

在现实生活中,纳米技术有着广泛的用途。 1、超微传感器传感器是纳米微粒最有前途的应用领域之一。纳米微粒的特点如大比表面积、高活性特异物性、极微小性等与传感器所要求的多功能、微型化、高速化相互对应。另外,作为传感器材料,还要求功能广、灵敏度高、响应速度快、检测范围宽、选择性好、耐负荷性高、稳定可靠,纳米微粒能较好地符合上述要求。 2、催化剂在化学工业中,将纳米微粒用做催化剂,是纳米材料大显身手的又一方面。如超细硼粉、高铬酸铵粉可以作为炸药有效催化剂;超细的铂粉、碳化钨粉是高效的氢化催化剂;超细银粉可以作为乙烯氧化的催化剂;超细的镍粉、银粉的轻烧结体作为化学电池、燃料电池和光化学电池中的电极可以增大与液相或气体之间的接触面积,增加电池效率,有利于小型化。 超细微粒的轻烧结体可以生成微孔过滤器,作为吸附氢气的储藏材料。还可作为陶瓷的着色剂,用于工艺美术中。 3、医学、生物工程尺寸小于10纳米的超细微粒可以在血管中自由移动,在目前的微型机器人世界里,最小的可以注入人的血管,它一步行走的距离仅为5纳米,机器人进行全身健康检查和治疗,包括疏通脑血管中的血栓,清除心脏动脉脂肪沉积物等,还可以吞噬病毒,杀死癌细胞。这些神话般的成果,可以使人类在肉眼看不见的微观世界里享用那取之不尽的财富。 4、电子工业量子元件主要是通过控制电子波动的相位来进行工作,因此它能够实现更高的响应速度和更低的电力消耗。另外,量

子元件还可以使元件的体积大大缩小,使电路大为简化,因此,量子元件的兴起将导致一场电子技术的革命。目前,风靡全球的因特网,如果把利用纳米技术制造的微型机电系统设置在网络中,它们就会互相传递信息,并执行处理任务。不久的将来,它将操纵飞机、开展健康监测,并为地震、飞机零件故障和桥梁裂缝等发出警报。那时,因特网亦相形见绌。 5、“会呼吸”的纳米面料。 纳米是一种基于纳米材料的化学处理技术,纳米布料是用一种特殊的物理和化学处理技术将纳米原料融入面料纤维中,从而在普通面料上形成保护层,增加和提升面料的防水、防油、防污、透气、抑菌、环保、固色等功能,可广泛应用于服装、家用纺织品以及工业用纺织品。 经过纳米技术处理的布料及图示 * 将经纳米技术处理之布料覆盖在水杯口上. 将少量清水倾倒于布料表面. * 清水凝聚成水珠, 在布料表面流动. 清水不会渗入布料纤维内. 经瑞典纳米技术处理后的产品特点: 防水:未经处理的织物防水特性指标为1(完全湿透),而经过处理的防水特性指标为5(没有沾湿)。 防油:未经过处理的织物的防油特性指标为0,而经过处理的防油特性指标为6(最高为8)。 防污:经过瑞典纳米技术处理后的织物,在污渍附著上有非常明显的降

相关文档